
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Task assignment in grid-computing, where both

processing and bandwidth constraints at multiple heterogeneous

devices need to be considered, is a challenging problem.

Moreover, targeting the optimization of multiple objectives

makes it even more challenging. This paper presents a task

assignment strategy based on genetic algorithms in which

multiple and conflicting objectives are simultaneously optimized.

Specifically we maximize task execution quality while minimizing

energy and bandwidth consumption. Moreover, in our video

processing scenario we consider trans-coding to lower

spatial/temporal resolutions to tradeoff between video quality

and processing and bandwidth demands. The task execution

quality is then determined by the number of successfully

processed streams and the spatial-temporal resolution at which

they are processed. The results show that the proposed algorithm

offers a range of Pareto optimal solutions that outperforms all

other reference strategies.

Index Terms—Genetic algorithm, multi-objective, task

scheduling, grid computing.

I. INTRODUCTION

OWADAYS multimedia applications – such as multi-

camera surveillance or multipoint videoconferencing –

are increasingly demanding both in processing power and

bandwidth requirements. In addition, there is a tendency

towards thin client applications where the processing

capacities of the client device are reduced and the tasks are

migrated to more powerful devices in the network.

In this respect, grid computing can integrate and make use of

these heterogeneous computing resources which are connected

through networks, overcoming the limited processing

capabilities at a client‘s device.

In the context of distributed media processing we can think of

scenarios such as video control rooms where multiple video

streams are processed and simultaneously displayed. One way

to downscale the processing and bandwidth requirements at

the displaying device is by trans-coding the video streams at

the servers to lower temporal or spatial resolutions. This is

done, however, at the cost of a degraded perceived video

quality and an increased processing cost at the server.

Therefore, in grid computing we may need to optimize and

tradeoff multiple objectives, targeting for instance quality

Manuscript received May 1st, 2011. The authors are with the SSET

Department of Imec, Kapeldreef 75,B-3001 Leuven Belgium (phone:

+3216281008; e-mails: blanch@imec.be , baertr@imec.be, and

dhondtm@imec.be).

maximization of the stream execution and minimization of the

energy consumption on the client/servers simultaneously. In

this respect, implementing a suitable strategy for task

assignment/scheduling becomes crucial for achieving a good

performance in grid computing. This subject has been

thoroughly studied in literature and various heuristic

approaches have been widely used for scheduling. In

particular, Genetic Algorithms (GA‘s) have received much

attention as robust stochastic search algorithms for various

optimization problems. In this context, works such as [1], [2]

and [3] have used Genetic Algorithms to approach task

scheduling within a device. In [1] and [2] genetic algorithms

are combined with heuristics such as ‗Earliest Deadline First‘

to assign tasks onto multiple processors. The work in [3]

extends the analysis to heterogeneous processors where the

algorithm can also determine the optimal number of

processors, given a number of tasks. In [4]-[5] the work is

extended to multiple processing nodes in the network. This

way, in [4] a thorough study is done on the performance of

different GA operators on a scheduling problem on grid

computing systems. Heterogeneous processors are considered

with the target to minimize the makespan and flowtime of the

tasks. The authors in [5] use also GA to address a similar

objective in grid computing. As in [4] neither data

transmission nor resource cost are considered.

In [6] a combination between GA and ACO algorithms is

presented for task scheduling among multiple nodes but no

bandwidth considerations are made. In [7] the authors use

evolutionary fuzzy systems to solve job scheduling in

decentralized computational grids where jobs between grid

clusters are exchanged. The average response time per job is

minimized but again the overhead of data transfers is not

considered. The work in [8] also uses a genetic-based

algorithm to assign multiple tasks in grid computing and

minimize the make-span in the task execution but unlike

previous works, the transmission time to the processing node

is considered. Similar considerations are taken in [9] where

the authors propose a strategy based on the Ant Colony

Optimization algorithm (ACO) to effectively assign tasks to

computing resources, given the current load conditions of each

computing resource and network status.

Note that the presented works only consider single objective

optimization. It is in works such as [10]-[16] where GAs are

used to address multiple objectives in the resolution of

scheduling problems. This way, in [10] the authors address the

Job Shop scheduling problem while targeting multiple

objectives, namely minimal make-span and minimal machine

workload. However, the case study addressed is very simple

and only homogeneous processors are considered. The work in

Multi-Objective Genetic Algorithm for Task

Assignment on Heterogeneous Nodes

C. Blanch, R. Baert and M. D‘Hondt

N

mailto:blanch@imec.be
mailto:baertr@imec.be
mailto:dhondtm@imec.be

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

[11] addresses the flow-shop scheduling problem with an

adaptive genetic algorithm. Pareto fronts are used to guide a

multiple-objective search: the total completion time and total

tardiness. As in our work multiple objectives are addressed,

however, task assignments at system level and bandwidth

limitations are not considered. The authors in [12] consider

heterogeneous processors and a multi-objective GA targets in

this case the minimization of the make-span, flow-time and

reliability. The work in [13] is an early work on applying GA

for multi-objective optimization, in this case to minimize both

task execution and power during co-synthesis of distributed

embedded systems. In [14] the performance of a NSGA-II

based evolutionary algorithm is compared to the true Pareto

front of solutions found with the Branch and Bound method.

The objectives targeted being the makespan and the task

completion time. Finally, in [15] the method of particle swarm

optimization is combined with evolutionary method

outperforming typical genetic algorithms.

However, in none of these works ([12]-[15]) there is any

consideration made over bandwidth constraints. Only in [16]

the network resources in terms of bandwidth and latency are

considered. In this case, an Ant Colony Optimization

algorithm is developed to address grid scheduling.

In our approach we use GAs to target multiple objectives for

task assignment in grid computing and we consider bandwidth

availability between nodes. Moreover, in comparison with all

related work presented, in our analysis we introduce an extra

dimension on the task assignment problem by considering the

down-scaling of the video streams to lower spatial/temporal

resolution. This offers a tradeoff between bandwidth and

processing constraints on one hand and perceived video

quality on the other hand. By doing this the effective system

capacity to process tasks is increased while a graceful

degradation of the video stream quality is allowed.

