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Abstract 

We report the fluid-structure interaction (FSI) 

modeling of an electrostatic actuated gas modulating 

microvalve. A physics-based contact function was 

introduced, with improved stability compared to pure 

penalty and augmented Lagrangian.  The valve position 

and the transient gas flux at the inlet and outlet of the valve 

during the pull-in and snap-out events were simulated, 

showing voltage hysteresis and distinct flow patterns 

between the two events.  

1. Introduction 

The prediction of the transient behavior of electrostatic 

valves with the finite-element (FE) method is challenging, 

nonetheless important when the valve is embedded in a 

larger fluidic platform (time and position dependent 

pressure levels, crosstalk, ...) [1]. The deflection of the 

valve membrane is typically larger than the thickness of the 

membrane, meaning geometric and material nonlinearity 

(hyperelasticity) needs to be considered. Also, the 

electrostatic force-displacement relationship is nonlinear. 

When the voltage between the electrode on the flexible 

membrane and the ground electrode at the bottom of the 

channel reaches a critical value, i.e. pull-in voltage, the 

membrane collapses on the ground electrode.  

The rapidly deforming mesh of the fluidic domain 

makes convergence difficult to obtain. Tricks to achieve 

stable solutions by fixing the displacement at the center of 

the membrane and solving for the voltage that generates 

this displacement by means of a root finding algorithm, as 

proposed in [2], are acceptable for steady state problems 

but become inadequate for transient simulations. 

To avoid inverted mesh elements during one of the 

Newton iterations of the nonlinear FE solver, a proper 

contact function must be added to the FE formulation. 

Standard contact models available in commercial FE 

packages such as Comsol Multiphysics and Ansys 

Mechanical, i.e. pure penalty and augmented Lagrangian, 

are difficult to set up.  

The contact pressure tp of the pure penalty method can 

be expressed as [3]: 

𝑡𝑝 = {
−𝑘𝑝𝑑𝑔 + 𝑝0 if 𝑑𝑔  <  𝑝0 𝑘𝑝⁄

0 if 𝑑𝑔  ≥  𝑝0 𝑘𝑝⁄
(1) 

dg is the effective gap distance. p0 represents the contact 

pressure at zero gap. The penalty factor kp can be 

interpreted as the stiffness of contact. A high kp fulfills the 

contact condition more accurately. If however kp is too 

high, the model becomes ill-conditioned and unstable. As 

a consequence, the coefficients of the pure penalty method 

(kp and p0) must be adapted for each change in geometry 

and/or boundary condition (e.g. voltage ramp rate, 

backpressure due to the gas flow in the microchannel). The 

augmented Lagrangian method is less sensitive to the 

magnitude of the (user) pre-defined stiffness compared to 

the pure penalty method. The Lagrange term λm augments 

the contact pressure calculation [3]: 

𝑡𝑛𝑝 = {
𝜆𝑚 − 𝑘𝑝𝑑𝑔 if 𝑑𝑔 ≤ 0

𝜆𝑚𝑒
−

𝑘𝑝𝑑𝑔

𝜆𝑚 otherwise
(2) 

The disadvantage of the augmented Lagrangian method 

for electrostatic pull-in modeling is that it requires a lot of 

damping, making the simulations time consuming. Here, 

we introduce a convenient physics-based contact function 

with improved stability.   

2. Theory 

To explain the principle of the physics-based contact 

function, the electrostatic microvalve is simplified as a 

parallel-plate capacitor separated by an initial gap g, as 

shown in Figure 1. The top or movable electrode represents 

the membrane. Its deflection stiffness is defined by the 

attached spring with a spring constant kmech derived based 

on the Kirchhoff-Love plate theory (normalized to area) 

[4]: 

𝑘𝑚𝑒𝑐ℎ =
64 𝐷

𝑎4
 with 𝐷 =  

𝐸𝑡3

12(1 − 𝜈2)
(3) 

In Eq. (3), a represents the membrane radius, t the 

membrane thickness and D the flexural rigidity of the 

membrane. E and ν are respectively the elastic modulus and 

Poisson’s ratio of the membrane material.  

 

 

Figure 1: (a) Electrostatic actuated gas modulating 

microvalve; (b) Equivalent parallel-plate capacitor 

model 

By applying a voltage V between the top (valve 

membrane) and fixed bottom electrode (valve floor), the 

resulting electrostatic force causes the membrane to move 

towards the ground electrode. The electrostatic force as 

mailto:grim.keulemans@imec.be


 

    

     

function of the valve membrane displacement x of can be 

expressed as (again normalized to area) [5]: 

𝑝𝑒𝑙(𝑥, 𝑉) =
𝜀𝑉2

2(𝑔 − 𝑥)2
(4) 

with ε the permittivity of the gas and g the initial gap 

between the electrodes. 

