5G AutoMEC - Boosting edge-to-edge service
continuity for CAM 1n a sliced network

Girma M. Yilma®*, Umberto Fattore®, Marco Liebsch*, Nina Slamnik—KrijeétoracT,
Andreas Heider-Aviet!, and Johann M. Marquez-Barja'
* NEC Laboratories Europe GmbH, Germany.

i University of Antwerp - imec, IDLab - Faculty of Applied Engineering, Belgium.
! Deutsche Telekom AG
E-mail: {Name.Surname}@{neclab.eu | uantwerpen.be | t-systems.com}

Abstract—Network function virtualization and edge computing
in mobile networks are key enablers in the evolution of recent
standards for a 5" Generation (5G) mobile communication
system towards a comprehensive 5G ecosystem, which enables
the deployment of customized networks and service access for
various industry verticals by means of clearly defined and
deployed network slices. In particular, the automotive industry
can leverage low-latency access to services hosted along the
distributed network edge, in support of a large variety of use
cases. Network slices typically implement the requested service
and network according to a set of defined requirements, as well as
performance and latency bounds, while using a defined resources
budget. With connected cars following different mobility patterns,
the automotive sector represents a pretty agile customer of such
network slices. This makes the management of network and
edge computing resources a key challenge to tackle in order to
balance the resource utilization, and the previously agreed and
expected service levels. In this paper, we analyze the benefit of
smart mobile edges and the use of machine learning to anticipate
resource demand at distributed mobile edges in an automotive
scenario. Finally, we experimentally show the feasibility to treat
u-slice resources efficiently by using an OSS-based prototype for
the orchestrated edges, which is currently being developed for
an automotive trial in Europe.

Index Terms—5G, CAM, Cloud-native Edge, Network Slices,
Resources, Service Continuity

I. INTRODUCTION

Service- and Network Function Virtualization (NFV), as
well as the Management and Orchestration (MANO) systems,
play a vital role in the provisioning of a 5G Ecosystem. Such
ecosystem enables the customization of services as well as
access to them by providing a suitable topological placement
in decentralized cloud resources, including an on-demand
function re-configuration (e.g., instantiation, scale, and mi-
gration). The inter-play between a 5G cellular system with
NFV and programmable networks enables a quite powerful
and flexible ecosystem for tailored service provisioning as well
as runtime re-configurations. Adjustments may be required
at the used infrastructure and the deployed functions, aiming
at the best match between the utilized resources (e.g., cloud
compute and storage, network infrastructure and wireless) and
the quality of service experienced by clients (e.g., dependent
on throughput, latency, availability, etc.).

The principles of Network Slicing (NS) have been thor-
oughly investigated in various projects, and in the meantime
they have been adopted by standards, such as 3GPP [1]. In
particular, NS contributes to the provisioning of customized
networks and services to tenants (e.g., vertical industry) by:
i) defining requirements associated with a requested service,
ii) providing an isolated treatment of such definitions, iii)
implementing the associated service- and network functions,
and iv) using the required resources and enforcement of
suitable policies.

Furthermore, besides NFV and NS, the third key enabler of
a suitable ecosystem for customized provisioning of networked
services is driven by the ETSI ISG MEC for Multi-Access
Edge Computing (MEC), which represents a platform for the
provisioning of services in distributed cloud resources that
are topologically closer to (mobile) clients [2]. This helps
to localize functions and data plane traffic, thereby enabling
potentially short routing paths between clients and a service
instance on one of the MEC platforms. To benefit from MEC
deployments in a highly mobile automotive scenario, the MEC
platform, data plane routing policies, and infrastructure re-
sources, must be aligned to support the situation of connected
clients on the road. For example, experiencing an unexpected
increase in mobile clients in a certain location may overload a
service on a single edge resource, which may result in service
quality degradation and violation of agreed and expected
service levels. In this paper, we show how an agile resource
management of distributed edge resources in an NS-enabled
ecosystem can be accomplished without exceeding the overall
resource budget assigned to that slice. Furthermore, the applied
machine learning helps to anticipate the upcoming resource
demand, and to give the required time to the system to scale
and re-configure the edge resources in advance. The proof of
edge slicing and resource management per u-slice resources
assigned to a single edge resource is experimentally shown in
an orchestrated container-virtualization-based edge platform,
which is being developed for an automotive trial in the EU’s
5G-CARMEN project.

