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Abstract—Task assignment in grid-computing, where both 

processing and bandwidth constraints at multiple heterogeneous 

devices need to be considered, is a challenging problem. 

Moreover, targeting the optimization of multiple objectives 

makes it even more challenging. This paper presents a task 

assignment strategy based on genetic algorithms in which 

multiple and conflicting objectives are simultaneously optimized. 

Specifically we maximize task execution quality while minimizing 

energy and bandwidth consumption. Moreover, in our video 

processing scenario we consider trans-coding to lower 

spatial/temporal resolutions to tradeoff between video quality 

and processing and bandwidth demands. The task execution 

quality is then determined by the number of successfully 

processed streams and the spatial-temporal resolution at which 

they are processed. The results show that the proposed algorithm 

offers a range of Pareto optimal solutions that outperforms all 

other reference strategies.  

 

 
Index Terms—Genetic algorithm, multi-objective, task 

scheduling, grid computing. 

I. INTRODUCTION 

OWADAYS multimedia applications – such as multi-

camera surveillance or multipoint videoconferencing – 

are increasingly demanding both in processing power and 

bandwidth requirements. In addition, there is a tendency 

towards thin client applications where the processing 

capacities of the client device are reduced and the tasks are 

migrated to more powerful devices in the network.  

In this respect, grid computing can integrate and make use of 

these heterogeneous computing resources which are connected 

through networks, overcoming the limited processing 

capabilities at a client‘s device. 

In the context of distributed media processing we can think of 

scenarios such as video control rooms where multiple video 

streams are processed and simultaneously displayed. One way 

to downscale the processing and bandwidth requirements at 

the displaying device is by trans-coding the video streams at 

the servers to lower temporal or spatial resolutions. This is 

done, however, at the cost of a degraded perceived video 

quality and an increased processing cost at the server. 

Therefore, in grid computing we may need to optimize and 

tradeoff multiple objectives, targeting for instance quality 
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maximization of the stream execution and minimization of the 

energy consumption on the client/servers simultaneously. In 

this respect, implementing a suitable strategy for task 

assignment/scheduling becomes crucial for achieving a good 

performance in grid computing.  This subject has been 

thoroughly studied in literature and various heuristic 

approaches have been widely used for scheduling. In 

particular, Genetic Algorithms (GA‘s) have received much 

attention as robust stochastic search algorithms for various 

optimization problems. In this context, works such as [1], [2] 

and [3] have used Genetic Algorithms to approach task 

scheduling within a device. In [1] and [2] genetic algorithms 

are combined with heuristics such as ‗Earliest Deadline First‘ 

to assign tasks onto multiple processors. The work in [3] 

extends the analysis to heterogeneous processors where the 

algorithm can also determine the optimal number of 

processors, given a number of tasks. In [4]-[5] the work is 

extended to multiple processing nodes in the network. This 

way, in [4] a thorough study is done on the performance of 

different GA operators on a scheduling problem on grid 

computing systems. Heterogeneous processors are considered 

with the target to minimize the makespan and flowtime of the 

tasks. The authors in [5] use also GA to address a similar 

objective in grid computing. As in [4] neither data 

transmission nor resource cost are considered.  

In [6] a combination between GA and ACO algorithms is 

presented for task scheduling among multiple nodes but no 

bandwidth considerations are made. In [7] the authors use 

evolutionary fuzzy systems to solve job scheduling in 

decentralized computational grids where jobs between grid 

clusters are exchanged. The average response time per job is 

minimized but again the overhead of data transfers is not 

considered. The work in [8] also uses a genetic-based 

algorithm to assign multiple tasks in grid computing and 

minimize the make-span in the task execution but unlike 

previous works, the transmission time to the processing node 

is considered. Similar considerations are taken in [9] where 

the authors propose a strategy based on the Ant Colony 

Optimization algorithm (ACO) to effectively assign tasks to 

computing resources, given the current load conditions of each 

computing resource and network status.  

Note that the presented works only consider single objective 

optimization. It is in works such as [10]-[16] where GAs are 

used to address multiple objectives in the resolution of 

scheduling problems. This way, in [10] the authors address the 

Job Shop scheduling problem while targeting multiple 

objectives, namely minimal make-span and minimal machine 

workload. However, the case study addressed is very simple 

and only homogeneous processors are considered. The work in 
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[11] addresses the flow-shop scheduling problem with an 

adaptive genetic algorithm. Pareto fronts are used to guide a 

multiple-objective search: the total completion time and total 

tardiness. As in our work multiple objectives are addressed, 

however, task assignments at system level and bandwidth 

limitations are not considered. The authors in  [12] consider 

heterogeneous processors and a multi-objective GA targets in 

this case the minimization of the make-span, flow-time and 

reliability. The work in [13] is an early work on applying GA 

for multi-objective optimization, in this case to minimize both 

task execution and power during co-synthesis of distributed 

embedded systems. In [14] the performance of a NSGA-II 

based evolutionary algorithm is compared to the true Pareto 

front of solutions found with the Branch and Bound method. 

The objectives targeted being the makespan and the task 

completion time. Finally, in [15] the method of particle swarm 

optimization is combined with evolutionary method 

outperforming typical genetic algorithms.  

However, in none of these works ( [12]-[15]) there is any 

consideration made over bandwidth constraints. Only in [16] 

the network resources in terms of bandwidth and latency are 

considered. In this case, an Ant Colony Optimization 

algorithm is developed to address grid scheduling. 

 

In our approach we use GAs to target multiple objectives for 

task assignment in grid computing and we consider bandwidth 

availability between nodes. Moreover, in comparison with all 

related work presented, in our analysis we introduce an extra 

dimension on the task assignment problem by considering the 

down-scaling of the video streams to lower spatial/temporal 

resolution. This offers a tradeoff between bandwidth and 

processing constraints on one hand and perceived video 

quality on the other hand. By doing this the effective system 

capacity to process tasks is increased while a graceful 

degradation of the video stream quality is allowed. 