Additionally, we target multiple objectives such as task quality

maximization, client‘s energy minimization and minimization

of the bandwidth usage.

The rest of the paper is structured as follows. Section 2

describes the scenarios for distributed media processing

considered. Section 3 describes the basic strategies for task

assignment as well as the strategy for quality maximization

while section 4 introduces the strategy based on genetic

algorithms. We present the results and compare the

performance of the different strategies in section 5. Finally,

section 6 concludes this work.

II. SCENARIO OF DISTRIBUTED MEDIA PROCESSING

In the context of distributed video processing we are

considering a scenario such as the one of a video control

room. Several video contents are streamed towards the client

device, where the content is visualized, while the required

video processing can be distributed between the client and

other processing nodes such as servers.

We assume all processing nodes to be heterogeneous with a

different amount of processing resources, such as CPUs and

GPUs. In addition, we assume that the client‘s device has

more limited processing capacities than the server nodes.

Concretely, we consider 4CPUs and 1GPU at each server

node, while only 2CPUs at the client node. We assume

moreover that multiple codec implementations for these

different processor types are available. To overcome the

limited processing at the client node we perform distributed

processing over other nodes in the network. In this case, the

decoding task is executed at a server and the resulting output

(raw video) is transmitted to the client‘s device. Note that this

highly increases the bandwidth requirements, which should fit

in the maximum available bandwidth towards the client that

we assume of 1 Gbps and shared from any server node to the

client node. Therefore, to fit both processing and bandwidth

requirements one possibility is to trans-code (decode and re-

encode at a lower temporal or spatial resolution) the video

streams at the server‘s side. This lowers both its bandwidth

and decoding processing requirements at the end device at the

cost of a reduced perceived quality and increased server

processing.

The following section describes the task assignment strategies

used in the scenario described.

III. SINGLE OBJECTIVE ASSIGNMENT STRATEGIES

An efficient task assignment strategy is a key element in the

context of distributed grid computing. In this section we

describe the assignment strategies that we implement for

comparison with our evolutionary based approach:

Round-robin strategy (RR): the stream processing tasks are

assigned in turns on the different available processing

elements, i.e. client device and server nodes.

Max-min heuristic (MM): this is a well-known heuristic [17]

that assigns the most demanding stream processing tasks first

on the processor that is going to finish them the earliest.

Trans-code-all strategy (TA): we assign all video streams to

be spatially trans-coded at the server nodes. This lowers the

processing requirements for decoding at the client devices

while it also reduces the bandwidth usage. However, this

happens at the cost of a reduced quality of the video streams.

As trans-coding is an intensive task (decoding plus encoding)

the trans-coding of the streams is evenly distributed among the

available servers (by means of round robin) to avoid

processing overload of a server.

Strategy Maximum Quality (MaxQ):

In addition to the presented strategies, we implement a

strategy that targets the maximization of the quality of the

stream assignment. We describe this strategy next for the case

of 1 server and 1 client node, where and are the

total processing cost at client and server for the current task

assignment, and
 and

 are the maximum

processing capacity at the client node and server respectively.

In a similar way, is the bandwidth required by the current

task assignment while corresponds to the maximum

available bandwidth.

We consider that the assignment and execution, , of video

stream ‗i‘ can take one of the following values:

c : stream assigned to be decoded at the client at original

temporal and spatial resolution

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

s: stream assigned to be decoded at the server at original

temporal and spatial resolution

 : stream trans-coded to lower temporal resolution at the

server

 : stream trans-coded to lower spatial resolution at the

server

 : stream trans-coded to both lower temporal and spatial

resolution at the server

This way our task assignment consists of a set of

 for every where N is

the total number of video streams to be processed.

We want to find a task assignment solution whose bandwidth

and processing demands at client and server fit within the

bandwidth and processing constraints:

 (1)

 (2)

 (3)

The algorithm is described in the following paragraphs and

table:

In Step 1 the algorithm assigns as many stream decoding tasks

as possible to execute on the client device, this number of

tasks is constrained by the processing power at the device.

In Step 2 the remaining tasks, exceeding the processing power

at the client device, are assigned for processing at the server.

Then we check if the current assignment meets bandwidth and

processing constraints. While either bandwidth or processing

constraints at client or server are not met, the algorithm will

gradually trans-code video tasks to lower temporal or spatial

resolution at the server (done in Step 3) or will migrate some

of the decoding tasks from the client device to the server (done

in Step 4). This process continues till the assignment fits the

system bandwidth and processing constraints.

In Step 3 we proceed as follows:

 Find those stream which are currently assigned at

original temporal and spatial resolution to the server

 . From those pick the stream with the biggest

BW demand and trans-code it to lower temporal

resolution .

 If there are no streams available at full temporal

resolution then we take a stream at lowered temporal

resolution with the highest bandwidth

demand and trans-code it to a lower spatial resolution

 .

 If all streams have been spatially trans-coded then we

pick one of them (at highest bandwidth) and trans-

code it both temporally and spatially .

Note that at this point (Step 3) we are trying to find those

stream tasks () that demand the maximum bandwidth

(generally also the highest processing) in order to reduce the

bandwidth demands by trans-coding the minimum amount of

streams.

This procedure is repeated till the bandwidth constraint is met.

Finally, in Step 4, if the processing constraints at the client are

exceeded we migrate one client task to the server side. If at the

server‘s side the processing constraints are not met and all

streams have been spatially and temporally trans-coded the

assignment loop is stopped. It is not possible to downscale the

stream tasks further and therefore we cannot find an

assignment that satisfies all constraints while processing all

streams.

Evaluation of Stream Assignment Cost

If the task assignment exceeds any of the system constraints in

(1)-(3) then the execution of some tasks will fail. This way, an

individual stream processing task fails when it does not fit

within the available processing or bandwidth resources. For

instance, the node where the stream is assigned may not have

sufficient processing resources or even if the processing is

completed at the server, the available bandwidth could be

insufficient to deliver the server‘s output to the client causing

the stream processing to fail.

Related to this, we can attach to each assignment solution a

corresponding cost in terms of end video quality, bandwidth

usage and energy consumption. This cost is determined by

how many stream tasks are successfully completed and how

(on which device and at what spatial-temporal resolution) they

are executed.

