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Abstract—In this paper, we present a power, performance, area
and cost (PPAC) analysis for large-scale 3D processor designs
based on wafer-to-wafer bonding. From the evaluation of our cost
model, we investigate a typically disregarded opportunity in 3D
that is area savings due to buffer savings and better routability,
offering unexpected cost savings. We explore the viability of this
factor with the feedback of a state-of-the-art 3D memory-on-
logic implementation flow. We show how this affects the PPAC
of full-chip GDS implementations of a large-scale manycore
processor design. Experiments show that our memory-on-logic 3D
implementation offers 7% silicon area savings, resulting in 53.5%
footprint reduction. We also obtain a 40% power-performance-
cost improvement compared with 2D counterparts.

I. INTRODUCTION

The semiconductor industry is innovating new techniques
to prolong Moore’s Law as CMOS transistor geometries
approach physical limits resorting to novel devices or extreme
ultra-violet (EUV) lithography to reduce masks count. But it
often discounts the benefit of 3D vertical integration believing
integration cost exceeds its economic benefit. In this paper,
we propose a high-level study of a generic cost model to
capture the dominant trade-offs in 2D and 3D. Our analyses
reveal that the cost is very sensitive to the newly explored 3D
area savings, giving a novel perspective to potentially alleviate
traditional economic barriers of 3D vertical integration.

We focus on the wafer-to-wafer (W2W) hybrid bonding
method that stacks two separately pre-fabricated wafers, aligns
them, bonds them face-to-face (F2F) and then dices them to
create multiple single two-tier dies interconnected by high-
density metallic interconnections. Utilizing 3D integration,
heterogeneous devices and technologies (memory, logic, RF,
analog, sensors, etc.) can be optimized for cost and per-
formance for each individual layer. We claim the following
contributions of this paper:
• We develop a high-level cost model to capture the concep-

tual trade-offs among area, cost, and performance in 2D
and 3D, independent of the precise knowledge of foundry
parameters.

• We develop an effective cost analysis and explore the
significance of the defined parameters, revealing an un-
expectedly large impact of the often disregarded 3D area
savings factor γ.

• Our experiments show that our proposed cost optimiza-
tion axis of area savings is viable. Due to the better
exploitation in 3D of the F2F-bonded back-end-of-line
(BEOL) stack, we obtain improved power, performance,

TABLE I
COST MODEL PARAMETERS.

parameters description
foundry related parameters

wd wafer diameter
cFEOL, Logic FEOL cost of logic wafer
cMOL, Logic MOL cost of logic wafer
DLogic logic die defect density
αLogic logic die clustering parameter

cFEOL, Memory FEOL cost of memory wafer
cMOL, Memory MOL cost of memory wafer
DMemory memory die defect density
αMemory memory die clustering parameter
yB 3D integration yield
cB 3D integration cost

cMi
(C) cost of metal layer i in BEOL of configuration C

implementation related parameters
a 2D die area
γ 2D vs. 3D die area ratio: a3D = γa
C BEOL configuration/aggressivity
N number of BEOL metal layers

as well as footprint and silicon area results. Such area
gains lead to a significant cost saving. This PPA plus
cost saving make 3D ICs more attractive than previous
analysis has indicated.

Our industry representative benchmark designs of a large-
scale manycore processor done at GDS-level and simulated
with sign-off simulations convincingly highlight the perfor-
mance as well as area and cost savings opportunities of 3D
ICs.

II. COST MODEL OVERVIEW

We build a highly parametrized and generic cost model for
3D IC integration. It handles W2W hybrid bonding and 3D
memory-on-logic integration.

Previous work on cost modeling for 3D IC [1], [2], [3] do
not consider the silicon area savings opportunities, assuming
a fixed footprint area reduction of 50% in 3D compared to
2D. In sharp contrast, we introduce the 3D area savings as an
independent parameter γ.

A. Parameters

Our cost model integrates two types of parameters presented
in Table I. Foundry related parameters are relative to a given
technology node from a manufacturing foundry. The other type
is implementation dependent, relative to real full-chip GDS
designs obtained using a physical design flow.
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Fig. 1. Conceptual view (not to scale) of the 3D stack for our wafer-on-wafer
face-to-face wafer cost analysis.