Additionally, we target multiple objectives such as task quality 

maximization, client‘s energy minimization and minimization 

of the bandwidth usage. 

The rest of the paper is structured as follows. Section 2 

describes the scenarios for distributed media processing 

considered. Section 3 describes the basic strategies for task 

assignment as well as the strategy for quality maximization 

while section 4 introduces the strategy based on genetic 

algorithms. We present the results and compare the 

performance of the different strategies in section 5. Finally, 

section 6 concludes this work.  

II. SCENARIO OF DISTRIBUTED MEDIA PROCESSING 

 

In the context of distributed video processing we are 

considering a scenario such as the one of a video control 

room. Several video contents are streamed towards the client 

device, where the content is visualized, while the required 

video processing can be distributed between the client and 

other processing nodes such as servers. 

We assume all processing nodes to be heterogeneous with a 

different amount of processing resources, such as CPUs and 

GPUs. In addition, we assume that the client‘s device has 

more limited processing capacities than the server nodes. 

Concretely, we consider 4CPUs and 1GPU at each server 

node, while only 2CPUs at the client node. We assume 

moreover that multiple codec implementations for these 

different processor types are available. To overcome the 

limited processing at the client node we perform distributed 

processing over other nodes in the network. In this case, the 

decoding task is executed at a server and the resulting output 

(raw video) is transmitted to the client‘s device. Note that this 

highly increases the bandwidth requirements, which should fit 

in the maximum available bandwidth towards the client that 

we assume of 1 Gbps and shared from any server node to the 

client node. Therefore, to fit both processing and bandwidth 

requirements one possibility is to trans-code (decode and re-

encode at a lower temporal or spatial resolution) the video 

streams at the server‘s side. This lowers both its bandwidth 

and decoding processing requirements at the end device at the 

cost of a reduced perceived quality and increased server 

processing.  

The following section describes the task assignment strategies 

used in the scenario described. 

III. SINGLE OBJECTIVE ASSIGNMENT STRATEGIES 

 

An efficient task assignment strategy is a key element in the 

context of distributed grid computing. In this section we 

describe the assignment strategies that we implement for 

comparison with our evolutionary based approach: 

 

Round-robin strategy (RR): the stream processing tasks are 

assigned in turns on the different available processing 

elements, i.e. client device and server nodes. 

Max-min heuristic (MM): this is a well-known heuristic [17] 

that assigns the most demanding stream processing tasks first 

on the processor that is going to finish them the earliest.  

Trans-code-all strategy (TA): we assign all video streams to 

be spatially trans-coded at the server nodes. This lowers the 

processing requirements for decoding at the client devices 

while it also reduces the bandwidth usage. However, this 

happens at the cost of a reduced quality of the video streams. 

As trans-coding is an intensive task (decoding plus encoding) 

the trans-coding of the streams is evenly distributed among the 

available servers (by means of round robin) to avoid 

processing overload of a server. 

 

Strategy Maximum Quality (MaxQ): 

In addition to the presented strategies, we implement a 

strategy that targets the maximization of the quality of the 

stream assignment. We describe this strategy next for the case 

of 1 server and 1 client node, where         and         are the 

total processing cost at client and server for the current task 

assignment, and        
    and        

    are the maximum 

processing capacity at the client node and server respectively. 

In a similar way,    is the bandwidth required by the current 

task assignment while       corresponds to the maximum 

available bandwidth.  

We consider that the assignment and execution,   , of video 

stream ‗i‘ can take one of the following values:  

c : stream assigned to be decoded at the client at original 

temporal and spatial resolution 
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s: stream assigned to be decoded at the server at original 

temporal and spatial resolution 

     : stream trans-coded to lower temporal resolution at the 

server 

     : stream trans-coded to lower spatial resolution at the 

server 

     : stream trans-coded to both lower temporal and spatial 

resolution at the server 

This way our task assignment consists of a set of 

                           for every            where N is 

the total number of video streams to be processed.   

We want to find a task assignment solution whose bandwidth 

and processing demands at client and server fit within the 

bandwidth and processing constraints: 

 

                
            (1) 

 

                             
   

          (2)  
 

                             
   

       (3)  

 

                                         
  

 

The algorithm is described in the following paragraphs and 

table: 

 

In Step 1 the algorithm assigns as many stream decoding tasks 

as possible to execute on the client device, this number of 

tasks is constrained by the processing power at the device. 

In Step 2 the remaining tasks, exceeding the processing power 

at the client device, are assigned for processing at the server. 

Then we check if the current assignment meets bandwidth and 

processing constraints. While either bandwidth or processing 

constraints at client or server are not met, the algorithm will 

gradually trans-code video tasks to lower temporal or spatial 

resolution at the server (done in Step 3) or will migrate some 

of the decoding tasks from the client device to the server (done 

in Step 4). This process continues till the assignment fits the 

system bandwidth and processing constraints. 

In Step 3 we proceed as follows: 

 Find those stream which are currently assigned at 

original temporal and spatial resolution to the server 

      . From those pick the stream with the biggest 

BW demand and trans-code it to lower temporal 

resolution          .  

 If there are no streams available at full temporal 

resolution then we take a stream at lowered temporal 

resolution           with the highest bandwidth 

demand and trans-code it to a lower spatial resolution 

         . 

 If all streams have been spatially trans-coded then we 

pick one of them (at highest bandwidth) and trans-

code it both temporally and spatially         . 

 

Note that at this point (Step 3) we are trying to find those 

stream tasks (  ) that demand the maximum bandwidth 

(generally also the highest processing) in order to reduce the 

bandwidth demands by trans-coding the minimum amount of 

streams. 

