Targeting dyslipidemia by herbal medicines: A systematic review of meta-analyses

Mohammad Sadegh Adel Mehraban, Ozra Tabatabaei-Malazy, Roja Rahimi, Marzieh Daniali, Patricia Khashayar, Bagher Larijani

PII: S0378-8741(21)00636-X

DOI: https://doi.org/10.1016/j.jep.2021.114407

Reference: JEP 114407

To appear in: Journal of Ethnopharmacology

Received Date: 28 February 2021

Revised Date: 18 May 2021

Accepted Date: 8 July 2021

Please cite this article as: Adel Mehraban, M.S., Tabatabaei-Malazy, O., Rahimi, R., Daniali, M., Khashayar, P., Larijani, B., Targeting dyslipidemia by herbal medicines: A systematic review of metaanalyses, *Journal of Ethnopharmacology* (2021), doi: https://doi.org/10.1016/j.jep.2021.114407.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

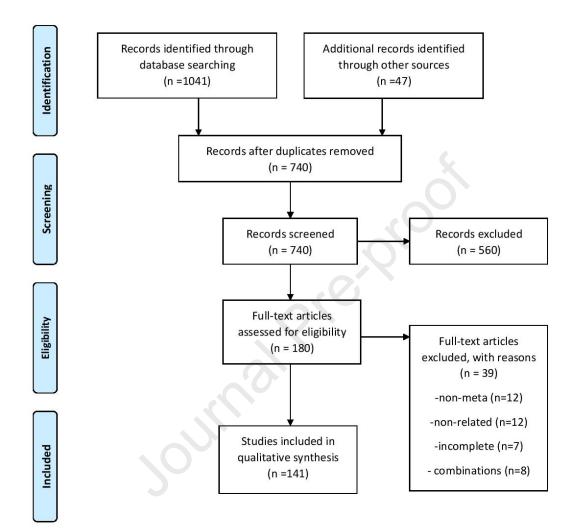


Figure 1. Flow diagram of study processes

Targeting dyslipidemia by herbal medicines : a systematic review of meta-analyses	1
Mohammad Sadegh Adel Mehraban ^{1,2} , Ozra Tabatabaei-Malazy ^{3,*,†} , Roja Rahimi ^{4,5,*,†} , Marzieh Daniali ^{6,7} , Patricia Khashayar ^{8,9} , Bagher Larijani ¹ .	2 3
1. Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.	4 5
 Department of Persian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran. Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. 	6 7 8
4. Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran.	9 10
 PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. 	11 12 13
 Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. Center for microsystem technology, Imec and Ghent University, Gent-Zwijnaarde 9052 Belgium. Osteoporosis Research Center, Endocrinpology & Metabolism Clinical Science Institute, Tehran University of Medical 	14 15 16
Sciences, Tehran, Iran.	10 17 18
*, [†] Equally Correspondence:	19
Dr. Ozra Tabatabaei-Malazy, Endocrinology & Metabolism Research Institute, No.10, Next to Dr. Shariati Hospital, Jalal al Ahmad Hwy., North Kargar Ave., Tehran, Iran.	20 21
Postal code: 1411713119; Telephone and fax: +982188631296-7; Email: <u>tabatabaeiml@sina.tums.ac.ir</u> Dr. Roja Rahimi, Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences,	22 23 24
Tehran, Iran; Telephone and fax: +98-21-88990835; Email: rojarahimi@gmail.com	25
Word counts: Abstract, main body (5641)	26
Figures: 1, Tables: 8	27
	28
	29
	30
	31
	32
	33
	34
	35 36
	37
	38
	39
	40
	41
	42
	43
Abstract:	44
Ethnopharmacological relevance:	45
The worldwide increasing prevalence of dyslipidemia has become a global health concern.	46
Various herbal remedies have been claimed to be effective for the treatment of	47
dyslipidemia in traditional and folkloric medicine of different regions clinical trials have been	48
conducted to investigate their efficacy. The aim of the current systematic review is to	49

critically assess the meta-analyses of controlled trials (CT) evaluated herb medicines for 50 dyslipidemia. 51

Materials and Methods:

Relevant studies from Web of Science, PubMed, Scopus, and Cochrane Library databases 53 based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 54 55 checklist until January 2021 have been searched. All meta-analyses which pooled studies on the effect of herbal medicines on lipid profile including total cholesterol (TC), triglyceride 56 (TG), and low- or high- density lipoprotein cholesterol (LDL-C, HDL-C) were also included. 57 Meta-analyses of *in vitro*, animal or observational studies were excluded. 58 59

Results:

The overall of 141 meta-analyses were revealed. Vegetable oils, phytosterols, tea, soy 60 protein, nuts, and curcumin have been studied frequently among the herbal medicines. 61 Among 13 meta-analyses on vegetable oils, the greater reduce of TC (18.95 mg/dl), LDL-C 62 (16.24 mg/dl) and TG (13.69 mg/dl) were exhibited from sunflower oil. Furthermore, rice 63 bran oil (6.65 mg/dl) increased HDL-C significantly. Phytosterols in 12 meta-analyses 64 demonstrated significant improvements in reducing TC, LDL-C and TG as 16.4, 23.7, and 8.85 65 mg/dl, respectively, and rise in HDL-C as 10.6 mg/dl. The highest reduction in serum level of 66 TC, LDL-C and TG was reported while intake Green tea; 27.57, 24.75, and 31.87 mg/dl, 67 accordingly within 9 meta-analyses. Average improvement of lipid profiles by 6 meta-68 analyses on plant proteins were 23.2, 21.7, 15.06, and 1.55 mg/dl for TC, LDL-C, TG, and 69 HDL-C, respectively. Among 11 meta-analyses on nuts, almond showed better and 70 significant alleviations in TC (10.69 mg/dl), walnut in LDL-C (9.23 mg/dl), pistachio in TG 71 (22.14mg/dl), and peanut in HDL-C (2.72 mg/dl). Overall, Curcumin, Curcuminoid, and 72 Turmeric have resulted in the reduction of TC (25.13 mg/dl), LDL-C (39.83 mg/dl), TG (33.65 73 mg/dl), and an increase in the HDL-C (4.31 mg/dl). 74 75

Conclusion:

The current systematic review shed light on the use of herbal medicines for the 76 management of dyslipidemia. However, more well-conducted CTs are required to determine 77 effective doses of herbal medicines. 78

Keywords: Herbal Medicine, Plant, Phytochemical, Lipid profile, Triglyceride, Cholesterol

79 80

1. Introduction

82 Dyslipidemia (DLP) is defined as an elevation in the level of total cholesterol (TC), 83 triglyceride (TG), or low-density lipoprotein cholesterol (LDL-C) and decreased level of highdensity lipoprotein cholesterol (HDL-C) (Heshmat-Ghahdarijani et al., 2020). Simultaneous 84 increment of health problems led into the attraction of global attention. Atherosclerosis, 85 cardiovascular complications, pancreas disorders, and fatty liver are avowed as the 86 87 concurrent disease with DLP (Zhang et al., 2020). Likewise, DLP is associated with metabolic 88 syndrome (Mets) and its components such as obesity and diabetes (Tabatabaei-Malazy et al., 2015). Cardiovascular disease (CVD) accounts for about 30% of the overall deaths in 89 2010 and an estimated annual deaths of 25 million by 2030; moreover, altered lipid profile 90 plays a significant role in progression or regression of CVD (Khorshidi et al., 2020). As stated 91 92 in previous studies, more than 60% patients with early coronary artery disease (CAD) symptoms struggle with DLP and 10% decline in TC reduces 15% of CAD, the importance of 93 lipid profile supervise becomes prominent (Ding et al., 2020). 94

Diverse approaches are recommended to manage DLP; such as lifestyle modifications, diet 95 intervention, and pharmacotherapy options (Shekarchizadeh-Esfahani et al., 2020). The 96 97 more efforts do for the management of DLP, the less beneficial results the patients receive (Zhang et al., 2020). Despite the worldwide use of lipid-lowering agents, their long-term 98 99 efficacy is still questionable (Shekarchizadeh-Esfahani et al., 2020). Lipid-lowering 100 medications are associated with various adverse effects such as myopathy, impaired liver function, neuropathy and declined mental status (Tóth et al., 2020); also increased risk of 101 diabetes has been reported to be associated with the use of lipid-lowering medications 102 103 (Yuan et al., 2019). Therefore, considering alternative therapies with lower adverse effects and cheaper choices is reasonable. 104

Herbal remedies used in traditional and folkloric medicine of different regions provide a 105 worthwhile source for discovering and introducing new drugs (Bahramsoltani and Rahimi, 106 2020; Bahramsoltani et al., 2019; Ebrahimi et al., 2019). Recently, tremendous increase of 107 the patients and physicians desire to manage lipid profile with natural extracts has been 108 noticed (Sahebkar et al., 2016b; Tabatabaei-Malazy et al., 2016). A vast number of studies 109 performed on the efficacy and safety of natural products, showed auspicious changes in the 110 lipid profile and thus, reduction of the risk of CVD (Sahebkar et al., 2016b). Contrarily, a 111 number of studies showed fewer positive effects on this matter or reported adverse effects 112 of herbs, as containing active biologic components (Posadzki et al., 2013). 113

The aim of the present systematic review is to critically assess the meta-analysis studies114conducted on the efficacy of herbal medicines trials in dyslipidemia.115

116

2. Methods

2.1. Data sources

Based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 119 flow diagram (Liberati et al., 2009) and Supplementary 1, we comprehensively searched 120 Web of Science, PubMed, Scopus, and Cochrane Library databases. Data until January 2021 121 from English language literature, systematic review and meta-analysis studies, were 122 123 conducted to assess the effect of herbal medicines on lipid profiles. The search terms were "Herbal Medicine", "Plant", "Phytotherapy", "Medicine, Traditional", "Dyslipidemia", "lipid", 124 "Hyperlipidemia", "metabolic syndrome", and "Cardiovascular". Search strategy is 125 presented as appendix, Table S1. After evaluation of the title and abstract of all recorded 126 studies, and deletion of unrelated or duplicated publications, reference lists of remained 127 studies were manually searched in order to not missing related studies. 128

117

118

129

130

131

135

136

139 140

141

153

154

2.2. Eligibility criteria and study selection

The inclusion criteria for current study were;

- Meta-analyses of controlled trials (CTs) conducted to assess the effect of herbal medicines on lipid profiles; TC, LDL-C, HDL-C, and TG in human without limitation in age, sex, or health status.
 132 133
- 2. Publications with English language full text

The exclusion criteria were:

- 1. Meta-analyses of CTs conducted to assess the effect of combinations of herbal137medicines together or conventional treatments on lipid profiles.138
- 2. Meta-analyses of in vitro, animal or observational studies.

2.3. Data extraction and Quality assessment

The following data were extracted from various studies: authors' names, publication year,142number and type of included studies in meta-analysis, participants' characteristics (total143sample size, age, sex, and underlying disorder), type, dose, and duration of intervention,144significant main outcomes, and recommended effective dose. Plant names have been145checked with www.theplantlist.org.146

Assessment of Multiple Systematic Reviews (AMSTAR) tool was used to evaluate the quality147of methodology of included studies (Supplementary file) (Shea et al., 2007) The AMSTAR148scores were categorized as high quality (score of 8-11), medium quality (score of 4-7), and149low quality (score of ≤ 3), Table S2.150

All of above process were independently assessed by two authors and any discrepancy was151resolved through discussion with third author.152

3. Results

The overall of 141 studies met the inclusion criteria and were included in the study. Details155of search study process are presented in Figure 1. Then, based on studied herbal medicines,156they have been categorized into the 7 following distinct groups:(1) polyphenoliccompounds,(2) nuts,(3) phytosterols,(4) vegetable oils,(5) plant proteins,(6) tea andcoffee, and(7) other herbal medicines.159

The characteristics of the selected studies are shown in Tables 1 to 7. Due to the diversity of160herbs investigated by Payab et al., this meta-analysis was divided into two records in the161survey table (Payab et al., 2020). In summary, 142 records from 141 systematic reviews with162meta-analysis were included comprising effect of herbal medicines on lipid profiles of a163

population ranged from 6 to 10983 subjects, both genders, and aged 14-89 years old. Some164underlying health status of participants was healthy, MetS, type 2 diabetes mellitus (T2DM),165dyslipidemia, obesity, and hypertension (HTN). From 3 to 124 trials were investigated166among included studies. The majority of included studies (98%) met the quality167requirements (AMSTAR score≥8).168

3.1. Polyphenolic compounds

Thirty meta-analyses were evaluated the effects of various polyphenolic compounds 171 including curcumin in 7 meta-analyses (Jalali et al., 2020b; Azhdari et al., 2019; Simental-172 Mendía et al., 2019; Yuan et al., 2019; Wei et al., 2019; Qin et al., 2017; Sahebkar et al., 173 174 2014), cocoa products (in 5 studies: Lin etal., 2016; Hoope et al., 2012; Shrime et al., 2011; Tokede et al., 2011; Jia et al. 2010), isoflavones (in 7 studies: Kanadys et al., 2020; 175 Soltanipour et al., 2019; Luis et al., 2018; Simental-Mendia et al., 2018; Taku et al., 2007; 176 Reynolds et al., 2006; Zhan et al., 2005), flavonoids (in 3 studies: Tabrizi et al., 2020; 177 Sahebkar 2017; Hooper et al., 2008) resveratrol (in 5 studies: Asgary et al., 2019; Elgebaly 178 et al., 2017; Zhang et al., 2016a; Sahebkar et al., 2015; Sahebkar, 2013), hesperidin or 179 180 anthocyanins or grape polyphenols each in one study (Mohammadi et al., 2019b; Daneshzad et al., 2019; Ghaedi et al., 2019). The sample size of these studies ranged from 156 to 6557, 181 and aged 18 - 85 years old. Dose ranges were 6.3-2110 mg/d for cocoa, 45-6000 mg/d for 182 curcumin, 500-1500 mg/d for flavonoids, 292-800 mg/d for hesperidine, 33.8-160 mg/d for 183 isoflavones, 30-3000 mg/d for quercetin, 31.45-1050 mg/d for anthocyanins, and 8-3000 184 mg/d for resveratrol. The minimum (min) duration of intervention was 2 hours for quercetin 185 186 (Tabrizi et al., 2020) and the maximum (max) was 96 weeks for anthocyanins (Daneshzad et al. 2019). Except hesperidin, other flavonoids reported positive effects for the improvement 187 of dyslipidemia; also significant improvements of TC were reported to range from 3.9 to 188 37.9 mg/dl, as the result flavonoids use, in particular soy protein (Taku et al., 2007; Tabrizi 189 et al., 2020). The improvement range of LDL-C was from 2.71 to 39.83 mg/dl in use of cocoa 190 and curcumin, respectively (Hooper et al., 2012; jalali et al., 2020b); however, a meta-191 analysis on resveratrol showed significant elevation by 18.17 mg/dl (Zhang et al., 2016a). 192 Improvements of HDL-C as the result of soy protein isoflavone and anthocyanins 193 consumption was also reported from 0.77 to 7.40 mg/dl (Reynolds et al., 2006; Daneshzad 194 et al., 2019), and these figures for TG were from 6.26 to 33.65 mg/dl when taken soy protein 195 isoflavone and curcumin (Reynolds et al., 2006; Azhdari et al., 2019). The defined effective 196 doses of the mentioned herbal medicines were reported to be more than 600 mg/d of cocoa 197 for better and significant reduce of TG, however, the required dose of cocoa for alleviation 198 of TC, LDL-C, and HDL-C was reported to be less than 260 mg/d. Effective dose of curcumin 199 for improvement of TC, LDL-C, and HDL-C was ranged from 330 to 1795 mg/d, whilst it was 200 from 1000 to 1795 mg/d for TG. Isoflavones in dose of 40 mg/d and quercetin in dose of 201 ≥500 mg/d demonstrated the greater improvement than their lower doses. Reported 202 effective dose of anthocyanins was >300 mg/d for reducing LDL-C and increasing HDL-C 203 204 when used more than 12 weeks (Daneshzad et al., 2019). Details have been demonstrated in Table 1. 205

3.2. Nuts

This group contains Brazil nut, cashew, peanut, almond, pistachio, walnut, hazelnut,208macadamia, pecan, and other nuts on dyslipidemia via 11 meta-analyses (Hou et al., 2020;209Jalali et al., 2020a; Jafari Azad et al., 2020; Liu et al., 2020; Lee-Bravatti et al., 2019; Guasch-210

206

169 170

Ferré et al., 2018; Musa-veloso et al., 2016; Del Gobbo et al., 2015; Blanco Mejia et al., 211 2014; Banel et al., 2009; Phung et al., 2009). Beside healthy subjects, some suffered from 212 DM, HTN, obesity, and MetS. Sample sizes ranged from 142 to 2582, aged 15 to 86 years old 213 of both genders. All of the studies had high quality. Overall dose range was from 5 (for Brazil 214 nut) to 168 g/d (for almond) (Hou et al., 2002; Phung et al., 2009). Intervention duration 215 ranged from 2 weeks for almond to 108 weeks for walnut (Musa-veloso et al., 2016; Banel 216 et al., 2009). In control of dyslipidemia components, except cashew and peanut (Jalali et al., 217 2020a; Jafari Azad et al., 2020) other nuts significantly reduced TC from 5.02 to 24.7 mg/dl 218 (Liu et al., 2020; Del Gobbo et al., 2015). Reduction in LDL-C by nuts was ranged between 219 3.48 and 24.8 mg/dl (Liu et al., 2019; Del Gobbo et al., 2015). Peanut increased HDL-C by 220 2.72 mg/dl (Jafari Azad et al., 2020) just in use of more than 12 weeks, almond decreased 221 HDL-C by 1.26 mg/dl (Lee-Bravatti et al., 2019) and other nuts didn't have significant effect 222 on HDL-C. The positive effects of Brazil nut, pistachio, walnut, almond and most of the tree 223 nuts on improvement of TG was from 4.69 to 22.2 mg/dl (Hou et al., 2020; Liu et al., 2020; 224 Del Gobbo et al., 2015; Blanco Mejia et al., 2014; Guasch-Ferre et al., 2018); on the contrary, 225 cashew and peanut didn't change it significantly (Jalali et al., 2020a; Jafari Azad et al., 2020). 226 227 Details are shown in Table 2.