Therefore, for a specific stream assignment solution we first

need to estimate which stream processing tasks can be

successfully completed and which will fail due to not meeting

Step 1: Maximize { k | , ≤
 }

Step 2: Set

WHILE (
 or

 or)

 Step 3: IF
 THEN

ELSE IF
 THEN

 ELSE IF
 THEN

END

 Repeat Step 3 until

 Step 4: IF (

 and
 THEN STOP

 ELSE IF
 THEN

 IF THEN

Set
 ELSE STOP

 END

END

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

current processing and bandwidth constraints. Then,

depending on the specific execution of each individual stream

processing we can attach a cost, in terms of quality, consumed

bandwidth and energy at the client‘s side, as defined in Table

1.

Stream Execution Quality

Bandwidth

Energy

Failed execution 0 0 Mbps 0

Decoding at client 1 20 Mbps 1

Decoding at server 1 146 Mbps 0

Temporal

Trans-coding

 0.9 10 Mbps 0.5

Spatial

Trans-coding

 0.8 7 Mbps 0.25

Temporal&Spatial

Trans-coding

 0.7 3.5 Mbps 0.12

Table 1: Definition of task execution costs (SD resolution)

Note that the data in Table 1 corresponds to streams of

Standard Definition (SD, 720x480 pixels). We also consider

streams of Common Intermediate Format (CIF, 352x288

pixels) and High Definition (HD, 1920x1080 pixels) where

bandwidth and energy costs are scaled accordingly with

respect to SD resolution.

A stream processing fails when it does not fit within the

available processing or bandwidth resources. For instance, the

node where the stream is assigned may not have sufficient

processing resources or even if the processing is completed at

the server, the available bandwidth could be insufficient to

deliver the server‘s output to the client causing the stream

processing to fail.

We attach successfully processed streams a quality value of 1

when the content is displayed at the client at its original

temporal and spatial resolution. If the video stream is down-

scaled to a lower temporal/spatial resolution in order to fit

bandwidth or processing constraints, the perceived video

quality will be slightly degraded, and therefore we attach a

lower quality value. This favors that, to maximize the streams

quality, assignment solutions where the original spatial and

temporal resolution of the streams is kept are preferred. Note

that the quality value of any stream at its original resolution

(CIF, SD or HD) is identical, only when trans-coding we

consider the quality degraded. This is, an HD streamed

spatially trans-coded (to SD) is attached a 0.8 quality

(distortion of 0.2) while a stream at original SD resolution is

attached the maximum quality of 1 (0 distortion).

The bandwidth cost per stream is also dependent on how the

stream processing is performed. This way, if decoding is

performed at the server‘s side, the stream is transmitted raw to

the client, which highly increases the bandwidth requirements.

On the contrary, if the stream is trans-coded at a server to a

lower spatial or temporal resolution the bandwidth

requirements are reduced. For the sake of simplicity we

assume the same bandwidth cost for all video streams with the

same spatial-temporal resolution. In addition, we consider that

reducing the temporal resolution from 30 frames per second to

15 approximately reduces the bandwidth by half. Similarly,

we assume that reducing the spatial resolution to the

immediate lower resolution roughly reduces the bandwidth to

approximately one third of the original resolution.

Finally, in terms of energy/processing cost at the client‘s

device we assume that the energy cost is negligible when the

video decoding task is executed on a server and the raw output

video stream is merely transmitted to the client device for

display. When the decoding task is executed at the client the

corresponding energy cost is dependent on the temporal and

spatial resolution of the decoded stream. We assume that

decoding a video sequence at 15 fps requires approximately

half of the processing/energy than decoding the same

sequence at 30 fps. In a similar way, when the spatial

resolution is lowered, for example from SD to CIF, we can

roughly assume ¼ of the decoding energy cost. Finally, the

combination of lowering temporal and spatial resolution

corresponds to a decoding cost of 1/8 of the original

resolution. In case of a failed task execution we assume no

processing effort at the client‘s side and therefore no energy

consumption. Note that the values in Table 1 are taken as

approximate and reference values, and have no impact on the

relative performance of the assignment strategies.

To obtain the total quality TQ, bandwidth TBW or energy cost

TE for the complete assignment we simply need to sum all

individual stream processing costs as follows:

 (4) or equivalently

 (5)

 (6)

 (7)

Where N is the total number of streams considered in the

assignment.

IV. MULTI-OBJECTIVE GENETIC ALGORITHM

The heuristic and strategies presented in the previous section

target at most one single objective optimization. However in

practice we may want to optimize multiple objectives

simultaneously. For instance, we may need to maximize the

video streams quality while minimizing the bandwidth usage

and the energy cost at the client. This multi-objective

optimization is challenging, especially when multiple

heterogeneous nodes and multiple ways of processing the

streams (decoding, trans-coding) are considered. To achieve

this, we base ourselves on genetic algorithms and use the

concept of Pareto fronts of solutions. This allows us to obtain

a set of Pareto optimal assignment solutions from which we

can choose the solution that best meets the constraints or our

preferences towards a certain objective. In addition, a genetic

algorithm is a flexible tool where the target objective can be

easily modified. The remainder of this section describes how

the genetic algorithm is implemented.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

A. Genetic Algorithm Structure

A genetic algorithm (GA) is a search heuristic that mimics the

process of natural evolution. In a genetic algorithm, a

population of strings (called chromosomes), which encode

candidate solutions (called individuals of the population) to an

optimization problem, evolves toward better solutions. The

evolution usually starts from a population of randomly

generated individuals and happens in generations. In each

generation, the fitness of every individual in the population is

evaluated, multiple individuals are selected from the current

population (based on their fitness), and modified (recombined

and possibly randomly mutated) to form a new population.

The new population is then used in the next iteration of the

algorithm. Generally, each generation of solutions improves

the quality of its individuals. The algorithm terminates when

either a maximum number of generations has been produced,

or a satisfactory fitness level has been reached. The structure

of our genetic algorithm can be summarized as follows:

Step 1: Initialize the population of chromosomes

Step 2: Evaluate each chromosome with the fitness function

Step 3: Crossover operation: select parents according to

fitness and create new children chromosomes.