This procedure is repeated till the bandwidth constraint is met.  

Finally, in Step 4, if the processing constraints at the client are 

exceeded we migrate one client task to the server side. If at the 

server‘s side the processing constraints are not met and all 

streams have been spatially and temporally trans-coded the 

assignment loop is stopped. It is not possible to downscale the 

stream tasks further and therefore we cannot find an 

assignment that satisfies all constraints while processing all 

streams.  

 

 
 

 

Evaluation of Stream Assignment Cost 

 

If the task assignment exceeds any of the system constraints in 

(1)-(3) then the execution of some tasks will fail. This way, an 

individual stream processing task fails when it does not fit 

within the available processing or bandwidth resources. For 

instance, the node where the stream is assigned may not have 

sufficient processing resources or even if the processing is 

completed at the server, the available bandwidth could be 

insufficient to deliver the server‘s output to the client causing 

the stream processing to fail. 

Related to this, we can attach to each assignment solution a 

corresponding cost in terms of end video quality, bandwidth 

usage and energy consumption. This cost is determined by 

how many stream tasks are successfully completed and how 

(on which device and at what spatial-temporal resolution) they 

are executed. 

 

Therefore, for a specific stream assignment solution we first 

need to estimate which stream processing tasks can be 

successfully completed and which will fail due to not meeting 

Step 1: Maximize { k |                  ,          ≤         
    } 

 

Step 2: Set                         
 

WHILE (               
    or                

   or          ) 

 
 Step 3:  IF                           
                 THEN               

ELSE    IF                              
                THEN               

            ELSE   IF                              
                 THEN               

END 

 

   Repeat Step 3 until               
 
   Step 4:  IF (               

    and                      
                      THEN   STOP 

        ELSE IF                  
       THEN    

 

                    IF               THEN   

Set       
                 ELSE   STOP 

       END 

END 
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current processing and bandwidth constraints. Then, 

depending on the specific execution of each individual stream 

processing we can attach a cost, in terms of quality, consumed 

bandwidth and energy at the client‘s side, as defined in Table 

1.  

 

Stream Execution Quality 

    

Bandwidth     

     

Energy 

    

Failed execution   0    0  Mbps 0 

Decoding at client    1   20  Mbps 1 

Decoding at server   1 146  Mbps 0 

Temporal  

Trans-coding 

 0.9   10  Mbps 0.5 

Spatial  

Trans-coding 

 0.8    7  Mbps 0.25 

Temporal&Spatial 

Trans-coding 

 0.7   3.5 Mbps 0.12 

Table 1: Definition of task execution costs (SD resolution) 

Note that the data in Table 1 corresponds to streams of 

Standard Definition (SD, 720x480 pixels). We also consider 

streams of Common Intermediate Format (CIF, 352x288 

pixels) and High Definition (HD, 1920x1080 pixels) where 

bandwidth and energy costs are scaled accordingly with 

respect to SD resolution. 

A stream processing fails when it does not fit within the 

available processing or bandwidth resources. For instance, the 

node where the stream is assigned may not have sufficient 

processing resources or even if the processing is completed at 

the server, the available bandwidth could be insufficient to 

deliver the server‘s output to the client causing the stream 

processing to fail. 

We attach successfully processed streams a quality value of 1 

when the content is displayed at the client at its original 

temporal and spatial resolution. If the video stream is down-

scaled to a lower temporal/spatial resolution in order to fit 

bandwidth or processing constraints, the perceived video 

quality will be slightly degraded, and therefore we attach a 

lower quality value. This favors that, to maximize the streams 

quality, assignment solutions where the original spatial and 

temporal resolution of the streams is kept are preferred. Note 

that the quality value of any stream at its original resolution 

(CIF, SD or HD) is identical, only when trans-coding we 

consider the quality degraded. This is, an HD streamed 

spatially trans-coded (to SD) is attached a 0.8 quality 

(distortion of 0.2) while a stream at original SD resolution is 

attached the maximum quality of 1 (0 distortion).  

The bandwidth cost per stream is also dependent on how the 

stream processing is performed. This way, if decoding is 

performed at the server‘s side, the stream is transmitted raw to 

the client, which highly increases the bandwidth requirements. 

On the contrary, if the stream is trans-coded at a server to a 

lower spatial or temporal resolution the bandwidth 

requirements are reduced.  For the sake of simplicity we 

assume the same bandwidth cost for all video streams with the 

same spatial-temporal resolution. In addition, we consider that 

reducing the temporal resolution from 30 frames per second to 

15 approximately reduces the bandwidth by half. Similarly, 

we assume that reducing the spatial resolution to the 

immediate lower resolution roughly reduces the bandwidth to 

approximately one third of the original resolution. 

 

Finally, in terms of energy/processing cost at the client‘s 

device we assume that the energy cost is negligible when the 

video decoding task is executed on a server and the raw output 

video stream is merely transmitted to the client device for 

display. When the decoding task is executed at the client the 

corresponding energy cost is dependent on the temporal and 

spatial resolution of the decoded stream. We assume that 

decoding a video sequence at 15 fps requires approximately 

half of the processing/energy than decoding the same 

sequence at 30 fps. In a similar way, when the spatial 

resolution is lowered, for example from SD to CIF, we can 

roughly assume ¼ of the decoding energy cost. Finally, the 

combination of lowering temporal and spatial resolution 

corresponds to a decoding cost of 1/8 of the original 

resolution. In case of a failed task execution we assume no 

processing effort at the client‘s side and therefore no energy 

consumption. Note that the values in Table 1 are taken as 

approximate and reference values, and have no impact on the 

relative performance of the assignment strategies. 

