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Abstract— Precise PV energy yield estimation is critically 

dependent on an accurate temperature estimation method. This 

paper experimentally investigates the accuracy of three commonly 

used thermal modelling methods. Detailed sensitivity analysis of 

yearly, monthly, daily and intraday time resolution reveals that 

the actual data are clearly dependent of day-type and weather 

parameters. However, the proposed methods struggle to estimate 

temperature with varying irradiance or wind speed. During the 

summer months, on intermittently cloudy days the intraday 

mismatch can be as high as 25°C, whereas on clear sky days it can 

be below 10°C. Applying these methods for short term estimation 

of any day type can lead to a large error in energy yield estimation. 

Further adaptation is required to propose estimation methods 

which can properly handle different day types and weather 

fluctuations.  
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I. INTRODUCTION 

Within the renewable energy industry, solar photovoltaic 
power has seen unprecedented growth in recent years. It is 
forecasted that PV capacity increase in 2023-25 may range from 
130 GW to 165 GW, accounting for 60% of renewable energy 
market expansion [1]. There is an increasing interest in precisely 
understanding PV energy yield for short-term forecasts, as the 
technical inputs and assumptions have a large impact on the 
financial models [2].   

Instantaneous PV power reflects the meteorological 
conditions, which can vary strongly, such as irradiance, ambient 
temperature, wind speed, and wind direction. Among the 
meteorological inputs, second to irradiance, the PV performance 
is highly influenced by cell operation temperature [3]. This 
operation temperature is dependent on multiple factors like heat 
conduction, convection, and radiation from the PV to the 
environment, where the module technology and mounting 
conditions play a large role. Heat transport from the module 
varies in both space and time [3]–[5], which is why it is arguably 
challenging to propose estimation methods to precisely predict 
the operating cell temperature fit for all scenarios and temporal 
resolution. A comparative analysis was performed over two 
widely used methods in various climatic zones [6]. It provided 

an insight into yearly temperature mismatch over a broad 
climatic region. However, that experiment used PV backsheet 
measurements. 

To test the sensitivity of some of the state-of-the-art PV cell 
temperature estimation methods, this paper compares over 
different timeframes, from yearly, to monthly, and then daily to 
intraday. This can provide insights into the scenarios where 
these estimation methods perform well, and where improvement 
would be necessary. This study’s sensitivity analysis clearly 
shows that further refinement of state-of-the-art temperature 
estimation methods is required, especially for short-term periods 
where less averaging out occurs. This study’s finding can be 
used to understand widely implemented temperature estimation 
methods’ accuracy and sensitivity. This would support the 

Fig. 1. Experimental site in KU Leuven, Ghent Campus 

Fig. 2. Measured daytime cell-backsheet temperature differences for two 

positions, top centre (R1C4) and centre of module (R5C4), on 1 May-

31 Dec 2015.   
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preparation of a robust temporally and spatially resolved 
temperature estimation method.  

II. METHODS SELECTED FOR SENSITIVITY ANALYSIS 

For the sensitivity study presented here, the widely used 
temperature models by Ross [7], Faiman [8], and King [9] are 
selected. Although cell operational temperature is used to 
calculate the energy yield of a PV module or system, in usual 
experimental practice, the backsheet temperature on the PV 
module surface is measured, and converted to cell temperature 
with linear approximation with respect to irradiance [9]. Hence, 
the first step is to verify the sensitivity of cell and backsheet 
temperature relationship versus irradiance. Figure 2 shows that 
the relationship is influenced by the cell’s position and the 
impact of wind speed and wind direction. The unequal wind 
cooling over the module surface, especially during rapidly 
changing weather conditions such as wind direction changes can 
result in the backsheet being temporarily hotter than the cell. 
Therefore, we have proceeded to verify the state of temperature 
estimation models with actual cell temperature measurements 
rather than backsheet measurements. Given that the three 
temperature estimation models analyzed here all assume or 
provide a module average or center-of-module temperature, the 
comparison is made with an average of all the cell temperature 
sensor measurements over one module.   

 TABLE 1: COMPARISON OF MODEL RMSE VERSUS MEASURED DATA 

III.  EXPERIMENTAL SET-UP DESCRIPTION 

The PV set-up is located on the tallest roof of KU Leuven 
campus in Ghent, Belgium (51°03’12N, 3°43’49E). Figure 1 
shows the test setup of the PV array. The PV array is oriented 
South (180°) with 18° tilt mounted close to the roof surface, with 
free access for the wind to the modules possible. The 
measurement of PV module power, and weather data is done in 
Labview, using an NI CompactRIO with appropriate 

measurement cards (e.g. NI 9217 for 4-wire Pt100 temperature 
measurements), with all data recorded at 1 Hz. Among the 
climatic properties, the plane of array irradiance, wind speed, 
wind direction, and ambient temperature is measured. For this 
study, one custom-made standard mono-crystalline PV module 
with 60 cells is selected, which has 9 Pt100 sensors laminated 
against the cell backside, per the positions shown in Figure 3. 
Two extra sensors are placed on the backsheet next to the 
encapsulated sensors of R1C4 and R5C4. More technical details 
of the data logging methods and equipment are provided in [10]. 
The available temperature measurements are from 1 May 2015 
to 31 December 2015.  