II. ORCHESTRATED EDGES — SYSTEM VIEW

So far, various projects have investigated on the orchestra-
tion of a network in an end-to-end context, i.e., from a central

./
Tenant / Slice Request [N ¢

Customer Frontend ﬂ A

Slice Descriptor | ()

Slice Descriptors

5G Core

Service Orchestration ——» NFV-SO s

Edge Control

Edge —»

Services

tdge —» ({| /IEdge Workers o Edge Workers | Epedge Workers o
Resources

Pr grammab\e Data Plan§
| } 5G Data Plane
/ Transport Network

Other domains

eSlice Resources
Management EEE

wSlice Deployment D{

Figure 1.

Deployment of service slices in the distributed container edges.

office to a mobile client, thereby managing the functions,
resources, and policies, which are deployed in the core, trans-
port, and the radio access networks. In this paper, we focus
on the orchestration of distributed edge resources to support
the deployment and continuity of services for Connected and
Automated Mobility (CAM). Thus, Fig. 1 sketches a high-
level view of the specified functional architecture [3] and
comprises an NFV Service Orchestrator (SO), which can
select orchestrated edge resources according to a deployment
strategy, and enforce the instantiation of an image of the
requested CAM service at the selected edge through an NFV
Local Orchestrator (NFV-LO). For a large-scale deployment,
the NFV-SO can request multiple edge resources to deploy
such service.

In particular, the NFV-LO and the Mobile Edge Applica-
tion Orchestrator (MEAO) [2] treat the service deployment
per its description in a Network Slice Template, and admit
the enforcement of the service through an Edge Controller
function. The Edge Controller handles multiple distributed
servers in one or multiple edge clouds, which are denoted as
worker nodes that provide the local hardware resources for the
deployment of service instances. The federation interfaces are
sketched at the NFV-SO and the NFV-LO level to accomplish
roaming and cross-border scenarios. The additional roles of the
Edge Controller include i) slice management, ii) connectivity
management, iii) network programming for traffic steering, as
well as iv) interfacing with the 5G Core network for receiving
client mobility related event notifications, which may require
re-configuration of services and traffic steering policies within
or between local edge clouds. In case more mobile clients
access edge services from a certain location, the orchestration
system and the Edge Controller need to provide and re-
configure the associated local edge resources accordingly. To
provide a mobile access to the topologically closest edge
service, and to distribute the load properly between all edge
resources utilized for a service, the transfer of a client’s session
state might be needed, from a service instance on one edge to
an instance on another edge.

In case the deployment of distributed service instances is

constrained by the system’s slice description and an associ-
ated resource limit, the orchestration system and the Edge
controller need to distribute the allowed resource budget over
all edge resources, where the service instances need to be
deployed. Segmentation of a Network Slice into Sub-Network
Slices (e.g., for the edge network) is described in standards
[1], whereas we introduce the notion of a pu-slice resource,
which is a portion of the resources assigned to an edge Sub-
Network Slice. In the following section, we describe how the
distributed edge resource management can be accomplished by
partitioning the available slice resource budget over multiple
edge worker nodes according to resource demand. We briefly
show how the chosen software principles for the development
of a container-virtualization based orchestrated edge can be
used to enforce p-slice resources on an edge worker node to
take additional load from connected cars, which is anticipated
by machine learning principles applied to the mobile edges.

III. SLICING-ENABLED CLOUD-NATIVE EDGES

Containers such as Docker! are gaining momentum as a
way to develop network applications and services in a modern
telco world, due to their small footprint compared to virtual
machines, and their seamless/flexible integration with modern
cloud-native micro-service architectures, including continuous
integration, development, and deployment strategies. Whereas
containers are fast to start, stop and restart, virtual machines
have better level of isolation.