Step 4: Random mutation of chromosomes

Step 5: Elitist selection: retain fittest chromosomes among

those of the old generation and the new ones resulting

from Step 3 and 4

Step 6: Repeat steps 2 to 5 till termination condition is

reached

B. Representation of the solution domain

Traditionally, solutions are represented in binary as strings of

0s and 1s, but other encodings are also possible. In our case,

we use a decimal representation. Each possible stream

assignment solution is represented as a chromosome, which is

composed of several gens. In our case, the length of the

chromosome is equal to the number of streams that need to be

scheduled in the system. Each of the genes in the chromosome

represents the node that is going to process the stream and

how it is going to be processed. Table 2 gives a description of

the meaning of each possible gene value in the chromosome.

In this example the available processing nodes are the client

device S0, and two server nodes S1 and S2.

Gene

value

Meaning on task execution

‘1’ Decoded at client device S0

‘2’ Decoded at S1 and transmitted to S0

‘3’ Trans-coded at S1 to lower temporal resolution

‘4’ Trans-coded at S1 to lower spatial resolution

‘5’ Trans-coded at S1 to lower spatial-temporal res

‘6’ Decoded at S2 and transmitted to S0

‘7’ Trans-coded at S2 to lower temporal resolution

‘8’ Trans-coded at S2 to lower spatial resolution

‘9’ Trans-coded at S2 to lower spatial-temporal res

Table 2: Description of Genes

Figure 1 shows an example of chromosome (assignment

solution). By looking at the gene description in Table 2 we can

see that the corresponding stream task assignment would be as

follows: the first two streams (‗2‘) are decoded at server S1,

the third and fourth streams (‗1‘) are executed at the client

device S0, the next three streams are trans-coded at server S2

to a lower spatial resolution (‗8‘) and the last stream is

processed at server S1 where it is trans-coded to lower

temporal resolution (‗3‘).

2 2 1 1 8 8 8 3

Figure 1: Example of chromosome

We now detail how to compute the cost of the assignment

solution in Figure 1. Assuming all streams are of SD

resolution, the corresponding cost of this assignment

according to Table 1 would be the following:

For streams 1 and 2 decoded at the server at full resolution and

transmitted raw to the client:

 = =146 Mbps, = = 1, = = 0,

For streams 3 and 4 decoded at the client device at full

resolution:

 = =20 Mbps, = = 1, = = 1,

For streams 5, 6, and 7 spatially trans-coded at a server:
 = = 7 Mbps, = = = 0.8,

 = = 0.25,

For stream 8 that is temporally trans-coded at a server before

being sent to the client:

 = 10 Mbps = 0.9 = 0.5

Therefore the total value of the assignment in the three-

dimension space is:

 = 363 Mbps
 = 7.3 = 3.25

C. Initialization of GA population

In general terms we initialize the population of assignment

solutions by random generation. We also include in the initial

population solutions that contribute to distribute the tasks

processing evenly among the existing processing elements as

well as solutions that imply trans-coding of all processing

tasks (as this may facilitate convergence to suitable

assignments in high load scenarios). By doing so we are

making sure that certain potentially useful features are present

in the population.

With respect to the population size, its optimal value is highly

dependent on the scenario dimensions. In our case we

experimented with populations of size 10 to 40 and

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Algorithm

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

determined experimentally that a population of size 30 was

suitable for the considered scenarios.

In addition, in a dynamic scenario where the number of tasks

to be processed may be varying over time we can improve

convergence by reusing previously found solutions as part of

the initial population for a new scenario. For instance, if the

stream tasks to be processed increases from N to N+1 then we

can use the assignment solutions found for N streams as initial

population for the assignment of N+1 streams, while a random

assignment is added for the extra N+1th stream. This helps the

algorithm converge and find an optimal solution. Moreover, it

helps preserve the previous assignment solution as it

minimizes the change of tasks assignments in the system.

D. Fitness function

The goal of the fitness function is to evaluate how good an

assignment solution is with respect to the defined target

objectives. If we consider the optimization of a single

objective, for instance maximization of the video quality, we

can define the fitness function as the quality value of every

assignment:

 N = total number of streams (8)

This way, the fittest assignments are those with the highest

video stream quality.

If we are considering multiple objectives such as video

quality, bandwidth usage and energy consumption at the client

device, a particular assignment solution will result in a certain

value in these three axes. In other words, each assignment

solution can be represented as a point in the multi-objective

space with the objective values ().

Each of these values is obtained as the sum of distortion,

bandwidth and energy for all N stream tasks considered:

With the task distortion related to the task quality as:

 (9)

To minimize multiple objectives we would like then to

minimize the following function where w1, w2 and w3 are the

weights for the different objectives:

 (10)

Minimizing (10) is then equivalent to maximizing the

following fitness function in our GA:

 (11)

To avoid the need of weighting factors in the fitness function

we use the concept of Pareto points for the multi-objective

optimization. Pareto points are optimal tradeoffs in the multi-

objective space and obtaining the set of Pareto points from all

assignment solutions is equivalent to exploring a range of

weights in (10-11).

We are therefore interested in obtaining a range of Pareto

optimal solutions in said multi-objective space. In addition, we

evaluate the fitness of an assignment solution according to

how close the solution is to a Pareto point or to the actual

Pareto envelope.

Figure 2: Pareto front of solutions

In Figure 2 we can see that this favors that non-Pareto

solutions like A, which lie close to the Pareto front, are

selected to breed and mutate hopefully generating Pareto

points within new areas of the Pareto front. This helps newer

generations of Pareto front spread over the bi-dimensional

space without losing diversity and concentrating around the

specific area of the initial Pareto points.

To evaluate the fitness of each solution point, we compute the

Euclidean distance from each point to the closest point in the

hypothetical Pareto front. In a three dimensional objective

space this is expressed as:

 (12)

Where every point has the following representation in the

three-dimensional multi-objective space . The

closer a point is to this Pareto front, the fitter it is considered.

Note that Pareto points, already belonging to the Pareto

envelope, have the minimum distance to it and therefore are

assigned the highest fitness values. This guarantees that they

are always kept for the next generation of the GA.