3.3. Phytosterols

This group included 12 meta-analyses that pooled the effects of phytosterols and stanols on 230 lipid profiles (Soto-Mendez et al., 2019; Rocha et al., 2016; Ras et al., 2014; Amir Shaghaghi 231 et al., 2013; Demonty et al., 2013; Musa-veloso et al., 2011; Talati et al., 2010; Demonty et 232 al., 2009; Wu et al., 2009; AbuMweis et al., 2008; Seppo et al., 2007; Chen et al., 2005). 233 Number of subjects ranged from 199 to 9635, aged 12.6 to 71 years old, among both 234 genders and suffering from MetS, obesity, PCOS, DM, and hypercholesterolemia. 235 Consumption doses ranged from 0.3 to 9 g/d (Ras et al., 2014; Musa-veloso et al., 2011; 236 Demonty et al., 2009; AbuMweis et al., 2008; Chen et al., 2005) with 3 to 85 weeks of the 237 intervention's duration, the significant reduction in TC was reported to be from 7.7 to 16.4 238 mg/dl (Chen et al., 2005; Rocha et al., 2016). However, 10 studies showed significant 239 changes in LDL-C from 10.44 to 23.7 mg/dl (Musa-veloso et al., 2011; Chen et al., 2005), 240 another study also showed significant change in HDL-C by 10.6 mg/dl (Chen et al., 2005), 241 and 3 studies showed significant change in TG from 7.9 to 8.85 mg/dl (Rocha et al., 2016; 242 Wu et al., 2009). Four studies reported effective dose for reduction of LDL-C ranged from 243 0.6 to 2.15 g/d (Soto-Mendez et al., 2019; Ras et al., 2014; Musa-veloso et al., 2011; 244 Demonty et al., 2009) and 1 meta-analysis reported 2 g/d of phytosterols/stanols as the 245 effective dose to improve TC, LDL-C and TG (Wu et al., 2009). Details are shown in Table 3. 246

3.4. Vegetable oils

Thirteen meta-analyses were included in this group that assessed the effect of vegetable 249 oils on dyslipidemia consisting canola oil, primrose oil, coconut oil, olive oil, palm olein, 250 argan oil, and rice bran oil (Amiri et al., 2020; Khorshidi et al., 2020; Neelakantan et al., 251 2020; Teng et al., 2020; Ghobadi et al., 2019a; Ghobadi et al., 2019b; Voon et al., 2019; 252 Schwingshackl et al., 2018, Ursoniu et al., 2018; Jolfaie et al., 2016; Hohmann et al., 2015; 253 254 Sun et al., 2015; Fattore et al., 2014). Participants were 292 to 2002 subjects who were healthy or suffered from MetS, HLP, CVD, non-alcoholic fatty liver disease (NAFLD), and 255 HTN, aged 16 to 91 years old, from both genders. The dose of intervention was varied from 256 1 to 105 g/d (Khorshidi et al., 2020; Hooper et al., 2012) or from 17 to 76 ml/d (Ursoniu et 257

228 229

247

al., 2018; Hohmann et al., 2015) or from 2% to 34% of total energy/d (Neelakantan et al., 258 2020; Voon et al., 2019). The duration of intervention was ranged from 2 to 104 weeks. 259 Canola oil, olive oil, argan oil, rice bran oil, palm oil, and other oils play role in reduction of 260 TC by 6.72 to 18.95 mg/dl (Ghobadi et al., 2019a; Schwingshackl et al., 2018). Despite the 10 261 reported studies, lowering effects of oils in LDL-C by range of 0.37 to 16.24 mg/d in use of 262 coconut oil and sunflower oil (Teng et al., 2020; Schwingshackl et al., 2018), 2 studies 263 reported increasing effects of coconut oil on LDL-C by maximum 10.47 to 11.98 by palm oil 264 265 (Neelakantan et al., 2020; Sun et al., 2015). Significant changes in HDL-C ranged from 0.33 to 6.65 mg/dl in the use of coconut oil and rice bran oil (Teng et al., 2020; Jolfaie et al., 2016) 266 and for TG ranged from 3.54 to 13.69 in use of sunflower oil and argan oil (Schwingshackl et 267 al., 2018; Ursoniu et al., 2018). However, there are only 3 meta-analyses which reported the 268 effective dose including 15% of total daily energy intake in use of canola oil for reducing TC 269 and LDL-C (Amiri et al., 2020), 20-30% of total required daily energy in use of palm oil for 270 improvement of LDL-C and HDL-C (Sun et al., 2015), and ≤ 4 g/d of primrose oil for reducing 271 TG and increasing HDL-C (Khorshidi et al., 2020). Details are shown in Table 4. 272

3.5. Plant proteins

From 6 meta-analyses considering the effects of plant proteins on dyslipidemia, most of the 275 studies (4 studies) were investigated the effect of soy protein (Mejia et al., 2019; Anderson 276 277 and Bush, 2011; Harland and Haffner, 2008; Anderson et al., 1995). Although some of the subjects were healthy and normocholesterolemic, others suffered from DM, MetS, 278 hyperlipidemia (HLP), and obesity. Sample sizes ranged from 1562 to 10983, aged 18 to 89 279 280 years old from both genders. The quality of studies was high. Consumed dose ranges were from 4.5 to 93 g/d (Mejia et al., 2019) for the duration of 3 to 208 weeks. In almost all of the 281 studies, significant decrease of TC and LDL-C was ranged from 6.41 to 23.2 mg/dl (Mejia et 282 al., 2019; Anderson et al., 1995) and 4.76 to 21.7 mg/dl (Mejia et al., 2019; Anderson et al., 283 1995), respectively. HDL-C improvement was reported in 3 meta-analyses ranged from 1.16 284 to 1.55 (Zhao et al., 2020; Anderson and Bush, 2011). Five studies announced remarkable 285 lowering effects of plant proteins, including soy protein, on TG by range of 4.92 to 15.06 286 287 mg/dl (Tokede et al., 2015; Anderson and Bush, 2011). Effective dose of soy protein in the reduction of TC, TG, and LDL-C was recorded 15-30 g/d; while dose of >80 mg/d of soy 288 289 protein was required to significantly improve all components of lipid profiles (Zhan and Ho, 290 2005). Details are shown in Table 5. 291

3.6. Tea and coffee

To evaluate the effect of tea and coffee on dyslipidemia, 9 meta-analyses have been 293 294 studied. Studies were categorized into 2 different subgroups: coffee (1 study) (Ding et al., 295 2020), and tea (8 studies) (Asbaghi et al., 2020a; Payab et al., 2020; Mansour-Ghanaei et al., 2018; Li et al., 2016; Zhao et al., 2015; Onakpoya et al., 2014; Hartley et al., 2013; Zheng et 296 al., 2011). Along with healthy subjects, patients with MetS, obesity, NAFLD, DM, CVD, and 297 298 HTN were participated in these studies. The age of the participants ranged from 6 to 75 years old, and participants were from both genders. Administered dose was ranged from 0.1 299 300 to 10 g/d for 2 to 96 weeks. Although 2 studies didn't report significant changes in TC (Li et 301 al., 2016; Zhao et al., 2015), reduction range in other studies varied from 0.42 to 27.57 mg/dl by green tea (Payab et al., 2020; Mansour-Ghanaei et al., 2018). Two studies reported 302 no significant change in LDL-C level (Asbaghi et al., 2020a; Li et al., 2016); but others 303 declared significant reduction ranged from 0.21 to 24.75 mg/dl in use of green tea (Payab et 304

273 274

al., 2020; Hartley et al., 2013). Notable changes in HDL-C just were reported in just 1 study 305 by 1.33 mg/dl in coffee (Morvaridi et al., 2020). On the control of TG, 3 meta-analyses 306 reported significant improvement after using green tea or coffee from 12.79 to 31.87 mg/dl 307 (Asbaghi et al., 2020a; Mansour-Ghanaei et al., 2018). Effective reported doses were <500 308 mg/d for reducing TG by coffee, and \geq 800 mg/d by green tea (Morvaridi et al., 2020; 309 Asbaghi et al., 2020a), <800 mg/d for reducing TC by green tea (Asbaghi et al., 2020a), >400 310 mg/d for increasing HDL-C by coffee (Morvaridi et al., 2020), and 0.625 to 6 g/d for 311 improving all components of lipid profiles by green tea (Zheng et al., 2011; Payab et al., 312 2020). Details are shown in Table 6. 313

3.7. Other herbal medicines

The remaining 60 meta-analyses have been categorized as "other herbal medicines" group, 316 as they contained lower number of herbal medicines. This group was included pooled effect 317 of avocado, berberis, cinnamon, cumin, fenugreek, garlic, ginger, ginseng, grape, sour tea, 318 pomegranate, saffron, cayenne pepper, cardamom, purslane, aronia, rhus, tulsi, Artichoke, 319 white mulberry, Spirulina, and other herbs (Mahmassani et al., 2018; Peou et al., 2016; 320 321 Pourmasoumi et al., 2020; Hadi et al., 2019a; Zhang et al., 2019; Ju et al., 2018; Phimarn et al., 2017; Huang et al., 2016; Lan et al., 2015; Dong et al., 2013; Heydarpour et al., 2020; 322 Ainehchi et al., 2019; Allen et al., 2013; Jafarnejad et al., 2018; Askarpour et al., 2020; 323 324 Heshmat-Ghahdarijani et al., 2020; Khodamoradi et al., 2020; Gong et al., 2016; Shabani et al., 2019; Sun et al., 2018; Ried et al., 2013; Silagy et al., 1994; Maharlouei et al., 2019; 325 Pourmasoumi et al., 2018; Jafarnejad et al., 2017; Mazidi et al., 2016; Ziaei et al., 2020; 326 327 Hernandez-Garcia et al., 2019; Gui et al., 2016; Asbaghi et al., 2020b; Feringa et al., 2011; Bule et al., 2020; Najafpour Boushehri et al., 2020; Zhang et al., 2020; Aziz et al., 2013; 328 Jandari et al., 2020; Sahebkar et al., 2016a; Taherifard et al., 2020; Asbaghi et al., 2019; 329 Pourmasoumi et al., 2019; Rahmani et al., 2019a; ; Sahebkar et al., 2016c; Hallajzadeh et al., 330 2020; Jang et al., 2020; Payab et al., 2020; Shekarchizadeh-Esfahani et al., 2020; Hadi et al., 331 2019b; Lee et al., 2019; Rahmani et al., 2019b; Akbari-Fakhrabadi et al., 2018; Mohammadi 332 et al., 2019a; Jamshidi et al., 2018; Sahebkar et al., 2018; Teoh et al., 2018; ; Sawangjit et al., 333 2017; Daryabeygi-Khotbehsara et al., 2017; Serban et al., 2016; Zhang et al., 2016b; 334 Onakpoya et al., 2015; Cheng et al., 2013). Along with healthy subjects, the underlying 335 336 disorders of participants were DM, HLP, obesity, NAFLD, CAD, MetS, chronic kidney disease (CKD), and HTN. Beneficial effects on TC ranged from 2.3 mg/dl by ginseng to 50.50 mg/dl by 337 cissus quadrangularis (Hernandez-Garcia et al, 2019; Sawangjit et al., 2017). Based on the 338 studies which reported significant improvements of LDL-C level, the minimum change 0.85 339 mg/dl by black seed and the maximum change 48.72 mg/dl by fenugreek (Payab et al., 2020; 340 Heshmat-Ghahdarijani et al., 2020). Most of studies showed elevation in HDL-C ranged from 341 0.77 mg/dl in berberine to 27.07 mg/dl in fenugreek (Dong et al., 2013; Heshmat-342 Ghahdarijani et al., 2020). Reported improvement in TG level was from 1.63 mg/dl in ginger 343 to 94.77 mg/dl in fenugreek (Mazidi et al., 2016; Heshmat-Ghahdarijani et al., 2020). 344 345 Fourteen studies reported absolute effective dose on lipid profiles, on TC by used 30 mg/d crocin or 2 g/d ginger (Taherifard et al., 2020; Pormasoumi et al., 2018a), on LDL-C by 300 346 347 mg/d aronia or by >1500 mg/d ginseng and purslane (Rahmani et al., 2019a; Ziaei et al., 2020; Hadi et al., 2019b), on HDL-C by 30 mg/d saffron or <1500 mg/d ginseng (Asbaghi et 348 al., 2019; Ziaei et al., 2020), and on TG by 300 mg/d aronia or <2 g/d ginger (Rahmani et al., 349 2019a; Pormasoumi et al., 2018a). Details are shown in Table 7. 350 Summary of the effects is represented as Table 8. 351

4. Discussion

This systematic review showed evidence-based data on impacts of herbal medicines354including soy protein, nuts, phytosterols, vegetable oils, green tea and curcumin in the355management of the dyslipidemia.356

357 Although previous studies noted lipid-lowering agents such as statins and fibrates as the 358 only available pharmacological interventions to control dyslipidemia (Hadi et al., 2019a) in case of failure of the lifestyle modifications (Shekarchizadeh-Esfahani et al., 2020), recent 359 studies declared the harmful complications and side effects of oral lipid-modifying 360 medications, for instance on muscles and liver (Hadi et al., 2019a). By the year 2018, the 361 American College of Cardiology (ACC) and the American Heart Association (AHA) compiled a 362 guideline in order to control the LDL-C impairment, recommending adults to modify their 363 diet by adding nutraceutical substances (Liu et al., 2020), but the competent plants 364 supposed to be advantageous in management of dyslipidemia and their absolute effective 365 dose, still remained ambiguous that indicates the necessity of assessment and 366 summarization of studies performed to evaluate the impact of herbs on dyslipidemia 367 (Tabatabaei-Malazy et al., 2018). This study is the first to explore the existing meta-analyses 368 369 considering this lack of evidence.

One hundred and forty-one meta-analyses met the inclusion criteria which most of them 370 gained high score in the quality assessment. Among studies that reported reduction in TC, 371 the most impressive herbal medicines were Cissus quadrangularis L., tree nuts, phytosterols, 372 sunflower oil, plant protein, green tea, and garlic. In LDL-C reduction, the most powerful 373 374 herbal medicines were curcumin, tree nuts, phytosterols, sunflower oil, plant protein, green tea, and fenugreek. The beneficial effects of quercetin, peanut, phytosterols, plant protein, 375 coffee, and fenugreek in elevation of HDL-C were prominent. In control of TG, flavonoids, 376 pistachio, phytosterols, sunflower oil, plant protein, green tea, and blackseed demonstrated 377 remarkable effects. On the other hand, meta-analyses revealed the increment effect of 378 coconut oil, palm oil, resveratrol on LDL-C, and cranberry on TG and reducing effect of 379 Hibiscus sabdariffa and resveratrol on HDL-C. Totally, the most potent herbs on TC, LDL-C, 380 HDL-C, and TG were Cissus quadrangularis L. (50.50 mg/dl), fenugreek (48.72 mg/dl), 381 quercetin (37.9 mg/dl), and blackseed (147.9 mg/dl), respectively. 382

383 *Cissus quadrangularis* L. was the most effective herbal medicine in TC lowering. In addition 384 to the flavonoids, it contains phytosterols, resveratrol, and other components accounting 385 for its function (Sawangjit et al., 2018). In gastrointestinal tract (GIT), phytosterols oppose 386 with cholesterols to absorb and inhibit intestinal cells to uptake cholesterol and by which stimulate them to excrete into the stool (Han et al., 2016). Cissus quadrangularis L. plays a 387 significant role in lipid metabolism through accumulation inhibition of lipids while 388 adipocytes are differentiating, declines the adipogenesis and lipogenesis by affecting gene 389 expression and adipocyte-related protein production (Lee et al., 2018). On the other hand, 390 studies on resveratrol supplements revealed no significant impacts on TC, LDL-C, HDL-C, and 391 TG. Causes led to this neutral or reverse effect are as follows: (1) The dose range in studies 392 was 8 to 3000 mg/d that may be inadequate to alter lipid profile that does not reach 393 394 sufficient plasma level (sahebkar, 2013). (2) Oral intake of resveratrol and its first passage 395 from liver, metabolizes it into glucuronil conjugates and sulfate and decreases its bioavailability; in spite of its adequate absorption. (3) Enterohepatic pathway excretes 396 resveratrol and its substances into the stool (Sahebkar et al., 2015; Sahebkar, 2013). 397

Different effects of garlic on lipid profile, depends mainly on the dose, preparation, way of 398 consumption, and design of the study that affects the bioavailability of garlic metabolites 399 400 (Shabani et al., 2019; Ried et al., 2013). These components decline the TG and LDL-C plasma level and excrete them into the feces by following mechanisms: elevation of prostaglandin 401 in adipocytes, increment in bile acid discharge, altering level of enzymes involved in 402 403 oxidation of cholesterols, etc. Also, it reduces both cholesterol absorption and synthesis by 404 inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and squalene 405 monooxygenase that play role in cholesterol synthesis (Shabani et al., 2019; Sun et al., 406 2018).

407 Trigonella foenum-graceum L., also known as fenugreek, is a plant that its leaves and seeds 408 are full of soluble fibers, aminoacids, ascorbic acid, saponin, nicotinic acid, flavonoids, etc. which is used in diet of diabetic patients widely (Heshmat-Ghahdarijani et al., 2020; 409 Khodamoradi et al., 2020). Fenugreek is also favored for its lipid-modifying activity. 4-410 hydroxyisoleucine, is a novel amino acid that is expected to play the main role in inhibiting 411 TG production in collaboration with its phenolic content and saponin (Heshmat-412 Ghahdarijani et al., 2020). In addition, fenugreek declines uptake of cholesterols, reduces 413 414 plasma level of lipids, and facilitates cholesterol extrude by stimulating bile acid secretion and prevention of bile salt absorption (Askarpour et al., 2020). 415

Among herbal medications with positive effects on the HDL-C level, quercetin reported 416 417 better and more significant outcomes. Quercetin is a flavonoid subtype, mainly used as its antioxidant and anti-inflammatory effects. The lipid-modifying effects of quercetin may be 418 ascribed to its capability of reducing the excess of insulin and androgens (Tabrizi et al., 419 420 2020). Also, quercetin enhances bile acid evacuation and cholesterol defecation and 421 declines TG and very low- density lipoprotein cholesterol (VLDL-C) by impeding TG biosynthesis. It should be noted that the difference of effectiveness of quercetin may 422 depend on the genotype distinction of hosts, almost in variations of E3 and E4 in the APOE 423 genes (Sahebkar, 2015). 424

Due to the lipid-lowering, anti-hypertensive, anti-diabetic, antioxidative, and other 425 biological effects of black seed (Nigella sativa L.), it is well-known and widely used; 426 especially among overweight patients suffering from MetS or DM. Black seed contains 427 polyunsaturated fatty acids (PUFA), flavonoids, saponins, alkaloids, etc. that are expected to 428 429 be responsible for its therapeutic effects (Hallajzadeh et al., 2020; Daryabeygi-Khotbehsara et al., 2017). These phytochemicals diminish VLDL-C, and apo-B100, and boost excretion of 430 TG by influencing lipoprotein lipase and metabolism of fatty acids. Also, through inhibiting 431 of the cholesterols absorption, disrupting cholesterols and TG biosynthesis, removing LDL-C 432 from blood by hepatocytes via upregulating LDL receptors and promoting bile acid 433 secretion, they subtract plasma level of lipids (Hallajzadeh et al., 2020; Payab et al., 2020). 434 Black seed acts as a lipid-modifying herb by affecting the gene that governs HMG-CoA 435 reductase and PPAR gamma that manage cholesterols and TG composition and catabolism, 436 too (Daryabeygi-Khotbehsara et al., 2017; Sahebkar et al., 2106). However, 4 meta-analyses 437 performed on the effect of black seed on dyslipidemia, 3 studies expressed no significant 438 change in HDL-C. Although some studies have attributed it to the consumption dose of 439 440 ineffective studies, our study revealed the dose range of effective studies and ineffective 441 studies were the same.

In addition to resveratrol, meta-analyses conducted on palm oil and coconut oil showed 442 rising effect on LDL-C, considering their saturated fat supply. Despite polyphenol content of 443 coconut oil presents anti-inflammatory and anti-diabetic effects, studies suggest that due to 444

the elevating effect of these oils, it is better not to use them in preparing foods and they445should be replaced with polyunsaturated fats (Neelakantan et al., 2020). Disturbance in446cholesterol excretion, apolipoprotein metabolism, and lipoprotein synthesis, may lead to447these undesirable effects, decreasing HDL-C and increasing LDL-C (Sun et al., 2015).448

449 Cranberry (Vaccinium macrocarpon Aiton) is consumed due to various purposes such as the 450 management of infections, cancers, and CVD. The phenolic content makes it a good choice 451 as an antioxidant substance. The only meta-analysis accomplished on assessment of the 452 lipid-lowering effect of cranberry showed enhancing effects of cranberry on TG. Nevertheless, the exact mechanism of this result is ambiguous, this study infers that clinical 453 trials on cranberry were designed amiss, so that results are not trustworthy. Although the 454 455 effects on other contents of lipid profile were not significant, this change was remarkable in population under 50 years old. A part of favorable effects of cranberry on lipid profile 456 depends on the activity of HDL-C, as by decreasing HDL-C through aging process, adequate 457 distribution of cholesterols and metabolism of LDL-C are disturbed (Pourmasoumi et al., 458 2020). 459

Hibiscus Sabdariffa L. (sour tea) improves lipid profile by its polyphenol, anthocyanins, 460 461 flavonoid, etc. contents. Polyphenols enhance uptake of cholesterols by macrophages, with the assistance of the upregulation of hepatocyte LDL-C receptors, reduce plasma level of 462 cholesterols, and decline cholesterol and TG biosynthesis by means of genes. Although, 463 hibiscus sabdariffa reduces TC and LDL-C, unexpectedly, it declines the HDL-C serum level 464 too. It may be induced by different genotypes that play role in lipid metabolism (Zhang et 465 al., 2020). Sour tea controls the production of cholesterols and TG by restricting HMG-CoA 466 467 reductase and stirring discharge of hormones that play role in cholesterol metabolism (Najafpour Boushehri et al., 2020). These controversial results may be due to the insufficient 468 dosage used in clinical trials or the incorrect identification of hibiscus sabdariffa L. in 469 methodology of the study (Najafpour Boushehri et al., 2020; Aziz et al., 2013). 470

471

472

483 484 485

Strengths and limitations

This study faced some strengths and limitations. The first strength point is the critical 473 evaluation of all meta-analyses conducted on CTs of herbal medicines for treatment of 474 475 dyslipidemia. And, the second strength is its high quality status which stemmed from 476 utilization of high quality meta-analyses. Thereby, this study can provide a valuable data for researcher in future studies and for clinicians in treatment of dyslipidemia. Although this 477 research has been done based on the PRISMA flow diagram, but it has not been registered 478 in PROSPERO, or in similar databases. This study affords a scarce data on description of the 479 relationship between herbs and lipid profile. However, the second limitation was the lack of 480 enough data on the effective dose of some herbal medicines for improvement of lipid 481 profiles. 482

5. Conclusion

The current systematic review shed light on the use of herbal medicines for the486management of dyslipidemia. The most powerful effects reported in use of *Cissus*487quadrangularis L., tree nuts, phytosterols, sunflower oil, plant protein, green tea, and garlic488for TC, curcumin, tree nuts, phytosterols, sunflower oil, plant protein, green tea, and489fenugreek for LDL-C, quercetin, peanut, phytosterols, plant protein (soy, lupin, pea, legume,490pinto proteins), coffee, and fenugreek for HDL-C, and flavonoids, pistachio, phytosterols,491

sunflower oil, plant protein, green tea, and blackseed for TG. Regardless of proposed492mechanisms to control and treat dyslipidemia by herbal medicines, it was observed493discrepancy between the results in the same interventions which could be partly attributed494to differences in characteristics of studied population, duration, type and dose of495intervention. However, more well-conducted trials are required to clear effective dose of496used plant-derived in the meta-analysis.497

List of Abb	reviations
СТ	controlled trials
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
тс	total cholesterol
TG	triglyceride
LDL-C	low- density lipoprotein cholesterol
HDL-C	high- density lipoprotein cholesterol
DLP	Dyslipidemia
Mets	metabolic syndrome
CVD	Cardiovascular disease
CAD	coronary artery disease
AMSTAR	Assessment of Multiple Systematic Reviews
T2DM	type 2 diabetes mellitus
NAFLD	non-alcoholic fatty liver disease
HLP	hyperlipidemia
ACC	American College of Cardiology
AHA	American Heart Association
HMG-CoA	3-hydroxy-3-methylglutaryl-coenzyme A
VLDL-C	Very low- density lipoprotein cholesterol
APOE	Apolipoprotein E
PUFA	polyunsaturated fatty acids

Acknowledgements

This study is in-home study without any funding supports.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors .

Availability of data

Not applicable. All data analyzed in the current systematic review are extracted from50published articles in PubMed, Web of Science, Scopus, and Cochrane Library databases.51

Conflict of interest

All authors declare any conflict of study.

Author Contribution OTM and RR designed the study and interpreted data. MSAM and OTM extracted data and wrote draft of the manuscript. OTM and RR equally interpreted data and revised

manuscript. MD, PK, and BL helped in quality assessment and revised some sections. All authors read and approved the final manuscript $\ .$	518 519 520
Ethics approval and consent to participate Not applicable .	520 521 522 523
References	524
Abumweis, S.S., Barake, R., and Jones, P.J.H. ,2008. Plant sterols/stanols as cholesterol lowering	525
agents: A meta-analysis of randomized controlled trials. Food and Nutrition Research 52.	526
Ainehchi, N., Farshbaf-Khalili, A., Ghasemzadeh, A., Hamdi, K., Khaki, A., Ouladsahebmadarek, E.,	527
Delazar, A., Bakhtyari, F., and Mazandarani, M. ,2019. The Effect of Herbal Medicine	528
Supplementation on Clinical and Para-clinical Outcomes in Women With PCOS: A Systematic Review	529
and Meta-analysis. International Journal of Womens Health and Reproduction Sciences 7, 423-433.	530
Akbari-Fakhrabadi, M., Heshmati, J., Sepidarkish, M., and Shidfar, F. ,2018. Effect of sumac (Rhus	531
Coriaria) on blood lipids: A systematic review and meta-analysis. Complementary Therapies in	532
Medicine 40, 8-12.	533
Allen, R.W., Schwartzman, E., Baker, W.L., Coleman, C.I., and Phung, O.J. ,2013. Cinnamon use in	534
type 2 diabetes: An updated systematic review and meta-analysis. Annals of Family Medicine 11,	535
452-459.	536
Amir Shaghaghi, M., Abumweis, S.S., and Jones, P.J.H. ,2013. Cholesterol-Lowering Efficacy of Plant	537
Sterols/Stanols Provided in Capsule and Tablet Formats: Results of a Systematic Review and Meta-	538
Analysis. Journal of the Academy of Nutrition and Dietetics 113, 1494-1503.	539
Amiri, M., Raeisi-Dehkordi, H., Sarrafzadegan, N., Forbes, S.C., and Salehi-Abargouei, A., 2020. The	540
effects of Canola oil on cardiovascular risk factors: A systematic review and meta-analysis with dose-	541
response analysis of controlled clinical trials. <i>Nutrition, Metabolism and Cardiovascular Diseases</i> 30,	542
2133-2145.	543
Anderson, J.W., and Bush, H.M., 2011. Soy protein effects on serum lipoproteins: a quality	544
assessment and meta-analysis of randomized, controlled studies. <i>Journal of the American College of Nutrition</i> 30, 79-91.	545 546
Anderson, J.W., Johnstone, B.M., and Cook-Newell, M.E., 1995. Meta-analysis of the effects of soy	547
protein intake on serum lipids. New England Journal of Medicine 333, 276-282.	548
Asbaghi, O., Fouladvand, F., Moradi, S., Ashtary-Larky, D., Choghakhori, R., and Abbasnezhad, A.	549
,2020a. Effect of green tea extract on lipid profile in patients with type 2 diabetes mellitus: A	550
systematic review and meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews	551
14, 293-301.	552
Asbaghi, O., Nazarian, B., Reiner, Ž., Amirani, E., Kolahdooz, F., Chamani, M., and Asemi, Z. ,2020b.	553
The effects of grape seed extract on glycemic control, serum lipoproteins, inflammation, and body	554
weight: A systematic review and meta-analysis of randomized controlled trials. Phytotherapy	555
Research 34, 239-253.	556
Asbaghi, O., Soltani, S., Norouzi, N., Milajerdi, A., Choobkar, S., and Asemi, Z. ,2019. The effect of	557
saffron supplementation on blood glucose and lipid profile: A systematic review and meta-analysis of	558
randomized controlled trials. Complementary therapies in medicine 47, 102158.	559
Asgary, S., Karimi, R., Momtaz, S., Naseri, R., and Farzaei, M.H. ,2019. Effect of resveratrol on	560
metabolic syndrome components: A systematic review and meta-analysis. <i>Reviews in Endocrine and</i>	561
Metabolic Disorders 20, 173-186.	562
Askarpour, M., Alami, F., Campbell, M.S., Venkatakrishnan, K., Hadi, A., and Ghaedi, E. ,2020. Effect	563
of fenugreek supplementation on blood lipids and body weight: A systematic review and meta- analysis of randomized controlled trials. <i>Journal of Ethnopharmacology</i> 253.	564 565

Azhdari, M., Karandish, M., and Mansoori, A., 2019. Metabolic benefits of curcumin	566
supplementation in patients with metabolic syndrome: A systematic review and meta-analysis of	567
randomized controlled trials. <i>Phytotherapy research</i> 33, 1289-1301.	568
Aziz, Z., Wong, S.Y., and Chong, N.J. ,2013. Effects of Hibiscus sabdariffa L. on serum lipids: A	569
systematic review and meta-analysis. Journal of Ethnopharmacology 150, 442-450.	570
Bahramsoltani, R., Ebrahimi, F., Farzaei, M.H., Baratpourmoghaddam, A., Ahmadi, P.,	571
Rostamiasrabadi, P., Rasouli Amirabadi, A.H., and Rahimi, R. ,2019. Dietary polyphenols for	572
atherosclerosis: A comprehensive review and future perspectives. Critical reviews in food science	573
and nutrition 59, 114-132.	574
Bahramsoltani, R., and Rahimi, R., 2020. An Evaluation of Traditional Persian Medicine for the	575
Management of SARS-CoV-2. Frontiers in pharmacology 11.	576
Banel, D.K., and Hu, F.B. ,2009. Effects of walnut consumption on blood lipids and other	577
cardiovascular risk factors: a meta-analysis and systematic review. The American journal of clinical	578
nutrition 90, 56-63.	579
Blanco Mejia, S., Kendall, C.W., Viguiliouk, E., Augustin, L.S., Ha, V., Cozma, A.I., Mirrahimi, A.,	580
Maroleanu, A., Chiavaroli, L., Leiter, L.A., De Souza, R.J., Jenkins, D.J., and Sievenpiper, J.L., 2014.	581
Effect of tree nuts on metabolic syndrome criteria: a systematic review and meta-analysis of	582
randomised controlled trials. BMJ Open 4, e004660.	583
Bule, M., Albelbeisi, A.H., Nikfar, S., Amini, M., and Abdollahi, M., 2020. The antidiabetic and	584
antilipidemic effects of Hibiscus sabdariffa: A systematic review and meta-analysis of randomized	585
clinical trials. Food Research International 130.	586
Chen, J.T., Wesley, R., Shamburek, R.D., Pucino, F., and Csako, G., 2005. Meta-analysis of natural	587
therapies for hyperlipidemia: Plant sterols and stanols versus policosanol. Pharmacotherapy 25, 171-	588
183.	589
Cheng, L., Zhang, G., Zhou, Y., Lu, X., Zhang, F., Ye, H., and Duan, J. ,2013. Systematic review and	590
meta-analysis of 16 randomized clinical trials of radix astragali and its prescriptions for diabetic	591
retinopathy. Evidence-based Complementary and Alternative Medicine 2013.	592
Daneshzad, E., Shab-Bidar, S., Mohammadpour, Z., and Djafarian, K. ,2019. Effect of anthocyanin	593
supplementation on cardio-metabolic biomarkers: A systematic review and meta-analysis of	594
randomized controlled trials. Clinical Nutrition 38, 1153-1165.	595
Daryabeygi-Khotbehsara, R., Golzarand, M., Ghaffari, M.P., and Djafarian, K. ,2017. Nigella sativa	596
improves glucose homeostasis and serum lipids in type 2 diabetes: A systematic review and meta-	597
analysis. Complementary Therapies in Medicine 35, 6-13.	598
Del Gobbo, L.C., Falk, M.C., Feldman, R., Lewis, K., and Mozaffarian, D., 2015. Effects of tree nuts on	599
blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-	600
response of 61 controlled intervention trials. The American journal of clinical nutrition 102, 1347-	601
1356.	602
Demonty, I., Ras, R.T., Van Der Knaap, H.C., Meijer, L., Zock, P.L., Geleijnse, J.M., and Trautwein, E.A.	603
,2013. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline	604
concentrations: a pooled analysis of 12 randomised controlled trials. <i>Eur J Nutr</i> 52, 153-160.	605
Dong, H., Zhao, Y., Zhao, L., and Lu, F. ,2013. The effects of berberine on blood lipids: a systemic	606
review and meta-analysis of randomized controlled trials. Planta medica 79, 437-446.	607
Ebrahimi, F., Farzaei, M.H., Bahramsoltani, R., Heydari, M., Naderinia, K., and Rahimi, R., 2019. Plant-	608
derived medicines for neuropathies: a comprehensive review of clinical evidence. Reviews in the	609
Neurosciences 30, 671-684.	610
Elgebaly, A., Radwan, I.A., Aboelnas, M.M., Ibrahim, H.H., Eltoomy, M.F., Atta, A.A., Mesalam, H.A.,	611
Sayed, A.A., and Othman, A.A. ,2017. Resveratrol Supplementation in Patients with Non-Alcoholic	612
Fatty Liver Disease: Systematic Review and Meta-analysis. Journal of Gastrointestinal & Liver	613
Diseases 26.	614

Fattore, E., Bosetti, C., Brighenti, F., Agostoni, C., and Fattore, G. ,2014. Palm oil and blood lipid-	615
related markers of cardiovascular disease: A systematic review and meta-analysis of dietary	616
intervention trials. American Journal of Clinical Nutrition 99, 1331-1350.	617
Feringa, H.H., Laskey, D.A., Dickson, J.E., and Coleman, C.I., 2011. The effect of grape seed extract on	618
cardiovascular risk markers: a meta-analysis of randomized controlled trials. Journal of the American	619
Dietetic Association 111, 1173-1181.	620
Ghaedi, E., Moradi, S., Aslani, Z., Kord-Varkaneh, H., Miraghajani, M., and Mohammadi, H., 2019.	621
Effects of grape products on blood lipids: a systematic review and dose-response meta-analysis of	622
randomized controlled trials. Food Funct 10, 6399-6416.	623
Ghobadi, S., Hassanzadeh-Rostami, Z., Mohammadian, F., Nikfetrat, A., Ghasemifard, N., Dehkordi,	624
H.R., and Faghih, S., 2019a. Comparison of blood lipid-lowering effects of olive oil and other plant	625
oils: A systematic review and meta-analysis of 27 randomized placebo-controlled clinical trials.	626
Critical Reviews in Food Science and Nutrition 59, 2110-2124.	627
Ghobadi, S., Hassanzadeh-Rostami, Z., Mohammadian, F., Zare, M., and Faghih, S. ,2019b. Effects of	628
Canola Oil Consumption on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized	629
Controlled Clinical Trials. Journal of the American College of Nutrition 38, 185-196.	630
Gong, J., Fang, K., Dong, H., Wang, D., Hu, M., and Lu, F. ,2016. Effect of fenugreek on	631
hyperglycaemia and hyperlipidemia in diabetes and prediabetes: A meta-analysis. Journal of	632
Ethnopharmacology 194, 260-268.	633
Guasch-Ferré, M., Li, J., Hu, F.B., Salas-Salvadó, J., and Tobias, D.K. ,2018. Effects of walnut	634
consumption on blood lipids and other cardiovascular risk factors: an updated meta-analysis and	635
systematic review of controlled trials. Am J Clin Nutr 108, 174-187.	636
Gui, Q.F., Xu, Z.R., Xu, K.Y., and Yang, Y.M. ,2016. The Efficacy of Ginseng-Related Therapies in Type 2	637
Diabetes Mellitus: An Updated Systematic Review and Meta-analysis. Medicine (Baltimore) 95,	638
e2584.	639
Hadi, A., Arab, A., Ghaedi, E., Rafie, N., Miraghajani, M., and Kafeshani, M., 2019a. Barberry (Berberis	640
vulgaris L.) is a safe approach for management of lipid parameters: A systematic review and meta-	641
analysis of randomized controlled trials. Complementary Therapies in Medicine 43, 117-124.	642
Hadi, A., Mohammadi, H., Hadi, Z., Roshanravan, N., and Kafeshani, M. ,2018. Cumin (Cuminum	643
cyminum L.) is a safe approach for management of lipid parameters: A systematic review and meta-	644
analysis of randomized controlled trials. Phytotherapy Research 32, 2146-2154.	645
Hadi, A., Pourmasoumi, M., Najafgholizadeh, A., Kafeshani, M., and Sahebkar, A. ,2019b. Effect of	646
purslane on blood lipids and glucose: A systematic review and meta-analysis of randomized	647
controlled trials. <i>Phytotherapy Research</i> 33, 3-12.	648
Hallajzadeh, J., Milajerdi, A., Mobini, M., Amirani, E., Azizi, S., Nikkhah, E., Bahadori, B.,	649
Sheikhsoleimani, R., and Mirhashemi, S.M. ,2020. Effects of Nigella sativa on glycemic control, lipid	650
profiles, and biomarkers of inflammatory and oxidative stress: A systematic review and meta-	651
analysis of randomized controlled clinical trials. Phytotherapy Research 34, 2586-2608.	652
Harland, J.I., and Haffner, T.A. ,2008. Systematic review, meta-analysis and regression of randomised	653
controlled trials reporting an association between an intake of circa 25 g soya protein per day and	654
blood cholesterol. <i>Atherosclerosis</i> 200, 13-27.	655
Hartley, L., Flowers, N., Holmes, J., Clarke, A., Stranges, S., Hooper, L., and Rees, K. ,2013. Green and	656
black tea for the primary prevention of cardiovascular disease. Cochrane Database of Systematic	657
Reviews 2013.	658
Hernández-García, D., Granado-Serrano, A.B., Martín-Gari, M., Naudí, A., and Serrano, J.C. ,2019.	659
Efficacy of Panax ginseng supplementation on blood lipid profile. A meta-analysis and systematic	660
review of clinical randomized trials. <i>Journal of Ethnopharmacology</i> 243.	661
Heshmat-Ghahdarijani, K., Mashayekhiasl, N., Amerizadeh, A., Teimouri Jervekani, Z., and Sadeghi,	662
M. ,2020. Effect of fenugreek consumption on serum lipid profile: A systematic review and meta-	663
analysis. Phytotherapy Research 34, 2230-2245.	664

Heydarpour, F., Hemati, N., Hadi, A., Moradi, S., Mohammadi, E., and Farzaei, M.H. ,2020. Effects of cinnamon on controlling metabolic parameters of polycystic ovary syndrome: A systematic review and meta-analysis. <i>Journal of Ethnopharmacology</i> 254.	665 666 667
Hohmann, C.D., Cramer, H., Michalsen, A., Kessler, C., Steckhan, N., Choi, K., and Dobos, G. ,2015. Effects of high phenolic olive oil on cardiovascular risk factors: A systematic review and meta- analysis. <i>Phytomedicine</i> 22, 631-640.	668 669 670
Hooper, L., Kay, C., Abdelhamid, A., Kroon, P.A., Cohn, J.S., Rimm, E.B., and Cassidy, A. ,2012. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta- analysis of randomized trials. <i>Am J Clin Nutr</i> 95, 740-751.	671 672 673
Hooper, L., Kroon, P.A., Rimm, E.B., Cohn, J.S., Harvey, I., Le Cornu, K.A., Ryder, J.J., Hall, W.L., and Cassidy, A. ,2008. Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. <i>Am J Clin Nutr</i> 88, 38-50.	674 675 676
Hou, L., Rashid, M., Chehabra, M., Chandrasekhar, B., Amirthalingam, P., Ray, S., and Li, Z. ,2020. The effect of Bertholletia excelsa on body weight, cholestrol, and c-reactive protein: A systematic review and meta-analysis of randomized controlled trials. <i>Complement Ther Med</i> , 102636.	677 678 679
Huang, H., Chen, G., Liao, D., Zhu, Y., and Xue, X. ,2016. Effects of Berries Consumption on Cardiovascular Risk Factors: A Meta-analysis with Trial Sequential Analysis of Randomized Controlled Trials. <i>Scientific Reports</i> 6.	680 681 682
Jafari Azad, B., Daneshzad, E., and Azadbakht, L. ,2020. Peanut and cardiovascular disease risk factors: A systematic review and meta-analysis. <i>Critical reviews in food science and nutrition</i> 60, 1123-1140.	683 684 685
Jafarnejad, S., Keshavarz, S.A., Mahbubi, S., Saremi, S., Arab, A., Abbasi, S., and Djafarian, K. ,2017. Effect of ginger (Zingiber officinale) on blood glucose and lipid concentrations in diabetic and hyperlipidemic subjects: A meta-analysis of randomized controlled trials. <i>Journal of Functional Foods</i>	686 687 688
29, 127-134. Jafarnejad, S., Tsang, C., Taghizadeh, M., Asemi, Z., and Keshavarz, S.A. ,2018. A meta-analysis of cumin (Cuminum cyminim L.) consumption on metabolic and anthropometric indices in overweight	689 690 691
and type 2 diabetics. <i>Journal of Functional Foods</i> 44, 313-321. Jalali, M., Karamizadeh, M., Ferns, G.A., Zare, M., Moosavian, S.P., and Akbarzadeh, M., 2020a. The effects of cashew nut intake on lipid profile and blood pressure: A systematic review and meta-	692 693 694
analysis of randomized controlled trials. <i>Complement Ther Med</i> 50, 102387. Jalali, M., Mahmoodi, M., Mosallanezhad, Z., Jalali, R., Imanieh, M.H., and Moosavian, S.P. ,2020b. The effects of curcumin supplementation on liver function, metabolic profile and body composition	695 696 697
in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. <i>Complementary Therapies in Medicine</i> 48.	698 699
Jamshidi, N., Da Costa, C., and Cohen, M. ,2018. Holybasil (tulsi) lowers fasting glucose and improves lipid profile in adults with metabolic disease: A meta-analysis of randomized clinical trials. <i>Journal of Functional Foods</i> 45, 47-57.	700 701 702
Jandari, S., Hatami, E., Ziaei, R., Ghavami, A., and Yamchi, A.M. ,2020. The effect of pomegranate (Punica granatum) supplementation on metabolic status in patients with type 2 diabetes: A systematic review and meta-analysis. <i>Complementary Therapies in Medicine</i> , 102478.	703 704 705
Jang, H.H., Lee, J., Lee, S.H., and Lee, Y.M. ,2020. Effects of Capsicum annuum supplementation on the components of metabolic syndrome: a systematic review and meta-analysis. <i>Scientific Reports</i> 10.	706 707 708
Jia, L., Liu, X., Bai, Y.Y., Li, S.H., Sun, K., He, C., and Hui, R. ,2010. Short-term effect of cocoa product consumption on lipid profile: a meta-analysis of randomized controlled trials. <i>The American journal of clinical nutrition</i> 92, 218-225.	709 710 711
Jolfaie, N.R., Rouhani, M.H., Surkan, P.J., Siassi, F., and Azadbakht, L. ,2016. Rice Bran Oil Decreases Total and LDL Cholesterol in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. <i>Hormone and Metabolic Research</i> 48, 417-426.	712 713 714