TABLE II
COST MODEL PARAMETERS IN OUR THREE ILLUSTRATIVE SCENARIOS.

BEOL CONFIGURATION IS ASSUMED AS FOLLOWS: HIGH =
4Mx2My1Mz , MEDIUM = 3Mx2My1Mz , LOW = 2Mx3My1Mz .

parameters case A case B case C
wd (mm) 300 300 300
cFEOL, Logic 1 1 1
cMOL, Logic 0.18 0.18 0.18

DLogic (mm−2) 0.001 0.0009 0.005
αLogic 2 2 2

cFEOL, Memory 0.85 0.85 0.85
cMOL, Memory 0.18 0.18 0.18

DMemory (mm−2) 0.0009 0.0008 0.004
αMemory 2 2 2
yB 0.98 0.99 0.95
cB 0.26 0.20 0.30

cexpensive layer Mx 0.19 0.19 0.19
cmedium layer My 0.11 0.09 0.11
ccheap layer Mz 0.07 0.05 0.07
BEOLLogic medium high high

BEOLMemory medium medium high

B. Assumptions

To set the foundry constants of Table I, we use informa-
tion from ITRS reports, previous literature [4], [5], as well
as inside expertise validated by silicon measurements and
industry feedback. We propose the three cases presented in
Table II as illustrative examples of a sub-28nm foundry-grade
technology node. A BEOL configuration called 4Mx2My1Mz
corresponds to a stack of 4 expensive metal layers followed
by 2 less expensive metal layers. The remaining layers in
the stack are of the cheaper Mz type. The cost of W2W
3D integration includes wafer alignment, bonding, Si thinning
and via realization. In Figure 1 we present our exemplar
stack which includes a middle-of-line (MOL) used for local
interconnect of standard cells. A value of 2 for the cluster
parameter of the yield models slight non-uniformity of fault
distribution. The effective memory defect density is specified
to be better than the logic defect density as it is assumed that
the memory area implements ECC or redundancy. Moreover,
the memory front-end-of-line (FEOL) is cheaper as some
FEOL processing steps in memory wafers can be omitted.

C. Analytical Model

For convenience, we will write f(x1, x2, . . . , xn) as f(xk)
to highlight the dependence of f on xk. This way, we define

2D die area (mm2)
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Fig. 2. Inverse die-per-wafer ratio rDPW (a, 0.5)−1 for different analytical
approximations and wd = 300mm. We observe the Exponential model is the
most accurate vs. the Exact solution.

CD(a) = CD(a, . . .) as the cost of a single die of area a, where
the dependence to the other parameters of Table I is abstracted
into an ellipsis (. . .). To derive accurate cost optimization
techniques, we focus on the die cost ratio between 2D and
3D:

rD(a,γ) =
CD3D

(γa)

CD2D
(a)

=
CW3D

kgd3D(γa)
· kgd2D(a)

CW2D

=
CW3D

CW2D

· dpw(a)

dpw(γa)
· y2D(a)

y3D(γa)

(1)

where kgd, dpw, y and CW denote the number of known
good dies, the number of die-per-wafer (DPW), the yield and
the wafer cost, respectively. The implementation-dependent
parameter γ models the shrinking of the die area in 3D. The
equation can be rewritten to highlight the die cost trade-offs:

rD(a,γ) = rW · rDPW (a,γ) · rY (a,γ) (2)

where rW , the wafer cost ratio, is independent of the die areas.
The ratio rDPW describes how many more 3D dies we can
obtain by using 3D integration and reducing footprint a with
factor γ. The ratio rY compares the 3D yield with the 2D
yield.

D. Cost Model Components

We present classical approximations for each component of
the cost model such as die-per-wafer, yield, wafer cost, and
we highlight their dependence on γ.

1) Die-Per-Wafer: To derive accurate and interpretable
guidance from the model, we select the most accurate ana-
lytical formula for the gross number of die-per-wafer. Figure
2 compares various second-order approximations with the
exact brute force solution presented in [6]. It shows that the
exponential formula due to Ferris-Prabhu [7] is most accurate:

dpw(a) =

⌊(
πw2

d

4a

)
e−2
√
a/wd

⌋
(3)



2) Yield: We present the different components for the wafer
yield calculation. For 2D integration, it corresponds the yield
of a die, while the yield modeling for 3D W2W ICs is more
complicated, as presented here.