E. Selection of individuals according to fitness

During each successive generation, a proportion of the

existing population of solutions is selected to breed a new

generation. Individual solutions can be selected through a

fitness-based process, where fitter solutions (as measured by

the fitness function) are typically more likely to be selected. In

our case we do not use a probabilistic selection but an elitist

selection, this is, the fittest members of the population are

used to breed a new population. Moreover, after crossover and

generation of new child solutions we apply again elitist

selection and retain in the solution space those solutions that

are the fittest among the parents and the newly generated

children solutions. We use the fitness function as described in

the earlier section. In practice, this means that for the selection

of the parent chromosomes during the crossover and mutation

steps we select the Pareto optimal points from the pool of

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

chromosome/solutions (as these are the fittest points in our

space) and from the non-Pareto points we take the fittest ones.

The elitism we apply in the selection is similar to the one

applied in the Non Dominated Sorting GA or NSGA [18] in

the sense that the Pareto or non-dominated solution points are

identified and given the highest fitness value. Our approach

differs however in the treatment of the non-Pareto solutions, in

our case the fitness of these points is computed based on the

distance to the Pareto front, more similar to the Strength

Pareto Evolutionary Algorithm (SPEA). With respect to SPEA

[19] we apply a similar elitist selection, after both crossover

and mutation as the Pareto solutions are always kept for the

next generation. However, unlike SPEA, we do not maintain a

fixed size for the Pareto population and to avoid a too early

convergence of the algorithm we allow a high degree of

mutation among the solutions in the Pareto front.

F. Evolution: crossover and mutation

The crossover step consists in creating a second generation of

solutions from an initial population of solutions. For each new

solution to be produced, a pair of "parent" solutions is selected

for breeding from the current population. By producing a

"child" solution using the crossover, a new solution is created

which typically shares many of the characteristics of its

"parents". In our algorithm crossover is implemented as

single-point crossover. This is, a random point is selected in

the parent chromosome and the information before and after

that point is exchanged and recombined between the two

parents creating in this way two child solutions that share the

parent‘s characteristics. The single-point crossover is

represented in Figure 3:

Figure 3: Single-point crossover

Crossover is applied on a percentage of the population given

by the crossover rate. Out of the new population of ―parents‖

and ―child‖ chromosomes we apply an elitist selection and

keep a population with size of the initial population with the

fittest individuals. Generally the average fitness of the new

population will have increased, since only the best individuals

from the first generation are selected for breeding. After

crossover the mutation step is implemented. The purpose of

mutation in GAs is preserving and introducing diversity.

Mutation should allow the algorithm to avoid local minima by

preventing the population of chromosomes from becoming too

similar to each other, thus slowing or even stopping evolution.

Mutation is implemented by randomly changing some of the

genes in the chromosome with a probability given by the

mutation rate.

We use a high mutation rate in our approach, as this helps the

algorithm avoid local minima. Nevertheless, we do not risk

losing good features of the solution space, thanks to the elitist

selection applied after crossover or mutation. This is, the

fittest solutions are always kept, therefore if the mutated

solutions are less fit than the original solutions, the original

solutions are retained.

G. Parameter selection for Genetic Algorithm

The way the Genetic Algorithm evolves towards fitter

solutions is highly dependent on the parameter selection. In

this respect, the percentage of the population on which the

crossover and mutation steps are implemented is given by the

crossover and mutation rate parameters respectively. As

explained in the previous section a high mutation rate is

selected to prevent the algorithm from a too early convergence

and falling in local minima. A similar approach is taken in

[20] and [14]. Moreover in [14] a similar crossover rate is also

selected. Unlike [14] however, we require a lower population

size and lower number of generations. This is possibly due to

the fact that the elitist selection we implement helps speed up

the convergence.

Table 3 shows the impact of the population size on the quality

of the assignment solution found (with task quality as single

objective) for a different number of tasks considered. We can

first see that when the number of tasks increases it becomes

more difficult to find an optimal assignment with high quality,

this is due to the limited bandwidth and processing constraints

in the system. This way, for 10 tasks considered the

assignment found guarantees perfect quality (equal to the

number of tasks) while as the task increase the maximum

quality attained differs from the perfect quality value.

of tasks/

population

 10 20 30 40

 10 10 19.7 28 35.9

 20 10 19.9 28.4 36.8

 30 10 19.9 28.7 36.5

 40 10 19.9 28.4 36.6

Table 3: Assignment quality versus population size

In addition, we observed that to reach a high quality solution it

is advisable to use a population with at least the same size than

the number of tasks considered. Therefore, for the number of

tasks considered in our scenarios, a population size of 30

individuals proves to be suitable. In this respect we observed

that bigger populations cause slow convergence and increased

execution cost while small ones tend to evolve to less fit

solutions.

In terms of number of iterations we let the algorithm evolve

during 30 generations. This value is experimentally found to

be a good tradeoff in terms of achieving a good convergence

while still having a reduced execution time.

http://en.wikipedia.org/wiki/Local_minimum

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Table 4 summarizes the parameter selection for the evolution

of the Genetic Algorithm. The parameter values selected are

also close to the suggested ones in [21].

Crossover rate 0.7

Mutation rate 0.3

Population size 30

Max generations 30

Table 4: GA parameters

H. Convergence of Genetic Algorithm

One way to analyze the convergence of our multi-objective

GA is by measuring the area/volume under the Pareto front of

solutions in the multi-objective space. The reason is that the

minimization of several objectives in our GA translates to

Pareto fronts becoming closer to all objective axes, in other

words Pareto fronts with lower areas/volumes underneath.

Figure 4 shows the evolution of the area under the Pareto front

versus the number of iterations for a different number of tasks

in the system. In this case, the GA evolves with the objective

to minimize both distortion and energy at the client. As we can

see with an increasing number of iterations the area below the

Pareto front decreases. This indicates that the Pareto fronts

obtained gradually improve and achieve lower values of

distortion and energy.

Figure 4: Convergence versus iterations

As explained earlier tenths of iterations are sufficient in our

scenario to find good assignment solutions that outperform the

reference methods.

I. Execution cost of Genetic Algorithm

Our genetic algorithm is an in-house developed Matlab code

and does not form part of the Matlab Optimization toolbox.