The 5G Service-based Architecture (SBA), which is the
main driver for 5G control plane, benefits a lot from container
based applications/services as containers have proven in cloud
data centers for this kind of architecture. Hence, container
network functions (CNFs) are becoming the standard defacto
for MEC/Edge cloud network services/applications [4].

Though containers are good in managing and packaging
application specific dependencies (package once and run any-
where), container orchestration solutions such as Kubernetes?
are required for automating deployment, and management at a
scale (e.g in a production environment). Besides Kubernetes,
many other solutions such as Apache MESOS?, Nomad*,
Amazon Elastic Container Service’, etc., are joining the cloud
native computing foundation®. In our work we rely on Kuber-
netes for the following key reasons: I) It is open-source with
active community support II) Maturity and wide acceptance
both in academy and industry.

A Kubernetes cluster is a set of worker node machines
for running containerized applications. A cluster contains a
master node, which controls the worker nodes assigned to the
cluster and maintains the desired state of the cluster, e.g. which
applications are running, which container images they use and
which worker nodes to run applications and workloads.

"Docker: https://www.docker.com/

2Kubernetes: kubernetes.io,

3 Apache MESOS: mesos.apache.org

4Nomad project: nomadproject.io

5 Amazon ECS: https://aws.amazon.com/ecs/

%The cloud native computing foundation: https://landscape.cncf.io/

A. Main Kubernetes Objects for Slicing

Pods are the smallest (i.e., atomic) units of Kubernetes
objects, and they contain one or more containers. The con-
tainers in a single Pod share the same network namespace,
and can connect to each other via the loop-back interface.
Furthermore, Pods are stateless and local to the specific Kuber-
netes cluster. Service objects are used to expose applications
running in Pods for external access. Volume objects are used
for persistence data storage of Pods data. Namespace is a
virtual cluster which allows to isolate scoped Kubernetes
objects such as Pods, Persistent Volume Claims (PVCs), and
Deployments. A ResourceQuota object provides constraints
that limit aggregate resource consumption per namespace. It
can limit the quantity of objects (e.g. number of NodePorts,
PVCs, Pods, etc.) that can be created in a namespace by type,
as well as the total amount of compute resources that may be
consumed in that namespace.

B. Slicing at the Edge

Recently, both in academy and industry, different container
based edge cloud solutions are being developed to manage and
orchestrate network services at the edge of the network. Open
source solutions for the edge cloud are also developed ’. In the
view of enabling network slices for MEC/edge cloud services,
authors of related work proposed different approaches. A good
survey of state of the art on cloud native network slicing is
discussed in [5], while another notable work on slice enabled
MEC in 5G is discussed in [6]. Though there are many
works in this regards, most of them are focused on features
already available by container orchestration solutions such as
Kubernetes and are not achieving the main goal of slicing,
i.e., isolation and resource control. In this paper we present
means to achieve slicing by extending and combining features
of Kubernetes. The Kubernetes platform provides extensible
Open APIs for all of its services, hence this allows us to use
available services and extend them for our purpose. In this
regard we combined the feature of Kubernetes Namespaces
and ResourceQuotas to meet the two main requirements of
network slices i.e 1) isolation which can be achieved by
Kubernetes Namespaces and 2) Resource control which can be
achieved by Kubernetes ResourceQuotas. Combining the two
Kubernetes objects, we developed an abstraction representing
slice objects (see Listing 1). We implemented a REST based
slice management API, an Open API from the Edge Controller
(Fig. 1) towards the above orchestration layers, i.e to create,
update and delete slices. The Edge Controller extends the
Kubernetes master API and implements the additional features
sketched in Sec.Il, incl. the Platform Manager per the ETSI
MEC architecture [2].