Die Yield We use the negative binomial yield model [8]
suggested in ITRS reports that considers the clustering of man-
ufacturing defects rather than their independent occurrences:

ydie(a) =

(
1 +

Da

α

)−α
(4)

where D is the defect density and α the clustering parameter
of the faults. Parameter α depends on the technology and
the design itself (e.g., mask steps) and small values indicate
increased clustering. It is straightforward to extend the current
framework to other more precise models, as those proprietary
ones available inside the foundry companies.

Stack Yield In W2W integration, each die cannot usually be
tested until after bonding. Therefore, some bad dies are forced
to bond on the good dies, resulting in a stack yield of:

ystack(a) =

#dies∏
i=1

ydie,i(a) (5)

Assembly Yield As the grid of copper pads across the wafer
is manufactured independent of the number of vias required
for the design electrical connectivity, we abstract the yield of
assembly in a single factor yB .

Total Yield The total yield ratio for a two-tier stack is:

rY (a,γ) =
y2D(a)

y3D(γa)
=

ydie,2D(a)

yB · ydie,1(γa) · ydie,2(γa)
(6)

3) Wafer Cost: The 2D wafer cost is simply the sum of the
individual costs of each layer:

CW2D
(N, C) = cFEOL + cMOL +

N∑
i=1

cMi
(C)︸ ︷︷ ︸

cBEOL(N,C)

(7)

For the 3D case, we add the integration cost to the wafer costs:

CW3D
= cB + CW2D

(N1, C1) + CW2D
(N2, C2) (8)

III. KEY METRICS FOR 3D IC COST ANALYSIS

Relying on mathematical analysis of precise analytical for-
mulas, our intention is to establish cost optimization priorities
that are robust to changes of the foundry parameters.

A. Die-Per-Wafer Ratio

The floor function of Eq. 3 can be neglected to obtain:

rDPW (a,γ) =
dpw(a)

dpw(γa)
≈ γe−2

√
a/wd(1−

√
γ) (9)

Three direct conclusions can be made from this formula:
• Increasing wd, a typical trend with the advancements of

fabs, reduces the DPW ratio.
• A larger die area reduces the DPW ratio.
• The value of γ bounds the DPW ratio.

γ

2D die area (mm²)
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Fig. 3. Inverse yield ratio rY (a,γ)−1: hotter colors indicate improved 3D
yield vs. 2D. The parameters used are from Case A, but the observed trends
are irrespective of the case chosen. It is clear that a γ below 0.5 has a very
positive impact on the 3D yield.

To gain insight on the driving forces of rDPW , we compute
the rates of growth for γ and a:∣∣∣∣∣
∂ rDPW (a,γ)

∂ γ ∆γ

∂ rDPW (a,γ)
∂ a ∆a

∣∣∣∣∣ =

(
∆γ

γ

)(
a

∆a

) √
γ

1−√γ

(
1+

wd√
γa

)
� 1

(10)
As a result, γ has higher effect on the DPW ratio than the die
area a alone.

B. Yield Ratio

Eq. 6 can be rewritten as:

rY (a,γ)−1 = yB

(
1 + D1γa

α1

1 + D1a
α1

)−α1 (
1 +

D2γa

α2

)−α2

(11)

We see that
∂ rY (a,γ)−1

∂ γ
≤ 0 (12)

always holds, revealing a monotonic relationship between γ
and the yield ratio, where decreasing γ always favors 3D.
Next, the implications of logic-on-logic and memory-on-logic
designs on the yield ratio are discussed.

1) Logic-on-Logic: For (D1, α1) = (D2, α2) = (D,α) we
can show that:
∂ rY (a,γ)−1

∂ a
≥ 0 ⇐⇒ a ≤ aCutoff =

α(1− 2γ)

Dγ
(13)

Therefore, if γ ≥ 0.5, the yield worsens for 3D when the die
area increases, and the resulting maximum inverse yield ratio
is yB . If γ < 0.5, the yield ratio is increased with the area
until it reaches its maximum for a 2D footprint of aCutoff .