When gas is flowing through the valve structure, a net 

pressure pfluid will be present in the valve cavity, pushing 

the membrane upwards. The net pressure balance of 

electrostatic valve structure can therefore be written as: 

𝑝𝑡𝑜𝑡(𝑥, 𝑉) = 𝑝𝑒𝑙(𝑥, 𝑉) − 𝑝𝑚𝑒𝑐ℎ(𝑥) − 𝑝𝑓𝑙𝑢𝑖𝑑

=
𝜀𝑉2

2(𝑔 − 𝑥)2
− 𝑘𝑚𝑒𝑐ℎ𝑥 − 𝑝𝑓𝑙𝑢𝑖𝑑 (5)

 

At equilibrium, the electrostatic, mechanical, and fluid 

pressures will cancel each other (ptot(x) = 0) and Eq. (5) can 

be solved for the valve position x as function of the applied 

voltage V.  However, when a critical voltage is achieved, 

the electric pressure (~ 1/(g-x)2) becomes dominant with 

respect to the mechanical and fluid pressure (~ x) and the 

valve membrane collapses on the valve floor. This critical 

voltage is called the pull-in voltage and occurs when 

dptot(x,V)/dx = 0, i.e. the electro-mechanical system has 

zero stiffness. The analytical expression for the pull-in 

voltage Vpi and the corresponding displacement xpi are 

(ignoring the fluid pressure, i.e. pfluid ≈ 0) [5]: 

𝑉𝑝𝑖 = √
8

27

𝑘𝑚𝑒𝑐ℎ𝑔3

𝜀
 and 𝑥𝑝𝑖 =  

1

3
𝑔 (6) 

By integration, the energy balance of the electrostatic 

valve structure can be derived (normalized to area):  
𝑒𝑡𝑜𝑡(𝑥, 𝑉) = 𝑒𝑒𝑙(𝑥, 𝑉) − 𝑒𝑚𝑒𝑐ℎ(𝑥) − 𝑒𝑓𝑙𝑢𝑖𝑑(𝑥)

= −
𝜀𝑉2

2(𝑔 − 𝑥)
+

𝑘𝑚𝑒𝑐ℎ𝑥2

2
+ 𝑝𝑓𝑙𝑢𝑖𝑑𝑥 (7)

 

Here, kinetic energy terms are ignored for simplifying 

the analysis. The stored potential energy as function of the 

valve displacement for V < Vpi is shown in Figure 2. A 

stable valve position at small valve displacement is found 

(detot/dx = 0 and d2etot/dx2 > 0).   

 

 

Figure 2: Energy balance of electrostatic valve structure 

for V < Vpi 

Figure 3 compares the situation for different applied 

voltages (solid lines; V1 < Vpi < V2). When no voltage is 

applied (V = 0V), the stiffness of the system is ~kmech for 

small displacements δx. For V > 0V, the stored energy etot 

will tend to -∞ for x/g → 1 (small effective gap). This 

occurs when the applied voltage is larger than Vpi or when 

the membrane dynamically overshoots beyond a critical 

displacement.  In finite-elements, a proper contact model 

needs to be introduced to predict the collapsed shape of the 

membrane. The case for the pure penalty method is 

depicted in Figure 3.a (dashed lines; for illustrative 

purposes, the onset of the contact force is set for gaps 

smaller than 0.15g). For a fixed contact stiffness kp, the 

pure penalty method is effective for a certain range of 

voltages. In Figure 3.a, the contact stiffness kp is chosen 

such that a stable position could be found for voltages a bit 

higher than Vpi (green line). If the applied voltage is further 

increased (red line), the contact force can no longer 

overcome the electrostatic pulling force and the model 

becomes unstable. A solution would be to increase the 

contact stiffness kp, but if too high, the model becomes ill-

conditioned, causing oscillatory behavior of the solver 

and/or inverted mesh elements.  

 

Figure 3: Comparison of (a) pure penalty and (b) physics-

based contact function (V2 > Vpi > V1; solid lines= etot ; 

dashed lines = etot + econtact)  

The rationale of the physics-based contact function is 

to introduce a counteracting force such that the stability of 

the electro-mechanical system is restored: 

𝑡𝑛𝑝 = 𝛼
𝑘𝑝

(𝑔 − 𝑥)𝑛+2
(8) 

with the exponent n ≥ 1 and the pre-factor α > 0.  



 

    

     

During simulation, the initial boundary stiffness kp was 

set to εV2gn. The advantage of this contact method 

compared to pure penalty is that it is an internal boundary 

method as shown by the dashed lines (n = 1; α = 0.025) in 

Figure 3.b, avoiding convergence issues. The pre-factor α 

is a continuation parameter. The model will steadily 

converge to a sufficiently accurate solution by scaling the 

pre-factor α, as illustrated in Figure 4. 

  

 

Figure 4: Physics-based contact function for different 

values of the continuation parameter α (dashed lines = 

etot + econtact) 

3. Steady state axisymmetric finite-element model 

The axisymmetric valve model implemented in Comsol 

Multiphysics [6] is shown in Figure 5. The electrostatic 

valve consists of a flexible circular membrane (radii from 

100 to 500 μm; thickness = 5 μm; E = 10 MPa; ν = 0.49) 

with a continuous, infinitely thin conductive film at the 

bottom. The ground electrode is covered with 500 nm 

nitride for electrical isolation (εr,nitride = 7). Above the 

membrane and inside the valve cavity, dry air at standard 

temperature and pressure is assumed (εr,air ~ 1). 