Ju, J., Li, J., Lin, Q., and Xu, H., 2018. Efficacy and safety of berberine for dyslipidaemias: A systematic	715
	716
review and meta-analysis of randomized clinical trials. <i>Phytomedicine</i> 50, 25-34.	
Kanadys, W., Baranska, A., Jedrych, M., Religioni, U., and Janiszewska, M. ,2020. Effects of red clover	717
(Trifolium pratense) isoflavones on the lipid profile of perimenopausal and postmenopausal women-	718
A systematic review and meta-analysis. <i>Maturitas</i> 132, 7-16.	719
Khodamoradi, K., Khosropanah, M.H., Ayati, Z., Chang, D., Nasli-Esfahani, E., Ayati, M.H., and	720
Namazi, N. ,2020. The Effects of Fenugreek on Cardiometabolic Risk Factors in Adults: A Systematic	721
Review and Meta-analysis. Complementary Therapies in Medicine, 102416.	722
Khorshidi, M., Zarezadeh, M., Moradi Moghaddam, O., Emami, M.R., Kord-Varkaneh, H., Mousavi,	723
S.M., Alizadeh, S., Heshmati, J., Olang, B., and Aryaeian, N., 2020. Effect of evening primrose oil	724
supplementation on lipid profile: A systematic review and meta-analysis of randomized clinical trials.	725
Phytotherapy Research 34, 2628-2638.	726
Lan, J.R., Zhao, Y.Y., Dong, F.X., Yan, Z.Y., Zheng, W.J., Fan, J.P., and Sun, G.L., 2015. Meta-analysis of	727
the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and	728
hypertension. <i>Journal of Ethnopharmacology</i> 161, 69-81.	729
Lee-Bravatti, M.A., Wang, J., Avendano, E.E., King, L., Johnson, E.J., and Raman, G. ,2019. Almond	730
Consumption and Risk Factors for Cardiovascular Disease: A Systematic Review and Meta-analysis of	731
Randomized Controlled Trials. Adv Nutr 10, 1076-1088.	732
Lee, H.J., Le, B., Lee, DR., Choi, BK., and Yang, S.H. ,2018. Cissus quadrangularis extract (CQR-300)	733
inhibits lipid accumulation by downregulating adipogenesis and lipogenesis in 3T3-L1 cells.	734
Toxicology reports 5, 608-614.	735
Lee, J., Chung, M., Fu, Z., Choi, J., and Lee, H.J. ,2020. The Effects of Irvingia gabonensis Seed Extract	736
Supplementation on Anthropometric and Cardiovascular Outcomes: A Systematic Review and Meta-	737
Analysis. Journal of the American College of Nutrition 39, 388-396.	738
Li, S.S., Mejia, S.B., Lytvyn, L., Stewart, S.E., Viguiliouk, E., Ha, V., De Souza, R.J., Leiter, L.A., Kendall,	739
C.W.C., Jenkins, D.J.A., and Sievenpiper, J.L. ,2017. Effect of plant protein on blood lipids: A	740
systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart	741
Association 6.	742
Li, Y., Wang, C., Huai, Q., Guo, F., Liu, L., Feng, R., and Sun, C. ,2016. Effects of tea or tea extract on	743
metabolic profiles in patients with type 2 diabetes mellitus: A meta-analysis of ten randomized	744
controlled trials. Diabetes/Metabolism Research and Reviews 32, 2-10.	745
Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P., Clarke, M.,	746
Devereaux, P.J., Kleijnen, J. and Moher, D., 2009. The PRISMA statement for reporting systematic	747
reviews and meta-analyses of studies that evaluate health care interventions: explanation and	748
elaboration. Journal of Clinical Epidemiology, 62(10), pp.e1-e34.	749
Lin, X., Zhang, I., Li, A., Manson, J.E., Sesso, H.D., Wang, L., and Liu, S., 2016. Cocoa Flavanol Intake	750
and Biomarkers for Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized	751
Controlled Trials. J Nutr 146, 2325-2333.	752
Liu, K., Hui, S., Wang, B., Kaliannan, K., Guo, X., and Liang, L. ,2020. Comparative effects of different	753
types of tree nut consumption on blood lipids: a network meta-analysis of clinical trials. The	754
American journal of clinical nutrition 111, 219-227.	755
Luís, Â., Domingues, F., and Pereira, L. ,2018. Effects of red clover on perimenopausal and	756
postmenopausal women's blood lipid profile: A meta-analysis. <i>Climacteric</i> 21, 446-453.	757
Maharlouei, N., Tabrizi, R., Lankarani, K.B., Rezaianzadeh, A., Akbari, M., Kolahdooz, F., Rahimi, M.,	758
Keneshlou, F., and Asemi, Z. ,2019. The effects of ginger intake on weight loss and metabolic profiles	759
among overweight and obese subjects: A systematic review and meta-analysis of randomized	760
controlled trials. <i>Crit Rev Food Sci Nutr</i> 59, 1753-1766.	761
Mahmassani, H.A., Avendano, E.E., Raman, G., and Johnson, E.J. ,2018. Avocado consumption and	762
risk factors for heart disease: a systematic review and meta-analysis. <i>Am J Clin Nutr</i> 107, 523-536.	763
Mansour-Ghanaei, F., Hadi, A., Pourmasoumi, M., Joukar, F., Golpour, S., and Najafgholizadeh, A.	764
	765
,2018. Green tea as a safe alternative approach for nonalcoholic fatty liver treatment: A systematic	
review and meta-analysis of clinical trials. Phytotherapy Research 32, 1876-1884.	766

Mazidi, M., Gao, HK., Rezaie, P., and Ferns, G.A. ,2016. The effect of ginger supplementation on serum C-reactive protein, lipid profile and glycaemia: a systematic review and meta-analysis. <i>Food &</i>	767 768
nutrition research 60, 32613.	769
Mejia, S.B., Messina, M., Li, S.Y.S., Viguiliouk, E., Chiavaroli, L., Khan, T.A., Srichaikul, K., Mirrahimi,	770
A., Sievenpiper, J.L., Kris-Etherton, P., and Jenkins, D.J.A. ,2019. A Meta-Analysis of 46 Studies	771
Identified by the FDA Demonstrates that Soy Protein Decreases Circulating LDL and Total Cholesterol	772
Concentrations in Adults. Journal of Nutrition 149, 968-981.	773
Mohammadi, H., Hadi, A., Arab, A., Moradi, S., and Rouhani, M.H. ,2019a. Effects of silymarin	774
supplementation on blood lipids: A systematic review and meta-analysis of clinical trials.	775
Phytotherapy Research 33, 871-880.	776
Mohammadi, M., Ramezani-Jolfaie, N., Lorzadeh, E., Khoshbakht, Y., and Salehi-Abargouei, A.	777
,2019b. Hesperidin, a major flavonoid in orange juice, might not affect lipid profile and blood	778
pressure: A systematic review and meta-analysis of randomized controlled clinical trials.	779
Phytotherapy Research 33, 534-545.	780
Morvaridi, M., Rayyani, E., Jaafari, M., Khiabani, A., and Rahimlou, M. ,2020. The effect of green	781
coffee extract supplementation on cardio metabolic risk factors: a systematic review and meta-	782
analysis of randomized controlled trials. <i>Journal of Diabetes & Metabolic Disorders</i> 19, 645-660.	783
Musa-Veloso, K., Paulionis, L., Poon, T., and Lee, H.Y. ,2016. The effects of almond consumption on	784
fasting blood lipid levels: a systematic review and meta-analysis of randomised controlled trials.	785
Journal of nutritional science 5.	786
Musa-Veloso, K., Poon, T.H., Elliot, J.A., and Chung, C. ,2011. A comparison of the LDL-cholesterol	787
lowering efficacy of plant stanols and plant sterols over a continuous dose range: Results of a meta-	788
analysis of randomized, placebo-controlled trials. <i>Prostaglandins Leukotrienes and Essential Fatty</i>	789
Acids 85, 9-28.	790
Najafpour Boushehri, S., Karimbeiki, R., Ghasempour, S., Ghalishourani, S.S., Pourmasoumi, M., Hadi,	791
A., Mbabazi, M., Pour, Z.K., Assarroudi, M., Mahmoodi, M., Khosravi, A., Mansour-Ghanaei, F., and	792
Joukar, F. ,2020. The efficacy of sour tea (Hibiscus sabdariffa L.) on selected cardiovascular disease	793
risk factors: A systematic review and meta-analysis of randomized clinical trials. <i>Phytotherapy</i>	794
Research 34, 329-339.	795
Neelakantan, N., Seah, J.Y.H., and Van Dam, R.M. ,2020. The Effect of Coconut Oil Consumption on	796
Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Clinical Trials. <i>Circulation</i> ,	797
803-814.	798
Onakpoya, I., Spencer, E., Heneghan, C., and Thompson, M. ,2014. The effect of green tea on blood	799
pressure and lipid profile: A systematic review and meta-analysis of randomized clinical trials.	800
Nutrition, Metabolism and Cardiovascular Diseases 24, 823-836.	801
Onakpoya, I.J., O'sullivan, J., and Heneghan, C.J. ,2015. The effect of cactus pear (Opuntia ficus-	802
indica) on body weight and cardiovascular risk factors: a systematic review and meta-analysis of	803
randomized clinical trials. <i>Nutrition</i> 31, 640-646.	804
Payab, M., Hasani-Ranjbar, S., Shahbal, N., Qorbani, M., Aletaha, A., Haghi-Aminjan, H., Soltani, A.,	805
Khatami, F., Nikfar, S., Hassani, S., Abdollahi, M., and Larijani, B. ,2020. Effect of the herbal medicines	806
in obesity and metabolic syndrome: A systematic review and meta-analysis of clinical trials.	807
Phytotherapy Research 34, 526-545.	808
Peou, S., Milliard-Hasting, B., and Shah, S.A. ,2016. Impact of avocado-enriched diets on plasma	809
lipoproteins: a meta-analysis. Journal of clinical lipidology 10, 161-171.	810
Phimarn, W., Wichaiyo, K., Silpsavikul, K., Sungthong, B., and Saramunee, K. ,2017. A meta-analysis	811
of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. <i>European Journal of</i>	812
Nutrition 56, 1509-1521.	813
Phung, O.J., Makanji, S.S., White, C.M., and Coleman, C.I. ,2009. Almonds have a neutral effect on	814
serum lipid profiles: a meta-analysis of randomized trials. <i>Journal of the American Dietetic</i>	815
Association 109, 865-873.	816

Posadzki, P., Albedah, A.M.N., Khalil, M.M.K., and Algaed, M.S. ,2016. Complementary and	817
alternative medicine for lowering blood lipid levels: A systematic review of systematic reviews.	818
Complementary Therapies in Medicine 29, 141-151.	819
Pourmasoumi, M., Hadi, A., Najafgholizadeh, A., Joukar, F., and Mansour-Ghanaei, F. ,2020. The	820
effects of cranberry on cardiovascular metabolic risk factors: A systematic review and meta-analysis.	821
Clinical Nutrition 39, 774-788.	822
Pourmasoumi, M., Hadi, A., Najafgholizadeh, A., Kafeshani, M., and Sahebkar, A. ,2019. Clinical	823
evidence on the effects of saffron (Crocus sativus L.) on cardiovascular risk factors: a systematic	824
review meta-analysis. <i>Pharmacological research</i> 139, 348-359.	825
Pourmasoumi, M., Hadi, A., Rafie, N., Najafgholizadeh, A., Mohammadi, H., and Rouhani, M.H. ,2018.	826
The effect of ginger supplementation on lipid profile: A systematic review and meta-analysis of	827
clinical trials. <i>Phytomedicine</i> 43, 28-36.	828
Qin, S., Huang, L., Gong, J., Shen, S., Huang, J., Ren, H., and Hu, H. ,2017. Efficacy and safety of	829
turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A	830
meta-analysis of randomized controlled trials. <i>Nutrition Journal</i> 16.	831
Rahmani, J., Clark, C., Kord Varkaneh, H., Lakiang, T., Vasanthan, L.T., Onyeche, V., Mousavi, S.M.,	832
and Zhang, Y. ,2019a. The effect of Aronia consumption on lipid profile, blood pressure, and	833
biomarkers of inflammation: A systematic review and meta-analysis of randomized controlled trials.	834
Phytotherapy Research 33, 1981-1990.	835
Rahmani, J., Manzari, N., Thompson, J., Clark, C.C.T., Villanueva, G., Varkaneh, H.K., and Mirmiran, P.	836
,2019b. The effect of saffron on weight and lipid profile: A systematic review, meta-analysis, and	837
dose–response of randomized clinical trials. <i>Phytotherapy Research</i> 33, 2244-2255.	838
Ras, R.T., Geleijnse, J.M., and Trautwein, E.A. ,2014. LDL-cholesterol-lowering effect of plant sterols	839
and stanols across different dose ranges: A meta-analysis of randomised controlled studies. British	840
Journal of Nutrition 112, 214-219.	841
Reynolds, K., Chin, A., Lees, K.A., Nguyen, A., Bujnowski, D., and He, J. ,2006. A meta-analysis of the	842
effect of soy protein supplementation on serum lipids. <i>The American journal of cardiology</i> 98, 633-	843
640.	844
Ried, K., Toben, C., and Fakler, P., 2013. Effect of garlic on serum lipids: An updated meta-analysis.	845
Nutrition Reviews 71, 282-299.	846
Rocha, V.Z., Ras, R.T., Gagliardi, A.C., Mangili, L.C., Trautwein, E.A., and Santos, R.D., 2016. Effects of	847
phytosterols on markers of inflammation: A systematic review and meta-analysis. Atherosclerosis	848
248, 76-83.	849
Sahebkar, A. ,2013. Effects of resveratrol supplementation on plasma lipids: a systematic review and	850
meta-analysis of randomized controlled trials. <i>Nutrition reviews</i> 71, 822-835.	851
Sahebkar, A. ,2014. A systematic review and meta-analysis of randomized controlled trials	852
investigating the effects of curcumin on blood lipid levels. <i>Clinical Nutrition</i> 33, 406-414.	853
Sahebkar, A. ,2017. Effects of quercetin supplementation on lipid profile: A systematic review and	854
meta-analysis of randomized controlled trials. Critical reviews in food science and nutrition 57, 666-	855
676.	856
Sahebkar, A., Beccuti, G., Simental-Mendía, L.E., Nobili, V., and Bo, S. ,2016a. Nigella sativa (black	857
seed) effects on plasma lipid concentrations in humans: A systematic review and meta-analysis of	858
randomized placebo-controlled trials. <i>Pharmacological Research</i> 106, 37-50.	859
Sahebkar, A., Pirro, M., Banach, M., Mikhailidis, D.P., Atkin, S.L., and Cicero, A.F.G. ,2018. Lipid-	860
lowering activity of artichoke extracts: A systematic review and meta-analysis. Critical Reviews in	861
Food Science and Nutrition 58, 2549-2556.	862
Sahebkar, A., Serban, C., Ursoniu, S., Wong, N.D., Muntner, P., Graham, I.M., Mikhailidis, D.P., Rizzo,	863
M., Rysz, J., and Sperling, L.S. ,2015. Lack of efficacy of resveratrol on C-reactive protein and selected	864
cardiovascular risk factors—Results from a systematic review and meta-analysis of randomized	865
controlled trials. International journal of cardiology 189, 47-55.	866

Sahebkar, A., Serban, M.C., Gluba-Brzozka, A., Mikhailidis, D.P., Cicero, A.F., Rysz, J., and Banach, M. ,2016b. Lipid-modifying effects of nutraceuticals: An evidence-based approach. <i>Nutrition</i> 32, 1179-1192.	867 868 869
Sahebkar, A., Simental-Mendia, L.E., Giorgini, P., Ferri, C., and Grassi, D., 2016c. Lipid profile changes after pomegranate consumption: A systematic review and meta-analysis of randomized controlled trials. <i>Phytomedicine</i> 23, 1103-1112.	870 871 872
Sawangjit, R., Puttarak, P., Saokaew, S., and Chaiyakunapruk, N. ,2017. Efficacy and Safety of Cissus quadrangularis L. in Clinical Use: A Systematic Review and Meta-analysis of Randomized Controlled Trials. <i>Phytotherapy Research</i> 31, 555-567.	873 874 875
Schwingshackl, L., Bogensberger, B., Benčič, A., Knüppel, S., Boeing, H., and Hoffmann, G. ,2018. Effects of oils and solid fats on blood lipids: a systematic review and network meta-analysis. <i>Journal</i> <i>of lipid research</i> 59, 1771-1782.	876 877 878
Seppo, L., Jauhiainen, T., Nevala, R., Poussa, T., and Korpela, R. ,2007. Plant stanol esters in low-fat milk products lower serum total and LDL cholesterol. <i>European Journal of Nutrition</i> 46, 111-117. Serban, MC., Sahebkar, A., Dragan, S., Stoichescu-Hogea, G., Ursoniu, S., Andrica, F., and Banach,	879 880 881
M. ,2016. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. <i>Clinical Nutrition</i> 35, 842-851. Shabani, E., Sayemiri, K., and Mohammadpour, M. ,2019. The effect of garlic on lipid profile and	882 883 884
glucose parameters in diabetic patients: A systematic review and meta-analysis. <i>Primary Care Diabetes</i> 13, 28-42. Shea, B.J., Grimshaw, J.M., Wells, G.A., Boers, M., Andersson, N., Hamel, C., Porter, A.C., Tugwell, P.,	885 886 887
Moher, D., and Bouter, L.M. ,2007. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. <i>BMC medical research methodology</i> 7, 1-7.	888 889
Shekarchizadeh-Esfahani, P., Arab, A., Ghaedi, E., Hadi, A., and Jalili, C. ,2020. Effects of cardamom supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled clinical trials. <i>Phytotherapy Research</i> 34, 475-485.	890 891 892
Shrime, M.G., Bauer, S.R., Mcdonald, A.C., Chowdhury, N.H., Coltart, C.E., and Ding, E.L. ,2011. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. <i>The Journal of nutrition</i> 141, 1982-1988.	893 894 895
Silagy, C., and Neil, A. ,1994. Garlic as a lipid lowering agent - A meta-analysis. <i>Journal of the Royal College of Physicians of London</i> 28, 39-45.	896 897
Simental-Mendia, L.E., Gotto Jr, A.M., Atkin, S.L., Banach, M., Pirro, M., and Sahebkar, A. ,2018. Effect of soy isoflavone supplementation on plasma lipoprotein (a) concentrations: A meta-analysis. <i>Journal of clinical lipidology</i> 12, 16-24.	898 899 900
Simental-Mendía, L.E., Pirro, M., Gotto Jr, A.M., Banach, M., Atkin, S.L., Majeed, M., and Sahebkar, A. ,2019. Lipid-modifying activity of curcuminoids: A systematic review and meta-analysis of randomized controlled trials. <i>Critical reviews in food science and nutrition</i> 59, 1178-1187.	901 902 903
Soltanipour, S., Hasandokht, T., Soleimani, R., Mahdavi-Roshan, M., and Jalali, M.M. ,2019. Systematic Review and Meta-Analysis of the Effects of Soy on Glucose Metabolism in Patients with Type 2 Diabetes. <i>The Review of Diabetic Studies</i> 15.	904 905 906
Soto-Mendez, M.J., Rangel-Huerta, O.D., Ruiz-Lopez, M.D., De Victoria, E.M., Anguita-Ruiz, A., and Gil, A. ,2019. Role of Functional Fortified Dairy Products in Cardiometabolic Health: A Systematic	907 908
Review and Meta-analyses of Randomized Clinical Trials. <i>Advances in Nutrition</i> 10, S251-S271. Sun, Y.E., Wang, W., and Qin, J. ,2018. Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein: A meta-analysis. <i>Medicine (Baltimore)</i> 97, e0255.	909 910 911
Tabatabaei-Malazy, O., Larijani, B., and Abdollahi, M. ,2015. Targeting metabolic disorders by natural products. <i>Journal of Diabetes and Metabolic Disorders</i> 14. Tabatabaei-Malazy, O., Ramezani, A., Atlasi, R., Larijani, B., and Abdollahi, M. ,2016. Scientometric	912 913 914
study of academic publications on antioxidative herbal medicines in type 2 diabetes mellitus. <i>Journal of Diabetes and Metabolic Disorders</i> 15, 1-8.	915 916