To obtain the total quality TQ, bandwidth TBW or energy cost 

TE for the complete assignment we simply need to sum all 

individual stream processing costs as follows: 

 

                          
 
        (4)   or equivalently  

                                  
        

 
          (5) 

                      
 
                (6) 

                        
 
                     (7) 

 

Where N is the total number of streams considered in the 

assignment. 

 

IV. MULTI-OBJECTIVE GENETIC ALGORITHM 

 

The heuristic and strategies presented in the previous section 

target at most one single objective optimization. However in 

practice we may want to optimize multiple objectives 

simultaneously. For instance, we may need to maximize the 

video streams quality while minimizing the bandwidth usage 

and the energy cost at the client. This multi-objective 

optimization is challenging, especially when multiple 

heterogeneous nodes and multiple ways of processing the 

streams (decoding, trans-coding) are considered. To achieve 

this, we base ourselves on genetic algorithms and use the 

concept of Pareto fronts of solutions. This allows us to obtain 

a set of Pareto optimal assignment solutions from which we 

can choose the solution that best meets the constraints or our 

preferences towards a certain objective. In addition, a genetic 

algorithm is a flexible tool where the target objective can be 

easily modified. The remainder of this section describes how 

the genetic algorithm is implemented. 
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A. Genetic Algorithm Structure 

A genetic algorithm (GA) is a search heuristic that mimics the 

process of natural evolution. In a genetic algorithm, a 

population of strings (called chromosomes), which encode 

candidate solutions (called individuals of the population) to an 

optimization problem, evolves toward better solutions. The 

evolution usually starts from a population of randomly 

generated individuals and happens in generations. In each 

generation, the fitness of every individual in the population is 

evaluated, multiple individuals are selected from the current 

population (based on their fitness), and modified (recombined 

and possibly randomly mutated) to form a new population. 

The new population is then used in the next iteration of the 

algorithm. Generally, each generation of solutions improves 

the quality of its individuals. The algorithm terminates when 

either a maximum number of generations has been produced, 

or a satisfactory fitness level has been reached. The structure 

of our genetic algorithm can be summarized as follows: 

Step 1:  Initialize the population of chromosomes 

Step 2:   Evaluate each chromosome with the fitness function 

Step 3:  Crossover operation: select parents according   to 

fitness and create new children chromosomes.  

Step 4:   Random mutation of chromosomes 

Step 5: Elitist selection: retain fittest chromosomes among 

those of the old generation and the new ones resulting 

from Step 3 and 4 

Step 6: Repeat steps 2 to 5 till termination condition is 

reached 

B. Representation of the solution domain 

 

Traditionally, solutions are represented in binary as strings of 

0s and 1s, but other encodings are also possible. In our case, 

we use a decimal representation. Each possible stream 

assignment solution is represented as a chromosome, which is 

composed of several gens. In our case, the length of the 

chromosome is equal to the number of streams that need to be 

scheduled in the system. Each of the genes in the chromosome 

represents the node that is going to process the stream and 

how it is going to be processed. Table 2 gives a description of 

the meaning of each possible gene value in the chromosome. 

In this example the available processing nodes are the client 

device S0, and two server nodes S1 and S2. 

 
Gene 

value 

Meaning on task execution 

‘1’ Decoded at client device S0 

‘2’ Decoded at S1 and transmitted to S0 

‘3’ Trans-coded at S1 to lower temporal resolution 

‘4’ Trans-coded at S1 to lower spatial resolution 

‘5’ Trans-coded at S1 to lower spatial-temporal res 

‘6’ Decoded at S2 and transmitted to S0 

‘7’ Trans-coded at S2 to lower temporal resolution 

‘8’ Trans-coded at S2 to lower spatial resolution 

‘9’ Trans-coded at S2 to lower spatial-temporal res 

Table 2: Description of Genes 

Figure 1 shows an example of chromosome (assignment 

solution). By looking at the gene description in Table 2 we can 

see that the corresponding stream task assignment would be as 

follows: the first two streams (‗2‘) are decoded at server S1, 

the third and fourth streams (‗1‘) are executed at the client 

device S0, the next three streams are trans-coded at server S2 

to a lower spatial resolution (‗8‘) and  the last stream is 

processed at server S1 where it is trans-coded to lower 

temporal resolution (‗3‘). 

 

2 2 1 1 8 8 8 3 

Figure 1: Example of chromosome 

We now detail how to compute the cost of the assignment 

solution in Figure 1. Assuming all streams are of SD 

resolution, the corresponding cost of this assignment 

according to Table 1 would be the following: 

For streams 1 and 2 decoded at the server at full resolution and 

transmitted raw to the client: 

   =   =146 Mbps,       =   = 1,       =   = 0,   

For streams 3 and 4 decoded at the client device at full 

resolution:  

   =   =20 Mbps,       =   = 1,       =   = 1, 

For streams 5, 6, and 7 spatially trans-coded at a server: 
       =   = 7 Mbps,      =   =   = 0.8,   

        =    = 0.25, 

For stream 8 that is temporally trans-coded at a server before 

being sent to the client: 

    = 10 Mbps       = 0.9            = 0.5 

Therefore the total value of the assignment in the three- 

dimension space is: 

      = 363 Mbps       
   = 7.3          = 3.25 

C. Initialization of GA population 

 

In general terms we initialize the population of assignment 

solutions by random generation. We also include in the initial 

population solutions that contribute to distribute the tasks 

processing evenly among the existing processing elements as 

well as solutions that imply trans-coding of all processing 

tasks (as this may facilitate convergence to suitable 

assignments in high load scenarios). By doing so we are 

making sure that certain potentially useful features are present 

in the population. 

 

With respect to the population size, its optimal value is highly 

dependent on the scenario dimensions. In our case we 

experimented with populations of size 10 to 40 and 

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Algorithm
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determined experimentally that a population of size 30 was 

suitable for the considered scenarios. 