2) Memory-on-Logic: In this case, the equation is more
complex to analyze analytically. However, we can summarize
the fundamental trade-offs with the graph shown in Figure
3. We show mathematically that the following trends hold
regardless of the absolute values of the foundry parameters.
• If γ ≤ D1

D1+D2
, the inverse ratio yield improves with the

die area until it reaches a peak where it starts decreas-
ing onwards. The imbalance in the upper bound on γ
introduced by the heterogeneity in the defect densities of



memory-on-logic shows that if the memory tier exhibits
a smaller defect density (D2), the requirement for the 3D
die area increase is more relaxed.

• If γ > D1
D1+D2

, the inverse yield ratio rises with the area.

C. Wafer Cost Ratio

An obvious cost improvement is obtained with the reduction
of the total metal layer count of the stack. This axis is readily
available in 3D thanks to the higher granularity of the routing
resources, as two 3D metal layers correspond to about as many
routing resources as one 2D metal layer. The metal layer count
can therefore be adjusted to the routing resource requirements
of a design more accurately in 3D, resulting in more optimized
cost. This granularity also enables a second gain from the more
diverse choices in terms of BEOL configurations for top or
bottom dies.

For the logic-on-logic balanced stack, we get:

rW = 2 +
cB

CW2D
(N, CLogic)

≥ 2 (14)

which is minimized for taller stacks and very aggressive BEOL
configurations. While this reduces the wafer cost ratio, this
effect is not a reasonable optimization. Instead, the memory-
on-logic balanced stack is a more promising approach:

rW = 1 +
cB

CW2D
(N, CLogic)

+
CW2D

(N, CMemory)

CW2D
(N, CLogic)

(15)

as it introduces a difference in wafer costs due to different
FEOL processing and BEOL configurations.

In the imbalanced case, both 3D tiers having less metal
layers than the 2D counterpart yields additional cost saving
opportunities.

D. Sensitivity Analysis of the Die Cost Ratio

It is difficult to study and interpret a multivariate function
such as rD that depends on all the parameters presented
in Table I. Therefore, we perform a sensitivity analysis to
highlight the primary driving parameters of the cost and bring
out trends irrespective of the imprecision on the parameters.

In our sensitivity analysis, the input parameters of the
model are seen as variables, which are varied to estimate their
contributions to the output of the model rD(a,γ, . . .).

We use a variance-based analysis based on the Sobol
sampling and variance estimation [9]. Input values are sampled
according to a quasi–Monte Carlo low-discrepancy sequence.
In this paradigm, the die cost ratio variance V(rD) is decom-
posed into parts attributable to our cost parameters. The metric
of choice is the sensitivity index:

Sp =
Vp

V(rD)
∀p ∈ Table I (16)

where
∑
p Sp = 1 and Vp = Vp

(
EXi6=p

(rD | Xi)
)
. Vp

measures the effect of varying p alone, but averaged over
variations in other input parameters.
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Fig. 4. Pie chart of the contribution of each cost parameter on the die cost
ratio rD . The values are obtained in our global variance-based sensitivity
analysis and averaged over the three cases of Table II.

1) Local Sensitivity Analysis: In order to estimate the local
effects on the cost of the different parameters, we first analyze
the sensitivity of each parameter “one-at-a-time”. We vary one
input variable locally around its nominal value in the range
p0 ± ∆p while keeping others at their nominal values (see
Table II). For each parameter p, we find the ∆p to match
Sp = ScFEOL, Logic ± 3% when ∆cFEOL, Logic = 5% · cFEOL, Logic.

We record the resulting ∆p’s in Table III. Smaller values for
∆p/p0 imply a significant local influence on the resulting cost
rD. This specifically highlights the extreme sensitivity of rD
to the parameters γ and yB, in that their very small variations
have large effects on the cost. The sensitivity to a, cexp. Mx,
cmed. My and ccheap Mz is in contrast very small.

