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ABSTRACT Fake news is a serious problem, which has received considerable attention from both industry
and academic communities. Over the past years, many fake news detection approaches have been introduced,
and most of the existing methods rely on either news content or the social context of the news dissemination
process on social media platforms. In this work, we propose a generic model that is able to take into
account both the news content and the social context for the identification of fake news. Specifically,
we explore different aspects of the news content by using both shallow and deep representations. The
shallow representations are produced with word2vec and doc2vec models while the deep representations
are generated via transformer-based models. These representations are able to jointly or separately address
four individual tasks, namely bias detection, clickbait detection, sentiment analysis, and toxicity detection.
In addition, we make use of graph convolutional neural networks and mean-field layers in order to exploit the
underlying structural information of the news articles. That way, we are able to take into account the inherent
correlation between the articles by leveraging their social context information. Experiments on widely-used
benchmark datasets indicate the effectiveness of the proposed method.

INDEX TERMS Fake news detection, deep learning,Markov randomfield, representation learning, question
answering, sentiment analysis, clickbait detection, toxicity detection, bias detection.

I. INTRODUCTION
Fake news, which refers to stories that are intentionally and
verifiably false, is deliberately created to mislead people for
financial or political gains and has existed for a long time,
even before the appearance of traditional media such as the
printing press [1]. Social media platforms such as Twitter
or Facebook and their increasing popularity speed up the
dissemination of fake news since news can quickly and freely
circulate through a huge network of social media users, where
everyone can view and share news without paying much
attention to the veracity of each reported claim [2].

Early works in fake news detection are mainly based on
fact-checking of external sources or the writing style of news
content [1]. The fake news detection task is traditionally
approached using linguistic features that are able to identify
linguistic patterns of the text [3], [4]. The main limitation

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .

of such methods is that they are hand-crafted and involve
manual labor for designing them. On the other hand, more
recent deep neural networks have been proposed to alleviate
the need for manually designing hand-crafted features since
deep learning methods are able to automatically capture lin-
guistic patterns. Note also that the articles (that are discussing
particular events, e.g., the election of the government) are not
unrelated the one with the other. This is because there are
common users that are interacting with these articles. Thus,
this is why in our previous research works, we have exploited
the correlation among the aforementioned articles [5], [6].

In particular, in our previous work (see [5]), we adopted
the strategy of leveraging the content of news articles and
exploited their correlation from the articles’ social context
to improve the fake news detection performance. In [5],
we formulated mean-field layers via Markov Random Fields
(MRF), taking into account the structural information of the
underlying graph of considered articles. We then used the
mean-field layers to design a deep learning model, referred
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to as Deep MRF, for Fake News detection (DMFN). In this
paper, we provide a new perspective of the mean-field layers
as proposed in [5] by illustrating the similarity of these layers
to graph convolutional layers [7]. More precisely, we show
that both graph convolutional layers and mean-field layers
tend to smooth the characteristics of nodes within the same
cluster of the underlying graph. Furthermore, we go beyond
the DMFN model in [5] by extending its multiview com-
ponent. Unlike our previous research work (see [5], [6]),
in this work, we are able to take simultaneously into account
hand-crafted features (e.g., the TF-IDF), deep neural network
methods (i.e., BERT), and graph neural networks for consid-
ering the correlation among news articles.

This work extends our conference paper in [5]. Specif-
ically, we (i) add a graph-based subcomponent to exploit
the engagement of social media users toward news articles,
and (ii) extend the multiview component by exploiting the
use of transformer-based models and that way integrating
the bidirectional deep representation of the articles’ con-
tent. On top of that, we show with extensive experiments
on popular benchmark datasets that the proposed method
outperforms other existing state-of-the-art methods on the
fake news detection task. In summary, our contribution is
three-fold:

• We provide an alternative formulation for the mean-field
layers proposed in our previous work (see [5]), and thus
show the equivalence of the mean-field layers and graph
convolutional layers in smoothing the characteristics of
nodes within the same cluster.

• We extend the multiview component of our DMFN
model in [5] by considering also the user engage-
ments towards news articles and deep bidirectional
representation of the articles’ content. The deep bidi-
rectional representation of the news content is gener-
ated via transformer-based models [8], [9], which have
been jointly or independently trained on various tasks
strongly related to the fake news detection task.

• We carry out comprehensive experiments on three
benchmark datasets. We show that our method is able
to achieve consistent improvements on top of our
DMFNmodel [5] and outperforms existing state-of-the-
art methods on the task of fake news detection.

The rest of our paper is structured as follows. In Section II,
we briefly present the related work and indicate the difference
between our method and existing studies. Section III presents
the overall architecture that relies on the original DMFN and
provides an alternative formulation of the mean-field layers.
The extension to the DMFNmodel is described in Section IV
and Section V. Section VI demonstrates the effectiveness
of the proposed method via experimental studies and the
conclusion and future work are given in Section VII.

II. RELATED WORK
In the last two decades, there is a substantial increase in the
number of publications in the domain of media manipulation

and fake news [10], [11]. A number of tasks have been
introduced since then such as fact checking [12]–[14], rumor
detection [15], stance detection [16], assessing credibil-
ity [17], and exaggeration [18], [19]. Moreover, several
datasets have been introduced for these tasks (see in par-
ticular the datasets on claim verification [16], [20]–[22],
entire article verification [23] and verification of social
media posts [24]–[26]). For more details regarding tasks and
datasets related to fake news detection, we refer to the survey
in [13].

A. HAND-CRAFTED FEATURES
Early work on fake news detection has been focused on
feature-based methods to separate fake from genuine news.
Linguistic patterns, such as, special characters, specific key-
words and expression types were exploited to spot fake
news [3], [27], [28]. However, these methods are not very
effective as fake news is intentionally created to mimic the
true news [29]. Apart from textual features, user related fea-
tures were also leveraged to detect fake news. In particular,
features like the number of followers, the age and the gender
of users [3], [4], and news’ propagation patterns [3], [30]
were shown to to improve performance when combined with
textual patterns; however, the reported prediction accuracy of
such models is still relatively low [10]. It is worthwhile men-
tioning that the majority of these works rely on combinations
of the aforementioned features rather than only on a single
feature. Similar to these works, we also extract hand-crafted
features. However, we do not rely on manually engineered
features such as special characters or keywords, but we rather
extract TF-IDF representations and timeseries (e.g., number
of tweets in different timeslots) for our multiview component
due to their state-of-the-art performance in [5].

B. DEEP NEURAL NETWORKS
With the evolution of deep neural models, researchers have
also investigated deep learning architectures for fake news
detection, which led to reestablishment of state-of-the-art
performance [10], [11]. Many of them have represented the
claims and articles as latent embeddings and fed them to
neural classifiers [31]–[35]. Different architectures such as
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have been used to encode the articles and
the claims. Alternatively, deep neural networks that input
multiple types of features have been studied to detect fake
news [36]–[38]. Recently, researchers have started using
transformers in the task of fake news detection [39] due to
their state-of-the-art performance in a number of NLP tasks
(e.g, text classification, named entity recognition) [9].We fol-
low a similar approach to prior work on similar problems such
as fact verification [13] and fake news detection [10], and we
rely on BERT for extracting feature-based representations.
However, we pretrain the models on similar tasks (to our
core task) and apply transfer learning instead of fine-tuning
the model to the new dataset. This is because we aim at
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a general purpose model that is able to generalize well on
several similar tasks.

C. CORRELATION AMONG NEWS ARTICLES
Most of the aforementioned fake news detection models
ignore the correlation among the news articles when mak-
ing decisions (a.k.a., they treat each news article indepen-
dently of others). Nevertheless, news articles’ correlation has
been found effective in analysing online news and social
events [6], [29], [40]–[42]. The correlation between news
articles has also been exploited in the works of Shu et al. [29]
and Zhang et al. [40]. Unlike our work, where we con-
sider directly the connection among the news articles, they
indirectly capture the correlations among the articles via
modeling the relationships of these articles among their pub-
lishers and the social media users interacting with the arti-
cles. Freire et al. [41] proposed to detect breaking news on
Wikipedia by exploring the graph of related events, where
the graph is created by connecting any pair of pages on
Wikipedia edited by the same users during a small time
frame. The breaking news is then detected using a traditional
densest-subgraph extraction approach. Fairbanks et al. [42]
constructed a graph of news by connecting the web pages
referring to a specific event and estimated the credibility of
news by employing a belief propagation algorithm on the
constructed graph. In their experiments, they illustrated that
the correlations among the news (encoded in the constructed
graph) were more effective than the textual content of the
news for predicting their credibility. Similarly, in [6], a graph
of news articles was constructed, encoding their correlation.
The graph is then used directly by a graph convolutional
network for credibility inference. Our previous research [5]
adopted the similar idea of exploiting the correlation between
news articles. However, the correlation was exploited via
mean-field layers derived from MRF. This work extends our
previous research [5] by not only considering the correlation
between news articles but also the correlation between users
involved with the same article. In addition, we show the
equivalence of the mean-field layers with popular graph con-
volutional layers [7] in smoothing the characteristics of nodes
within the same cluster, which explains the effectiveness of
the proposed mean-field layers.