The code has not been optimized for speed and its average

execution time for 10 iterations of the algorithm is in the order

of a couple of seconds. In this respect, the computational cost

of the reference methods such as MaxQ and Min-Max is

almost negligible with respect to GA. However, these

methods achieve suboptimal results and are not able to tackle

a multi-objective optimization.

Note that genetic algorithms are subject to parallelization,

which can speed up its execution considerably. Therefore, a

more dedicated and optimized implementation of the

algorithm exploiting parallelism would highly reduce its

execution time. However, developing such algorithm is out of

the scope of this paper. In previous work such as [14] we can

observe similar execution times for the GA algorithm and a

similar amount of tasks considered. In [22] an optimized

implementation of a GA on a SUN 4/490 only requires 1 to 2s

to perform 1000 iterations showing that a dedicated

implementation can reduce the execution time considerably. In

this respect in our approach, the number of iterations needed is

in the order of tenths of iterations, which would further reduce

the execution time.

In addition, the computational load of the GA is marginal

when compared to the high computational load of any trans-

coding, decoding operation that takes place in the servers in

our scenario. Therefore, the execution of the GA can be placed

on such a server with high processing power elements such as

a GPU.

Last but not least, in our cloud computing scenario we could

expect that new stream processing tasks enter or leave the

system not faster than every couple of minutes. Therefore

global or partial re-computations of the stream assignments

are not frequently needed.

To give an indication of how the complexity of our algorithm

scales, Table 5 shows the relative execution cost versus the

number of tasks and the size of GA population considered. We

can see how, as expected, the execution cost increases almost

proportionally with the size of the population. The increase

with the number of tasks considered is much less noticeable.

This has the advantage that scaling up the scenario to a higher

number of tasks does not have a big impact on the GA

algorithm complexity.

of tasks/

population

 10 20 30 40

 10 8 9 8.5 8

 20 14 15 18 19

 30 20 20 30 32

 40 27 29 40 41

Table 5: Relative execution cost

Note also that for large scale problems, we could address the

task scheduling problem in a hierarchical way, this is, tasks

can be initially distributed locally among clusters of

processing devices and within each cluster, GA can be applied

to obtain the optimal assignment. This would limit the

complexity increase of the GA optimization.

V. EXPERIMENTAL RESULTS

In this section we compare the performance of the different

assignment strategies considered. We first focus on a single

objective optimization, namely quality, where we use the

fitness definition in (8). Figure 5 shows the performance of

each assignment strategy with respect to the system load

(given by an increasing number of SD streams to be displayed

0 10 20 30 40 50 60
0

20

40

60

80

100

120

GA iterations

A
re

a
 u

n
d
e
r

P
a
re

to

14 streams

20 streams

26 streams

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

at the client‘s device). We can see that from 4 video streams

up to 10 both GA and MaxQ strategies outperform all others

while achieving the maximum quality. In this respect note that

the maximum quality equals N, the total number of streams, as

the maximum quality per stream is 1 (see Table 1). From 10

streams on, it is only the GA that achieves a close to optimal

quality. This shows that the higher the load in the system is the

more advanced strategy we need to find a suitable assignment.

Moreover, at high load trans-coding with slight degradation of

the stream quality becomes necessary in order to fit all streams

into the available constraints.

Figure 5: Performance of strategies versus system load

We then focus on multiple objectives optimization for a

specific system load. We consider the processing of 20 video

streams of mixed spatial resolutions: CIF, SD and HD at 30

fps. We compare the different strategies as well as the

availability of one single server node with respect to two

server nodes where tasks can be migrated to.

Figure 6 shows how the GA clearly outperforms all other

strategies when targeting both quality maximization

(equivalently distortion minimization) and minimization of

energy at the client device. This way, the assignment solutions

found by GA incur in lower energy at the client and lower

distortion than the solutions found by the other strategies. We

can see that in the GA Pareto front some assignment solutions

reach 7% of distortion while the MaxQ Strategy reaches

around 15% distortion. Similarly, for the same distortion than

MaxQ the GA points lower the energy from 35% to roughly

10%.

Two sets of Pareto solutions are shown for the GA, one

corresponding to the use of 1 server and another to the use of 2

servers. Naturally, having two servers available to process the

tasks allows the GA find better assignment solutions.

Similarly, for the reference strategies we show two points

(assignment solution) for each strategy displayed. The two

points correspond to the use of 1 server and 2 servers

respectively where generally the use of 2 servers achieves

lower distortion but also higher energy consumption (as more

streams can be processed).

Figure 6: Energy-distortion tradeoffs

Note that both distortion and energy values are given as

percentages from the maximum possible distortion or energy.

This way, the maximum energy cost at the client is defined as

the cost of processing the decoding tasks of all streams at full

spatial and temporal resolution, while the maximum distortion

(100%) corresponds to a failed execution for all streams. In

general, the relative distortion is defined as:

Distortion (%) = 100% - Quality (%) (13)

This way, from Table 1, successfully processing all N streams

at its original spatial-temporal resolution would result in a

maximum quality value of N (equivalent to100% quality or

0% distortion). In a similar way, trans-coding the temporal

resolution of all N streams would correspond to a total quality

of 0.9*N (equivalent to a quality of 90% or distortion of 10%).

We can further analyze the assignment solutions found by the

different strategies in Table 6. This table shows some of the

assignment solutions of 1 server in Figure 6.