The commonly discussed cost optimization option of metal
layer reduction is shown to have a high impact on the overall
cost, but significantly less than γ. As a simple exercise, take
a = 150mm2 in 2D (die area of an Intel Core i7-8700
processor) and case B parameters. Starting from a balanced
3D stack of (8, 8) metal layers, a reduction of 2 metal layers
on the memory tier (8, 6) corresponds to a γ reduction from
0.500 to 0.491, so only a 1.43mm2 area reduction needed in
the 3D implementation.

2) Global Sensitivity Analysis: To bring out the effects of
the parameters on a large spectrum of values, we perform
a global sensitivity analysis. In contrast with the previous
approach, this offers an overall view on the influence of
parameters on the cost as opposed to a local view of partial
derivatives. The variation ranges for each parameter are set as
is described in Table IV.

The pie chart in Figure 4 presents the individual contribution
of each parameter to the variance of rD. This reinforces the
previous observation that γ is the most influential parameter,
with an overall impact on the die cost ratio superior to that of
all the other parameters combined.



TABLE III
SAMPLING RANGES FOR THE DIFFERENT PARAMETERS TO ACHIEVE SIMILAR LOCAL SENSITIVITY ON THE rD COST.

parameter cFEOL, Logic cMOL, Logic cFEOL, Memory cMOL, Memory DLogic DMemory γ a
nominal p0 1 0.18 0.85 0.18 0.001mm−2 0.0009mm−2 0.50 100mm2

∆p 0.050 0.0483 0.0528 0.0523 0.000260mm−2 0.000240mm−2 0.0052 75.62mm2

∆p/p0 5% 26.8% 6.2% 29.1% 26% 26.7% 1% 75.6%

parameter cexpensive layer Mx cmedium layer My ccheap layer Mz yB cB N2D NLogic NMemory
nominal p0 0.19 0.11 0.07 0.98 0.26 8 8 8

∆p 0.6219 1.4838 1.0842 0.012133 0.05551 0.36061 0.78766 0.78766
∆p/p0 327.3% 1348.9% 1548.9% 1.2% 21.35% 4.5% 9.8% 9.8%

TABLE IV
VARIATIONS RANGES IN OUR GLOBAL SENSITIVITY ANALYSIS. VALUES

OF p0 ARE SET FOR EACH PARAMETER ACCORDING TO THE THREE
CASES OF TABLE II.

parameter variation range
γ [0.46, 0.54]
a [0.1mm2, 500mm2]

cFEOL, Logic p0 ± 10% p0
cMOL, Logic p0 ± 20% p0
DLogic p0 ± 20% p0

cFEOL, Memory p0 ± 10% p0
cMOL, Memory p0 ± 20% p0
DMemory p0 ± 20% p0
yB [0.90, 0.99]
cB p0 ± 20% p0

cexpensive layer Mx p0 ± 30% p0
cmedium layer My p0 ± 30% p0
ccheap layer Mz p0 ± 30% p0

N2D [6, 12]
NLogic [6, 12]
NMemory [6, 12]

IV. EXPLORATION OF γ WITH FEEDBACK FROM 3D FLOW

The previous analysis brought out the importance of the
value of γ for cost optimization. This value can only be
explored with the feedback from actual physical design imple-
mentations. In this section, we provide a representative case
study for modern multi-core SoCs, to study the viability of the
γ reduction in a 3D memory-on-logic design flow. We show
that the footprint of our 3D designs can be reduced to achieve
γ values small enough to make 3D more attractive costwise,
while retaining superior PPA results.

A. Benchmark Design

We choose OpenPiton+Ariane [10], an open source silicon-
proven manycore RISC-V processor as our benchmark design.
It includes small-cache tiles, including 8kB of L1 instruction
cache, 16kB of L1 data cache, 16kB of L2 cache, and 256kB of
L3 cache per tile. It features a representative memory hierarchy
structure with a large, coherent and distributed last-level cache
as well as NoC routers inside each tile to enable scalability of
the design.

B. Technology Settings

We use a commercial 28nm PDK technology for our imple-
mentations. The F2F via size, pitch, resistance and capacitance
are 0.5um×0.5um, 1.0um, 0.5Ω and 1fF , respectively [11].
The SRAM memory blocks require 4 BEOL layers for internal
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routing. In our 3D TECH LEF, the facing metal layers have
orthogonal routing directions.