Tabatabaei-Malazy, O., Shadman, Z., Ejtahed, H.S., Atlasi, R., Abdollahi, M., and Larijani, B., 2018.	917
Quality of reporting of randomized controlled trials of herbal medicines conducted in metabolic	918
disorders in Middle East countries: A systematic review. Complementary Therapies in Medicine 38,	919
61-66.	920
Tabrizi, F.P.F., Hajizadeh-Sharafabad, F., Vaezi, M., Jafari-Vayghan, H., Alizadeh, M., and Maleki, V.	921
,2020. Quercetin and polycystic ovary syndrome, current evidence and future directions: a	922
systematic review. Journal of Ovarian Research 13.	923
Taherifard, M.H., Shekari, M., Mesrkanlou, H.A., Asbaghi, O., Nazarian, B., Khosroshahi, M.Z., and	924
Heydarpour, F., 2020. The effect of crocin supplementation on lipid concentrations and fasting blood	925
glucose: A systematic review and meta-analysis and meta-regression of randomized controlled trials.	926 927
Complementary Therapies in Medicine, 102500.	927
Taku, K., Umegaki, K., Sato, Y., Taki, Y., Endoh, K., and Watanabe, S. ,2007. Soy isoflavones lower	928
serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. <i>The</i>	929
American journal of clinical nutrition 85, 1148-1156.	930
Talati, R., Sobieraj, D.M., Makanji, S.S., Phung, O.J., and Coleman, C.I. ,2010. The Comparative Efficacy of Plant Sterols and Stanols on Serum Lipids: A Systematic Review and Meta-Analysis.	931
	932
Journal of the American Dietetic Association 110, 719-726.	
Teng, M., Zhao, Y.J., Khoo, A.L., Yeo, T.C., Yong, Q.W., and Lim, B.P. ,2020. Impact of coconut oil	934
consumption on cardiovascular health: A systematic review and meta-Analysis. <i>Nutrition Reviews</i> 78,	935
249-259.	936
Teoh, S.L., Lai, N.M., Vanichkulpitak, P., Vuksan, V., Ho, H., and Chaiyakunapruk, N., 2018. Clinical	937
evidence on dietary supplementation with chia seed (Salvia hispanica L.): A systematic review and	938
meta-analysis. Nutrition Reviews 76, 219-242.	939
Tokede, O., Gaziano, J., and Djousse, L. ,2011. Effects of cocoa products/dark chocolate on serum	940
lipids: a meta-analysis. European journal of clinical nutrition 65, 879-886.	941 942
Ursoniu, S., Sahebkar, A., Serban, M.C., Banach, M., Lipid, and Blood Pressure Meta-Analysis	942
Collaboration, G. ,2018. The impact of argan oil on plasma lipids in humans: Systematic review and	943
meta-analysis of randomized controlled trials. <i>Phytotherapy Research</i> 32, 377-383.	944 945
Voon, P.T., Lee, S.T., Ng, T.K.W., Ng, Y.T., Yong, X.S., Lee, V.K.M., and Ong, A.S.H. ,2019. Intake of	945
Palm Olein and Lipid Status in Healthy Adults: A Meta-Analysis. <i>Advances in Nutrition</i> 10, 647-659.	940
Wei, Z., Liu, N., Tantai, X., Xing, X., Xiao, C., Chen, L., and Wang, J. ,2019. The effects of curcumin on the metabolic parameters of non-alcoholic fatty liver disease: a meta-analysis of randomized	947
controlled trials. <i>Hepatology international</i> 13, 302-313.	940
Wu, T., Fu, J., Yang, Y.X., Zhang, L.S., and Han, J.H. ,2009. The effects of phytosterols/stanols on	949 950
	950
blood lipid profiles: a systematic review with meta-analysis. Asia Pacific Journal of Clinical Nutrition	951
18, 179-186.	952
Yuan, F., Dong, H., Gong, J., Wang, D., Hu, M., Huang, W., Fang, K., Qin, X., Qiu, X., and Yang, X.	955 954
,2019. A systematic review and meta-analysis of randomized controlled trials on the effects of turmeric and curcuminoids on blood lipids in adults with metabolic diseases. <i>Advances in Nutrition</i>	954
10, 791-802.	955
Zhan, S., and Ho, S.C. ,2005. Meta-analysis of the effects of soy protein containing isoflavones on the	957
lipid profile. American Journal of Clinical Nutrition 81, 397-408.	958
Zhang, B., Yue, R., Wang, Y., Wang, L., Chin, J., Huang, X., and Jiang, Y. ,2020. Effect of Hibiscus	959
sabdariffa (Roselle) supplementation in regulating blood lipids among patients with metabolic	960
syndrome and related disorders: A systematic review and meta-analysis. <i>Phytotherapy Research</i> 34,	961
1083-1095.	962
Zhang, C., Yuan, W., Fang, J., Wang, W., He, P., Lei, J., and Wang, C., 2016a. Efficacy of resveratrol	963
supplementation against non-alcoholic fatty liver disease: A meta-analysis of placebo-controlled	964
clinical trials. <i>PLoS One</i> 11, e0161792.	965
Zhang, L.S., Zhang, J.H., Feng, R., Jin, X.Y., Yang, F.W., Ji, Z.C., Zhao, M.Y., Zhang, M.Y., Zhang, B.L.,	966
and Li, X.M. 2019. Efficacy and Safety of Berberine Alone or Combined with Statins for the	967

Treatment of Hyperlipidemia: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. <i>American Journal of Chinese Medicine</i> 47, 751-767. Zhang, Y., Liu, W., Liu, D., Zhao, T., and Tian, H., 2016b. Efficacy of aloe vera supplementation on	968 969 970
prediabetes and early non-treated diabetic patients: A systematic review and meta-analysis of randomized controlled trials. <i>Nutrients</i> 8.	971 972
Zhao, H., Song, A., Zheng, C., Wang, M., and Song, G. ,2020. Effects of plant protein and animal protein on lipid profile, body weight and body mass index on patients with hypercholesterolemia: a systematic review and meta-analysis. <i>Phytother Res</i> 57, 1169-1180.	973 974 975
Zhao, Y., Asimi, S., Wu, K., Zheng, J., and Li, D., 2015. Black tea consumption and serum cholesterol concentration: Systematic review and meta-analysis of randomized controlled trials. <i>Clin Nutr</i> 34, 612-619.	976 977 978
Zheng, XX., Xu, YL., Li, SH., Liu, XX., Hui, R., and Huang, XH. ,2011. Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. <i>The American journal of clinical nutrition</i> 94, 601-610. Ziaei, R., Ghavami, A., Ghaedi, E., Hadi, A., Javadian, P., and Clark, C.C.T. ,2020. The efficacy of ginseng supplementation on plasma lipid concentration in adults: A systematic review and meta-analysis. <i>Complementary Therapies in Medicine</i> 48.	979 980 981 982 983 984 985
Legend Figure :	986
Fig. 1 Flow diagram of the study selection process	987
	988
Legend Tables :	989
Table 1 Characteristics of meta-analyses investigating the effects of polyphenolic compounds on dyslipidemia	990 991
Table 2 Characteristics of meta-analyses investigating the effects of nuts on dyslipidemia	992
Table 3 Characteristics of meta-analyses investigating the effects of phytosterols on dyslipidemia	993 994
Table 4 Characteristics of meta-analyses investigating the effects of vegetable oils on dyslipidemia	995 996
Table 5 Characteristics of meta-analyses investigating the effects of plant proteins on dyslipidemia	997 998
Table 6 Characteristics of meta-analyses investigating the effects of tea and coffee on dyslipidemia	999 1000
Table 7 Characteristics of meta-analyses investigating the effects of other herbal medicines on dyslipidemia	1001 1002
Table 8 Summary of the effects of herbal medicines on dyslipidemia	1003
	1004
	1005

Supplementary:

Supplementary 1: PRISMA 2020 checklist	1007
Table S1. Search strategy in PubMed database	1008
Table S2. AMSTAR tool	1009

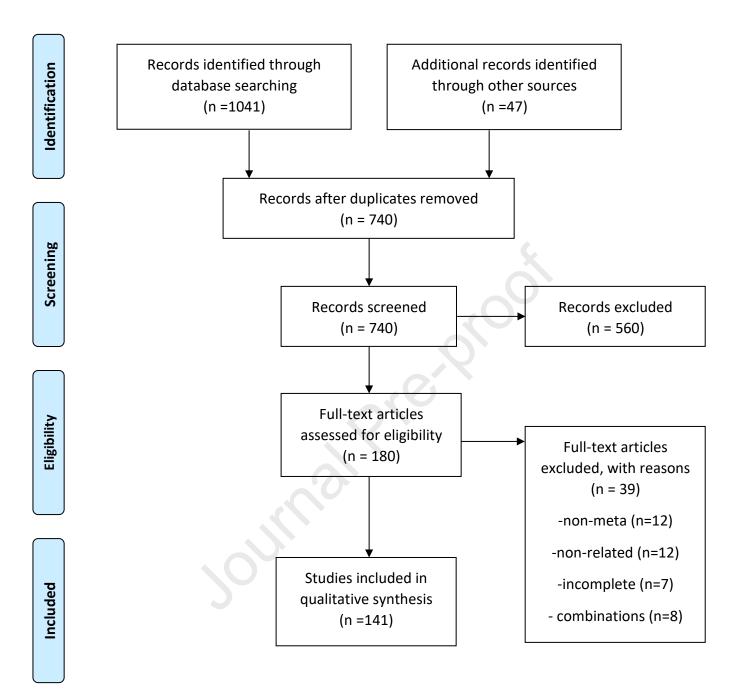


Figure 1. PRISMA Flow diagram of study processes

				Par	ticipants		Interve	ntion			Quality	
Subgrou p	Study	Herbal medicine/ Control	meta- analyzed studies (n)/ disorders	Sample size (n)	Age (yr)	Sex	Dose/ Frequenc Y	Durati on (w)	Significant main outcome	Effective dose	assess ment in meta- analysi s	AMSTAR score
Anthocy anins	Daneshzad et al. (2019)	Anthocyani ns (suppleme nt from unspecifie d source) / placebo	19/ NR	742	NR	Both	31.45- 1050 mg/d	1-96	 ↓ LDL-C: (-10.67, 95% CI: -14.97, -6.37), ↑ HDL-C: (7.40, 95% CI: 6.04, 8.75). 	>300 mg/d for >12w	yes	10
Cocoa (bean of Theobro ma cacao L.)	Lin et al. (2016)	Cocoa flavanol/pl acebo	19/healthy, DM, obese, CVD	1131	27-71	both	166-2110 mg/d	2-52	↓ TG: (-8.85, 95%CI: -14.17,-3.54), ↑ HDL-C: (2.32,95%CI: 0.77, 3.48), no significant change in TC, LDL-C	≥600 mg/d for TG, <600 mg/d for HDL-C	yes	10
	Hooper et al. (2012)	chocolate, cocoa, flavan-3 oil/ low	42/ HTN, T2DM, others	1297	18-76	both	6.3-105 g/d	2-18	↓ LDL-C: (-2.71, 95% Cl: -5.03,	NR	yes	10

Table 1. Characteristics of meta-analyses investigating the effects of polyphenolic compounds on dyslipidemia

	dose diet							0.00), ↑ HDL- C (1.16, 95% CI: 0.00, 2.32).			
Shrime et al. (2011)	Cocoa/plac ebo, white chocolate, skim milk	24/DM, CVD, hyperlipide mia	1109	18- 69.7	NR	26.7- 1080 mg/d	2-18	↓ LDL-C: (-3.09, 95%CI: -0.15, -5.8), ↑ HDL-C: (1.93, 95%CI, 0.12, 3.48), no significant change in TC, TG.	500 mg/d	γes	9
Tokede et al. (2011)	Cocoa products, dark chocholate /placebo, white chocholate , cocoa butter	10/overwei ght, healthy, HTN	320	18-80	both	20-105 g/d	2-12	 ↓ TC (-6.23, 95%CI: -11.60,-0.85), ↓ LDL-C: (-5.90, 95%CI: -10.47,-1.32), no significant change in TG, HDL-C 	NR	yes	9
Jia et al. (2010)	Cocoa/plac ebo, non- cocoa	8/healthy, DM, HTN	215	NR	both	30-963 mg/d	2-18 (short term)	↓ LDL-C: (-5.87, 95% Cl: -11.13,- 0.61), marginally ↓ sig in TC, no	<260 mg/d for TC, LDL-C	yes	9

									significant change in HDL-C.			
	Jalali et al. (2020b)	Curcumin (suppleme nt from unspecifie d source) / placebo	9/ NAFLD	588	41.8- 46.64	Both	50-1500 mg/d	8-12	↓ TC: (-25.13, 95% CI: -40.6, -9.28), ↓ LDL- C:(-39.83, 95% CI: - 75.02, -4.25). No significant change in TG, HDL-C.	NR	yes	10
curcumi n	Azhdari et al. (2019)	Curcumin (suppleme nt from unspecifie d source) / placebo, non-active agents	7 / MetS	503	38-59	Both	800-2400 mg/d	4-12	↓ TG: (-33.65, 95% CI: -51.27, -16.03), ↑ HDL-C: (4.31, 95% CI: 1.50, 7.11).	NR	γes	11
	Simental-Mendía et al. (2019)	Curcumino ids (suppleme nt from unspecifie d source)/ placebo	20/ HLP, T2DM, health, others	1427	25-76	both	45-6000 mg/d	1-24	↓ TG: (-21.36, 95% CI: -32.18, -10.53), ↑ HDL-C: (1.42, 95% CI: 0.03, 2.81). No	NR	yes	8

								significant change in LDL-C, TC			
Wei et al. (2019)	Curcumin (suppleme nt from unspecifie d source)/ placebo	4/NAFLD	229	31-70	both	500-3000 mg/d	8-24	 ↓ LDL-C: (-27.02, 95%CI: -52.30,-1.74), ↓ TG: (-33.20, 95%CI:-42.30, -24.09), no significant change in TC, HDL-C. 	NR	yes	9
Yuan et al. (2019)	Turmeric, curcuminoi d (suppleme nt from unspecifie d source)/ NR	14/ Mets, NAFLD, T2DM, others	1142	18-70	NR	66.3- 1795 mg/d	4-24	<pre>↓ TG: (-19.1, 95%CI: -31.7,-6.46), ↓ TC: (-11.4, 95%CI: -17.1,-5.74), ↓ LDL-C: (-9.83, 95%CI: -15.9,-3.74), ↑ HDL-C: (1.9, 95%CI:</pre>	330-1795 mg/d for TC,LDL-C, HDL-C, 1000-1795 mg/d for TG	yes	8

									0.31, 3.49)			
	Qin et al. (2017)	Turmeric, curcumin (suppleme nt from unspecifie d source)/ placebo	7/ T2DM, MetS, others	649	35-73	Both	70-1890 mg/d curcumin oids, 2.4 g/d turmeric	4-24	 ↓ LDL-C: (-13.14, 95% CI: -20.49, -5.8), ↓ TG:(- 18.95, 95%CI:-32.68, -5.22), ↓ TC in MetS patients (- 36.12, 95% CI: -49.85, -22.39). 	NR	yes	10
	Sahebkar et al. (2014)	Curcumin (suppleme nt from unspecifie d source)/ placebo, statin, vit E	5/ ACS, T2DM, others	223	24-81	both	45-4000 mg/d	1-24	No significant change in lipid profiles.	NR	yes	9
Flavonoi ds	Tabrizi et al. (2020)	Quercetin (suppleme nt from unspecifie d source) / placebo	16/ obese, T2DM, HLP, others	1575	35-72	NR	31.12- 3000 mg/d	2h- 12w	↓ TC: (-37.9, 95%CI: -57.23, -18.95), ↓ LDL-C:(-34.03,	NR	yes	10

									95%CI:-52.2, -15.85), No significant change in TG, HDL-C			
	Sahebkar (2017)	Quercetin (suppleme nt from unspecifie d source)/ placebo	5/ obese, hyper TG, T2DM, HTN, healthy	442	44-62	both	30-730 mg/d	2-10	 ↓ TC (3.57, 95% CI: 0.21, 6.92), ↓ TG: (-24.54, 95%CI: -33.09, -15.99). No significant change in LDL-C, HDL-C 	≥ 500 mg/d ≥4w for TC, TG	yes	9
	Hooper et al. (2008)	Flavonoids (derived from onion, broccoli, etc.)/NR	102/NR	6557	NR	NR	NR	Mean: 4.75	↓ LDL-C: by <u>soy protein</u> (- 7.35, 95%CI: - 9.28,-5.41), <u>green tea</u> (-8.89, 95%CI: -13.15,-4.64). No significant change in HDL-C	NR	Yes	9
Hesperi din	Mohammadi et al. (2019b)	Hesperidin (suppleme	10 / obese, T2DM,	577	18-81	Both	292-800 mg/d	3-12	No significant change in	NR	yes	11

		nt from unspecifie d source)/ placebo	MetS, MI, HLP						lipid profiles.			
	Kanadys et al. (2020)	Red clover (flower of <i>Trifolium</i> <i>pratense</i> L.) isoflavones /placebo	10/ pri- menopause	910	40-85	Fem ale	33.8-160 mg/d	12-48	 ↓ TC: (-11.21, 95% CI: -20.49, -13.92), no sig change in TG, LDL-C, HDL-C 	NR	yes	10
lsoflavo nes	Soltanipour et al. (2019)	Soy (bean of <i>Glycine max</i> (L.) Merr.) protein, isoflavone / placebo	16/obese, T2DM, others	471	42-89	Both	Soy protein 0.8-50 g/d, isoflavon e 32-165 mg/d	4-208	↓ TC: (-18.17, 95% Cl: -27.84, -8.12).	NR	yes	11
	Luis et al. (2018)	Red clover (flower of <i>Trifolium</i> <i>pretense</i> L.) isoflavones / placebo	12/ perimenopa use, postmenop ause	1284	47-62	Fem ale	40-160 mg/d	4-72	<pre>↓ TC: (-12.34, 95% Cl: -18.21, -6.48), ↓ LDL- C:(-10.61, 95%Cl:-15.51, -5.72), ↓ TG:(-10.18, 95%Cl: 16.23, -4.13), ↑HDL-</pre>	40 mg/d	yes	11