In this table, for the different kind of stream processing

assignment a distinction is made between the different original

stream resolutions (HD/SD/CIF). This way, for example in the

assignment of the round robin (RR) strategy 4 CIF streams

fail, while 4 HD streams, 3 SD and 2 CIF are successfully

decoded at the client and 3 HD and 4 SD streams are decoded

at the server. Finally, no streams are trans-coded in this

strategy. By analyzing Figure 6 and Table 6 we can see that

strategies such as round-robin (RR) and max-min (MM)

cannot find an assignment with a good tradeoff in terms of

quality and energy cost. The reason is that none of these

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Number of streams

Q
u
a
lit

y
 o

f
a
llo

c
a
ti
o
n

Round Robin

Max Min

All transcoded

MaxQ

GA

Ideal

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

 % Distortion

%
 C

lie
n
t

E
n
e
rg

y

Round Robin

Max Min

Transcode all

MaxQ

GA 1 server

GA 2 servers

 Failed
tasks

Decode
@client

Decode
@server

Temp
Trans

Spat
Trans

Temp
&Spat
Trans

Dist
(%)

Ener-
gy(%)

RR 0/0/4 4/3/2 3/4/0 -/-/- -/-/- -/-/- 20 37

MM 0/0/6 7/6/0 0/1/0 -/-/- -/-/- -/-/- 30 30.4

TA 0/0/4 -/-/- -/-/- -/-/- -/-/- 7/7/2 36 14

MaxQ -/-/- 2/6/0 0/0/1 0/0/1 0/0/0 5/1/4 15.5 36.3

GA_1 -/-/- 4/0/1 2/5/0 1/2/0 0/0/1 0/0/4 8.5 28

GA_2 -/-/- 0/0/1 3/5/0 0/1/0 4/0/1 0/1/4 13 22.5

GA_3 -/-/1 0/1/0 5/5/0 1/0/0 1/0/0 0/1/5 15.5 11.6

Table 6: Assignment strategies for HD/SD/CIF streams

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

strategies considers either bandwidth constraints or trans-

coding. In this example both round-robin and max-min

succeed in distributing the load evenly among nodes and meet

the processing constraints. However, decoding streams at the

server nodes generates high bandwidth demands towards the

client. This exceeds the bandwidth availability and causes

failed processed streams (in particular the high bandwidth HD

streams). Therefore in this case the use of 2 servers further

degrades the performance as more streams are processed at the

server‘s side and this aggravates the bandwidth demand. This

way, under high load some stream trans-coding would be

required to fit into both available processing and bandwidth

constraints.

However, trans-coding all streams at the server nodes (TA

strategy) is neither an optimal assignment as we enforce the

quality degradation of all streams. Moreover, trans-coding

tasks are processing intensive and exceed the processing

capacity at the servers resulting in some failed stream

processing. In this case the use of 2 servers increases the

overall processing capacity but the assignment remains quite

suboptimal in terms of distortion and energy.

In contrast, the MaxQ strategy succeeds in finding an

assignment with low distortion value (15%). However, its

energy cost is relatively high (36%). In Table 6 we can see

that all 20 streams are successfully processed, out of which 10

are trans-coded temporally and spatially while 8 are decoded

at the client device at full resolution. In this example the

processing capacities with one server are enough for the

amount of trans-coding involved, while the main limiting

factor remains the bandwidth.

It is finally the GA that outperforms all strategies by

addressing both objectives and finding a set of assignment

solutions that is Pareto optimal in both senses. Moreover,

having 2 server nodes available for processing allows the GA

to find even better tradeoffs (lower Pareto curve) in terms of

quality and energy. Note also that the set of GA solutions

offers an energy range from 30% to 10% for low distortion

values. This way, we can reduce the energy at the client by

factor 3 by trading off some stream quality. This offers the

flexibility to choose between different operating points at grid

level according to how scarce the processing power and

energy at the client is.

In Table 6 we only show a few of the set of Pareto optimal

solutions found by the GA. We can see how GA_1 assignment

solution reaches the lowest distortion (8.5%) at 20% lower

energy cost than MaxQ strategy. This assignment distributes

more evenly the streams between client and server and

chooses to trans-code temporally and spatially only 4 streams

of HD resolution. The GA_2 assignment provides a tradeoff of

slightly higher distortion (13%) but an energy cost 40% lower

than that provided by MaxQ. Finally, GA_3 assignment

provides similar distortion than MaxQ (15.5%) but it further

reduces the energy consumption, demanding almost 70% less

energy than MaxQ.

Figure 7 shows a similar comparison with respect to the

bandwidth usage and distortion incurred by the different

assignment solutions. In this case the GA targets optimization

of both distortion and bandwidth objectives and clearly

outperforms all other strategies as shown by the lower

distortion and bandwidth values obtained in the GA Pareto

front. We can see in this respect how the MaxQ solution has a

high bandwidth cost (close to 100%) while the GA solutions

in the Pareto front require for the same distortion barely 20%

of the maximum bandwidth. In addition, considering two

servers further allows a distortion and bandwidth reduction,

possibly due to the fact that more processing power is

available for trans-coding the highly demanding HD streams.

Figure 7: Bandwidth – Distortion tradeoffs

Finally Figure 8 shows the optimality of the different

assignments in the three-dimensional space of distortion,

bandwidth usage and client‘s energy cost. The GA targets the

minimization of these three objectives and the Pareto front

becomes a Pareto surface.

Figure 8: Pareto points in 3D space

As in the previous figures the assignments found for 1 and 2

servers are displayed. Once again, we can see that the

assignments found by the GA outperform all other strategies

in terms of distortion, energy and bandwidth while at the same

time providing a good tradeoff for all three objectives. Indeed,

we can see that the GA solution points concentrate around

lower distortion values (especially those corresponding to use

of 2 servers), lower bandwidth and lower energy values. For

the sake of clarity, in Figure 9 we show the projection of

5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

 % Distortion

%
 B

a
n
d
w

id
th

Round Robin

Max Min

Transcode all

MaxQ

GA 1 server

GA 2 servers

10
15

20
25

30
35

40

0

10

20

30

40

50

0

20

40

60

80

100

%
 B

a
n
d
w

id
th

 % Distortion
 % Energy

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Figure 8 on the two-dimensional space of energy and

distortion where the better results of GA can be seen clearly.

Figure 9: Projection onto Energy-Distortion space

In practice, both processing and bandwidth constraints may

vary over time. Therefore we may require a new stream

assignment to fit the new constraints. One possible way to

tackle this is by simply re-running the assignment strategy.

However, as the GA strategy already produces a set of

assignment solutions with different energy – distortion –

bandwidth tradeoffs, another possibility is to simply choose

from the set of solutions a different operating point

(assignment solution) that satisfies the new constraints. This

way, if the current assignment solution requires a processing

of 50% at the client‘s side, switching to a new assignment

with 30% processing may be suitable for a more overloaded

client device. We can also cope with variations in bandwidth

or processing constraints by targeting more limiting

constraints, for instance 80% of the maximum bandwidth and

maximum processing power. By doing so, the assignment is

slightly over-dimensioned and can cope with variations of up

to 20-25% above the current constraints. This would also help

avoid too frequent task migrations in the system.