 

In addition, in a dynamic scenario where the number of tasks 

to be processed may be varying over time we can improve 

convergence by reusing previously found solutions as part of 

the initial population for a new scenario. For instance, if the 

stream tasks to be processed increases from N to N+1 then we 

can use the assignment solutions found for N streams as initial 

population for the assignment of N+1 streams, while a random 

assignment is added for the extra N+1th stream. This helps the 

algorithm converge and find an optimal solution. Moreover, it 

helps preserve the previous assignment solution as it 

minimizes the change of tasks assignments in the system. 

D. Fitness function 

 

The goal of the fitness function is to evaluate how good an 

assignment solution is with respect to the defined target 

objectives. If we consider the optimization of a single 

objective, for instance maximization of the video quality, we 

can define the fitness function as the quality value of every 

assignment: 

                     
 
    N = total number of streams   (8)

      
This way, the fittest assignments are those with the highest 

video stream quality. 

If we are considering multiple objectives such as video 

quality, bandwidth usage and energy consumption at the client 

device, a particular assignment solution will result in a certain 

value in these three axes. In other words, each assignment 

solution can be represented as a point in the multi-objective 

space with the objective values (            ).  

Each of these values is obtained as the sum of distortion, 

bandwidth and energy for all N stream tasks considered:               

             
 
             

 
            

 
    

 

With the task distortion related to the task quality as: 

                               (9) 

 

To minimize multiple objectives we would like then to 

minimize the following function where w1, w2 and w3 are the 

weights for the different objectives: 

                                     (10) 

 

Minimizing (10) is then equivalent to maximizing the 

following fitness function in our GA: 

                                  (11) 

 

To avoid the need of weighting factors in the fitness function 

we use the concept of Pareto points for the multi-objective 

optimization. Pareto points are optimal tradeoffs in the multi-

objective space and obtaining the set of Pareto points from all 

assignment solutions is equivalent to exploring a range of 

weights in (10-11). 

 

We are therefore interested in obtaining a range of Pareto 

optimal solutions in said multi-objective space. In addition, we 

evaluate the fitness of an assignment solution according to 

how close the solution is to a Pareto point or to the actual 

Pareto envelope. 

  

 
 

Figure 2: Pareto front of solutions 

In Figure 2 we can see that this favors that non-Pareto 

solutions like A, which lie close to the Pareto front, are 

selected to breed and mutate hopefully generating Pareto 

points within new areas of the Pareto front. This helps newer 

generations of Pareto front spread over the bi-dimensional 

space without losing diversity and concentrating around the 

specific area of the initial Pareto points. 

To evaluate the fitness of each solution point, we compute the 

Euclidean distance from each point to the closest point in the 

hypothetical Pareto front. In a three dimensional objective 

space this is expressed as: 
                             

                                     

 

                               (12) 

 

Where every point has the following representation in the 

three-dimensional multi-objective space             . The 

closer a point is to this Pareto front, the fitter it is considered. 

Note that Pareto points, already belonging to the Pareto 

envelope, have the minimum distance to it and therefore are 

assigned the highest fitness values. This guarantees that they 

are always kept for the next generation of the GA. 
 

E. Selection of individuals according to fitness 

During each successive generation, a proportion of the 

existing population of solutions is selected to breed a new 

generation. Individual solutions can be selected through a 

fitness-based process, where fitter solutions (as measured by 

the fitness function) are typically more likely to be selected. In 

our case we do not use a probabilistic selection but an elitist 

selection, this is, the fittest members of the population are 

used to breed a new population. Moreover, after crossover and 

generation of new child solutions we apply again elitist 

selection and retain in the solution space those solutions that 

are the fittest among the parents and the newly generated 

children solutions. We use the fitness function as described in 

the earlier section. In practice, this means that for the selection 

of the parent chromosomes during the crossover and mutation 

steps we select the Pareto optimal points from the pool of 

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Fitness_function
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chromosome/solutions (as these are the fittest points in our 

space) and from the non-Pareto points we take the fittest ones.  

The elitism we apply in the selection is similar to the one 

applied in the Non Dominated Sorting GA or NSGA [18] in 

the sense that the Pareto or non-dominated solution points are 

identified and given the highest fitness value. Our approach 

differs however in the treatment of the non-Pareto solutions, in 

our case the fitness of these points is computed based on the 

distance to the Pareto front, more similar to the Strength 

Pareto Evolutionary Algorithm (SPEA). With respect to SPEA 

[19] we apply a similar elitist selection, after both crossover 

and mutation as the Pareto solutions are always kept for the 

next generation. However, unlike SPEA, we do not maintain a 

fixed size for the Pareto population and to avoid a too early 

convergence of the algorithm we allow a high degree of 

mutation among the solutions in the Pareto front. 

F. Evolution: crossover and mutation 

The crossover step consists in creating a second generation of 

solutions from an initial population of solutions. For each new 

solution to be produced, a pair of "parent" solutions is selected 

for breeding from the current population. By producing a 

"child" solution using the crossover, a new solution is created 

which typically shares many of the characteristics of its 

"parents". In our algorithm crossover is implemented as 

single-point crossover. This is, a random point is selected in 

the parent chromosome and the information before and after 

that point is exchanged and recombined between the two 

parents creating in this way two child solutions that share the 

parent‘s characteristics. The single-point crossover is 

represented in Figure 3: 

 

Figure 3: Single-point crossover 

Crossover is applied on a percentage of the population given 

by the crossover rate. Out of the new population of ―parents‖ 

and ―child‖ chromosomes we apply an elitist selection and 

keep a population with size of the initial population with the 

fittest individuals. Generally the average fitness of the new 

population will have increased, since only the best individuals 

from the first generation are selected for breeding. After 

crossover the mutation step is implemented. The purpose of 

mutation in GAs is preserving and introducing diversity. 