Simental-Mendia et al. (2018)	Soy (bean of <i>Glycine max</i> (L.) Merr.) isoflavone / placebo	10 / T2DM, HLP, HTN, menopause	973	6-80	both	40 mg - 25.6 g/d	5-48	C: (1.60, 95% CI: 0.17, 3.03). ↓ TC: (-7.38, 95% CI: -13.84, -0.92), ↓ LDL- C:(-6.25, 95%CI:-12.39, -0.10). No significant changes in HDL-C, TG	NR	yes	9
Taku et al. (2007)	Soy (bean of <i>Glycine</i> <i>max</i> (L.) Merr.) protein, isoflavono n/ non soy, dairy, animal protein	11/normo- hypercholes terolemic	780	26.3- 62.7	both	1.64- 317.9 mg/d isoflavon e, 25-133 g/d soy	4-13.3	 ↓ TC. (-3.9, 95%CI: -6.6, -0.8), ↓ LDL-C: (-5.0, 95%CI: -7.7,-2.7), no significant change in TG, HDL-C. 	NR	yes	9
Reynolds et al. (2006)	Soy (bean of <i>Glycine max</i> (L.) Merr.)	41/normo- hypercholes terolemic	1756	22-67	both	<u>Soy</u> protein: 20-106.2 g/d,	3-52	↓ TC: (-5.26, 95%CI: -7.14, -3.38),	NR	yes	9

	protein, isoflavone/ placebo					<u>isoflavon</u> <u>e:</u> <u>3-192.4</u> <u>mg/d</u>	.00	 ↓ LDL-C: (-4.25, 95%CI: -6.00,-2.50), ↓ TG: (-6.26, 95%CI: -9.14, -3.38), ↑ HDL-C: (0.77, 95%CI: 0.20, 1.34). 			
Zhan and Ho (2005)	Soy (bean of <i>Glycine max</i> (L.) Merr.) protein isoflavone / placebo	23/ HLP	1381	NR	both	3-185 mg/d	3-26	<pre>↓ TC: (-8.51, 95% Cl: -11.21, -6.19), ↓ LDL- C:(-8.12, 95% Cl: -11.6, -5.03), ↓ TG:(-9.74, 95% Cl: - 14.17, -4.43), ↑ HDL-C (1.55, 95% Cl: 0.00, 2.71).</pre>	> 80 mg/d	NR	9
Asgary et al. (2019)	Resveratro I (suppleme nt from unspecifie	10 / MetS	396	20 - 75	NR	100 - 3000 mg/d	4-12	no significant change in TG, TC, HDL-C	NR	yes	10

		d source)/ placebo										
Resverat rol	Elgebaly et al. (2017)	Resveratro l (suppleme nt from unspecifie d source)/ placebo	4/ NAFLD, overweight, obese	158	32-58	both	300-3000 mg/d	8-24	No significant change in lipid profiles	NR	yes	9
	Zhang et al. (2016a)	Resveratro l (suppleme nt from unspecifie d source)/pla cebo	4/NAFLD	156	32-60	both	300-3000 mg/d	8-25.7	↓ TC: (18.95,95%CI: 6.96, 30.93), ↑ LDL-C: (18.17,95%CI: 8.12, 28.61). no significant change in HDL-C.	NR	yes	9
	Sahebkar et al. (2015)	Resveratro l (suppleme nt from unspecifie d source)/ placebo	10/ smoker, T2DM, HLP, HTN, CHD	600	29-75	both	8-1500 mg/d	4-26	 ↓ HDL-C (-4.18, 95%CI: -6.54,-1.82). No significant change in other lipids. 	NR	yes	9
	Sahebkar (2013)	Resveratro I (derived from grape, etc.)/	7/ MetS, obese, others	282	28-73	Both	8-1500 mg/d	4-24	No significant change in lipid profile	NR	yes	10

	placebo							↓ TC			
Ghaedi et al. (2019)	Grape (berry of <i>Vitis</i> <i>vinifera</i> L.) polyphenol s/ placebo	48 / healthy, HLP, CKD, MetS, others	2346	25-79	Both	90-2000 mg/d	2-48	 ↓ IC (-6.20, 95%CI: -9.20,-3.19), ↓ LDL-C (-4.96, 95% CI: -7.59, -2.33), ↓ TG (-7.64, 95%CI: 12.12, -3.16). no significant change in HDL-C 	≤500 mg/d, ≤8w for TC, TG, LDL-C	yes	10

Legend: n, number; yr, year; w, week; NR, not reported; ↓ indicates significant reduction (p value <0.05); ↑ indicates significant elevation (p value <0.05); TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; DM, diabetes mellitus; CVD, cardiovascular disease; HTN, hypertension; T2DM, type-2 diabetes mellitus; NAFLD, non-alcoholic fatty liver disease; MetS, metabolic syndrome; HLP, hyperlipidemia; hyper TG, hypertriglyceridemia; MI, myocardial infarction; CHD, congestive heart disease; CKD, chronic kidney disease.

	Herbal	meta-	Par	ticipants		Interve	ntion	Significant		Quality assessme	
Study	medicine/ Control	analyzed studies (n)/ disorders	Sample size (n)	Age (yr)	Sex	Dose/ Frequency	Duration (w)	outcome	Effectiv e dose	nt in meta- analysis	AMSTAR score
Hou et al. (2020)	Brazil nut (nut of <i>Bertholletia excelsa</i> Bonpl.)/ NR	6/ NR	178	15-80	Both	5-20 g/d	6-16	 ↓ TG: (-8.23, 95%CI: -15.09,-1.38), ↓ TC: (-14.31, 95% CI: -23.38, -5.24), ↓ LDL-C: (-9.27, 95%CI: -13.48,-5.06). No significant change in HDL-C 	NR	Yes	10
Jalali et al. (2020a)	Cashew (nut of Anacardium occidentale L.)/NR	3/MetS, healthy, DM	392	45- 56.8	NR	30-42 g/d	4-12	No significant change in lipid profiles.	NR	yes	11
Jafari Azad et al. (2020)	Peanut (nut of <i>Arachis</i> <i>hypogaea</i> L.)	13/ healthy, obese, T2DM, HTN	800	18-75	both	<10-88 g/d	4-24	↑ HDL-C (2.72, 95% CI: 1.10, 4.35).	>12 w	yes	11

Table 2. Characteristics of meta-analyses investigating the effects of nuts on dyslipidemia

	/ placebo, others							No significant change in other lipid profiles.			
Liu et al. (2020)	Pistachio (nut of <i>Pistacia vera</i> L.), walnut (nut of <i>Juglans regia</i> L.), hazelnut (nut of <i>Corylus</i> <i>maxima</i> Mill.), cashew (nut of <i>Anacardium</i> <i>occidentale</i> L.), almond (nut of <i>Prunus dulcis</i> (Mill.) D.A.Webb)/h abitual diet	34/normo- hyperlipidemi c	1677	22.1- 66	both	NR	24	 ↓ TG first choice by Walnut: (-18.6, 95%Cl: -31, -7.08), then by Pistachio:(- 22.14, 95%Cl: -38.09, -6.2), ↓ LDL- C first choice by Walnut: (-3.48, 95%Cl: -4.64, -2.70), then by Pistachio:(- 6.57, 95%Cl: -10.82, -2.32), then by almond:(- 4.64, 95%Cl: -8.89, -0.38), ↓ TC 	NR	yes	11

							8-9 ⁽¹	first choice by Pistachio:(- 9.66, 95%CI: -15.08, -4.25), then by Walnut:(- 5.02, 95%CI: -6.18, -4.25), no significant change for HDL-C. ↓ TC:			
Lee-Bravatti et al. (2019)	Almond (nut of <i>Prunus dulcis</i> (Mill.) D.A.Webb)/d iet without almond	15/healthy, overweight, hyperlipidemi a	534	24-64	both	25-75	4-16	 ↓ TC: (-10.69, 95%CI: -16.75, -4.63), ↓ LDL-C: (-5.83, 95%CI: -9.91, -1.75), ↓ HDL-C: (-1.26, 95%CI: -2.47, -0.05), no sig change in TG. 	Both ≤, >42.5g/ d for ≤6w for TC, ≤42.5 g/d for ≤6w for LDL-C	yes	9

Guasch- Ferré et al. (2018)	Walnut (nut of <i>Juglans regia</i> L.)/nut free, western type, habitual diet	26/healthy, overweight, DM	1059	22-75	both	15-56 g/d	4-108	↓ TC: (-6.99, 95%CI: -9.39, -4.58), ↓ LDL-C: (-5.51, 95%CI: -7.72, -3.29), ↓ TG (-4.69, 95%CI: -8.93, -0.45). no significant change in HDL-C.	Both <, ≥28 g/d for <, ≥8w for TC, LDL- C, ≥28 g/d for ≥8w for TG	yes	11
Musa- veloso et al. (2016)	Almond (nut of <i>Prunus dulcis</i> (Mill.) D.A.Webb)/n o nut, olive oil, canola oil	18/ healthy, DM, hypercholeste rolemic	1697	18-70	both	20-113 g/d	2-72	 ↓ TC: (-5.80, 95%CI: -9.28, -2.71), ↓ LDL-C: (-4.64, 95%CI: -7.73, -1.93), ↓ TG: 	≥45 g/d for <12w	yes	9

	Tree nuts							(-6.20, 95%Cl: -11.52, -0.18), no significant change in HDL-C.			
Del Gobbo et al. (2015)	(walnut (nut of Juglans regia L.), almond (nut of Prunus dulcis (Mill.) D.A.Webb), macadamia (nut of Macadamia integrifolia Var. integrifolia Maiden & Betche), pistachio (nut of Pistacia vera L.), hazelnut (nut of Corylus maxima Mill.), pecan (nut of Carya illinoinensis	61/T2DM, healthy, obese	2582	35-64	both	15-100 g/d	3-26	Total nut*: ↓ TC: (-24.7, 95% CI: -25.3, -24.0, ↓ LDL- C: (-24.8: 95% CI: -25.5, -24.2), ↓ TG: (-22.2: 95%CI: -23.8, -20.5), no sig change in HDL-C.	Per one serving /d (28.4 g/d): ↓TC: (-4.66, 95%CI: -5.29, -4.03)	yes	10

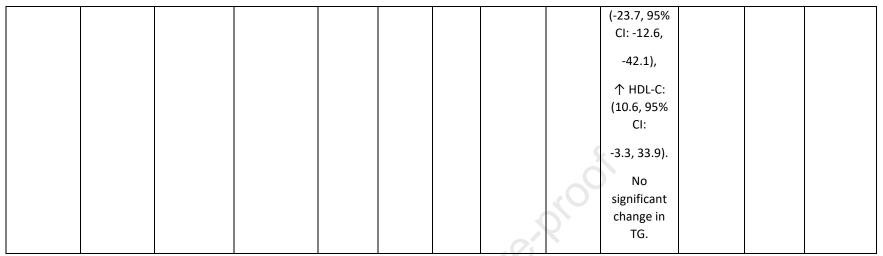
	(Wangenh.) K.Koch), cashew (nut of <i>Anacardium</i> <i>occidentale</i> L.)/ habitual diet, low fat							c			
Blanco Mejia et al. (2014)	Different tree nuts/ diet advice, supplement, others	45/ HTN, MetS, others	2142	17-78	Both	28-85.5 g/d	4-24	 ↓ TG: (-5.31, 95% CI: -7.97, -2.65). No significant change in HDL-C 	NR	Yes	10
Banel et al. (2009)	Walnut (nut of <i>Juglans</i> <i>regia</i> L.)/low fat	13/healthy, overweight, MetS	365	20-75	both	30-108 g/d	4-24	 ↓ TC: (-10.29, 95%CI: -14.76, -5.83), ↓ LDL-C: (-9.23, 95%CI: -13.10, -5.36), no significant change in TG, HDL-C. 	NR	yes	8

Phung et al. (2009)	Almond (nut of <i>Prunus dulcis</i> (Mill.) D.A.Webb)/u sual diet, low fat or high fat diet	5/DM, normo- hyperlipidemi c	142	18-86	both	25-168 g/d	4	 ↓ TC: (-6.95, 95%CI: -13.12, -0.77), ↓ LDL-C: (-5.79, 95%CI: -11.2, 0.00), no significant change in TG, HDL-C. 	NR	yes	9
------------------------	--	---------------------------------------	-----	-------	------	------------	---	---	----	-----	---

Legend: n, number; yr, year; w, week; NR, not reported; ↓ indicates significant reduction (p value <0.05); ↑ indicates significant elevation (p value <0.05); TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; MetS, metabolic syndrome; DM, diabetes mellitus; T2DM, type-2 diabetes mellitus; HTN, hypertension.

		Herbal	meta-	Ра	rticipants	i	Interve	ntion	Significant		Quality	
Subgroup	Study	medicine/ Control	analyzed studies (n)/ disorders	Sample size (n)	Age (yr)	Sex	Dose/ Frequenc Y	Durati on (w)	outcome	Effective dose	assessm ent in meta- analysis	AMSTAR score
phytoster ols	Soto- Mendez et al. (2019)	phytosterol -fortified dairy (milk, etc. fortified with unspecified source)/pla cebo	31/normo- hypercholes terolemia	2449	22.3- 65	both	0.7-4 g/d	3-12	<pre>↓ LDL-C in <u>Total dairy:</u> (-13.92, 95% CI: -15.86, -11.99), <u>by milk:</u> -14.31 (95% CI: -18.18, -10.05), <u>by yogurt:</u> -12.76 (95% CI: -15.47, -10.05), <u>Cheese</u>: -17.02 (95% CI: -22.04, -12.37),</pre>	>3g/d	yes	11

Table 3. Characteristics of meta-analyses investigating the effects of phytosterols on dyslipidemia


								butter: -16.63 (95%CI: -19.72, -13.53), no significant change for TC.			
Rocha et al. (2016)	Phytosterol (orange, etc. fortified with unspecified source)/pla cebo	20/ MetS, hypercholes terolemic, obesity	1308	42.5- 66.0	both	1.4-4.0 g/d	3-17.2	 ↓ LDL-C: -14.3 (95%CI: -17.3, -11.3), ↓ TC (-16.4, 95% CI: -20.1, -12.8), ↓ TG: (-7.9, 95% CI: -12.7, -3.1). no significant change in HDL-C 	NR	NR	9

Ras et al. (2014)	Plant sterols, stanols (margarine, etc. fortified with unspecified source)/	124/ normo- hypercholes terolemic	9635	NR	NR	0.3-9 g/d	NR	↓ dose dependent LDL-C: mean 6- 12%	0.6-3.3 g/d	yes	9
Amir Shaghaghi et al. (2013)	Sterols, Stanols (from commercial brands such as Phytocell, etc.)/ placebo	8/ NR	263	36-62	Both	1-3 g/d	4-6	↓ LDL-C (11.98, 95% CI: -15.08, -9.28).	NR	Yes	8
Demonty et al. (2013)	Plant sterols (margarine, etc. fortified with unspecified source)/pla cebo	12/ normo- hypercholes terolemic	935	33-68	both	0.8-2.5 g/d	3-4	↓ TG: 6% (95%Cl: - 10.7,-1.2), no significant change in HDL-C	NR	yes	8
Musa- veloso et al. (2011)	Stanols and sterols (margarine, etc. fortified	114/ NR	9239	22.7- 66	both	Sterols 0.19-9 g/d, Stanols	3-45	↓ LDL-C (-10.44, 95% CI,	2 g/d	NR	8

	with unspecified source)/ placebo					0.8 -8.8 g/d		-18.17, -2.70)			
Talati et al. (2010)	plant sterols (margarine, etc. fortified with unspecified source)/ plant stanols	14/ normo- hypercholes terolemic	531	NR	NR	0.625- 3.25 gr/d	3-16	No significant change in lipid profiles	NR	yes	9
Demonty et al. (2009)	Plant sterols (orange juice, etc. fortified with unspecified source)/pla cebo	84/ normo- hypercholes terolemic	6805	22.7- 66	both	0.7-9 g/d	3-26	↓ LDL-C:(- 13.14, 95% CI: -13.92, -11.98)	2.15 g/d	yes	8
Wu et al. (2009)	Phytosterol s, stanols (yoghurt, etc. fortified with unspecified source)/ NR	20/ HLP	1273	20-70	NR	0.45-3.2 g/d	3-52	↓ TC (-13.92, 95% CI: -17.78, -10.05), ↓ LDL-C	2 g/d	Yes	10

							00°°	(-13.53, 95% CI: -18.17, -8.50), ↓ TG (-8.85, 95% CI: -14.17, -2.65)			
AbuMweis et al. (2008)	Plant sterols, stanols (orange juice, etc. fortified with unspecified source) /placebo	59/ normo- hypercholes terolemic	4500	29-66	both	0.3-9 g/d	3-52	↓ LDL-C: (-11.98, 95% CI: -13.53, -10.44)	NR	yes	9
Seppo et al. (2007)	Plant stanols (milk, etc. fortified with unspecific source)/pla cebo	4/hyperchol esterolemic	199	25-65	both	0.9-1.3 g/d	3-5	 ↓ TC : (-3.8%, CI95%: -6.0, -1.7%), ↓ LDL-C : (-4.9%) 95%CI: 	NR	NR	7

Chen et al. (2005)	sterol and stanol sters, policosanol (margarine, etc. fortified with unspecified source)/ placebo	23,29/ T2DM, HLP, others	1662 in sterol and stanol, 2934 in policosa nol	NR	NR	2-9 g/d sterol and stanol sters, 5-40 mg/d policosa nol	4-52 for sterol and stanol sters, 4-104 w for policos anol	-7.8, -1.8%), non change in HDL-C, TG for sterol and stanol: \downarrow TC: (-7.7, 95%CI: -2.8,-19.5), \downarrow LDL-C: (-11.0, 95%CI: -4.6,-24.3). No significant change in HDL-C, TG. For policosanol \downarrow TC (-16.2, 95%	NR	yes	8
								policosanol			

Legend: n, number; yr, year; w, week; NR, not reported; ↓ indicates significant reduction (p value <0.05); ↑ indicates significant elevation (p value <0.05); TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; MetS, metabolic syndrome; HLP, hyperlipidemia; T2DM, type-2 diabetes mellitus.

		meta-	Par	ticipants		Interve	ntion			Quality	
Study	Herbal medicine/ Control	analyzed studies (n)/ disorders	Sample size (n)	Age (yr)	Sex	Dose/ Frequenc Y	Duratio n (w)	Significant Main outcome	Effective dose	assessm ent in meta- analysis	AMSTAR score
Amiri et al. (2020)	Canola oil (seed of <i>Brassica</i> <i>napus</i> L.)/ other edible oils	42 / healthy, HLP, T2DM, MetS, others	2002	22-67	both	NR	2-24	 ↓ TC (-10.44, 95% CI: -14.69, -6.57), ↓ LDL-C (-8.89, 95% CI: -12.76, -5.41). No significant change in TG, HDL-C. 	~15% of total caloric intake	yes	11
Khorshidi et al. (2020)	Primrose oil (seed of <i>Primula</i> <i>vulgaris</i> Huds.)/ placebo	6/ healthy, PCOS, others	6-60	20-53	both	1-27.8 g/d	6-17	No significant change in TC, TG, LDL-C, HDL- C.	≤4 g/d for TG, HDL-C	yes	11
Neelakanta n et al. (2020)	Coconut oil (fruit of <i>Cocos</i> <i>nucifera</i> L.)/ soybean oil, olive oil,	16/ healthy, HLP, others	730	20-60	both	2-25 % total energy/d	3-104	↑ LDL-C: (10.47, 95% CI: 3.01, 17.94), ↑ HDL- C (4.00, 95%CI: 2.26, 5.73).	NR	yes	9

Table 4. Characteristics of meta-analyses investigating the effects of vegetable oils on dyslipidemia

	others										
Teng et al. (2020)	Coconut oil (fruit of <i>Cocos</i> <i>nucifera</i> L.)/ other vegetable oils, animal oils	18/obese, hyperlipidemi c, CVD, normolipidem ic	1016	18-79	both	NR	4-24	 ↑ HDL-C vs. plant oil: (0.57, 95%cl: 0.40, 0.74), ↑ HDL-c vs. animal oil: (0.33, 95%cl: 0.01, 0.65), ↑ LDL-C vs. plant oil: (0.26, 95%cl: 0.09, 0.43), ↓ LDL-C vs. animal oil: (-0.37, 95%cl: -0.69, -0.05), no significant change in TG. 	NR	yes	9
Ghobadi et al. (2019a)	Olive oil (fruit of <i>Olea europaea</i> L.) / rapeseed oil, sunflower oil, other plant oils	27 / healthy, HLP, MetS, NAFLD, others	1089	16-91	both	15-25 ml/d, 20- 60 g/d	3-24	 ↓ TC (-6.72, 95% CI: -2.8, -10.6), ↓ LDL-C (-4.2, 95% CI: -1.4, -7.01), ↓ TG (-4.31, 95% CI: -0.5, -8.12), ↑ HDL-C (1.37, 95% CI: 0.4, 	NR	yes	11