 

 

Figure 5: Axisymmetric circular valve structure 

 To illustrate the effectiveness of the physics-based 

contact function, a voltage of 100 V was applied over the 

valve electrodes of the circular membrane with a radius of 

200 μm, well above its pull-in voltage of 20 V. The 

parameters n and kp of the contact function were set to 2 

and εV2g2. The pre-factor α was set as a continuation 

parameter in the solver and was swept from 1 to 10-10 in 

100 logarithmic distributed steps. The initial values for the 

variables solved for in each step were taken equal to the 

solution of the previous step. Figure 6 depicts the effect of 

the continuation parameter α on the shape of the membrane 

collapsed on the ground electrode. The solution at α=10-10 

was assumed converged by monitoring the area of the 

membrane in contact. Note that the contact function was 

offset 100 nm from the bottom nitride insulator to leave 

room for the moving mesh of the collapsing fluidic domain 

in the valve cavity. Values smaller than 100 nm let to 

numerical instabilities due to a degraded quality factor of 

particular elements in the fluid mesh.  

 

Figure 6: Circular membrane collapsed on ground 

electrode after pull-in: effect of the continuation 

parameter α (n = 2; kp = εV2g2; V = 100 V; Vpi = 20 V; 

color scale in microns) 

By repeating the above-described methodology for 

different initial voltages, the voltage-displacement curve 

could be obtained as shown in Figure 7. The pull-in 

occurring at 79.5 V is clearly visible, in this case for a 

membrane with a radius of 100 μm. The simulated static 

pull-in voltages for different membrane radii from 100 to 

500 μm are depicted in Figure 8 and fit well with two 

nonlinear analytical models found in literature [7,8].  

 

Figure 7: Voltage-displacement curve for a circular 

membrane with a radius of 100 μm (the displacement is 

probed at the membrane center) 



 

    

     

 

Figure 8: Effect of membrane size on the static pull-in 

voltage 

The contact model can be extended to non-uniform 

electrostatic gaps by replacing the displacement x in Eq. (8) 

with the closest distance D to the ground electrode as found 

by solving the Eikonal equation: 

|𝛻𝐷| = 1 (9) 

D = 0 on the ground electrode. ∇D.n = 0 on all other 

boundaries with n the surface normal. The solutions for 

parabolic and Bezier curved bottom electrodes are shown 

in Figure 9.  

 

Figure 9: Electrostatic pull-in on (a) parabolic and (b) 

Bezier curved bottom electrodes (color scale in microns) 

4. Transient fluid-structure interaction model 

The physics-based contact function was next applied to 

the full electrostatic valve structure with a net air flow 

present in the air channel in the initial open position. The 

results of the transient fluid-structure interaction model are 

shown in Figure 10. The valve membrane had a radius of 

250 μm. The other dimensions (membrane thickness and 

valve cavity) are the same as indicated in Figure 5. The gas 

inlet and outlet channel had a length, width, and height of 

respectively 250, 100 and 5 μm.  

First an air pressure of 100 Pa was applied at the inlet, 

realizing an air flow of 0.4 μL/min through the channel as 

shown in Figure 10.b (assuming incompressible, no slip 

flow). Next the voltage was ramped to 30 V in 200 ms. 

Transient pull-in occurred around 24 V (see Figure 10.c). 

The transient pull-in voltage was higher than the static pull-

in value of 12.5 V obtained in the axisymmetric model, 

because of the air flow in the microchannel. A surge in the 

air flux, both at the inlet and outlet boundaries was noticed 

during the pull-in event (see Figure 10.b). In the closed 

condition, the net flow rate was reduced twofold compared 

to the open condition. Finally, the voltage was ramped 

down to 0 V. Snap-out took place at a lower voltage, 

i.e. 15 V. As the membrane was in the collapsed position 

after the voltage up-ramp, the electrostatic force at the start 

of the voltage down-ramping was obviously higher. This 

transient voltage hysteresis between pull-in (voltage up-

ramping) and snap out (voltage down-ramping) is clearly 

observed in Figure 10.c. The snap-out event was noted to 

be less abrupt, i.e. lower peak flow rates, with respect to 

pull-in. 

 

Figure 10: (a) Streamlines of the gas flow for the 

membrane in the collapsed state; (b) Transient change of 

the inlet/outlet air flux during one open/close cycle of the 

valve;  (c) Voltage-displacement relationship of one valve 

open/close cycle (probed at the membrane center)  



 

    

     

5. Conclusions 

A convenient physics-based contact method was 

demonstrated for the transient modeling of an electrostatic 

actuated, gas modulating microvalve. The method can 

easily be extended to other electrostatic micro-actuators or 

sensors. More complex valve structures (curved 

electrodes) can be addressed by solving the Eikonal 

equation. By tuning the boundary conditions in the fluidic 

domain, the study of the transient behavior of the valve in 

a larger fluidic circuit is now conceivable, where issues 

such as crosstalk, variable delays and time dependent 

pressure levels need to be tackled. 
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