VI. CONCLUSION

We have presented an evolutionary based strategy for stream

processing assignment in a client-cloud multimedia system

where multiple heterogeneous devices are considered. In this

context, we not only decide on which node each stream is

assigned but we also consider the possibility of stream trans-

coding to a lower temporal or spatial resolution. This extends

the system capacity at the cost of smooth quality degradation

in the task execution.

Moreover, both processing capacities in the nodes and

bandwidth availability are taken into consideration. The

proposed strategy is highly flexible and can target multiple

objectives simultaneously. It outperforms all other considered

strategies while providing a wide range of tradeoffs in the

assignment solutions.

REFERENCES

[1] Y-W Zhong and J-G Yang, ―A hybrid genetic algorithm with
lamarckian individual learning for task scheduling‖, in IEEE

International Conference on Systems, Man and Cybernetics, 2004.

[2] K. Dahal, A. Hossain, B. Varghese, A. Abraham, F. Xhafa and A.
Daradoumis, ―Scheduling in multiprocessor system using genetic

algorithms‖, in IEEE Conference on Computer Information Systems

and Industrial Management Applications, 2008.
[3] M.R. Miryani and M. Naghibzadeh, ―Hard real-time multi-objective

scheduling in heterogeneous systems using genetic algorithms‖, in

Proceedings of the 14th International CSI Computer Conference, 2009.
[4] J. Carretero and F. Xhafa, ―Genetic algorithm based schedulers for grid

computing systems‖ in International Journal of Innovative Computing,

Information and Control, Vol 3, No 6, December 2007.
[5] R. Entezari-Maleki and A. Movaghar: ―A genetic algorithm to increase

the throughput of the computational grids‖, in International Journal of

Grid and Distributed Computing, Vol. 4, No. 2, June 2011.
[6] J. Liu, L. Chen. Y. Dun, L. Liu and G. Dong, ―The Research of Ant

Colony and Genetic Algorithm in Grid Task Scheduling‖, in the

International Conference on Multimedia and Information Technology,
2008.

[7] A. Folling, C. Grimme, J. Lepping and A. Papaspyrou, ―Robust load

delegation in service grid environments‖, in IEEE Transactions on
Parallel and Distributed Systems, vol. 21, No. 9, September 2010.

[8] K-M Yu and C-K Chen, ―An Evolution-based Dynamic Scheduling

Algorithm in Grid Computing Environment‖, in the Eighth International
Conference on Intelligent Systems Design and Applications

[9] A. Michalas and M. Louta,―Adaptive Task Scheduling in Grid
Computing Environments‖, in the Fourth International Workshop on

Semantic Media Adaptation and Personalization, 2009.

[10] X. Yang and J. Zeng, ―Apply MGA to multi-objective Flexible Job
Shop Scheduling Problem‖, in International Conference on Information

Management, Innovation Management and Industrial Engineering,

2009.
[11] M. Basseur, F. Synhaeve and E-G. Talbi, ―Path relinking in Pareto

Multi-objective Genetic Algorithms‖ in Proceedings of EMO, 2005.

 [12] P. Chitra, S. Revathi, P. Venkatesh and R. Rajaram,
―EvolutionaryAlgorithmic approaches for solving three objectives task

scheduling Problem on Heterogeneous systems‖, in the IEEE

International Advance Computing Conference (IACC), 2010.
[13] R.P. Dick and N.K. Jha, ―MOGAC: a multiobjective genetic algorithm

for hardware-software cosynthesis of distributed embedded systems, in

IEEE Transactions on computer-aided design of integrated circuits and
systems, Vol 17, No 10, October 1998.

[14] M. Camelo Y. Donoso and H. Castro, ―MAGS–An approach using

multi-objective evolutionary algorithms for grid task scheduling‖, in
International Journal of applied mathematics and informatics, Issue 2,

Volume 5, 2011.

[15] F.S. Kazemi, R. Tavakkoli-Moghaddam, ―Soving a multi-objective
multi-mode resource-constrained project scheduling problem with

particle swarm optimization‖, in International journal of academic

research, Vol. 3, No. 1, January 2011.
[16] Y. Hu and B. Gong, ―Multi-objective Optimization Approaches Using a

CE-ACO inspired strategy to improve Grid jobs scheduling‖, in Fourth

ChinaGrid Annual Conference, 2009.
[17] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund,

―Dynamic mapping of a class of independent tasks onto heterogeneous

computing systems,‖ 8th IEEE Heterogeneous Computing Workshop
(HCW '99), pp. 30-44, San Juan, Puerto Rico,April 1999.

[18] N. Srinivas and K. Deb, ―Multi-objective optimization using non-

dominated sorting in genetic algorithms‖, in Evol. Comput., vol.2, no.
3, pp. 221-248, Fall 1994.

[19] E. Zitzler and L. Thiele, ―Multiobjective evolutionary algorithms: a

comparative case study and the strengths Pareto approach‖, in IEEE
Trans. Evol. Comput., vol.3, no.4, pp. 257-271, Nov 1999.

[20] Y. Iosifidis, A. Mallik, S. Mamagkakis, E. De Greef, A. Bartzas, D.

Soudris and F. Catthoor , ―A framework for automatic parallelization,
static and dynamic memory optimization in MPSoC platforms‖, in

Design Automation Conference 2010.

[21] A.Y. Zomaya, C. Ward and B. Macey, ―Genetic Scheduling for Parallel

Processor Systems: Comparative Studies and Performance Issues‖, in

IEEE Transactions on Parallel and Distributed Systems, 1999.

[22] S.H. Hou, N. Ansari and H. Ren, ―A genetic algorithm for
multiprocessor scheduling‖, in IEEE Transactions on Parallel and

Distributed Systems, vol. 5, no. 2, February 1994.

10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

45

50

 % Distortion

%
 E

n
e
rg

y

Round Robin

Max Min

Transcode all

MaxQ

GA 1 server

GA 2 servers