								2.36).			
Ghobadi et al. (2019b)	Canola oil (seed of <i>Brassica</i> <i>napus</i> L.)/ sunflower oil, olive oil, others	27 / healthy, T2DM, NAFLD, others	1359	22-65	both	12-50 g/d	3- 25.7	 ↓ TC (-7.24, 95% CI: -12.1,-2.7), ↓ LDL-C (-6.4, 95% CI: -10.8,-2.0). No significant change in HDL-C, TG. 	NR	yes	11
Voon et al. (2019)	Palm olein (fruit of <i>Elaeis</i> guineensis Jacq.)/other oils: canola, coconut, olive	9/healthy	1075	18-64	both	27-34% energy	4-12	No significant change in lipid profiles	NR	γes	10
Schwingsha ckl et al. (2018)	Oils (safflower (seed of <i>Carthamus</i> <i>tinctorius</i> L.), sunflower (seed of <i>Helianthus</i> <i>annuus</i> L.),	54/ healthy	NR	22-84	NR	NR	3-27	↓ LDL-C <u>sun</u> <u>flower</u> (-16.24, 95% CI: -25.14, -6.96), <u>rapeseed</u> (-13.92, 95% CI: -20.11, -8.12), <u>flaxseed</u> (-14.31, 95%	NR	Yes	9

rapeseed		<mark>CI: -23.2</mark> ,	
(seed of		<mark>–5.03</mark>), <u>corn</u>	
Brassica		(<mark>–12.76, 95%</mark>	
napus L.),		<mark>CI: -17.4,</mark>	
hempseed		-8.12), <u>olive</u>	
(seed of		(<mark>–9.67, 95% CI:</mark>	
Cannabis		<mark>–13.92, –5.8</mark>),	
sativa L.),		soybean	
flaxseed			
(seed of		(-11.21, 95% CI:	
Linum		-15.08, -6.96),	
usitatissimu		<u>palm</u> (–9.28,	
<i>m</i> L.), corn		95% CI: -13.92,	
(fruit of Zea	0	<mark>-4.64</mark>), <u>coconut</u>	
mays L.),) (<mark>-8.89, 95% CI:</mark>	
olive (fruit of		<mark>–15.47, –2.71</mark>),	
Olea		↓ TG by <u>palm</u>	
europaea L.),		(<mark>-5.31, 95% CI:</mark>	
soybean (-8.86, -0.89),	
bean of		<u>-3.30, -0.39</u>), soybean (-5.31,	
Glycine max		95% Cl: -7.09,	
(L.) Merr.),		-2.66),	
palm (fruit of			
Elaeis		sunflower	
guineensis		(-3.54, 95% CI:	
Jacq.), and		<mark>–7.09, –0.89</mark>),	
coconut oil		↓ TC by <u>sun</u>	
(fruit of		flower (-18.95 ,	
Cocos		95% CI: -27.46,	
nucifera L.) /		-10.44),	
butter		rapeseed	
butter		(<mark>-16.63, 95%</mark>	
		CI: -22.82,	
		-10.44),	
		 /,	

flaxseed (<mark>–12.76, 95%</mark> CI: -22.43, <mark>–3.09</mark>), <u>corn</u> (-14.31, 95% CI: -18.95, **-9.67**), olive (-10.83, 95% CI: -14.70, -6.57), soybean (-12.76, 95% CI: -17.02, <mark>–8.51</mark>), <u>palm</u> (<mark>–9.67, 95% CI:</mark> <mark>-13.92, -5.03</mark>), <u>coconut</u> (<mark>-6.96,</mark> 95% CI: -13.15, -0.77), 个 HDL-C by <u>coconut (</u>**1.55,** 95% CI: 0.39, **3.09**). ↓ TC (-16.85, 95% CI: Argan oil -25.10, -8.60), (nut of 5/ ↓ LDL-C Ursoniu et Argania hemodialysis, 17-30 292 20 - 66 both 3-4 NR 9 (-11.67, 95% CI: yes al. (2018) spinosa (L.) HLP, T2DM, ml/d -17.32, -11.6), Skeels) / healthy ↓ TG (-13.69, placebo 95% CI: -25.80, -1.58), 个 HDL-C (4.14, 95% CI:

								0.86, 7.41)			
Jolfaie et al. (2016)	Rice bran oil (chaff of <i>Oryza sativa</i> L.)/ soybean oils or others	11 / HLP, healthy	9-60	34-61	both	18-35g/d	3-13	↓ LDL-C (-6.91, 95% CI: -10.24, -3.57), ↓ TC (-12.65, 95% CI: -18.04, -7.27), ↑ HDL-C only in men (6.65, 95% CI: 2.38, 10.92), all above changes in<30 usage, No significant change in TG, VLDL-C	NR	yes	9
Hohmann et al. (2015)	Virgin Olive oil (fruit of <i>Olea</i> <i>europaea</i> L.)/refined olive oil	8/ healthy, HTN, others	355	26- 69.9	Both	25-76 ml/d	3-12	No significant change in lipid profiles	NR	Yes	9
Sun et al. (2015)	Palm oil (fruit of <i>Elaeis</i> guineensis Jacq.)/veget able oils (olive, sunflower, canola,	30/NR	764	16-66	Both	NR	2-16	 ↑ TC (13.53, 95% CI: 8.89, 18.17), ↑ LDL-C (11.98, 95% CI: 7.73, 16.24), ↑ HDL-C (0.77, 95% CI: 0.38, 	Intake: 20 to <30% energy	yes	11

	soybean)							1.54), not change in TG			
Fattore et al. (2014)	Palm oil (fruit of <i>Elaeis</i> guineensis Jacq.)/ peanut oil. Sunflower oil, others	51/ HLP, healthy, others	1526	16-70	both	NR	2-16	↓ TC (-14.15, 95% CI: -4.11,-24.19), ↓ LDL-C (-10.83, 95% CI: -0.91,-20.75), ↑ HDL-C (3.73, 95% CI: 1.43, 6.03). No significant change in TG	NR	NR	9

Legend: n, number; yr, year; w, week; NR, not reported; ↓ indicates significant reduction (p value <0.05); ↑ indicates significant elevation (p value <0.05); TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; HLP, hyperlipidemia; T2DM, type-2 diabetes mellitus; MetS, metabolic syndrome; PCOS, polycystic ovary syndrome; CVD, cardiovascular disease; NAFLD, non-alcoholic fatty liver disease; HTN, hypertension.

		Herbal	meta-	Par	ticipants		Interve	ntion	Significant		Quality assessm	
Subgroup	Study	medicine/ Control	analyzed studies (n)/ disorders	Sample size (n)	Age (yr)	Sex	Dose/ Frequenc Y	Durati on (w)	outcome	Effectiv e dose	ent in meta- analysis	AMSTAR score
Soy	Mejia et al. (2019)	Soy protein/ placebo, milk, others	43/postmen opausal, hypercholes trolemic	2607	20-73	both	4.5-93 g/d	4-20	↓ TC: (-6.41, 95% CI: -9.30, -3.52), ↓ LDL-C:(- 4.76, 95%CI: -6.71, -2.80).	NR	yes	8
protein (been of <i>Glycine</i> <i>max</i> (L.) Merr.)	Anderson and Bush (2011)	Soy protein/no n soy diets	43 (20 parallel, 23 crossover studies)/Me tS, hypercholes terolemic, DM	3796	NR	both	11.3-62 g/d	4-13	 ↓ LDL-C: (-8.89, 95%CI: -10.83, -6.96) in parallel studies, ↓ LDL-C: (-6.19, 95%CI: -8.51, 	15-30 g/d	yes	11

Table 5. Characteristics of meta-analyses investigating the effects of plant proteins on dyslipidemia

						21 ⁰		-4.25) in crossover studies, Net↓sig TGs: (-15.06, 95%CI: -22.14, -7.09), net ↑ HDL-C: (1.55, 95%CI: 0.39, 2.71).			
Harland and Haffner (2008)	Soya protein/ placebo	30/NR	2913	27-67	both	15-40 g/d	4-52	 ↓ TC: (-8.51, 95%CI: -5.41, -11.21), ↓ LDL-C: (-8.89, 95%CI: -6.19, -11.99), ↓ TG: (-7.09, 95%CI: -0.35, 	25g/d	yes	10

								-14.17), no significant change in HDL-C.			
Anderson et al. (1995)	Soy protein/ control diet	38/ HLP, others	3-127	NR	Both	Mean: 47 g/d	NR	 ↓ TC: (-23.2, 95% Cl: -13.5, -32.9), ↓ LDL-C: (-21.7, 95% Cl: -11.2, -31.7), ↓ TG: (-13.3, 95% Cl: -0.3, -25.7). No significant change in HDL-C 	NR	NR	6
Zhao et al. (2020)	Plant protein (derived from soybean, etc.)/anima I protein	32/NR	1562	18-80	both	NR	4-24	↓ TC (-7.34, 95%CI:- 10.05, -4.64),	NR	yes	10

Other Plant proteins						0	Ren		 ↓ TG: (-6.2, 95%Cl: -11.51, -1.77), ↓ LDL-C: (-7.34, 95%Cl: -10.05, -5.02), ↑ HDL-C: (1.16, 95%Cl: 0.38, 2.32). 			
	Li et al. (2017)	Plant protein (derived from soybean, etc.)/anima I protein	112/T2DM, HTN, healthy, others	10983	44-59	Both	22-50 g/d	3-208	 ↓ LDL-C (- 6.18, 95% CI: -7.73, -4.64), ↓ non-HDL-C (-6.96, 95%CI, -8.50,-5.41) 	NR	Yes	10

Legend: n, number; yr, year; w, week; NR, not reported; ↓ indicates significant reduction (p value <0.05); ↑ indicates significant elevation (p value <0.05); TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; MetS, metabolic syndrome; DM, diabetes mellitus; HLP, hyperlipidemia; HTN, hypertension.

		Herbal	meta-	Ра	rticipants		Interve	ntion	Significant		Quality	
Subgroup	Study	medicine/ Control	analyzed studies (n)/ disorders	Sample size (n)	Age (yr)	Sex	Dose/ Frequenc y	Durati on (w)	main outcome	Effective dose	assessm	AMSTAR score
Coffee (bean of <i>Coffea</i> arabica L.)	Morvaridi et al. (2020)	Green coffee/ placebo	27/ healthy, with any disorder	992	18-70	both	100-6000 mg/d	2-24	↓ TG (-9.28, 95% CI: -14.93, -3.63), ↑ HDL-C (1.33, 95%CI: 0.08, 3.072.5). No significant change in TC, LDL-C	<500 mg/d , >4 w for TG, >400 mg/d, ≤4w for HDL-C	yes	10
Tea (leaf of <i>Camellia</i> <i>sinensis</i> (L.) Kuntze)	Asbaghi et al. (2020a)	Green tea/ placebo	7/ T2DM	512	50-65	both	0.4-10 g/d	4-16	 ↓ TG (-12.79, 95% CI: -24.74, -0.84), ↓ TC (-14.25, 95% CI: -23.70, -4.80). No significant change in 	>8w and ≥800 mg/d for TG, >8w and <800 mg/d for TC	yes	10

Table 6. Characteristics of meta-analyses investigating the effects of tea and coffee on dyslipidemia

								LDL-C, HDL- C			
Payab et al. (2020)	Green tea/NR	16/NR	NR	NR	NR	Green tea 300-6000 mg/d, catechin 150-1200 mg/d	8-12	 ↓ TC (-0.42, 95% CI: -0.76, -0.09), ↓ LDL-C (-0.21, 95% CI: -0.39, -0.03), No significant change in TG, HDL-C. 	green tea 6000 mg/d for lipid profiles	yes	10
Mansour- Ghanaei et al. (2018)	Green tea / placebo, diet+ exercise	6 / NAFLD, NASH	265	26-60	both	500-1080 mg/d	12-25 w	 ↓ TG (-31.87, 95% CI: -40.62, -23.12), ↓ TC (-27.57, 95% CI: - 36.17, -18.98), ↓ LDL-C (-14.15, 95% CI: -23.69, -4.60). No significant changes in 	NR	γes	10

								HDL-C.			
Li et al. (2016)	Tea, tea extract/ water, placebo, others	10/ T2DM	608	20- 64.9	NR	150 mg/d - 15 g/d	4-16	No significant change in lipid profiles	NR	Yes	11
Zhao et al. (2015)	Black tea/placeb o	10/healthy, CVD, hypercholes terolemic	411	NR	both	NR	3-12	↓ LDL-C: -4.64 (95%CI: - 8.99, -0.30), no sig change in TC, HDL-C	NR	yes	11
Onakpoya et al. (2014)	Green tea/ placebo, lactose, others	20/ healthy, HTN	1536	6-71	both	250-2034 mg/d	2-24	↓ TC (-5.02, 95% CI: -7.73, -2.70), ↓ LDL-C (-7.34, 95% CI: -11.6, -3.48). No significant Change in HDL-C, TG	NR	yes	10

Hartley et al. (2013)	Black tea, green tea/placeb o Green tea/	11/healthy, high risk CVD	821	25-75	both	Varied: 1-3 capsule daily, two tablets TDS	12-96	Black tea: ↓ LDL-C: -16.62 (95% Cl: - 21.65, -11.98). Green tea: ↓ TC: -23.97, (95% Cl: -29.77, -17.78), ↓ LDL-C: -24.75, (95% Cl: -29.77, -20.11), Both tea: ↓ LDL-C: -18.56, (95% Cl: -23.59, -13.53). ↓ TC:	NR Both < ,	yes	11
Zheng et al. (2011)	placebo, no interventio n	14/healthy, overweight, CVD	1136	16-73	both	150-2500 mg/d	4-12	(-7.20 95%CI:	≥625 mg/d, ≥12 w for TC, LDL-	yes	10

					-28.19,	C, <12w	
					-26.21), 🗸	by above	
					20.21), V	doses	
					LDL-C: (-2.19	just for	
					95%CI:	LDL-C	
					-23.16,		
					-21.21), no		
					significant		
					change in		
				SO.	HDL-C.		

Legend: n, number; yr, year; w, week; NR, not reported; ↓ indicates significant reduction (p value <0.05); ↑ indicates significant elevation (p value <0.05); TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; T2DM, type-2 diabetes mellitus; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; CVD, cardiovascular disease; HTN, hypertension; TDS, 3 times a day.

		Herbal	meta-	Pa	rticipants		Interve	ntion	Significant		Quality assessm	
subgroup	Study	medicine/ Control	analyzed studies (n)/ disorders	Sample size (n)	Age (yr)	Sex	Dose/ Frequenc Y	Durati on (w)	outcome	Effective dose	ent in meta- analysis	AMSTAR score
	Mahmass ani et al. (2018)	Avocado/ low fat diet, diet without Avocado	18/healthy, DM	481	18-24	both	135-500 g/d	0.02- 24	 ↑ HDL-C: (2.84, 95%CI: 0.18, 5.49), no sig change in TC, TG, LDL- C. 	NR	yes	9
Avocado (fruit of <i>Persea</i> <i>american</i> <i>a</i> Mill.)	Peou et al. (2016)	Avocado substitute, added to diet/regula r diet	10/healthy, dyslipidemi a, overweight	229	NR	NR	136-500 g/d	1-12	 ↓ TC: (-18.80, 95%Cl, -24.56, -13.05), ↓ LDL-C: (-16.50 95%Cl, -22.91, -10.10), ↓ TG: (-27.20, 95%Cl, 	NR	yes	9

 Table 7. Characteristics of meta-analyses investigating the effects of other herbal medicines on dyslipidemia

									-44.41, -29.99), no significant change in HDL-C.			
Berberine	Zhang et al. (2019)	Berberine (from unspecified source)/ placebo, statin	11/ T2DM, CAD, carotid plaque	1386	25-82	NR	0.3-1 g/d	4-96	 ↓ TG vs. statins (-32.77, 95%) CI: -58.46, -6.2), ↓ TGs vs. placebo (-71.74, 95%) CI: -142.6, -1.77), ↓ TC vs. placebo (-32.09, 95%) CI: -37.51, -27.07), ↓ LDL-C vs. placebo (-23.2, 95%) CI: -27.84, -18.95), ↑ HDL-C vs. placebo (3.09, 95%) 	NR	yes	9

								CI: 14.69, 5.8), no significant change in TC, LDL-C, HDL-C vs. statins			
Ju et al. (2018)	Berberine (from unspecified source)/ placebo	16/ T2DM, CAD, others	2147	31-83	Both	600-1500 mg/d	8-96	 ↓ TC (-18.17, 95% CI: -24.74, -11.98), ↓ LDL-C (-14.69, 95% CI: -20.49, -8.50), ↓ TG (-24.8, 95%CI: -40.74, -8.85), ↑ HDL-C (3.09, 95%CI: 1.16, 4.64) 	NR	Yes	10
 Lan et al. (2015)	Berberine (from unspecified	6/ DM, HLP	623	NR	NR	0.6-2.7 g/d	8-17	↓ TC (-25.52, 95%	NR	Yes	9

		source) ±lifestyle/ placebo, lifestyle					R10		CI: -39.44, -11.98), ↓ TG (-34.54, 95% CI: -52.26, -16.83), ↓ LDL-C (-25.13, 95%CI: -79, -21.65), ↑ HDL-C (2.7,			
-					03	0			95% CI: 1.54, 0.38) ↓ TC (- 23.59,			
	Dong et al. (2013)	Berberine (from unspecified source)/ placebo,	11/ T2DM, HLP, others	874	NR	NR	0.5-1.5 g/d	8-52	95% CI: -32.09, -15.08), ↓ TG	NR	Yes	11
		others							(- 44.29, 95% CI: -61.12, -27.46),			

									↓ LDL-C (-25.13, 95% Cl: -29.39, -20.88), ↑ HDL-C (1.93, 95%Cl: 0.77, 3.48)			
Berries	Pourmaso umi et al. (2020)	Cranberry (berry of <i>Vaccinium</i> <i>macrocarp</i> <i>on</i> Aiton) / placebo	10/ MetS, healthy, T2DM, others	496	27-62	both	Juice 240-750 ml/d, capsule 240-1500 mg/d	2-17.1	 ↑ TG by juice (7.82, 95% CI: 0.28, 15.35), No significant change in other lipid profiles. 	NR	Yes	10
	Hadi et al. (2019a)	Barberry (berry of <i>Berberis vulgaris</i> L.)/ placebo	5/ MetS, NAFLD, T2DM	339	39-56	both	3-5 g/d fruit, 600-750 mg/d extract, 200 ml/d	6-12	↓ TC: (-23.58, 95% Cl: -31.00, -16.16), ↓ TG: (-29.16, 95% Cl: -42.91,	NR	yes	11

-15.41), 🗸 LDL-C: (-13.75, 95% CI: -19.31, -8.20), No significant change in HDL-C. ↑ HDL-C (1.48, 95% CI: 1.29, Chokeberry 300 1.68), ↓ TC (berry of 100-500 7 /Met S, mg/d for Rahmani (-7.18, 95% Aronia 16-66 both ml or 4-24 TG, <10w et al. healthy, 286 10 yes CI: -13.90, arbutifolia (2019a) HTN, others mg/d for TC, -0.46), \downarrow (L.) Pers.) / LDL-C LDL-C placebo (-5.84, 95% CI: -6.91, -4.77). Phimarn White 13/healthy, 436 NR NR 3-1200 9 0.3-No NA yes et al. mulberry DM, DLP significant mg/d 25.7 (2017) (berry of change in Morus alba lipid profiles L.)/ placebo 22/ healthy, ↓ LDL-C: (-Berries Huang et 21.5-T2DM, 1251 both 2-24 8.12, 95% 9 NR NR yes (berry of al. (2016) 65.5 CI: -13.15, others cranberry,

		etc.)/ placebo							-2.71). No significant change in TC, TG, HDL- C.			
Black seed (seed of <i>Nigella</i> <i>sativa</i> L.)	Hallajzade h et al. (2020)	Black seed / placebo	50/ HTN, T2DM, others	3679	26-72	both	0.2-3 g/d Extract, 1.5-5 ml/d oil	2-48	↓TC: (-16.80, 95% CI: -21.04, - 12.55), ↓ TG: (-15.73, 95% CI: -20.77, - 10.69), ↓ LDL-C: (- 18.45, 95% CI: -22.44, -14.94), ↑ HDL-C: (1.93, 95% CI: 1.23, 2.64)	NR	yes	11
	Payab et al. (2020)	Black seed/ NR	4/NR	NR	NR	NR	1500- 3000 mg/d	6-8	↓TG (-1.67, 95%Cl: -2.54, -0.79),↓ LDL-C (-0.85,	1000 mg/d	yes	10