Mutation should allow the algorithm to avoid local minima by 

preventing the population of chromosomes from becoming too 

similar to each other, thus slowing or even stopping evolution. 

Mutation is implemented by randomly changing some of the 

genes in the chromosome with a probability given by the 

mutation rate. 

We use a high mutation rate in our approach, as this helps the 

algorithm avoid local minima.  Nevertheless, we do not risk 

losing good features of the solution space, thanks to the elitist 

selection applied after crossover or mutation. This is, the 

fittest solutions are always kept, therefore if the mutated 

solutions are less fit than the original solutions, the original 

solutions are retained. 

G.      Parameter selection for Genetic Algorithm 

 

The way the Genetic Algorithm evolves towards fitter 

solutions is highly dependent on the parameter selection. In 

this respect, the percentage of the population on which the 

crossover and mutation steps are implemented is given by the 

crossover and mutation rate parameters respectively. As 

explained in the previous section a high mutation rate is 

selected to prevent the algorithm from a too early convergence 

and falling in local minima. A similar approach is taken in 

[20] and [14]. Moreover in [14] a similar crossover rate is also 

selected. Unlike [14] however, we require a lower population 

size and lower number of generations. This is possibly due to 

the fact that the elitist selection we implement helps speed up 

the convergence. 

 

Table 3 shows the impact of the population size on the quality 

of the assignment solution found (with task quality as single 

objective) for a different number of tasks considered. We can 

first see that when the number of tasks increases it becomes 

more difficult to find an optimal assignment with high quality, 

this is due to the limited bandwidth and processing constraints 

in the system. This way, for 10 tasks considered the 

assignment found guarantees perfect quality (equal to the 

number of tasks) while as the task increase the maximum 

quality attained differs from the perfect quality value. 

 

# of tasks/ 

population 

  10     20    30    40 

      10   10   19.7   28   35.9 

      20   10   19.9   28.4   36.8 

      30   10   19.9   28.7   36.5 

      40   10   19.9   28.4   36.6 

Table 3: Assignment quality versus population size 

In addition, we observed that to reach a high quality solution it 

is advisable to use a population with at least the same size than 

the number of tasks considered. Therefore, for the number of 

tasks considered in our scenarios, a population size of 30 

individuals proves to be suitable.  In this respect we observed 

that bigger populations cause slow convergence and increased 

execution cost while small ones tend to evolve to less fit 

solutions.  

In terms of number of iterations we let the algorithm evolve 

during 30 generations. This value is experimentally found to 

be a good tradeoff in terms of achieving a good convergence 

while still having a reduced execution time.  

 

http://en.wikipedia.org/wiki/Local_minimum
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Table 4 summarizes the parameter selection for the evolution 

of the Genetic Algorithm. The parameter values selected are 

also close to the suggested ones in [21]. 

 

Crossover rate 0.7 

Mutation rate 0.3 

Population size 30 

Max generations  30 

Table 4: GA parameters 

H. Convergence of Genetic Algorithm 

 

One way to analyze the convergence of our multi-objective 

GA is by measuring the area/volume under the Pareto front of 

solutions in the multi-objective space. The reason is that the 

minimization of several objectives in our GA translates to 

Pareto fronts becoming closer to all objective axes, in other 

words Pareto fronts with lower areas/volumes underneath.  

Figure 4 shows the evolution of the area under the Pareto front 

versus the number of iterations for a different number of tasks 

in the system. In this case, the GA evolves with the objective 

to minimize both distortion and energy at the client. As we can 

see with an increasing number of iterations the area below the 

Pareto front decreases. This indicates that the Pareto fronts 

obtained gradually improve and achieve lower values of 

distortion and energy. 

 
Figure 4: Convergence versus iterations 

As explained earlier tenths of iterations are sufficient in our 

scenario to find good assignment solutions that outperform the 

reference methods. 

I. Execution cost of Genetic Algorithm 

 

Our genetic algorithm is an in-house developed Matlab code 

and does not form part of the Matlab Optimization toolbox. 

The code has not been optimized for speed and its average 

execution time for 10 iterations of the algorithm is in the order 

of a couple of seconds. In this respect, the computational cost 

of the reference methods such as MaxQ and Min-Max is 

almost negligible with respect to GA.  However, these 

methods achieve suboptimal results and are not able to tackle 

a multi-objective optimization. 

 

Note that genetic algorithms are subject to parallelization, 

which can speed up its execution considerably. Therefore, a 

more dedicated and optimized implementation of the 

algorithm exploiting parallelism would highly reduce its 

execution time. However, developing such algorithm is out of 

the scope of this paper. In previous work such as [14] we can 

observe similar execution times for the GA algorithm and a 

similar amount of tasks considered. In [22] an optimized 

implementation of a GA on a SUN 4/490 only requires 1 to 2s 

to perform 1000 iterations showing that a dedicated 

implementation can reduce the execution time considerably. In 

this respect in our approach, the number of iterations needed is 

in the order of tenths of iterations, which would further reduce 

the execution time. 

In addition, the computational load of the GA is marginal 

when compared to the high computational load of any trans-

coding, decoding operation that takes place in the servers in 

our scenario. Therefore, the execution of the GA can be placed 

on such a server with high processing power elements such as 

a GPU.  

Last but not least, in our cloud computing scenario we could 

expect that new stream processing tasks enter or leave the 

system not faster than every couple of minutes. Therefore 

global or partial re-computations of the stream assignments 

are not frequently needed. 

 

To give an indication of how the complexity of our algorithm 

scales, Table 5 shows the relative execution cost versus the 

number of tasks and the size of GA population considered. We 

can see how, as expected, the execution cost increases almost 

proportionally with the size of the population. The increase 

with the number of tasks considered is much less noticeable. 