C. Viability of the γ axis

To highlight area savings opportunities, we decide on a large
design of 25 tiles connected in a 5×5 mesh topology.

Single-tile designs are implemented first with an iso-
performance target of 500 MHz at the slow corner. The tile



TABLE V
25-TILE 2D VS. 3D F2F. BOTH DESIGNS ARE SQUEEZED UNTIL WNS < 0.

2D m6 3D m6Lm4M
full-chip metrics

Metals Used 6
6 (logic)

4 (memory)
Footprint (W × H) 5.30× 6.30 4.20× 3.70

Footprint Area (mm2) 33.39 15.54 (γ = 0.465)
Total WL (m) 179.1 156.4

Target Freq. (MHz) 410.6 466.1
Worst Negative Slack (ns) −0.20 0.030
Total Negative Slack (ns) −0.90 0

Effective Freq. (MHz) 379.5 466.1 (↑22%)
Total Power (W) 3.04 2.94

Power-delay Product (pJ) 8011 6308

inter-tile metrics only
Std. Cell Area (um2) 110K 97K

Total WL (m) 6.25 4.17
F2F bumps 0 16, 490

# of 2D Nets routed in 3D 0 3, 281
Power (W) 0.151 0.117

Buffer Count 19, 845 5, 680
Power-delay Product (pJ) 398 253 (↓36%)

# of Routing DRV 0 11

cost metrics for cases [A, B, C]
Dies-Per-Wafer Ratio rDPW 1 0.46

Yield Ratio rY 1 [1.02, 1.01, 1.03]
Wafer Cost Ratio rW 1 [1.97, 1.89, 1.97]

Die Cost Ratio rD 1 [0.92, 0.88, 0.93]
Power Performance Cost 1 [1.38, 1.45, 1.37]

floorplans are shown in Figure 5. We use Macro-3D [12], a
state-of-the-art physical design flow for memory-on-logic for
the P&R of the 3D tile. The memory tier contains memory
macros only while standard cells are placed on another tier,
which can include memory macros. The memory tier macros
are projected on the logic tier, allowing for a commercial 2D
EDA engine to perform P&R. We select a PPAC optimized
3D single-tile implementation with 6 BEOL logic layers and
4 BEOL memory layers.

We synthetize with Synopsys Design Compiler the 25-tile
netlist with the extracted single-tile .db file. We then place the
single-tile blackboxes manually and route the inter-tile wires
using the space in between the tiles, using Cadence Innovus.
The final design is assembled and PPA metrics are collected
with Cadence Tempus after RC extraction of the full-chip.

To examine the potential area reduction, we reduce the tile
spacing until timing degrades at a slow corner (−WNS > 5%·
Tperiod) in both 2D and 3D. The PPA results are summarized
in Table V and the layouts of our implementations along with
the single-tile architecture are shown in Figure 6.

We see that 3D reduces considerably the buffer count which
reduces the total silicon area and allows a γ smaller than
50%, down to 46.5%. The histogram in Figure 7 shows a
more distributed routing utilization of the complete 3D vertical
stack, which alleviates the impact of the smaller footprint.

D. Cost Comparison

We compare in Table V the designs using the Power
Performance Cost = Frequency / (Die Cost × Power). While
the absolute values are dependent on foundry parameters, the
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Fig. 7. 2D vs. 3D total wirelength per metal layer for the 25-tile designs.
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results clearly showcase the potential PPAC improvements in
3D when improving the γ parameter.

V. CONCLUSION

We propose a cost analysis of 3D ICs that considers for
the first time the additional area savings opportunities in 3D.
We show that these area savings have tremendous impact
on the cost and widen the spectrum of designs that could
potentially benefit from 3D in terms of cost. We validate the
viability of this factor with full-chip implementations based
on wafer-to-wafer face-to-face hybrid bonding. For a large
25-core processor design, despite 3D integration, we observe
potential cost gains with clear PPA benefits with respect to the
2D implementation with 33.4mm2 die size, thanks to silicon
area reduction.
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