IV. RESULT AND DISCUSSION 

A. Yearly vs daily temperature mismatch analysis 

The measurement data is compared to the Ross, Faiman and 
King models for the different timeframes, with the data 
summarized in Table 1, using the root-mean-squared error 
(RMSE) as the key performance indicator. The yearly 
comparison exhibits higher RMSE than Olivera et al. in a similar 
climate [6]. This may be introduced from two factors. Firstly, in 
this study, the actual cell temperature is used to compare instead 
of the backsheet. Secondly, the missing days in the dataset are 
from the cooler months of January-April, where the RMSE 
mismatch is naturally smaller than the warmer months. This in 

 Ross Faiman King Dates  

(yyyy-mm-dd) 

Yearly RMSE (°C) 3.82 3.06 2.43 2015-05-01 to 2015-12-

31 

Daily RMSE (°C) 9.67 3.84 3.95 2015-06-02  
(variable irradiance day) 

Daily RMSE (°C) 4.87 2.41 2.66 2015-07-24  

(clear sky day) 

Fig. 3. PV cell and backsheet temperature sensor locations of studied 

module, notation is sunny side up 

Fig.4.  Daily RMSE of the temperature estimation methods 

Fig.5. Weather profile and high temperature mismatch, high variability day 
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turn lowers the RMSE mismatch for the entire year. The daily 
RMSE comparison from Figure 4 shows that the values from the 
three models can fluctuate over a range from 0.5°C to 8°C. Both 
the models by Faiman and King models perform better than 
Ross. This is expected, as the Ross model does not take wind 
speed or direction into consideration. From the daily RMSE 
analysis, both methods by King and Faiman do not exhibit any 
statistically significant difference. 

There is seasonal consistency over the daily RMSE mismatch, 
but this is not true for the short-term intraday mismatch. The data 
analysis suggests a potential grouping of day type, contributing 
to a specific range of daily RMSE mismatch. Detailed analysis 
of different day types such as a cloudy hot day, clear sky hot 
day, cloudy cold day, and clear cold day will be provided in the 
full paper. In this abstract, what is presented here is the high 
contrast of temperature estimation mismatch between different 
types of days in the same season. 

B. Intraday temperature analysis in cloudy vs clear sky day in 

summer (High to Low mismatch) 

2 and 24 July 2015 represent days in summer with a highly 
variable irradiance and clear sky day respectively. Even though 
both days are within the same season with similar high 
irradiance, 2 July had one of the highest mismatches within the 
study. Table 1 provides the RMSE values for all the models 
where the Ross model has the largest daily RMSE mismatch. 
This can be explained by both irradiance and wind speed 
conditions, with Figure 5 visualising the primary weather input 
parameters and RMSE mismatch during the day. Due to moving 
clouds, the irradiance fluctuates between 100 W/m2 and 
1100 W/m2. Most importantly, 2 July has higher wind speed 
than seen on 24 July. This results in the Ross model having an 
intraday RMSE mismatch of up to 25°C, due to the combination 
of the high irradiance fluctuations and the model disregarding 
wind inputs. The models by Faiman and King perform 
significantly better than Ross because of the additional wind 
component in their models. However, all three models exhibit 
large RMSE values due to highly fluctuating irradiance. These 
mismatches are averaged out if larger time resolution than the 
thermal constant of the module is taken, see [11]. 

In contrast to 2 July, 24 July in Figure 6 provides an entirely 
different picture for temperature estimation mismatch. It is a 
clear sky day with low wind speed compared to 2 July. In this 
day type, all the three models perform visibly better. Maximum 
intraday RMSE mismatch for all the models stays below 10°C. 
However, it is essential to note that even this mismatch of 10°C 
will lead to large energy yield estimation errors for the short 
term. Therefore, an improved model adapted for the shorter time 
horizon is necessary which would consider the actual energy 
losses from photon to the electron.  

V. SUMMARY & FUTURE WORK 

Among the compared temperature estimation methods, 
King’s model shows the best yearly RMSE performance. When 
it comes to daily RMSE mismatch, Faiman and King follow a 
similar trend while the Ross model is far off. The primary reason 
for this is that these two models consider wind speed, yet a closer 
look at the intraday analysis over the season shows that the 
models still show mismatches on hot days with fast-changing 
irradiance of up to 15°C. On clear sky days in the summer, the 
maximum RMSE mismatch for all three models are below 10°C, 
while on winter days this can be as low as 0.2°C. In summary, 
the investigated temperature estimation methods are not 
universally accurate in all day types, especially when 
considering data at higher temporal resolution (1 s to 1 min), 
where heat transfer effects play an important role.     
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Fig.6. Weather profile and low temperature mismatch on clear sky day 


