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Abstract—With the rise of the Internet of Things (IoT), a
huge market for so-called smart edge-devices is foreseen for
millions of applications, like personalized healthcare and smart
robotics. These devices have to bring smart computing directly
where the data is generated, while coping with the limited energy
budget. Conventional von-Neumann architecture fail to meet
these requirements due to e.g., memory-processor data transfer
bottleneck. Memristor-based computation-in-memory (CIM) has
the potential to realize smart local computing for highly par-
allel data-dominated AI applications by exploiting the inherent
properties of the architecture and the physical characteristics of
the memristors. This paper provides a broad overview of CIM
architecture highlighting its potential and unique properties in
enabling smart local computing. Moreover, it discusses design
considerations of such architectures including both crossbar
array as well as peripheral circuits; special attention is given to
analog-to-digital converter (ADC), as it is the most critical unit
of analog-based CIM operation e.g., vector-matrix multiplication
(VMM). Finally, the paper outlines the potential future directions
for CIM-based edge smart computing.

I. INTRODUCTION

The breakthrough in Artificial Intelligence (AI) has led to
a booming increase in Al-based applications and services [1].
Although existing Al applications have achieved state-of-the-
art performance in various fields, their dependency on cloud
servers presents strict resource requirements such as memory
and network bandwidth [2]-[4]. Edge computing (aka edge-
Al), is a promising solution to overcome those barriers by
performing local computing (on the edge-devices) [S]-[7]. The
main advantages of edge-Al over traditional Al applications
can be summarized as: (i) Energy-efficiency: In comparison
to cloud computing, edge-Al offers a more energy-efficient
approach by processing only relevant data; (ii) Real-time
response: Due to local computation, edge-Al saves substantial
amount of time, which enables a nearly real-time response;
(iii) Storage-efficiency: edge-Al reduces the amount of data
stored in centralized systems by local processing and decision-
making. However, edge-Al has stringent requirements that
must be dealt with in order to harness its full potential; edge-
Al hardware must be fast, compact and extremely energy-
efficient, as edge-devices have limited resource such as battery
lifetime or harvested energy [5], [8], [9].
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The existing Al processing architectures based on the
conventional von-Neumann architecture (such as CPU, GPU
and TPU) are severely constrained by the so-called “memory
wall” [10], [11]. As a result, excessive time and energy
are spent in moving massive amounts of data between the
memory and data paths [12]. This challenge is imperiling the
deployment of Al on edge-devices. Therefore, a paradigm shift
is paramount to unlock the full potential of edge-Al In this
regard, memristor-based computation-in-memory (CIM) has
the potential to break the aforementioned challenge (due to
the nature of the architecture and the devices used to realize
it) and deliver energy efficient implementations of hardware
edge-Al [13]-[15]. Such memristor-based CIM architecture
uses non-volatile devices to store the data while exploiting
their inherent capability to perform computation on the stored
data and hence, circumventing the costly data movement of
von-Neumann based systems [16].

This paper highlights memristor-based CIM architecture as a
potential candidate for edge-Al applications, and discusses the
low-power design aspects of such an architecture. It provides
a broad overview of different memristor-based CIM architec-
tures, memristor device technologies, crossbar configurations
and related periphery circuits. The paper gives special attention
to the design of ADCs as they are the most critical units of
analog-based CIM for e.g., multiply-and-accumulate (MAC)
operations.

II. COMPUTATION-IN-MEMORY (CIM)

A. CIM Basics and Classification

CIM refers to the computing paradigm where the compu-
tation (i.e., execution) of an operation is performed within
the memory core. Referring to Fig. 1 [16], depending on
where the result is generated, CIM can be classified into i)
CIM-Array (aka CIM-A) in which the results are produced
in the crossbar array (marked as circled 1) [17]-[19]; and ii)
CIM-Periphery (aka CIM-P) where the results are produced
in periphery (marked as circled 2) [20]-[22]. Moreover, both
classes can be further classified into: (1) basic architectures
requiring design changes only inside the memory array (CIM-
Ab) or only in the periphery (CIM-Pb), and (2) hybrid where
in addition to major changes in the memory array minimal to



medium changes are required in the peripheral circuit (CIM-
Ah) or vice versa (CIM-Ph) [16].
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Fig. 1. CIM core architecture and its classification [16].

CIM aims at utilizing non-volatile, CMOS-compatible and
highly scalable memristor devices whose inherent nature en-
ables both storage and computing capabilities. This makes it
possible for CIM to exploit maximum bandwidth and massive
reduction of data movement between the memory and external
processing unit, resulting into extremely low power operations.
Therefore, CIM is a promising candidate for fast, low-power
budget edge-Al applications.

B. CIM Architectural Units

1) Crossbar Array: We will use CIM-Ph primitive com-
putational unit for illustration; it is extensively explored for
matrix-matrix multiplication (MMM) with large operand sizes
for edge-Al applications [23], [24]. Fig. 2a shows a subset of
MMM; i.e., vector-matrix multiplication (VMM) performing
several multiply-accumulate (MAC) operations that encom-
passes the most fundamental computational unit in different
domains such as complex neural networks.

VMM is performed by applying a voltage vector V=V
(where je{1,m}) to memristor-crossbar matrix of conduc-
tance values G=G;; (where ic{l,n}, je{l,m}). At any
instance, each column performs a vector-vector multiplication
(VVM) or a MAC operation, with the output current vector I,
in which each element is [;=XV; - G;;. Note that all n MAC
operations are performed with O(1) time complexity.

2) Periphery: A CIM core can be inherited from standard
well-established memory cores such as SRAMs and DRAMs,
but with some major modifications to accommodate analog-
based computing, as shown in Fig. 2b. Firstly, the CMOS-
based bitcell comprising the memory unit is replaced by
memristor-based bitcell configured in a compact crossbar ar-
ray, as described previously. The circuit blocks comprising the
periphery that supports the bitcell array are significantly mod-
ified depending on the operations CIM should accommodate.
E.g., for MMM operations, the following is needed: 1) Row-
decoder becomes complex as CIM involves enabling several
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Fig. 2. (a) Scaling CIM-P primitive to a large-scale crossbar array. (b) Detailed
CIM-P core [25].

rows in a single computation cycle. Also, /-bit row or word-
line drivers are now replaced by digital-to-analog converters
(DACs) that convert multi-bit VMM operands into an array
of analog voltages. 2) Column periphery circuits performing
read operations (i.e., I-bit sense-amplifiers) are now replaced
by analog-to-digital converters (ADCs) to quantify currents as
digital bit-streams. Post-processing circuits such as shift-and-
add are required for MMM 3) Control block needs to deal with
complex instructions such as handling intricacies of multi-
operand VMM operations as opposed a simple read or write
memory operation. The crossbar and periphery complexities
are further discussed in subsequent sections.

C. CIM Potential

CIM can provide fast and efficient computing for a wide
range of computation kernels. Some examples of such kernels
along with their applications are: binary arithmetic (temporal
correlation [26]), bitwise logic operations (database [27], en-
cryption [28]), linear algebra (image processing, deep learning
for edge-Al) [29].

Recent published work based on circuit simulation and
small scale prototypes has shown that CIM is very promising.

Simulation based work reported that CIM architecture pro-
vides two to three orders of magnitude improvement in energy-
delay product and energy spent per operation compared to
conventional von-Neumann architecture [30], and around 10
fJ/arithmetic operation (1 MAC = 255 arithmetic operations)
can be realized [24]. Small scale prototype work considering
database query applications demonstrated that CIM architec-
ture can achieve 6 fJ/logic operation. All these examples
highlight the tremendous potential of CIM over von-Neumann
architecture.

III. CIM-CROSSBAR TECHNOLOGY AND
CONFIGURATIONS

A. Device Technologies

CIM crossbar can be implemented using different device
technologies; e.g., oxide-based resistive RAM (RRAM), phase
change memory (PCM) and spin-transfer torque RAM (STT-
RAM). Table I provides a comparison of the key attributes
and applicability of these devices from CIM perspective.

[ Technology [ RRAM [ PCM | STT-RAM |
Cell area [31]
(F2) 4-12 4-30 6-50
No. of bits
(per device) 1-6 [32] 1-8 [33] 1 [34]
Ro fr / Ron
(unitless) 10 [32] 100 [33] 2.8 [34]
Endurance [35] 108-10'2 | 108-10%5 >1015
(cycles)
Read latency [31]
(ns) <10 <10 <10
Write latency [31]
(ns) <10 ~50 <10
Write energy [31] ~0.1 ~10 ~0.1
(pJ) i '
Application kernels || VMM, VMM, Digital logic,
for edge-Al MMM etc. | MMM etc | arithmetic etc.
TABLE I

DEVICE TECHNOLOGIES FOR CIM.



B. Resistive Memory Non-idealities

The underlying physics and fabrication process of a resistive
memory device can lead to various non-idealities, causing
deviation from its ideal behaviour as a programmable resistor.
Here, we exclude the discussion regarding well-known CMOS
device variations. Some of the major non-idealities are:

« Device-to-device variation: Due to fabrication imperfec-
tions, different resistive memory devices show different
resistance characteristics under identical programming
conditions [36]-[38].

¢ Cycle-to-cycle variation: Owing to the stochastic nature
of underlying physics (e.g. filament formation/rupture
in RRAM, crystallization/amorphization in PCM) the
same resistive memory device shows different resistance
characteristics under identical programming conditions at
different points in time [36]-[38].

o Resistance drift: The accumulated effect of large num-
ber of read operations can lead to significant resistance
change (drift) of the resistance state [39]-[41].

o Nonlinear I-V characteristics: Due to non-linear I-
V characteristics of resistive memories, variation in a
read voltage can lead to different effective resistance
ratios [42]-[44], causing functional errors.

C. Bit-cell Configurations and Crossbar-level Issues

Bit-cell configuration refers to the structure of the basic
building block (bit-cell) connected at each intersection of bit
line (BL) and source line (SL). Fig. 3 shows the three main
bit-cell configurations:

o 1 Resistor (1R) bit-cell (Fig. 3a): This bit-cell config-
uration can provide the least crossbar area and energy
consumption. However, the unwanted current paths that
exist while programming or reading a single cell (e.g.
during write-verify) in a crossbar with IR bit-cell, re-
ferred as sneak paths; these can disturb the resistance
states of other cells, reduce read margin and increase
energy consumption [45], [46]. V/2 and V/3 biasing
schemes [47] can prevent sneak paths for crossbar with
1R bit-cell, but at the cost of increased energy and half-
select cell disturbs.

o 1-Transistor 1-Resistor (1T1R) bit-cell (Fig. 3b): In this
case the transistor overcomes the sneak paths issue and
its gate can be used for programming [32]. However, such
a transistor increases the crossbar area [48] and energy
consumption. It acts as a nonlinear variable resistor in
series with memristor, which can lead to errors in the
crossbar VMM output.

o 1-Selector 1-Resistor (1S1R) bit-cell (Fig. 3c): The
selector suppresses the sneak paths. Note that 1S1R can
provide better area footprint than 1T1R as selectors can
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Fig. 3. Bit-cell Configurations.

(a) 1R

be fabricated in back-end-of-line [49]. However, there
is no perfect two-terminal selector possessing all the
desired characteristics [50]. Turn-on time of the selector
introduces delay in the crossbar operation [51]. Selectors
also contribute non-linearity which can result in errors in
the crossbar output.

Apart from sneak paths, another important issue at the
crossbar level is the IR drop problem [52]. Due to the finite
parasitic resistance of interconnect wires, cells connected to
bit lines farther from the input port receive degraded voltages,
which may lead to errors in the crossbar operation output.

For a CIM architecture running a practical edge-Al appli-
cation, such as a neural network-based image recognition for
autonomous vehicles, the aforementioned device-level non-
idealities (e.g., device variations) and crossbar-level issues
(e.g., IR drop) manifest as errors in vector-matrix multipli-
cation, resulting in degraded accuracy. Hence, it is necessary
to mitigate their impact [53], [54].

IV. CIM PERIPHERY

Among the design blocks discussed in Section II, conver-
sions performed by ADCs are very critical and challenging due
to 1) Analog signals have low noise margin and hence, can
lead to erroneous output [55]; 2) Analog computation heavily
relies on memristors and CMOS selectors strength (e.g., for
ITIR), therefore these variations induce variation in output
current [51], [52]; 3) Quantization error in ADCs increases
as the the number of activation levels increases for higher
resolution/accuracy [56]; In addition, the area/power increases
drastically at higher accuracy, while speed reduces [56]. Fig. 4
shows that the ADC alone typically dominates CIM die area
(>90%) and power consumption (>65%); this highlights the
importance of ADC implementation for CIM architectures
which could target e.g., machine learning algorithms such
as Conventional Neural Networks (CNN) or Deep Neural
Networks (DNNs)

A. ADC Design Methodology

A typical ADC design can be broken down into three design
stages, as shown the Fig. 5. At first, the analog input (here,
column current) is received by the sensing stage. As the first
level of conversion, the analog input is converted to a voltage
or to a time equivalent quantity; it can also quantified as
current, and thus remains in the analog domain. Next is the
conversion stage. Here, the obtained quantified quantity (from
the sensing stage) is converted to discrete digital data, either as
number of pulses or interim bit-streams of Os and 7s. Finally
is the decision stage. Here the number of pulses are quantified
as digital bit-streams or the above interim bit-streams are

Area Power 7%
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Fig. 4. Area and Power share of CIM design blocks [24].
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finalized. For the completeness, the circuit components used
at each stage of conversion are also shown in Fig. 5.

B. ADC Classification

ADC designs can be classified based on the physical quan-
tities used during the conversions. As it can be seen in Fig. 5,
the first conversion is from current to voltage/current/time
and second conversion is to discrete pulses/interim bit-streams
before the final bit-streams are obtained; this results into six
ADC classes; these are: Voltage-Pulse (VP), 2) Current-Pulse
(CP), 3) Time-Pulse (TP), 4) Voltage-Interim-Digits (VD),
5) Current-Interim-Digits (CD), and 6) Time-Interim-Digits
(TD).

C. Existing ADC Comparison

Fig. 6 maps the existing ADCs (based on the previous
classification) while considering efficiency metrics in terms of
latency, power, energy, area and supported resolution. These
are derived from [25], [56]-[63]; the number of ADC designs
considered to derive the metrics average values for each class
are given in brackets (e.g., 2 designs for VP class). The
metrics are normalized and quantified with level 1 (lowest)
to 5 (highest) in the y-axis.

Analyzing Fig. 6 reveals some important information. First,
ADC:s that belong to the “pulses” class consume relatively less
power at the cost of speed and low resolution; cumulatively,
energy is relatively low. Second, ADCs that belongs to the
VD class are faster and support high resolution at the cost
of power, energy and area. Third, ADCs in the TP class are
typically inefficient in terms of latency, power and area as they
need large sized block such as time-digital converters (TDCs)
and phase locked loops (PLLs); these offer lower resolution
compared to current and voltage-based ADCs. Hence, the
designs that involve time-domain inter-conversions are least
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Fig. 6. Qualitative comparison of ADC designs involving different physical
parameters [25], [56]-[63].
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Fig. 7. Quantitative comparison of state-of-the-art ADC designs for CIM
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energy contour lines.

explored. Finally, the classes CD and TD are not explored yet;
this may due to the complexity of such designs. In conclusion,
VD, CP, and VP classes are mostly explored in literature,
which is understandable as the merits and demerits of these
two classes generally complement each other.

Fig. 7 combines the most critical efficiency metrics together
for these existing ADC in literature. It can be clearly seen that
the speed and/or resolution are improved at the expense of
power and/or area, and vice-versa. ADC designs in [25], [57],
[58], [60] fall under VP/CP classes, and are compact, consume
less power at the expense of speed and resolution. On the other
hand, VD class ADC designs such as [56], [62], [63] are fast
converters with high resolution; however, they suffer from high
power and area consumption. Owing to this fact, ADC designs
falling in the CP and VP (VD) classes are typically utilized in
simpler (complex) networks supporting small (large) operand
size targeting approximate (accurate) edge-Al computing.

V. CONCLUSION AND FUTURE PROSPECT

If successful, CIM will be able to significantly increase
energy-efficiency by orders of magnitude; this may enable
new power-constrained computing paradigms at the edge (e.g.,
neuromorphic computing, artificial and bio-inspired neural
networks) which could fuel many application domains (e.g.,
wearable devices, wireless sensors, automotive). However,
research on CIM is still in its infancy stage, and the challenges
are substantial at all levels, including material/technology,
circuit and architecture, and tools and compilers.

At the technology level, there are still many open ques-
tions; examples are device endurance, high resistance ratio
between the off and on state of the devices, multi-level
storage, precision of analog weight representation, etc. At the
circuit and architecture levels, many challenges have to be
still worked out; examples are high precision programming of
memory elements, complexity of signal conversion circuits,
accuracy of measuring (e.g., the current as a metric of the
output), scalability of the crossbars and their impact on the
accuracy of computing, the partitioning across crossbars and
the corresponding intra- and inter-communication, etc. At the
tools/compilers level, issues related to e.g., profiling, simula-
tion and design tools are still open.
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