A slice is a scoped cluster and is viewed as a resource
allocation spanning across all worker nodes in the cluster. At
the Edge Controller level we have the opportunity to see which
Pod is running in which node, even if it is assigned to a specific
slice. In this regards we introduce a novel concept called p-
slices i.e the available budget for a slice per worker node,

7KubeEdge: https://kubeedge.io/en/

this enable as to flexibly control placement of Pods/CNFs to a
specific p-slice without violating the total slice budget. With
reference to Fig. 2, in a highway scenario with distributed
nodes deployed along a geographic area, u-slices can be
mapped to suitable geo-locations, hence this allows us to
introduce geo-aware slices. The aggregate resource that will
be assigned to each geo-slice will be equal to the total slice
budget of the tenant. This concept of mapping geo-areas with
p-slices allows us to easily shift resources from one p-slice
to another p-slice without exceeding the overall aggregated
resources admitted for a slice. Shifting resources beyond p-
slices managed by an Edge Controller can be coordinated via
edge orchestration layers or NFV-SO with Edge Controllers
of other edge resources.

Edge Worker Resources
| # | # J-service instances
wle [0 [T g
g
| # | #]
R
L ﬁ S0 S———,
wwslice resources
#
¢ balancing
[“
] I
| # | # -u—selwe g8
oo ||g3
ol |0 = e
#
Edge Worker Resources

Figure 2. Leveraging demand predictions for p-slice resources management

IV. LSTM-BASED TRAFFIC FORECASTING AS ENABLER
FOR PROACTIVE EDGE RESOURCES ALLOCATIONS

A proper allocation of resources in one or multiple Edge
Nodes or instantiated slices is fundamental for the overall
performance of the mobile system. The proper amount of
resources depends on the number of requests coming from the
mobile users consuming the edge services and the evolution
of such requests in time. Being able to anticipate such users
behavior is the key enabler to proactively set edge resources
accordingly [7].

In this work, we leverage Recurrent Neural Networks
(RNNs) for time series forecasting. The time series we con-
sider is composed by the number of users in different locations
of the network in a time interval from t-N to t (present time).
For each location, we use RNNs to predict the number of
vehicles at time t+1. In particular, we use Long Short Term

Accuracy with LSTM Loss with LSTM

w10
L 080 W fi
g o7 W‘:‘:’ N \“‘**MM_

00 25 50 75 100 125 150 175 200

" 00 25 50 75
epochs

100 125 150 175 200
epochs

—&— with 2 layers —#— with 3 layers —— with 4 layers

Figure 3. Accuracy and loss results when training an RNN LSTM on a real
map highway and urban area traffic forecasting.

Memory (LSTM) special units to overcome RNN well-known
short memory limitation [8].

LSTM is used to forecast density of vehicles in different
500x500m square cells, and this are aggregated in wider
1.5x1.5 km geo-areas, as depicted in Fig. 2. Each geo-area
can then be served by one or multiple edge resources. The
allocation (or modification) of such budget of resources can
be based on the predicted traffic for that area. In order to take a
good decision on resource allocation, a good forecast in terms
of accuracy and loss is needed. Fig. 3 shows training accuracy
and loss achieved through LSTM applied on the described
traffic: using a 3 layer configuration, LSTM is able to provide
an accuracy above 0.8, thus allowing for a good prediction of
the traffic highway patterns.

In the results, highway traffic is simulated using SUMO?:
different flows of vehicles entering and exiting the highway at
different random entrances and exits are generated at various
rates during a total interval of 24 hours (100veh/minute at the
highest peaks). Speed of vehicles is defined with a normal
distribution having mean value as 0.8 of the max street speed
limit (i.e., 50 m/s) and std.dev. equal to 0.2 of said speed limit.
More details on the parameters are contained in [9].

Update of uslices
resources

@Dm Analytics
€ edge Worker

(" Edge
Controller
=)

.

Forecast of user traffic

12:55 13:00 13:05 13:10

number of vehicles
38 8 88

5
timesamples

D\{,\,,,QJ,

(a)

Figure 4. Example of vehicle traffic forecast over time in a geo-area (a) and
CPU and Network Utilisation in an Edge Worker (b). Both information can
be leveraged by the Mobile Edge Application Orchestrator (MEAO) in order
to take u-slice resource distribution updates on Edge Workers.