								95%CI: –1.7, –0.03). no significant change in TC, HDL-C			
Daryabeyg i- Khotbehsa ra et al. (2017)	Black seed/ metformin, atorvastati n, placebo	7/ T2DM	505	47-56	NR	0.5 -2 g/d powder, 1-5 ml/d oil	8-48	 ↓ TC (-22.99, 95% CI: -32.16, -13.83), ↓ LDL-C (-22.38, 95% CI: -33.60, -11.15), ↓ TG by oil(-14.8, 95%CI: -23.1, -6.5). No significant change HDL-C 	NR	yes	10
Sahebkar et al. (2016a)	Black seed/ placebo	17/ MetS, HTN, others	1185	29-59	both	Powder 1-8 g/d, Oil 5 ml/d, Oil 1-3	4-12	↓TC (-15.65, 95%CI: -24.67, -6.63), ↓	NR	yes	8

g/d LDL-C (14.10, 95%CI: -19.32, -8.88), ↓TG (-20.64,95% CI: -30.29, –11.00). No significant change in HDL-C ↓ LDL-C (-14.33, 95% CI: -19.87, -8.80), 🗸 тс Cinnamon (bark of (-12.10, 95% Heydarpo Cinnamo cinnamon/ 5/ PCOS, fem 336-1500 CI: -18.21, ur et al. 26-31 448 6-24 NR 10 yes placebo obese ale mg/d mum (2020) -5.98), 🗸 verum ΤG J.Presl) (-13.05, 95% CI: -24.11, -1.99), 个 HDL-C (3.20, 95% CI: 1.74,

								4.65).			
Ainehchi et al. (2019)	Cinnamon, alone, mixture/ placebo	13/PCOS	668	12.6- 42	Fem ale	1-3 g/d	8-48	↓ TC : (-14.60, 95% CI: -22.93, -6.26), ↓ LDL-C: (-16.58, 95% CI: -23.91, -9.24), ↓ TG: (-17.97, 95% CI: -30.51, -5.43). no significant change for HDL-C.	NR	yes	11
Allen et al. (2013)	cinnamon/ placebo	10/ T2DM	543	42-71	both	0.12-6 g/d	4-18	<pre>↓ TC: (-15.60, 95% CI: -29.76, -1.44), ↓ LDL-C: (-9.42, 95%CI: -17.21,</pre>	NR	NR	8

-1.63), 🗸 TG: (–29.59, 95%CI: -48.27, -10.91), 个 HDL-C; (1.66, 95%CI: 1.09, 2.24). ↓ TC (-10.90, 95%, CI: -21.39, -0.42), \downarrow LDL-C Cumin / 6 / T2DM, (-6.94, 95% Hadi et al. 25mgfood, both NASH, 376 37-47 8-24 CI: -11.53, 11 NR yes (2018) 3g/d Cumin placebo obese -2.35)*,* 个 (seed of HDL-C (3.35, Cuminum 95% CI:1.58, cyminum 5.12), no L.) significant changes in ΤG ↓ TG: Jafarnejad Cumin/ 7/ T2DM, 25-5000 (-21.23, 8-24 et al. 412 18-60 both NR 9 yes placebo overweight mg/d (2018) 95%CI: -37.64,

									-4.82), ↑ HDL-C: (4.16, 95% Cl: 3.30, 5.01). No significant change in TC, LDL-C.			
Fenugreek (seed of Trigonella foenum- graecum L.)	Askarpour et al. (2020)	Fenugreek / placebo	12/ T2DM, HLP, healthy	560	22-70	Both	Powder 5 -100 g/d, hydro- alcoholic extract 0.588- 1.176 g/d	2-162	↓ TC: (-9.37, 95% CI: -15.42, -3.32), ↓ TG: (-13.78, 95% CI: -26.64, -0.92), ↓ LDL-C: (-6.59, 95% CI: -13.04, -0.14), ↑ HDL-C: (3.501, 95% CI: 1.31, 5.69).	>10g/d for >8w	yes	10
	Heshmat- Ghahdarij	Fenugreek seed,	15/ healthy,	672	18-80	Both	NR	2h-3y	↓ TC: (-43.7, 95%	NR	yes	9

ani et al. (2020)	leaves, others/ placebo, uncontrolle d	T2DM, HLP				P ^r e	Q ^r O	CI: -72.7, -14.30), ↓ LDL-C: (-48.72, 95%CI: -80.82, -16.62), ↓ TG: (-94.77, 95%CI: -161.2, -29.23), ↑ HDL-C:			
				302				(27.07, 95%CI: 2.70, 51.82)			
Khodamor adi et al. (2020)	Fenugreek (powder, hydroalcoh ol)/ placebo	14/ T2DM, obese, healthy, others	20-154	25-50	both	0.5-30 g/d	1-25.7	↓ TC (-9.13, 95% CI: -13.83, -4.43), ↓ LDL-C (-11.11, 95% CI: -20.32,	NR	yes	11

									-1.90). No significant change in TG, HDL-C.			
	Gong et al. (2016)	Fenugreek/ diet modulation , exercise, others	10/ T2DM, prediabetes	1173	30-72	NR	1-100 g/d	1-144	↓ TC (-11.6, 95% CI: -21.65, -1.16). No significant change in TG, LDL-C, HDL-C	NR	Yes	9
Garlic (bulb of <i>Allium</i> sativum L.)	Shabani et. al (2019)	Garlic / placebo	33/ HLP, T2DM	1273	20-71	both	0.5-20 g/d	0.28 – 25.7	↓ TC: (-16.87, 95%) CI: -21.01, -12.73), ↓ LDL-C: (-9.65, 95%) CI: -15.07, -4.23), ↓ TG: (-12.44, 95%) CI: -18.19, -6.69), ↑ HDL-C:	NR	Yes	10

								(3.19, 95% Cl: 1.85, 4.53)			
Sun et al. (2018)	Garlic/ placebo	14/ NR	1093	33-63	both	0.3-20 g/d	4-40	↓ TC: (-48.72, 95% Cl: -71.93, -25.52), ↓ LDL-C: (-41.38, 95% Cl: -64.58, -18.17), ↑ HDL-C: (19.33, 95% Cl: 2.32, 36.35). No significant change in TG	NR	Yes	8
Ried et al. (2013)	Garlic/ placebo	39/ HLP, CAD, others	2298	20-60	NR	600-5600 mg/d powder, 9-18 mg/d oil, 1000- 7200 mg/d extract, 4-10 g/d	2-48	 ↓ TC: (-15.25, 95% CI: -20.72, -9.78), ↓ LDL-C: (-6.41, 95% CI: -11.77, 	NR	Yes	9

							raw		-1.05), ↑ HDL-C: (1.49, 95% CI: 0.19, 2.79). No			
									significant change in TG.			
	Silagy et al. (1994)	Garlic/ placebo	16/ CHD, HLP	952	NR	both	0.6-10 g/d	4-40	↓ TC: (-29.77, 95% Cl: -25.13, -34.41), ↓ TG: (27.46, 95% Cl: -12.4, -43.4). No significant change in HDL-C	600-900 mg/d	Yes	7
Ginger (rhizome of Zingiber officinale Roscoe)	Maharlou ei et al. (2019)	Ginger / placebo	14/ obese, T2DM, others	473	18-60	both	500-3000 mg/d	2-12	个 HDL-C: (15.46, 95% Cl: 3.86, 27.07). No significant change in TG, TC, LDL- C	< 1000 mg/d all effects	yes	11

Pourmaso umi et al. (2018)	Ginger/ corn, wheat flour, others	12/ obese, T2DM, others	586	24-57	both	0.5-4 g/d	4.28- 12.85	↓ TG: (-17.59, 95% CI: -29.32, -5.87), ↓ LDL-C: (- 4.90, 95% CI: -22.30, -6.17). No significant change in TC, HDL-C.	≤2 g/day	yes	11
Jafarnejad et al. (2017)	Ginger/ placebo	9/ T2DM, HLP	609	35-55	NR	0.5-3 g/d	4-12	 ↓ TG: (-8.84, 95% Cl: -11.95, - 5.73), ↓ TC: (-4.42, 95% Cl: -8.70, -0.13), ↑ HDL-C: (2.87, 95%Cl: 0.88, 4.86). 	NR	yes	9
Mazidi et al. (2016)	Ginger/ placebo	9/DM, obese	479	19-79	both	1-3 g/d	8-12	↑ HDL-C: (1.16, 95%CI: 0.52, 1.08),	NR	yes	11

									↓ TG: (-1.63, 95%CI: -3.10, -0.17).			
Ginseng (root of	Ziaei et al. (2020)	Ginseng / placebo	27/ T2DM, healthy, MetS, others	1839	21-64	both	0.5-20 g/d	3-32	No significant change in lipid profiles, but ↓TC, TG, LDL-C in sub-group analysis	>1500 mg/d, ≥12w for TC, TG, >1500 mg/d for LDL-C, <1500 mg/d for HDL-C	yes	10
Panax quinquefo lius L.)	Hernande z-Garcia et al. (2019)	Ginseng/ placebo	18/ MetS, healthy, others	1045	18-73	Both	0.2-20 g/d	2-12	<pre>↓ TC: (-2.3, 95%CI: -3.79, -0.8), ↓ LDL-C: (- 1.47, 95%CI: -1.90, -1.05), No</pre>	NR	Yes	9

									significant change in HDL-C, TG. ↓ TC:			
	Gui et al. (2016)	Ginseng/ placebo	8/ T2DM, obese, others	390	34-74	both	0.96-8 g/d	4-20	(-37.51, 95% CI: -59.55, -15.47), ↓ TG: (-59.34, 95% CI: -84.15, -34.54), ↓ LDL-C: (-28.23,	NR	γes	10
				~	2015	13			95%CI: -49.5, -7.35). No significant change in HDL-C			
Grape seed (seed of <i>Vitis</i> <i>vinifera</i> L.)	Asbaghi et al. (2020b)	Grape seed/ placebo	15/ healthy, HTN, MetS, CVD, others	9-50	14-72	both	100-2000 mg/d	4-25	↓ TC: (-6.03, 95% CI: -9.71, -2.35), ↓ LDL-C: (-4.97, 95% CI: -8.37, -1.57), ↓	NR	yes	10

									TG: (-6.55, 95% CI: -9.28, -3.83). No sig, change in HDL-C.			
	Feringa et al. (2011)	Grape seed/diet, lifestyle modificatio n	9/healthy, DM, MetS	390	18-70	both	150-2000 mg/d	2-24	No significant changes in lipid profiles	NR	yes	10
Sour tea (leaf of Hibiscus sabdariffa	Bule et al. (2020)	Sour tea/ placebo	8/ MetS, T2DM	492	14-53	both	0.03-10 g/d	0.85- 12.85	↓ LDL-C (-7.84, 95% Cl: -14.33, -1.35). No significant change in TC, HDL-C, TG.	NR	yes	9
L.)	Najafpour Boushehri et al. (2020)	Sour tea/ placebo	7/ MetS, HTN, healthy, others	362	Mean: 4418- 65	both	100-1350 mg/d	4-12.8	No significant change in lipid profiles	NR	yes	9
	Zhang et al. (2020)	sour tea/ placebo, others	9/ T2DM, MetS, others	503	NR	NR	0.1-9 g/d	2-12	↓ TC (−14.66, 95% CI: −18.22,	NR	yes	10

							0	Q ^r O	-11.10), ↓ LDL-C (-9.46, 95% CI: -14.93, -3.99), ↓ HDL-C (-1.93, 95% CI: -2.73, -1.14). No significant change in TG			
	Aziz et al. (2013)	Sour tea. / placebo, black tea, diet	6/ MetS, HTN, others	474	NR	NR	30-6000 mg/d	4-12	significant change in lipid profiles.	NR	yes	10
Pomegran ate (fruit of Punica granatum	Jandari et al. (2020)	Pomegrana te juice, seed oil, others / water, placebo	7/ T2DM	350	39-62	both	Juice 200-250 ml/d, seed oil 2-3 g/d	6-12	No significant change in lipid profiles	NR	yes	9
L.)	Sahebkar et al. (2016c)	Pomegrana te / placebo	12 / HTN, HLP, obese, healthy	545	22-80	both	NR	1.5-48	No significant change in lipid profiles	NR	yes	8
Saffron (flower of	Taherifard et al.	Crocin/	8 / healthy, MetS, CAD,	442	18-60	both	30-100	4-12	↓ TC	≥30 mg for FBS,	Yes	10

Crocus sativus L.)	(2020)	placebo	others				mg/d		(-4.64, 95% CI: -8.19, -1.09). No significant change in other lipids	<12w, ≥30 mg for TC		
	Asbaghi et al. (2019)	Saffron/ placebo	6 / T2DM, MetS, CAD, others	291	35-64	both	30 – 1000 mg/d	4-12	 ↓ TG: (-8.93, 95% CI: -16.49, -1.37), ↓ TC: (-5.72, 95%CI: -11.10, -0.34), ↑ HDL-C: (2.7, 95% CI: 0.22, 5.18). No significant change in LDL-C. 	Equal 30 mg/d for HDL-C	yes	9

	Pourmaso umi et al. (2019)	Saffron, crocin/plac ebo, non- active agents	11 / T2DM, MetS, CAD, others	622	31-67	both	5-353 mg/d	4-12.8	No significant change in lipid profiles	NR	yes	10
	Rahmani et al. (2019b)	Saffron, crocin / placebo	14 / T2DM, MetS, healthy, others	794	27-57	NR	5-1000 mg/d	1-12	 ↓ TC (-6.36, 95% Cl: -10.58, -2.18), ↓ TG (-5.37, 95% Cl: -10.25, -0.48), ↑ HDL-C (0.91, 95% Cl: -0.13, 1.96). No significant change in LDL-C 	NR	yes	9
Others	Jang et al. (2020)	Pepper (seed of <i>Capsicum</i> annuum L.) / placebo	5/ healthy, obese, others	115	18-74	both	1.35-34.5 g/d	4-12	↓ LDL-C: (-15.08, 95% CI: -27.84, -2.71). change in TC, HDL-C, TGs.	NR	yes	11
	Shekarchiz adeh-	Cardamom (seed of	5/ T2DM, IHD, NAFLD,	361	45-60	both	3 g/d	8-12	↓ TG (-20.55,	NR	yes	10

Esfahani et al. (2020)	Elettaria cardamom um (L.) Maton)/ placebo	others						95% CI: -32.48, -8.63). No significant change in other lipid profiles			
Hadi et al. (2019b)	Purslane (leaf of <i>Portulaca</i> <i>oleracea</i> L.) / placebo, others	6 / T2DM, NAFLD, MetS	352	39-64	both	powder 7.5-10 g/d, capsule 0.06-0.18 mg/d	5-16	 ↓ TG (-19.16, 95% CI: -38.17, -0.15). No significant change in TC, LDL-C, HDL-C 	>1.5 g/day For TC, TG, LDL- C	yes	11
Lee et al. (2019)	Dika nut (seed of <i>Irvingia</i> gabonensis (Aubry- Lecomte ex O'Rorke) Baill.)/ placebo	5/ MetS, obese, others	214	19-60	both	300-1050 mg/d	4-13	↓ TC: (-24.01, 95% CI: -37.53, -10.50) ↓ LDL-C: (- 27.08, 95% CI: -38.12, -16.05), ↓ TG:	NR	yes	10

								(-11.76, 95% CI: -23.82, 0.30), ↑ HDL-C: (10.16, 95% CI: 6.84, 13.49).			
Mohamm adi et al. (2019a)	Silymarin (flower of <i>Silybum marianum</i> (L.) Gaertn.)/ placebo	7 / T2DM	370	45-62	both	200-600 mg/d	6-48	↓ LDL-C (-23.55, 95% CI: -42.58, -4.53), ↑ HDL-C (7.06, 95% CI: 2.20, 11.92). No significant changes in TC, TGs	NR	yes	10
Akbari- Fakhrabad i et al. (2018)	Sumac (flower of <i>Rhus</i> <i>Coriaria</i> L.) / placebo	4 / HLP, T2DM	223	14-45	both	1-3 g/d	4-12	No significant change in lipid profiles	NA	yes	8
Jamshidi et al. (2018)	Holy basil (leaf of <i>Ocimum</i> <i>tenuifloru</i> <i>m</i> L.)/ sucrose,	6 / healthy, T2DM, MetS, obese	269	17-65	both	300 mg- 2.5 g/d	4-12	No significant changes in lipid profiles	NR	yes	10

	water, no active agent										
Sahebkar et al. (2018)	Artichoke (flower bud of <i>Cynara</i> <i>scolymus</i> L.)/ placebo	9 / HLP, T2DM, NASH, HTN, others	702	17-62	Both	500-2700 mg/d	5-12	↓ TC (-17.6, 95%CI: -22.0, -13.3), ↓ LDL-C (-14.9, 95%CI: -20.4, -9.5), ↓ TG(-9.2, 95%CI: -16.2,-2.1). No significant change in HDL-C	NR	yes	9
Teoh et al. (2018)	Chia seed (seed of <i>Salvia</i> <i>hispanica</i> L.)/placebo , oat, inulin	14/DM, MetS	526	18-75	both	4-50 g/d	0.14- 24	No significant change in lipid profiles	NR	yes	9

Sawangjit et al. (2017)	Veld grape (whole of <i>Cissus</i> <i>quadrangul</i> <i>aris</i> L.)/ placebo, flavonoid	9/bone fracture, obese, hemorrhoid	1108	12-70	both	500-1500 mg/d	1-10	 ↓ LDL-C: (-14.43, 95%CI:- 20.06, -8.80), ↓ TG:(-37.50, 95%CI:- 48.71, -26.29), ↓ TC: (-50.50, 95%CI:- 70.97, - 30.04). 	NR	yes	11
Serban et al. (2016)	Spirulina (whole of <i>Arthrospira</i> <i>platensis</i>)/ placebo	7/ T2DM, IHD, others	522	2-60	Both	1-10 g/d	8-48	<pre>↓ TC: (-46.76, 95% CI: - 67.31, - 26.22), ↓ LDL-C: (-41.32, 95% CI: -60.62, -22.03), ↓ TG: (-44.23, 95% CI: -50.22, - 38.24), ↑ HDL-C (6.06, 95% CI: 2.37,</pre>	NR	yes	10

								9.76)			
Zhang et al. (2016b)	Aloe vera (leaf of <i>Aloe</i> barbadensi s.)/placebo	5/DM, prediabetes	415	NR	both	1-2.8 g/d	6-12	↓ TC: (-16.94, 95% CI: -23.39, -10.50), ↓ TG: (-43.92, 95% CI: -66.33, -21.51), ↓ LDL-C: (-13.30, 95% CI: -17.19, -9.41), ↑ HDL-C: (2.67, 95%CI: 0.11, 5.23).	NR	yes	9
Onakpoya et al. (2015)	cactus pear (fruit of <i>Opuntia</i> <i>ficus-indica</i> (L.) Mill.)/ placebo, nopal	4/obese, MetS, prediabetes	314	20-60	NR	NR	8-96	 ↓ TC: (-4.77, 95%CI: -9.23, -0.3), no significant change in other lipids 	NR	yes	10
Cheng et	Milkvetch	16/ placebo,	977	43-75	both	20-250	4-40	↓ TG:	NR	yes	10

al. (2013)	(flower of	others		ml/d	(-31.89, 95%		
	Astragalus			Decoctio	CI: -53.14,		
	propinquus Schischkin) / placebo, others			n 1.5-6 g/d capsule	-10.63). No significant change in TC.		

Legend: n, number; yr, year; w, week; NR, not reported; ↓ indicates significant reduction (p value <0.05); ↑ indicates significant elevation (p value <0.05); TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; DM, diabetes mellitus; MetS, metabolic syndrome; T2DM, type-2 diabetes mellitus; NAFLD, non-alcoholic fatty liver disease; CAD, coronary artery disease; DLP, dyslipidemia; HLP, hyperlipidemia; PCOS, polycystic ovary syndrome; NASH, non-alcoholic steatohepatitis; CHD, congestive heart disease; HTN, hypertension; CVD, cardiovascular disease; IHD, ischemic heart disease.

Table 8. Summary of effects

Group	Effect	тс	LDL-C	HDL-C	TG
nolumbonolio	Increasing	-	1*	12	-
polyphenolic	Decreasing	16	17	1	11
compounds	Neutral	10	8	17	13
	Increasing	-	-	1	-
nuts	Decreasing	8	8	1	6
	Neutral	2	2	9	5
	Increasing	-	-	1	-
Phytosterols	Decreasing	4	10	-	3
	Neutral	2	1	5	3
	Increasing	1	3	8	-
Vegetable oils	Decreasing	7	8	-	3
	Neutral	3	2	5	8
	Increasing	-	-	2	-
Plant proteins	Decreasing	4	6	-	4
	Neutral	-	-	2	-
	Increasing	-	-	1	-
Tea and coffee	Decreasing	6	6	-	3
	Neutral	3	3	7	3
Other herbal	Increasing	-	\mathcal{R}	25	1
medicines	Decreasing	37	36	1	34
medicines	Neutral	22	20	35	24

* number of studies with this effect

Legend: TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride