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ABSTRACT Keeping privacy for every entity in outsourced computation is always a crucial issue. For
efficient secure computation, homomorphic encryption (HE) can be one of nice solutions. Especially,
multikey homomorphic encryption (MKHE) which allows homomorphic evaluation on encrypted data under
different keys can be one of the simplest solutions for a secure computation which handles multiple users’
data. However, the current main problem of MKHE is that the dimension of its evaluated ciphertext relies on
the number of users. To solve this problem, there are several variants of multikey homomorphic encryption
schemes to keep the size of ciphertext constant for a fixed number of users. However, users interact one
another before computation to provide their inputs, which increases setup complexity. Moreover, all the
existing MKHE schemes and their variants have unique benefits which cannot be easily achieved at the
same time in one scheme. In other words, each type of scheme has a suitable computational scenario to
put its best performance. In this paper, we suggest more efficient evaluation key generation algorithms
(relinearization key and bootstrapping key) for the existing variants of MKHE schemes which have no
ciphertext expansion for a fixed number of users. Our method only requires a very simple and minor pre-
processing; distributing public keys, which is not counted as a round at all in many other applications.
Regarding bootstrapping, we firstly provide an efficient bootstrapping for multiple users which is the same as
the base single-key scheme thanks to our simplified key generation method without a communication. As a
result, participants have less communication, computation, and memory cost in online phase. Moreover,
we provide a practical conversion algorithm between the two types of schemes in order to efficiently utilize
both schemes’ advantages together inmore various applications.We also provide detailed comparison among
similar results so that users can choose a suitable scheme for their homomorphic encryption based application
scenarios.

INDEX TERMS Compact MKHE, homomorphic encryption, MKHE, multikey homomorphic encryption.

I. INTRODUCTION
Homomorphic encryption (HE) supports an operation on
encrypted data. Therefore, it can be applied to an outsourced
computation where a server computes a function value of
client’s encrypted data. Likewise, HE seems to be a proper
solution for a computation keeping data privacy. Hence,
it has been studied actively to enhance the efficiency for a
practical use. As a result, many of homomorphic encryp-
tion schemes [1]–[3] and approximate HE [4] are now con-
sidered practical due to their continuous improvement and
optimization.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiangxue Li.

However, HE is not always a proper solution for any out-
sourced computation, specifically, handling multiple users’
data. It is because HE schemes are originally defined for
single user setting where only one key is involved in cipher-
texts (we call them single-key HE throughout this paper).
Instead, multikey HE (MKHE) [5] which allows a compu-
tation on ciphertexts encrypted under different keys can be
a solution for such case. Since each user encrypts its input
by its key, each input is protected from other users for free.
MKHE ciphertexts can be correctly decrypted only when
the associated secret keys are gathered for semantic security.
Therefore, MKHE may provide more advanced security by
its nature for a computation amongmultiple users than single-
key HE; input privacy and output privacy. We call it multikey
security. Indeed, MKHE seems much more suitable in real
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application scenarios than just single-key HE. In real worlds,
many of companies have their own private data which might
be confidential or involved in patenting issue, they do not
want to reveal the data to others. At the same time, all they
need is to compute a function value with their data such as
predicted value of a machine learning model. On the other
hand, in this case, the input security cannot be naturally
achieved by using single-key HE. If all the companies share
the same key (using single-key HE), dishonest companies can
decrypt other honest parties’ inputs. Then the input security
may not be fully achieved. In order to prevent this, one may
assume or build a specific computing environment where the
transmit channel between a user and the server is private,
hence no one can obtain other’s information without permis-
sion. This kind of assumption is somewhat strong so that it
seems quite expensive to be instantiated in practice.

Even thoughMKHE schemes have been implemented with
practical results [6], [7], the ciphertext expansion during
homomorphic operation is still the main issue to be solved.
That is, the ciphertext size grows relying on the number
of users, which results in increasing both computation and
communication cost proportional to the number of users
(say k). Even though the size of ciphertext in MKHE is
significantly reduced (from quadratic to linear on k) [8],
the computation time and memory costs still at least k
timesmore than underlying single-key scheme. This structure
seems inevitable to keep on-the-fly property which is a strong
benefit of homomorphism between ciphertext and plaintext.
The property lets a new user join an ongoing computation
at any point, freely. So no information about participants are
not needed to be known ahead of time. This is specifically
called dynamic computation which is useful in general, but
the current problem of the schemes having the property is
that the ciphertext size, more precisely, the dimension of
ciphertext vector, grows depending on the number of users.
For a certain computation scenario with pre-defined number
of users (i.e when there is no new dynamic computation),
it is not fully recommended to use such scheme sacrificing
efficiency. In the case, the short ciphertext size and multikey
security are essential for an efficient and secure computation
among pre-defined users.

As a partial solution to achieve constant size of cipher-
text, there are variants of MKHE schemes which only work
when participants are fixed, by creating a common pub-
lic key among pre-defined multiple parties. We categorize
those all as a compact MKHE scheme throughout this paper
since they achieve multikey security, and have no cipher-
text expansion relying on the number of users. All existing
approaches [9], [10] have the same structure based on thresh-
old FHE (ThFHE) [11] where more than t out ofN parties can
decrypt an evaluated ciphertext encrypted under N different
secret keys (if t = N , it is called multikey variant Threshold
FHE [12]). In threshold FHE based schemes, users generate
a common public key, therefore, the asymptotic complex-
ity of the scheme becomes as same as its base single-key
HE scheme with multikey security. However, each has been

built upon a particular computing scenario and their evalua-
tion key generation procedure is a protocol by taking some
interactions among users. In other words, users need to be
online to generate such keys. Then homomorphic operation
can be performed with those keys. Even, key switching and
bootstrapping steps also require an interaction among users.
Hence, such schemes have lost on-the-fly property to some
extent. Especially, dynamic computation is hardly achievable.

Overall, the suggested two types of schemes (MKHE and
multikey variant Threshold FHE) are the most suitable solu-
tions for computations handling multiple users’ data based
on homomorphic encryption. However, they have very dif-
ferent advantages. And one is not simply compatible with the
other. Furthermore, the suggested multikey-Threshold FHE
schemes are not optimized in the sense of communication
round complexity. In practice, it is always better to minimize
the communication among multiple users for efficiency in
terms of storage, computation, and more. Therefore, it is
important to provide an efficient solution to take both advan-
tages for more application scenarios.

A. OUR CONTRIBUTION
In order to solve the aforementioned issues, we first present
efficient evaluation key generation algorithms (for relin-
earization and bootstrapping) for a compact MKHE scheme
where the size of ciphertext does not grow depending on the
number of users. The main goal is to generate evaluation keys
by taking no interaction among pre-defined users. The proce-
dure is not a protocol anymore so that the scheme becomes
more user-friendly by reducing computation, storage cost
per user than other works [9], [10]. Regarding bootstrap-
ping, we firstly provide an efficient bootstrapping for mul-
tiple users which is the same as the base single-key scheme
thanks to our simplified key generation method without a
communication. To do this, we need a simple pre-processing
step, distributing public keys to all, which is not a big deal
in realistic scenarios such as in public key infrastructure
(PKI). We use the latest multikey variant of Threshold FHE
scheme [10] as a base scheme to apply our evaluation key
generation algorithms. Also, our method is always applicable
to every such ciphertext format encrypted under the secret key
(s1 + s2 + · · · + sk , 1), where si is the i-th user’s secret.
Moreover, thanks to the minimal communication, we could

suggest an efficient method to connect existing compact
MKHE schemes and other (non-compact) MKHE schemes
to maximize the performance in a various computation envi-
ronment. For example, compact schemes have no ciphertext
expansion for a fixed number of users, but on-the-fly compu-
tation is not directly applicable for new users. On the other
hand, the non-compact schemes have ciphertext expansion
but easily allow to join on-going computation at any point.
In order to compensate each negative point, it is the best
way to make one to be compatible with the other efficiently.
In particular, the conversion from non-compact to compact
scheme is very meaningful to reduce the network cost. The
conversion is efficient since a server only runs key switching
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algorithm without requiring any interaction among users.
Our algorithms are instantiated based on BFV homomorphic
encryption scheme [2], but the same idea can be applied to
other FHE schemes such as BGV [3] and CKKS [4].

1) MAIN IDEA BEHIND THE CONTRIBUTION
Existing compact MKHE schemes [9], [10] employ the
interactive evaluation key generation algorithm [11] for
relinearization. In fact, after the tensor product of two mul-
tikey ciphertexts, ct1 and ct2 encrypting m1 and m2, respec-
tively, under sk = (s1 + s2 + · · · + sk , 1), the resulting
ciphertext ct⊗ satisfies 〈ct⊗, sk⊗ sk〉 = ct⊗[1](s1 + · · · +
sk )2 + ct⊗[2](s1 + · · · + sk ) + ct⊗[3](s1 + · · · + sk ) +
ct⊗[4] ≈ 1m1m2. So ct⊗ is a degree 2 ciphertext which
should be reduced to a degree 1 ciphertext as the original
ciphertexts in the end. To do this, one can homomorphically
relinearize the degree 2 ciphertext and this method requires
some additional key K ∈ R`×2

q such that K[1](s1 + · · · +
sk ) + K[2] = (s1 + · · · + sk )2g + e for some error e
and a gadget vector g ∈ R`

q. Then relinearization performs
ct×[1] = 〈g−1(ct⊗[1]),K[1]〉 + ct⊗[2] + ct⊗[3], ct×[2] =
〈g−1(ct⊗[1]K[2])〉 + ct⊗[4] to generate the final ciphertext
ct× of degree 1. As a result, 〈ct⊗, sk⊗ sk〉 ≈ 〈ct×, sk〉.

What [11] based schemes are trying to do is to generate a
pseudo encryptions of (s1 + . . . + sk ), K, under (s1 + . . . +
sk ) by combining all single-key encryptions of si encrypted
under its own key si for each user i ∈ [k] at the end. The way
to transform a single-key ciphertext into multikey one takes
some interaction, resulting in 2 rounds. Then a server collects
the final information and adds them to obtain K.
However, it becomes much simpler if each user generates

a multikey encryption of si under a common public key from
the beginning, since the public keys are already known. As a
result, the essential number of interaction is reduced to one
from two; distributing public keys which can be saved in a
certain computation scenarios such as PKI. Then no interac-
tion is required.

This solution reduces computational burden such as time
memory, etc. on the user’s side when such schemes are
applied to real computation scenarios. More importantly,
it strikes a better balance between two different types of
schemes which have distinct benefit. Therefore, the existing
compact MKHE schemes become simpler to be compatible
with original MKHE schemes, which may provide more con-
venient computing tool for users.

B. RELATED WORKS
Multikey homomorphic encryption scheme is firstly intro-
duced by López-Alt et al. [5] based on NTRU. Then a
multikey version of GSW scheme [13] was introduced
for the first time. It was developed to achieve round
optimal multiparty computation [14]. Also there were plau-
sible results to get rid of CRS [15], [16] among multi-
ple users based on GSW scheme. Other works allowed
multi-hop (dynamic) property [8], [17] in MKHE schemes.

Brakerski and Perlman [8] proposed the shorter size of cipher-
text which has linear growth on the number of users at
first. Then other FHE primitives were naturally transformed
to multikey variants such as multikey BGV [18], multikey
TFHE [7], [19], and multikey BFV, and CKKS [6] with linear
growth ciphertext length.

In order to have constant size of ciphertext size (to achieve
a compact MKHE), there is a multikey variant of Threshold
FHE [9], [10], where a joint public keys are computed by
users employing the idea of [11] taking two rounds, hence
the ciphertext size remains constant for a fixed number of
users. The protocol takes four rounds in total. Due to their
round complexity, it is not fully practical even in their specific
computation scenarios; specifically, the work [9] is recom-
mended to an outsourced computation with multiple model
providers which are usually fixed and clients who can be
anyone. Then the model provider uses multikey ThFHE and
the clients use the originalMKHE schemes for dynamic prop-
erty. Mouchet et al. [10] suggests their scheme for multiparty
computation where multiple parties jointly compute a func-
tion value and computing materials such as evaluation keys.
Again, each is still not fully practical for its best case since
users need some interactions for homomorphic evaluation.
There is a detailed survey about the line of works [20].

C. A NOTE ON COMPACT MKHE
We define a compact MKHE (CMKHE) if an MKHE scheme
or its variant supports that the ciphertext size remains con-
stant for a polynomially many number of users. Hence,
the asymptotic complexity of computation and communi-
cation of CMKHE schemes remains as same as single-key
homomorphic encryption. Therefore, CMKHE can be an
efficient solution for secure computations handling multiple
users’ data.

The first MKHE scheme [5] is based on NTRU problem
and it is a compactMKHEwithout creating a joint key among
users. Moreover, it allows dynamic property directly as well.
More importantly, the participants are not need to be pre-
defined. However, the scheme is too inefficient due to its
large parameters. Furthermore, it was broken by subfield
attacks [21], [22]. Hence, so far, the onlymethod to instantiate
a secure and efficient lattice based compact MKHE is based
on Threshold FHE [9], [10], where users jointly generate a
common public key. Due to a common public key, the size of
ciphertext does not increase depending on the number of joint
users. It is still an open problem to build a secure and efficient
compact MKHE scheme without any interaction among users
before computation.

II. PRELIMINARIES
Notation: We let λ denote the security parameter. Vectors
and matrices are denoted in lowercase bold and uppercase
bold, respectively.We denote by 〈v,w〉 the dot product of two
vectors v,w. For a vector x, x[i] denotes the i-th component
scalar. LetR andRq denoteZ[X ]/(XN+1) andZ[X ]/(XN+
1) mod q, respectively, for positive integers q,N . For a real
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α > 0, Dα denotes the Gaussian distribution of standard
deviation α. The key distribution χ is the uniform distribution
over the set of binary polynomials. log(·) is binary logarithm.
We also denote the set {1, . . . , n} by [n]. If an element
a ≈ 0 mod p for some a ∈ R, ba − 0e = 0 mod p for
some modulus p. [b]q for b ∈ R means b mod q. U (Rq)
denotes uniform distribution over Rq. We denote Var(a) is
the maximum variance of each coefficient of a ∈ R. Then
the variance of the product of two polynomials in R is that
Var(ab) = nVar(a)Var(b) for a, b ∈ R. Var(a) is defined
as
∑`

i=1
1
`
a[i] for a polynomial vector a ∈ R`. The error

contained in a ciphertext ct ∈ R2 is denoted by Err(ct). Let
X and Y be two distributions over a finite domain. X

comp
≈ Y

if they are computationally indistinguishable

A. RING LEARNING WITH ERRORS
We recall the decisional ring learning with error (RLWE)
problem which is a simple ring-based version of the LWE
problem [23].
Definition 1: For security parameter λ, let 8m(X ) be a

cyclotomic polynomial with degree φ(m) and set R =

Z[X ]/(8m(X )). Let q = q(λ) ≥ 2 be an integer. For a fixed
secret random element s ∈ Rq and a distribution χ = χ (λ)
over R, the decisional RLWE problem says the distribution
outputting (a, [a · s+ e]), where a and e is chosen uniformly
at random from Rq and χ , respectively, and the distribution
outputting (a, u) chosen uniformly at random from R2

q are
computationally indistinguishable.

The sample (a, [a · s + e]) ∈ R2
q is called RLWE sam-

ple. We assume the above problem for our scheme. For
a simple and convenient use like many schemes, we set
8(X ) = XN + 1, where N is a power of 2.

B. BFV HOMOMORPHIC ENCRYPTION SCHEME
We briefly introduce BFV homomorphic encryption
scheme [2], [24]. We call the scheme as single-key BFV
scheme throughout the paper. BFV scheme is derived from
LPR [25] public key encryption scheme. LetRp be plaintext
space, where p > 1 is plaintext modulus.We define1 = b qpe,
where q is ciphertext modulus such that q � p. Let χ
be a secret key distribution. Note that EvalKeyGen gener-
ates (public) evaluation keys used in evaluation algorithm
Eval.
Definition 2: BFV homomorphic encryption scheme is

a tuple of algorithms (KeyGen,EvalKeyGen,Enc,Dec,
Eval):
• KeyGen(1λ) → (pk, sk): On input security parameter
λ, it generates a key pair pk, sk:
- - Set sk: s← χ over Rq
- - Set pk: (a, b = (−as+ e)) mod q, where a← Rq

uniformly at random, and e← Dα .
• EvalKeyGen(sk,T ) → evk : Set sk = s. For i ∈
{0, . . . , ` = blogT qc}, evk = (ai,−ais + ei + T is2)
mod q

• Enc(pk,m) → ct: For the message m ∈ Rt , and
public key pk = (a, b), it outputs a fresh ciphertext

ct = (ua + e1, ub + 1m + e2) mod q ∈ R2
q, where

u← χ uniformly at random and e1, e2← Dα .
• Dec(ct, sk) → m: Let ciphertext ct = (c0, c1) and

sk = s, it outputs m = b pq [c0s+ c1]qe mod p.
• Eval(ct1, ct2,evk):

- - Add(ct1, ct2) → ct+: Output ct+ = (ct1[1] +
ct2[1], ct1[2]+ ct2[2]) mod q ∈ R2

q.
- - Mult(ct1, ct2,evk)→ ct×:
(1) Compute b tq ct1⊗ ct2e = (c1, c2, c3, c4). Set

ct⊗ = (c′1, c
′

2, c
′

3), where c
′

1 = c1, c′2 = c2 +
c3, c′3 = c4.

(2) Let evki[1] = ai,evki[2] = −ais + ei + T is2

mod q for i ∈ [`], where T is the base of a gadget
vector.
Compute ct×[1] = c′2 +

∑`
i=0 evki[1]c

′(i)
1 ,

ct×[2] = c′3 +
∑`

i=0 evki[2]c
′(i)
1 , where c′1 =∑`

i=0 T
i
· c′(i)1 .

(3) Output ct× = (ct×[1], ct×[2]).
A canonical RLWE based ciphertext like BFV ciphertext

is a form of RLWE sample, which is, (a, b) ∈ R2
q. Homo-

morphic multiplication over this kinds of ciphertext contains
computing tensor product of two ciphertexts, in general.
So the size of ciphertext grows to square and there is non-
linear element in the result. To fix the problems, a proce-
dure called relinearization is performed after tensor product
(step (2) of Mult), which requires additional evaluation keys.

C. BASIC SCHEME FOR MULTIKEY VARIANT OF
THRESHOLD FHE BASED ON BFV
We recall a multikey ThFHE scheme based on BFV [10] since
we improve the evaluation key generation algorithm of exist-
ing compact MKHE schemes. As we mentioned in Section I,
the existing such works are instantiated multikey-threshold
homomorphic encryption. So we choose this scheme [10] to
apply our new technique. Let p and q be a plaintext modulus
and a ciphertext modulus, respectively, and q � p. 1 =
bq/pe as defined in original BFV.
• CMKHE .Setup(1λ) → params: It takes security
parameter λ and outputs public parameter params =
{N , χ, p, q, α, a}, where N is a polynomial degree, χ is
a secret key distribution, α is a standard deviation of
Gaussian distribution and a ∈ Rq is CRS.

• CMKHE .KeyGen(params) → (sk,pk): Given
params,
- - set a secret key sk = s ∈ Rq, where s ← χ over

Rq
– [- -] set a public key pk = (a, b) ∈ R2

q, where
b← (−as+ e) and e← Dα overRq.

– [- -]Outputs a key pair (sk,pk).
After Key generation, all users share their public keys

through public channel. Then parties generate a common
public key by adding the second component of all given
public keys.
• CMKHE .ComKey(pk1, . . . ,pkk ) → p̂k: Given all
parties’ public keys (pki = (a, bi), it outputs a common
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public key p̂k := (a,
∑k

i=1 bi) such that a(
∑k

i=1 si) +
b ≈ 0 mod q.

• CMKHE .Enc( ˆpk),m)→ ct: It takes a common public
key p̂k and a message m ∈ Rp on input, it outputs a
fresh ciphertext ct.
- - parse p̂k := (a′, b′) such that a(

∑k
i=1 si) + b ≈ 0

mod q.
- - samples u← χ, e1, e2← Dα
- - computes a fresh ciphertext cti = (ua′ + e1, ub′ +

e2 +1m) ∈ R2
q.

- - Outputs cti.
• CMKHE .Dec(sk1, . . . , skk , ct) → m: On input all
users’ secret keys {ski = si}i∈[k] and a ciphertext ct,
- - Set ŝk = (s1 + · · · + sk , 1) ∈ R2

q, where each si
from ski.

- - Compute 1
1
〈ct, ŝk〉 ≈ m mod p

As we can see, a fresh ciphertext is encrypted under all
involved users’ keys. Therefore, the public keys of different
users are simply added with a common randomness. More
precisely, cti is decrypted with all associated secret key ele-
ments s1, . . . , sk , that is, 1

1
〈cti, (s1 + · · · + sk , 1)〉 = cti[1] ·

(s1 + · · · + sk ) + cti[2] = m + ec, where ec is an error, si
is a secret element of i-th user. The ciphertext space is just as
same as the space of single-key BFV, working as a single-key
homomorphic encryption.

D. MULTIKEY HOMOMORPHIC ENCRYPTION BASED
ON BFV
The existing multikey BFV scheme [6] is a generalization of
the above single-key BFV scheme. They let a server expand a
single-key BFV ciphertext using other public materials given
by all users. That is, each user generates key pair indepen-
dently and encrypts each message only with its own public
key, hence users do not need to know one another before
computation. Therefore, its key generation and encryption
algorithm are just as same as single-key BFV scheme. How-
ever, the size of evaluated ciphertext grows linearly in the
number of users.

For example, A fresh ciphertext encrypting mi of the
i-th user is cti = (c1, c2) ∈ R2

q and it is decrypted with a
corresponding secret key ski = (si, 1) as

p
q 〈cti, ski〉 = c1si+

c2 ≈ mi mod p. Each operation (either addition or multi-
plication) with other user’s fresh ciphertext adds one more
component in a ciphertext i.e. ct′ = (c1, c2, c3) ∈ R3

q, if there
are two users. More precisely, if we add two fresh ciphertexts
ct1 and ct2 of two parties, first rearrange the ciphertext
entries by increasing the dimension of input ciphertexts such
as ct′1 = (ct1[1], 0, ct1[2]), ct′2 = (0, ct2[1], ct2[2]) then
their underlying secret key sk is (s1, s2, 1). For addition,
just add the two expanded ciphertexts, i.e. ct+ := ct′1+ ct′2
mod q ∈ R3

q. For multiplication, tensor product is used
between two expended ciphertexts as single-key BFV does.
We first do tensor product which outputs ct⊗ = ct′1⊗ ct′2 ∈
R9
q. Then ct satisfies 〈ct⊗, sk⊗ sk〉 = 〈ct′1, sk〉 · 〈ct′2, sk〉.

We then relinearize it by using additional material (evaluation
keys) since there is some non-linear parts such as s1 · s2.

Then the final evaluated ciphertext ct× ∈ R3
q satisfies

q
p 〈ct×, sk〉 ≈ m1m2 mod p
After computation with k users, the evaluated cipher-

text is ĉt = (c1, . . . , ck+1) ∈ Rk+1
q , which is decrypted

as p
q 〈ĉt, ŝk〉 ≈ f (m1, . . . ,mk ) mod p, where ŝk =

(s1, . . . , sk , 1) and f (m1, . . . ,mk ) is a desired function value
of all users.

III. MAIN TECHNIQUE
In this section, we present an efficient evaluation key (also
bootstrapping key) generation algorithm for compact MKHE
scheme to be round optimal. We assume that a common
random string (CRS) is given to all users from a trusted
generator in the following scheme.

A. EVALUATION KEY GENERATION ALGORITHM
We recall a gadget vector which is g = (g1, . . . , g`) ∈
R`
q (usually, gi = gi−1 for some g ∈ Zq). The gadget

vector is widely used in homomorphic encryption schemes to
control noise growth since the gadget decomposition (inverse
of g, g−1) keeps the size of output less than min{gi}. Fur-
thermore, if g−1 is randomized (output follows subguassian
distribution), it gives a tight bound for error analysis due to
independent error term [26]–[28]. Note that g−1 : Rq→ R`,
which outputs g−1(a) = (u1, . . . , u`) for a ∈ Rq, such that
g1u1 + . . .+ g`u` = a mod q, ` = O(logg q).
We first define our simple evaluation key generation algo-

rithm for relinearization. This process is simple and no much
noise is contained in the output keys. Once joint parties’
public keys are known, no interaction is required for gen-
erating a ciphertext and evaluation keys among participants,
which makes our scheme more practical than other similar
approaches [9]–[11].
• CMKHE .EvalKeyGen(p̂k, si)→ Ki ∈ R`×2

q :
(1) ui← χ` over Rq, ei, e′i← D`α overRq.
(2) Parse p̂k = (a, b) such that a(

∑k
i=1 si) + b ≈ 0

mod q.
(3) Ki[1] = a · ui + si · g+ ei mod q,

Ki[2] = b · ui + e′i = −a(
∑k

t=1 st ) · ui + ẽi ∈ R`
q

mod q.
Let Ki be an evaluation key of i-th user. Then

Ki[1] ·
k∑
t=1

st +Ki[2] = si(
k∑
t=1

st ) · g+ êi mod q, (1)

for some error vector êi ∈ R`
q. Note that a of the common

public key p̂k is the same common random parameter given
by a trusted setup in this section.

In fact, the keys are pseudo-encryptions of secret key.
Hence we assume circular security as general homomorphic
encryption schemes do. The keys are securely encrypted
by multiple users’ secret keys, which we will discuss in
Appendix by proving this pseudo-encryptions of secrets are
computationally indistinguishable to uniform random ele-
ments by RLWE assumption. Therefore, any secret key infor-
mation is not leaked at all unless all of the users agree on it.
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Now we define our evaluation algorithm consisting of
addition and multiplication over ciphertexts. We note that a
server can use the master evaluation key by adding all given
individual evaluation keys from k users to save memory and
computation cost. Then the evaluation algorithm is just as
same as the one of the underlying single-key FHE scheme.
Let K̂ :=

∑k
t=1Kt be the master evaluation key. Let cti =

(ci,1, ci,2) ∈ R2
q, ctj = (cj,1, cj,2) ∈ R2

q be two multikey
ciphertexts encrypted under k different keys, and mi,mj be a
corresponding plaintext respectively, for i, j ∈ [k] (i and j are
possibly same).
• CMKHE .Eval(C, cti, ctj, K̂) ∈ {ct+, ct×}, C is a
circuit.
- - [Addition] CMKHE .Add(cti, ctj)→ ct+ ∈ R2

q:
(1) ct+ = cti+ ctj mod q = (ci,1+cj,1, ci,2+cj,2)

mod q.
- - [Multiplication] CMKHE .Mult(cti, ctj, K̂) →

ct× ∈ R2
q:

(1) ct′ = cti⊗ ctj ∈ R4.
(2) Compute cv = [b 1

1
ct′[v]e]q for v ∈ [4].

(3) ct×[1] = 〈g−1(c1), K̂[1]〉 + (c2 + c3) mod q,
ct×[2] = 〈g−1(c1), K̂[2]〉 + c4 mod q.

After the first step (tensor product), the output ct′ satisfies
〈ct′, sk⊗ sk〉 = 〈cti, sk〉 · 〈ctj, sk〉, where sk = (s1+ · · · +
sk , 1). Then 1

1
[ct′[1](s1 + · · · + sk )2 + (ct[2] + ct[3])

(s1+· · ·+ sk )+ ct′[4]] ≈ mimj. Therefore, the dimension of
ct′ is increased and the ciphertext contains some non-linear
parts such as si · sj. So we use relinearization algorithm to
reduce the dimension as the original one. The third step of the
multiplication is relinearization. The computation complexity
is as same as single-key BFV since there is no ciphertext
expansion.

1) CORRECTNESS OF EVALUATION
Let ŝk = (s1+· · ·+sk , 1) ∈ R2

q be a corresponding secret key
of a multikey ciphertext. For addition, we can easily check
that

[〈ct+, ŝk〉]q =
[
ct+[1](s1 + · · · + sk )+ ct+[2]

]
q

≈ 1(mi + mj) mod q.

For multiplication, we first note that ct′ satisfies the fol-
lowing equation with a secret key ŝk⊗ ŝk:

1
1

[
c1 · (

k∑
i=1

si)2 + (c2 + c3) ·
k∑
i=1

si + c4

]
q

≈mimj mod p

After relinearization (step (3)) with evaluation keys, it sat-
isfies that

〈ct×, ŝk〉 mod q

= ct×[1](s1 + · · · + sk )+ ct×[2] mod q

= 〈g−1(c1), K̂[1]〉 · (
k∑
i=1

si)+ (c2 + c3) · (
k∑
i=1

si)

+〈g−1(c1), K̂[2]〉 + c4 mod q

=

[
〈g−1(c1), K̂[1] · (

k∑
i=1

si)+ K̂[2]〉 + (c2 + c3)

·

k∑
i=1

si + c4

]
q

=

[
〈g−1(c1), (s1 + · · · + sk )2 · g+ e〉 + (c2 + c3)

·

k∑
i=1

si + c4

]
q

=

[
(s1 + · · · + sk )2〈g−1(c1), g〉 + (c2 + c3)

·

k∑
i=1

si + c4 + ẽ

]
q

≈

[
c1 · (s1 + · · · + sk )2+(c2 + c3) · (s1 + · · · + sk )+ c4

]
q

≈ 1mimj mod q,

where e ∈ R`
q and ẽ ∈ Rq are some errors.

B. BOOTSTRAPPING FOR CMKHE
Bootstrapping of standard FHE is not straightforward to
do and even requires large size of additional key materials
(encryptions of secret key). Moreover, a server needs much
larger storage and takes more computation time for MKHE
scheme (at least k times more than its single-key scheme).
Even though it seems inevitable to take all key elements from
each user, we can reduce the computation time of a server at
least since we use compact MKHE.

We follow the bootstrapping of [6], but ours is much
simpler since the size is reduced to single-key version.
Moreover, there is no interaction among users for boot-
strapping, even creating a bootstrapping key unlike [10].
Everything we need to modify is evaluation of Galois auto-
morphisms which is a linear transformation requiring rota-
tions on encrypted elements since the rest is as same as an
improved single-key BFV bootstrapping procedure [29]. It is
mainly based on key switching such as using a map τt :
P(X ) 7→ P(X t ), whereP(X ) is a polynomial inRq.We denote
τt (a) = (τt (a1), . . . , τt (ad )) for a d-dimensional vector a =
(a1, . . . , ad ). It is easy to see that τt (ct) is encrypting τt (m)
under a secret key τt (sk), where CMKHE .Dec(ct, sk) = m,
sk = (s, 1). To bootstrap an evaluated multikey ciphertext,
it requires secret key elements, say, µs ∈ Rq, which is
generated by additional algorithm only for bootstrapping key
in [6]. We first generate an key generation algorithm which
takes a secret key element on input. Let p̂k be a common
public key of k users.
• CMKHE .EncSKGen(p̂k, µs)→ key ∈ R`×2

q
(1) u← χ` overRq, e, e′← D`α over Rq.
(2) Parse p̂k = (a′, b′) such that a′(

∑k
i=1 si) + b

′
≈ 0

mod q
(3) key[1] = a′ · u+ e mod q,

key[2] = b′ · u+ µs · g+ e′ = −a(
∑k

i=1 si) · u+
µs · g+ ẽ ∈ R`

q mod q, for some error ẽ ∈ R`
q.
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We can easily check key satisfies the following equation:

key[1] · (
k∑
i=1

si)+ key[2] ≈ µs · g mod q ∈ R`×2
q

Then one may transform a ciphertext encrypted under s
to an encryption of the same plaintext under different secret
key s′. Thenwe use key switching algorithm similarly defined
in [6] but more efficient than that since we only require one
2` ring multiplication rather than 2k`. Let ct be a ciphertext
encrypted under s and the key is encrypting s′ under the
secret s.
• CMKHE .KeySwitch(ct,key)→ ct′ ∈ R2

q
- - Compute ct′ = (ct′[1], ct′[2]) as
∗ ct′[1] = 〈g−1(ct[1]),key[1]〉 mod q
∗ ct′[2] = 〈g−1(ct[1]),key[2]〉 + ct[2] mod q

Then, in our case, bootstrapping key (also called Galois
key) is generated by running CMKHE .EncSKGen algorithm
as [6]. We define Galois key generation algorithm below.
• CMKHE .GkGen(p̂k, τt (si)) → GKi,t , for i ∈ [k],
t ∈ Z∗2N
(1) Runs CMKHE .EncSKGen(p̂k, τt (si))→ keyi,t
(2) Outputs GKi,t := keyi,t

In fact, like the master evaluation key, a server can save the
master bootstrapping key by adding all bootstrapping keys of
users. It can save memory consumption of a server definitely.
An evaluation of Galois automorphism on a compact MKHE
ciphertext is easily done by running key switching algorithm
CMKHE .KeySwitch taking bootstrapping key on input. For
simplicity and efficiency, we use ĜKt :=

∑k
i=1GKi,t as the

master bootstrapping key. Now we check the correctness of
key switching with the master bootstrapping key.

1) CORRECTNESS
We show that 〈ct′, ŝk〉 = τt (〈ct, ŝk〉) mod q, where ŝk =
(s1 + · · · + sk , 1).

〈ct′, ŝk〉
= ct′[1](s1 + · · · + sk )+ ct′[2]

= 〈g−1(τt (ct[1])), ˆGKt [1] ·
k∑
i=1

si〉

+〈g−1(τt (ct[1])), ˆGKt [2]〉

+τt (ct[2]) mod q

=

[
〈g−1(τt (ct[1])), ˆGKt [1]·

k∑
i=1

si+ ˆGKt [2]〉

+τt (ct[2])
]
q

≈

[
〈g−1(τt (ct[1])), (τt (s1)+ · · · + τt (sk )) · g+ e〉

+τt (ct[2])
]
q

≈ τt (ct[1]) · (τt (s1)+ · · · + τt (sk ))+ τt (ct[2]) mod q

= 〈τt (ct), τt (ŝk)〉 mod q

= τt (〈ct, ŝk〉) mod q,

where e ∈ Rq is an error.

C. SECURITY
We can prove that the distribution of our evaluation keys
are computationally indistinguishable to uniform distri-
bution, since the evaluation keys are only different to
existing secure constructions [9], [10]. We define the
CMKHE .EvalKeyGen (resp. CMKHE .EncSKGen)is an
encryption algorithm of messagem under a public key gener-
ated from CMKHE .KeyGen. We prove that the encryption
algorithm is semantically secure, then equivalently we con-
clude that the evaluation keys do not leak any information
about underlying message (secret key) against passive adver-
saries by assuming circular security.

For MKHE security with multiple decryptor, it is rec-
ommended to prove that the scheme is secure against both
internal adversary and external adversaries [19]. However,
we only care of the internal adversary which is one of par-
ticipants for evaluation keys, since the keys are not used
for decryption process. We show the entire security proof of
the proposed scheme in Appendix with the brief explanation
about proper adversaries.
Theorem 1: The distribution of evaluation keys are

computationally indistinguishable to uniform distribution
over R`×2

q by assuming underlying RLWE assumption
with the parameter (n, q, χ,Dα) is hard and circular
security.

Proof: Let k be the number of users, (pki, ski) ←
CMKHE .KeyGen (params), where params← CMKHE.
Setup for i ∈ [k], and we set pki = (ai, bi), ski = si.
Let Kb ← CMKHE .EvalKeyGen(p̂k, b) be a relineariza-
tion key encrypting a bit b under k users’ secrets. Let
keyb ← CMKHE .EncSKGen(p̂k, b) be a bootstrapping
key of encryption a bit b under k user’s keys. Without loss of
generality, we assume k = 2. Here, the challenge ciphertext
is an evaluation key Kb (resp. keyb). We denote an internal
adversary of CMKHE byA and an RLWE distinguisher byB.
In the security game for internal adversary [16], A performs
what he can do such as accessing certain oracle after receiving
a challenge ciphertext Kb (resp. keyb) from a challenger of
a security game, sends the value to B by letting him guess
which b was chosen by the challenger. Then A forwards the
answer of B to the challenger.

It is clear to see that the challenge ciphertext Kb (resp.
keyb) encrypting b under pk1 and pk2. Then the internal
adversary who holds sk2 (assume he is the second user), can
partially decrypt Kb (resp. keyb) with its key by performing
〈(Kb[1, j],K2,j), sk2〉 for some j ∈ [ell], resulting in an
element aujs1 + b · s2 · gj + ej ∈ Rq denoted by bj.
Now we can see that (a, bj) is an RLWE sample under the
given parameter. Then the adversary sends b1 with a which
is a uniform random element and pk1 to B. In other words,
the advantage ofA becomes the advantage of the adversaryB.
which is negligible by RLWE assumption with the given
parameter.

Therefore, we conclude that the encryption scheme for
evaluation keys are IND-CPA secure assuming circular
security and that RLWE assumption is hard with such
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parameter set. Equivalently, the keys are computationally
indistinguishable toR`×2

q , hence do not leak any information
about secret key through public channel against passive
adversary.

IV. COMPATIBILITY WITH EXISTING SCHEMES
Compact MKHE schemes we present above are as efficient
as its base single-key HE schemes. However, they are not
always better than other existing schemes. In order to show
the different ability of MKHE schemes and their variants
depending on computing environment, we denote our scheme
by CMKHE and a multikey BFV scheme [6] byMKHE in this
section,.

We let the key generation of MKHE be same as CMKHE’s
in the presence of CRS. We summarize the properties of each
scheme which may affect on a computation in a positive
or negative way in Table 1. It is interesting to see that the
benefit that one scheme posses is what the other scheme
cannot achieve directly. That is to say, in all existing CMKHE
schemes, there is no ciphertext expansion for pre-defined
users, but dynamic computation is hardly achievable directly.
On the other hand, MKHE allows dynamic computation for
free but the ciphertext size grows linearly in the number of
users.

In fact, it would be the best if the dynamic computation is
possible between different schemes to achieve the best per-
formance using each benefit. Therefore, we suggest practical
methods to convert one scheme into the other to compensate
the negative point of a scheme by the positive point of the
other to some extent.
• The conversion from MKHE to CMKHE is meaningful
if a server has lack of its computation power at some
point or when no more new users join the computation.
Moreover, it can be used to reduce communication cost
by a server without any interaction with users after
evaluation a function value.

• We recommend the opposite direction (from CMKHE
to MKHE) for a case that new users often take part in
a computation after computing a joint function value
among a fixed number of users.

We note that these conversion algorithms are also applica-
ble to existing compact MKHE schemes [9], [10] since they
have basically the same structure but it is preferable to use
ours due to lower round complexity.

We only consider the issue on adding new users in the
paper since we can remove users by using multikey proxy
re-encryption [30] regardless of type of schemes. If a user
wants to stop continuing the computation, we have to make
sure that anything about security issue cannot happen. To do
this, there is no other efficient solution than multikey proxy
re-encryption so far. With all users’ proxy re-encryption keys,
the server partially decrypt the output then sends to the user.
And user can finally decrypt the output with its own key,
while the server can continue further computation with the
rest of users’ information.

A. CONVERSION CMKHE INTO MKHE
The conversion from CMKHE to MKHE is pretty straightfor-
ward. Just add a new component for a new user by extending
ciphertext dimension. To do this, however, users’ evaluation
keys of MKHE should be previously generated and sent to a
server(or a computing party). For example, let ct = (a, b) ∈
R2 be anCMKHE ciphertext encryptingm under secret s1+s2
and let ct3 = (a3, b3) be a MKHE ciphertext encrypting m3
under s3. The server expands ct to ct′ = (a, 0, b) and ct3
to ct′3 = (0, a3, b3), of which underlying secret key is (s1 +
s2, s3, 1). Then a server computes a function f over ct′ and
ct′3 by using MKHE .Eval algorithm with evaluation keys
of MKHE, i.e., addition and multiplication are performed
as MKHE’s evaluation procedure, then the output is ct′ =
(a1, a2, b) ∈ R3 such that b+a1(s1+s2)+a2s3 ≈ 1f (m,m3).
We note that this conversion is actually used in [9] to

collaborate both schemes by giving a particular example
(between a model owners who use a compact MKHE scheme
and users who are dynamically join the computation by using
MKHE). We say that this conversion can be extended to more
general cases with less communication among users.

If a group of new users are joining at the same time,
it would be better to extend only one component for the new
group of which information is encrypted by using CMKHE
than adding every component according to the number of new
users. Then run MKHE .Eval algorithm between two groups
(the old and the new). If new users unexpectedly join the
computation, it is better to use MKHE is used from then.

B. CONVERSION MKHE INTO CMKHE
Before going to the conversion, we note that it is the most
efficient way to use our scheme among any other CMKHE
schemes such as [9], [10] for the conversion because it takes
no round for that. Server can do everything with previously
given information.

We assume a CRS for large number of k and that public
keys are known to one another. Let k users have jointly
computed a function value f (m1, . . . ,mk ) based on MKHE,
where the resulting evaluated MKHE ciphertext ct ∈ Rk+1

q
which satisfies 1

1
[〈ct, (s1, . . . , sk , 1)〉]q ≈ f (m1, . . . ,mk )

mod p. A server converts it toCMKHE ciphertext for a further
computation with a function g with the same joint users. Let
MKHE pubic key of each user be (a, bi) ∈ R2

q, and secret key
be si for i ∈ [k], where a is CRS. Then the protocol between
k users and a server is following:
• Setup: Before computation, users share their public keys
to create a common public key p̂k then generate conver-
sion keys CKi (for i ∈ [k]) by running ConvKeyGen
which can be precomputed. Then sends them to a server.

• Server:
- - runs MKHEtoCMKHE(ct, {CKi}i∈[k], )

The setup phase can be considered as pre-processing in many
of applications. Now, we define the conversion key genera-
tion algorithm ConvKeyGen and the conversion algorithm
MKHEtoCMKHE. It is basically, running similar process in
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TABLE 1. Pros and Cons of existing CMKHE and original MKHE.

key switching CMKHE .KeySwitch algorithm with conver-
sion keys of k users.
• ConvKeyGen(p̂k, si)→ CKi ∈ R`×2

q

- - Run CMKHE .EncSKGen(p̂k, si)→ key
- - Output CKi := key

• MKHEtoCMKHE(ct, {CKi}i∈[k])→ ct′ ∈ R2
q

- - Parse ct = (a1, a2, . . . , ak , b).
– [- -]ct′[1] =

∑k
i=1〈g

−1(ai),CKi[1]〉 mod q
- - ct′[2] =

∑k
i=1〈g

−1(ai),CKi[2]〉 + b mod q

1) CORRECTNESS
We only check that 1

1
[〈ct′, (

∑k
i=1 si, 1)〉]q ≈ f (m1 . . . ,mk )

[〈ct′, (
k∑
i=1

si, 1)〉]q

= [
∑
i∈[k]

〈g−1(ai),CKi[1]〉(
k∑
i=1

si)

+

∑
i∈[k]

〈g−1(ai),CKi[2]〉 + b]q

= [
∑
i∈[k]

〈g−1(ai),CKi[1](
k∑
i=1

si)〉

+

∑
i∈[k]

〈g−1(ai),CKi[2]〉 + b]q

= [
∑
i∈[k]

〈g−1(ai),CKi[1](
k∑
i=1

si)+ CKi[2]〉 + b]q

≈ [
∑
i∈[k]

(〈g−1(ai), sig〉 + b]q

≈ [
∑
i∈[k]

aisi + b]q

≈ 1f (m1, . . . ,mk ) mod q

We note that the conversion key’s security is also guaran-
teed as we discussed of the security of the evaluation keys in
Section III.

C. COMPLEXITY COMPARISON WITH SIMILAR WORKS
We show the complexity comparison between multikey [6]
scheme and compact MKHE schemes ( [10] and ours)
in Table 2 based on what we mentioned in this section. Since
both [10] and [9] (as model owners side) schemes basically
have same structure but [10] improved the noise growth,
so we compare [10] as a representative previous compact

MKHE scheme. We also show two kinds of MKHE [6] in
the presence of pre-processing. They suggest pre-processing
model to improve the time cost of relinearization by generat-
ing a common evaluation key as a setup process. Therefore,
the number of users should be pre-defined in this case. As a
trade-off, their storage for keys increased quadratically in k ,
compared to O(k) in others.

Relin noise denotes the complexity of noise growth after
relinearization with evaluation keys. EvalKeyGen per user
denotes the complexity of evaluation key generation algo-
rithm per user. evk size denotes the evaluation key (relin-
earization) key size which a server stores for homomorphic
multiplication. Pre-processing denotes the server’s computa-
tion complexity for combining evaluation keys to generate a
common relinearization key before computation starts. And
we show how many interactions among users for homo-
morphic operation are needed in general and in PKI model
where public keys are stored in advance, respectively. The
last column shows that if the users are required to know each
other to use each scheme. We let k be the number of users.
We first look into the noise after relinearization. The

compact MKHE schemes have the same k2 factor in noise
complexity as original non-compact MKHE scheme [6].
In compact MKHE schemes, the sum of k independent noise
of distinct public keys are contained in a common public keys,
hence, this factor influences in each evaluation key. Since the
common evaluation key is the sum of k users’ evaluation keys,
total k2 factors are inevitable in this construction. Regarding
the noise, MKHE with pre-processing has the large complex-
ity since they deal with large size of key sets. We show our
noise analysis in Appendix.

Then we compare the complexity of the evaluation key
generation algorithm for each user in every scheme. Interac-
tive protocols take k evaluation key materials in each round,
whereas each user in MKHE scheme and ours scheme only
generates its evaluation key without interaction. More pre-
cisely, in [10] (also in [9]), every user generates an evaluation
key material in the first round and publishes all to every user.
After that, users can generate the final material by combining
previously givenmaterials and publish them to all. After gath-
ering all final information, a common evaluation key is then
generated. Therefore, they have k factor in the computation
complexity since they are dealing with k information in every
round, whereas users in our scheme only generate a common
evaluation key on their own without interaction if public keys
are known. As a result, previous CMKHE schemes [9], [10]
takes 2 rounds for homomorphic operations and our work
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TABLE 2. Complexity comparison between our work and other similar works. We let k be the number of users, n be a degree of ciphertext polynomial,
` be evaluation key parameter, σg be the variance of the gadget decomposition algorithm.

needs one round; distributing public keys. If we assume a
public key infrastructure (PKI) as a pre-processing model,
we have no round at all, whereas [9], [10] still require one
round to generate a common evaluation key by combining
additional materials.

Users in MKHE with pre-processing generate its public
key and evaluation key on their own and send them to a
server (or a computing party). Then the server computes a
shared evaluation key by taking non-negligible time due to
its large key size comparing to relatively negligible time in
other CMKHE schemes. Also the server uses large storage
due to large size of keys with k2 factor. MKHE without pre-
processing does not generate a shared relinearization key so a
server stores all k evaluation keys of users. However, a server
only stores a common evaluation key of CMKHE schemes,
which occupies the smallest storage.

Consequently, we present the most efficient compact
MKHE scheme for arithmetic operation until now. Moreover,
in practice, our scheme may outperform than MKHE with
pre-processing in terms of time, noise, memory, and network
cost since it anyway requires pre-defined users, even though
ours needs one round interaction among users. If a computa-
tion keeps adding new users’ information, it is recommended
to use practical MKHE schemes [6], [7] since the conversion
from CMKHE to MKHE is a non-negligible time algorithm.

V. CONCLUSION
We propose an efficient evaluation key generation method
for compact MKHE schemes where the size of ciphertext
does not depend on the number of users. Hence, no further
interaction is needed for homomorphic evaluation. More-
over, we suggest a practical conversion algorithm to effi-
ciently convert non-compact one to compact one and the
inverse direction in order to utilize unique advantages of both
schemes together. In other words, compact MKHE scheme is
as efficient as single-key preserving individual input privacy
for free, but dynamic computation is not easily achievable
since it only works for pre-defined number of users. On the
other hand, original non-compact scheme allows new users
to join on-going computation freely, but having ciphertext
expansion. As a result, we provide multiple choices to users
for their practical secure computation.

APPENDIX A
NOISE ANALYSIS ON EVALUATION
We can provide an average-case noise analysis on variance of
the noise instead of the use of other measures such as infinity

norm if we use a heuristic assumption that all the coefficients
of the noise independently follows subgaussian distribution
or we use a real subgaussian sampling [27], [28] for g−1(·).
We define the secret key is sampled the uniform distribution
over the set of binary polynomials.

Since other algorithms are as same as previous works,
we only look into the noise contained in evaluation key first.
As denoted in this section, the noise contained in K̂i is êi.
êi = (

∑k
t=1 st )ei+epkui+e′i, where epk is an error contained

in a public key. Therefore,

Var(Err(Ki))=Var(êi) ≈ knα2 + nα2+α2= (kn+ n+1)α2.

Hence, the variance of the noise in the common evaluation
key is Var(Err(K)) ≈ k(nk + n + 1)α2. Comparing to
other work [10] which significantly reduces the output noise
in evaluation key as opposed to the technique in [11] and
its extension [9], we have similar (a bit smaller) noise in
evaluation keys.

Now we observe the error after relinearization. As we can
see that, 〈ct×, sk〉 = 〈g−1(c1), K̂[1](

∑k
i=1 si) + K̂[2]〉 +

(c2+c3)(
∑k

i=1 si)+c4 = 〈ct′, sk⊗ sk〉+〈g−1(c1),Err(K̂)〉,
where sk = (

∑k
i=1 si, 1). The relinearization error is

〈g−1(c1),Err(K̂)〉 The variance of this noise is following:

VarRelin(ct×) = n`Var(g−1(c1)) · Var(Err(K̂))

As a result, compact MKHE schemes have the same k2

factor in noise complexity as original non-compact MKHE
scheme [6]. In compact MKHE schemes, the sum of k
independent noise of distinct public keys are contained in a
common public keys, hence, this factor influences in each
evaluation key. Since the common evaluation key is the sum
of k users’ evaluation keys, total k2 factors are inevitable in
this construction.

APPENDIX B
DIFFERENT TYPES OF DECRYPTION
We can use several proposed decryption algorithms depend-
ing on processing environment. In single decryptor setting,
where the trusted party holds all the involved secret keys,
the one can simply run CMKHE .Dec algorithm as [5].

In the multi decryptor setting, where all involved users
jointly decrypt a common ciphertext, the decryption is a pro-
tocol, more precisely, distributed decryption protocol taking
one round. The protocol consists of two algorithms PartDec,
FinDec run by each user. The FinDec is originally proposed
as a public algorithm of which all inputs are public elements,
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but it may leak output information to the one who watch the
public channel and run the public algorithm on its own, hence,
it is modified to an algorithm requiring a valid secret key as
an input to achieve output privacy of multikey ciphertext [19].

We can use all the existing solutions for different cases,
hence, introduce the methods to decrypt evaluated ciphertexts
of our scheme:
(1) If the output privacy is not concerned such as standard

MPC protocol or users employ their own secure chan-
nel, they can use the one round distributed decryption
protocol [7] with noise flooding technique.

(2) To achieve the output privacy through public channels,
users use a decryption protocol suggested in [19], with
re-encrypting the output of PartDec. It requires more
communication cost than (1).

(3) As proposed in [30], a server can run partial decryption
algorithm on behalf of each user using re-encryption
key given in advance, hence, there is no communication
among users at decryption phase, requiring large storage
and computation time of a server instead.

APPENDIX C
SECURITY OF PROPOSED SCHEME
We first recall static adversaries of multikey homomorphic
encryption schemes [19]. There are two types of adversaries;
the internal adversary who is a member of joint users, and
the external adversary who does not take part in a com-
putation but can see what is transmitted through a public
channel.

The input security is achieved by the multikey IND-CPA
security [16] which models the same adversary as IND-CPA
security except that the adversary (internal adversary) can
perform the decryption by its own secret key before and after
challenge phase (also with challenge message). The output
security models adversaries who is an adversary of IND-CPA
security except that he (external adversary) can additionally
access the partial decryption oracle for each party’ secret
key before and after challenge step (also with challenge
message) [19].

she can obtain the output but wishes to learn other users’
inputs. The external adversary is not taking part in a compu-
tation but able to see users’ transmit channel hoping to learn
both input and output.

Therefore, if a scheme considers a single decryptor, it only
focus on internal adversaries for security. For multi decryp-
tor setting, a scheme should be secure against both inter-
nal and external adversaries. We show that our scheme is
semantically secure in the multi decryptor setting to consider
both adversaries. We follow the security game and the proof
of [16], [19]
Theorem 2: The scheme CMKHE with multi decryptor is

semantically secure if underlying single-key BFV is seman-
tically secure under RLWE assumption.

Proof: Let k be the number of users, (pki, ski) ←
CMKHE .KeyGen(params), where params ← CMKHE.
Setup for i ∈ [k], and we set pki = (ai, bi), ski = si. ct be

a multikey ciphertext under the common public key pk. Let
{Ki ← CMKHE .EvalKeyGen(p̂k, si)} be evaluation keys
of i-th user. Let keyi ← CMKHE .EncSKGen(p̂k, si) be
bootstrapping key of each user. Without loss of generality,
we assume k = 2. We denote any kind of adversary of
CMKHE by A and the adversary which breaks underlying
BFV scheme by B. In each security game per each type of
adversary [16], [19], A performs what he can do such as
accessing certain oracle after receiving a challenge ciphertext
ctb from a challenger of a security game, sends the value to
B by letting him guess which bwas chosen by the challenger.
Then A forwards the answer of B to the challenger. We note
that A and B cannot learn anything from {Ki} and {keyi} by
RLWE assumption as we proved in III.

1) For input security against an internal adversary, it is
clear to see that the challenge ciphertext ctb encrypting
mb under pk1 and pk2. Then the internal adversary
who holds sk2 (assume he is the second user), can par-
tially decrypt ctb with its key by performing 〈ctb, sk2〉,
resulting in a ciphertext ct′b which is a BFV ciphertext
encrypted under sk1. Then the adversary sends ct′b and
pk1 to an adversary who breaks BFV scheme. In other
words, the advantage of A becomes the advantage
of BFV adversary B which is negligible by RLWE
assumption.

2) For output security against the external adversary
A which does not have any associated secret keys,
we consider the decryption of [19] consisting of two
algorithms PartDec and FinDec. For more detail,
we focus on other transmitted information, partial
decryption which is the output of PartDec. Our
PartDec partially decrypts a multikey ciphertext with
its own key then re-encrypt the result with BFV scheme
by the receiver’s public key. Recall the security game
of [19], the challenge ciphertext ctb is encrypted under
sk1, sk2, encrypting mb. The adversary can access to
partial decryption oracle to obtain partial decryption
information d1 and d2, which is a BFV encryption
under sk1 and sk2, respectively. Then A forwards
d1, d2 and pk1,pk2 to the BFV adversary B. Since the
advantage of B is negligible due to RLWE assumption,
so is A’s.

CMKHE is semantically secure since it is CPA-secure against
both internal adversaries and external adversaries, if single-
key BFV is CPA-secure under RLWE assumption.
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