This has the advantage that scaling up the scenario to a higher 

number of tasks does not have a big impact on the GA 

algorithm complexity. 

 

# of tasks/ 

population 

  10     20    30    40 

      10    8        9       8.5    8 

      20   14        15     18   19 

      30   20     20     30   32 

      40   27     29     40   41 

Table 5: Relative execution cost 

Note also that for large scale problems, we could address the 

task scheduling problem in a hierarchical way, this is, tasks 

can be initially distributed locally among clusters of 

processing devices and within each cluster, GA can be applied 

to obtain the optimal assignment. This would limit the 

complexity increase of the GA optimization. 

V. EXPERIMENTAL RESULTS 

 

In this section we compare the performance of the different 

assignment strategies considered. We first focus on a single 

objective optimization, namely quality, where we use the 

fitness definition in (8). Figure 5 shows the performance of 

each assignment strategy with respect to the system load 

(given by an increasing number of SD streams to be displayed 

0 10 20 30 40 50 60
0

20

40

60

80

100

120

GA iterations

A
re

a
 u

n
d
e
r 

P
a
re

to

 

 

14 streams

20 streams

26 streams



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

at the client‘s device). We can see that from 4 video streams 

up to 10 both GA and MaxQ strategies outperform all others 

while achieving the maximum quality. In this respect note that 

the maximum quality equals N, the total number of streams, as 

the maximum quality per stream is 1 (see Table 1). From 10 

streams on, it is only the GA that achieves a close to optimal 

quality. This shows that the higher the load in the system is the 

more advanced strategy we need to find a suitable assignment. 

Moreover, at high load trans-coding with slight degradation of 

the stream quality becomes necessary in order to fit all streams 

into the available constraints. 

 
Figure 5: Performance of strategies versus system load 

We then focus on multiple objectives optimization for a 

specific system load. We consider the processing of 20 video 

streams of mixed spatial resolutions: CIF, SD and HD at 30 

fps. We compare the different strategies as well as the 

availability of one single server node with respect to two 

server nodes where tasks can be migrated to.  

Figure 6 shows how the GA clearly outperforms all other 

strategies when targeting both quality maximization 

(equivalently distortion minimization) and minimization of 

energy at the client device. This way, the assignment solutions 

found by GA incur in lower energy at the client and lower 

distortion than the solutions found by the other strategies. We 

can see that in the GA Pareto front some assignment solutions 

reach 7% of distortion while the MaxQ Strategy reaches 

around 15% distortion. Similarly, for the same distortion than 

MaxQ the GA points lower the energy from 35% to roughly 

10%.  

Two sets of Pareto solutions are shown for the GA, one 

corresponding to the use of 1 server and another to the use of 2 

servers. Naturally, having two servers available to process the 

tasks allows the GA find better assignment solutions. 

Similarly, for the reference strategies we show two points 

(assignment solution) for each strategy displayed. The two 

points correspond to the use of 1 server and 2 servers 

respectively where generally the use of 2 servers achieves 

lower distortion but also higher energy consumption (as more 

streams can be processed). 

 

 
Figure 6: Energy-distortion tradeoffs  

Note that both distortion and energy values are given as 

percentages from the maximum possible distortion or energy. 

This way, the maximum energy cost at the client is defined as 

the cost of processing the decoding tasks of all streams at full 

spatial and temporal resolution, while the maximum distortion 

(100%) corresponds to a failed execution for all streams. In 

general, the relative distortion is defined as: 

Distortion (%) = 100% - Quality (%)       (13) 

 

This way, from Table 1, successfully processing all N streams 

at its original spatial-temporal resolution would result in a 

maximum quality value of N (equivalent to100% quality or 

0% distortion). In a similar way, trans-coding the temporal 

resolution of all N streams would correspond to a total quality 

of 0.9*N (equivalent to a quality of 90% or distortion of 10%). 

We can further analyze the assignment solutions found by the 

different strategies in Table 6. This table shows some of the 

assignment solutions of 1 server in Figure 6.  

 

 

 

In this table, for the different kind of stream processing 

assignment a distinction is made between the different original 

stream resolutions (HD/SD/CIF). This way, for example in the 

assignment of the round robin (RR) strategy 4 CIF streams 

fail, while 4 HD streams, 3 SD and 2 CIF are successfully 

decoded at the client and 3 HD and 4 SD streams are decoded 

at the server. Finally, no streams are trans-coded in this 

strategy. By analyzing Figure 6 and Table 6 we can see that 

strategies such as round-robin (RR) and max-min (MM) 

cannot find an assignment with a good tradeoff in terms of 

quality and energy cost. The reason is that none of these 
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Max Min

Transcode all
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 Failed 
tasks 

Decode 
@client 

Decode 
@server 

Temp 
Trans 

Spat 
Trans 

Temp
&Spat 
Trans 

Dist 
(%) 

Ener-
gy(%) 

RR 0/0/4   4/3/2     3/4/0   -/-/-  -/-/-  -/-/- 20 37 

MM 0/0/6   7/6/0     0/1/0   -/-/-  -/-/-  -/-/- 30 30.4  

TA 0/0/4   -/-/-      -/-/-  -/-/-  -/-/- 7/7/2 36  14  

MaxQ  -/-/-  2/6/0    0/0/1 0/0/1 0/0/0 5/1/4 15.5 36.3  

GA_1  -/-/-  4/0/1    2/5/0 1/2/0 0/0/1 0/0/4  8.5   28  

GA_2  -/-/-  0/0/1    3/5/0 0/1/0 4/0/1 0/1/4 13 22.5 

GA_3 -/-/1  0/1/0    5/5/0 1/0/0 1/0/0 0/1/5 15.5  11.6 

Table 6: Assignment strategies for HD/SD/CIF streams 
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strategies considers either bandwidth constraints or trans-

coding. In this example both round-robin and max-min 

succeed in distributing the load evenly among nodes and meet 

the processing constraints. However, decoding streams at the 

server nodes generates high bandwidth demands towards the 

client. This exceeds the bandwidth availability and causes 

failed processed streams (in particular the high bandwidth HD 

streams). Therefore in this case the use of 2 servers further 

degrades the performance as more streams are processed at the 

server‘s side and this aggravates the bandwidth demand. This 

way, under high load some stream trans-coding would be 

required to fit into both available processing and bandwidth 

constraints. 