V. TowARDS EDGE AUTOMATION FOR CAM

To prove the aforementioned concepts, we build an eval-
uation setup including a Kubernetes-cluster-based Edge Con-
troller having two Edge Worker nodes. We define a network
slice instance with a specific resource budget (Listing 1),
comprising three pods of which two are running on one Edge
Worker and the third on the other Edge Worker node. We again
consider simulated highway traffic as described in Sec. IV, and
generate based on it user requests with wrk® and Nginx'? tools.
Then, we evaluate the traffic impact in terms of edge resources
consumption: in Fig. 4(b) pods CPU and Network utilisation
on one Edge Worker are depicted.

The resource consumption can at some point increase be-
cause of increasing user traffic, as it happens around time

8SUMO simulation tool: https://www.eclipse.org/sumo/
owrk - a HTTP benchmarking tool: https://github.com/wg/wrk
10Nginx: https://www.nginx.com/

Listing 1 Slice Descriptor (namespace and resources)

[:]"metadata"m { "name": “slicel"}l
"spec"m {
"limits.cpu": "4",
"limits.memory": "2048M",
"requests.storage": "100Gi",
"services.nodeports": "4" [....

13:02 in the aforementioned figure. In such case we could
re-organise the overall resources: whereas the total resources
for the slice instance are fixed, we can increase the quota of
resources in the p-slice on the traffic peak impacted Edge
Worker Node, yet reducing resources on the other Worker
Nodes. Similarly, as Fig. 4(a) shows, we can update the p-slice
resources for each Edge Worker directly based on the traffic
forecasting: when we forecast a peak in user traffic for the
specific geo-area, we can enforce through the Edge Controller
a consequential re-organization of the edge resources in the
different p-slices.

VI. CONCLUSION

In this paper we combine the possibility to flexibly allocate
p-slice resources at edge nodes with machine learning-based
traffic forecasting to anticipate the clients’ traffic patterns
and assess edge resources demand accordingly. We show
the feasibility and advantages of such an approach based
on our OSS-prototype for orchestrated edges, currently under
development for the SG-CARMEN European project.

ACKNOWLEDGMENT

The research leading to these results was supported
by H2020-ICT-2018 grant agreement No. 825012 (5G-
CARMEN).

REFERENCES

[1] 3GPP, “Management of Network Slicing in Mobile Networks; concepts,
use cases and requirements,” 3rd Generation Partnership Project, TS
28.542.

[2] ETSI, “Multi-access Edge Computing (MEC); Framework and Reference
Architecture,” European Telecommunication Standards Institute (ETSI),
TS, January 2019.

[3] 5G-CARMEN, “Deliverable 4.1 - Design of the secure, cross-border,
and multi-domain service orchestration platform,” H2020 5G-CARMEN
Project Consortium, 2020, online [Available]: https:/Sgcarmen.eu/
wp-content/uploads/2020/11/5G_CARMEN_D4.1_FINAL.pdf.

[4] R. Cziva, S. Jouet, K. J. S. White, and D. P. Pezaros, “Container-based
network function virtualization for software-defined networks,” in 2015
IEEE Symposium on Computers and Communication (ISCC), 2015, pp.
415-420.

[5] S. D. A. Shah, M. A. Gregory, and S. Li, “Cloud-native network slicing
using software defined networking based multi-access edge computing:
A survey,” IEEE Access, vol. 9, pp. 10903-10924, 2021.

[6] A. Ksentini and P. A. Frangoudis, “Toward slicing-enabled multi-access
edge computing in 5g,” IEEE Network, vol. 34, no. 2, pp. 99-105, 2020.

[7] S. Ntalampiras and M. Fiore, “Forecasting mobile service demands for
anticipatory mec,” in 2018 IEEE 19th International Symposium on” A
World of Wireless, Mobile and Multimedia Networks”(WoWMoM). 1EEE,
2018.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[9] U. Fattore, M. Liebsch, B. Brik, and A. Ksentini, “Automec: Lstm-
based user mobility prediction for service management in distributed mec
resources,” in Proceedings of the 23rd International ACM Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2020.