However, trans-coding all streams at the server nodes (TA 

strategy) is neither an optimal assignment as we enforce the 

quality degradation of all streams. Moreover, trans-coding 

tasks are processing intensive and exceed the processing 

capacity at the servers resulting in some failed stream 

processing. In this case the use of 2 servers increases the 

overall processing capacity but the assignment remains quite 

suboptimal in terms of distortion and energy. 

In contrast, the MaxQ strategy succeeds in finding an 

assignment with low distortion value (15%). However, its 

energy cost is relatively high (36%). In Table 6 we can see 

that all 20 streams are successfully processed, out of which 10 

are trans-coded temporally and spatially while 8 are decoded 

at the client device at full resolution. In this example the 

processing capacities with one server are enough for the 

amount of trans-coding involved, while the main limiting 

factor remains the bandwidth.   

It is finally the GA that outperforms all strategies by 

addressing both objectives and finding a set of assignment 

solutions that is Pareto optimal in both senses. Moreover, 

having 2 server nodes available for processing allows the GA 

to find even better tradeoffs (lower Pareto curve) in terms of 

quality and energy. Note also that the set of GA solutions 

offers an energy range from 30% to 10% for low distortion 

values. This way, we can reduce the energy at the client by 

factor 3 by trading off some stream quality. This offers the 

flexibility to choose between different operating points at grid 

level according to how scarce the processing power and 

energy at the client is.   

In Table 6 we only show a few of the set of Pareto optimal 

solutions found by the GA. We can see how GA_1 assignment 

solution reaches the lowest distortion (8.5%) at 20% lower 

energy cost than MaxQ strategy. This assignment distributes 

more evenly the streams between client and server and 

chooses to trans-code temporally and spatially only 4 streams 

of HD resolution. The GA_2 assignment provides a tradeoff of 

slightly higher distortion (13%) but an energy cost 40% lower 

than that provided by MaxQ. Finally, GA_3 assignment 

provides similar distortion than MaxQ (15.5%) but it further 

reduces the energy consumption, demanding almost 70% less 

energy than MaxQ.  

Figure 7 shows a similar comparison with respect to the 

bandwidth usage and distortion incurred by the different 

assignment solutions. In this case the GA targets optimization 

of both distortion and bandwidth objectives and clearly 

outperforms all other strategies as shown by the lower 

distortion and bandwidth values obtained in the GA Pareto 

front. We can see in this respect how the MaxQ solution has a 

high bandwidth cost (close to 100%) while the GA solutions 

in the Pareto front require for the same distortion barely 20% 

of the maximum bandwidth. In addition, considering two 

servers further allows a distortion and bandwidth reduction, 

possibly due to the fact that more processing power is 

available for trans-coding the highly demanding HD streams. 

 
Figure 7: Bandwidth – Distortion tradeoffs 

Finally Figure 8 shows the optimality of the different 

assignments in the three-dimensional space of distortion, 

bandwidth usage and client‘s energy cost. The GA targets the 

minimization of these three objectives and the Pareto front 

becomes a Pareto surface.  

 

 
Figure 8: Pareto points in 3D space 

As in the previous figures the assignments found for 1 and 2 

servers are displayed. Once again, we can see that the 

assignments found by the GA outperform all other strategies 

in terms of distortion, energy and bandwidth while at the same 

time providing a good tradeoff for all three objectives. Indeed, 

we can see that the GA solution points concentrate around 

lower distortion values (especially those corresponding to use 

of 2 servers), lower bandwidth and lower energy values. For 

the sake of clarity, in Figure 9 we show the projection of 
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Figure 8 on the two-dimensional space of energy and 

distortion where the better results of GA can be seen clearly. 

 
Figure 9: Projection onto Energy-Distortion space 

In practice, both processing and bandwidth constraints may 

vary over time. Therefore we may require a new stream 

assignment to fit the new constraints. One possible way to 

tackle this is by simply re-running the assignment strategy. 

However, as the GA strategy already produces a set of 

assignment solutions with different energy – distortion – 

bandwidth tradeoffs, another possibility is to simply choose 

from the set of solutions a different operating point 

(assignment solution) that satisfies the new constraints. This 

way, if the current assignment solution requires a processing 

of 50% at the client‘s side, switching to a new assignment 

with 30% processing may be suitable for a more overloaded 

client device. We can also cope with variations in bandwidth 

or processing constraints by targeting more limiting 

constraints, for instance 80% of the maximum bandwidth and 

maximum processing power. By doing so, the assignment is 

slightly over-dimensioned and can cope with variations of up 

to 20-25% above the current constraints. This would also help 

avoid too frequent task migrations in the system.  

VI. CONCLUSION 

 

We have presented an evolutionary based strategy for stream 

processing assignment in a client-cloud multimedia system 

where multiple heterogeneous devices are considered. In this 

context, we not only decide on which node each stream is 

assigned but we also consider the possibility of stream trans-

coding to a lower temporal or spatial resolution. This extends 

the system capacity at the cost of smooth quality degradation 

in the task execution. 

Moreover, both processing capacities in the nodes and 

bandwidth availability are taken into consideration. The 

proposed strategy is highly flexible and can target multiple 

objectives simultaneously. It outperforms all other considered 

strategies while providing a wide range of tradeoffs in the 

assignment solutions.   
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