III. MULTIVIEW DEEP MARKOV RANDOM FIELD MODEL
In this section, we first show how the correlation between
news articles can be exploited using a deep MRF, which
leads to the formulation of mean-field layers. We subse-
quently describe how these layers are used to create novel
learning architectures for Fake News detection. Additionally,
we describe the details of the considered features and their
extraction procedure.

A. CORRELATION EXPLOITATION WITH DEEP MRF
As discussed in Section II, the correlation among news arti-
cles has been proven effective in many tasks including break-
ing news detection and fake news detection. To consider this

FIGURE 1. The construction of an article graph. A node represents an
article and connections are based on common users. The weight of each
connection indicates the number of common users.

FIGURE 2. The structure of a mean-field layer that smooths out the label
probabilities Q(t−1) of an arbitrary model. A and M denote the adjacency
matrix of the graph of news articles and the compatibility matrix, λ is a
constant, and t indicates the layer order.

correlation, a graph of articles is created. In this graph, nodes
represent the articles and edges are formed based on the
number of common associated social media users. Figure 1
illustrates how such a graph is created. LetG = (V ,E) denote
the undirected article graph, where V (|V | = n) is the set of
nodes and E is the set of edges. Let L denote the set of labels,
|L| = s. Let A ∈ Rn×n be the symmetric adjacency matrix of
graph G such that Aij is equal to the weight of edge (i, j) ∈ E ;
the adjacency matrix captures the correlation of articles. Let
X = {Xk}nk=1 define the set of random variable representing
the labels of nodes of G. In our prior work [5], we introduced
a Markov Random Field based model, where the distribution
P(X ) can be estimated by:

P(X = x) =
1
Z
exp(−E(x)) (1)

=
1
Z
exp

{∑
k∈V

8(xuk )+ λ
∑
k,l∈N

9(xuk , x
v
l )
}

(2)

In Eq. (1), Z is the factor to ensure a valid distribution
and E(x) is the energy of the MRF, which can be decom-
posed into two components, the aggregated unary potential
(i.e., the first term in Eq. (2)) and the aggregated pairwise
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potential (i.e., the second term in Eq. (2)). More precisely,
8(xuk ) is the cost of assigning label Lu to node k , and
9(xuk , x

v
l ) measures the cost of assigning labels Lu and Lv

to node k and node l, respectively. P(X ) is then approximated
using a simplified factorization assumption P(X ) ≈ Q(X ) =∏

k∈V qk such that:

quk =
1
Zk

exp
{
−8(xuk )− λ

∑
l∈Nk

α(k, l)
∑
v∈L

qvlµ(u, v)
}
. (3)

Equation (3) represents an iterative update rule, which we
refer to as mean-field update rule. In Eq. (3), Zk =

∑
u∈L q

u
k ,

where quk represents the probability that node k is assigned
label u,8(xuk ) is the unary potential and is given by8(x

u
k ) =

−lnP(Xk = Lu). The second term in Eq. (3) is the pairwise
potential, representing the correlation between node k and
node l. α(k, l) = Akl is the weight of the edge (k, l), and
µ(u, v) is label compatibility representing the discrepancy
between the two labels, namely that µ(u, v) ∈ {0, 1},∀u, v,
and µ(u, v) = 1 if u 6= v.

Let Q ∈ Rn×s be the matrix containing entries quk , which
are the output probabilities of a model such as a neural
network. It follows that 8 = −ln(Q). We denote by M ∈
Rs×s the matrix with the label compatibility entries µ(u, v).
As matrix M is symmetric, Eq. (3) can be re-written in a
matrix form as:

Q(t)
= softmax

(
ln(Q(t−1))− λAQ(t−1)M

)
, (4)

with t denoting the time step. Using Eq. (4), we design
a mean-field layer, as illustrated in Fig. 2. Hence, t also
indicates the t-th mean-field layer, which has Q(t−1) as an
input and Q(t) as output. Multiple mean-field layers can be
stacked together to obtain a higher level of smoothness of
output probabilities. We observe that a mean-field layer acts
similarly to a graph convolutional (GCONV) layer (see [7])
in that the two layers encourage the agreement of nodes in
the same cluster. Specifically, the GCONV layer operates on
node feature vectors and encourages the nodes in a cluster
to obtain similar representations. This eventually helps in
assigning similar labels for the nodes that belong in the same
cluster (see [43]). Similar to a GCONV layer, a mean-field
layer encourages the smoothing of output probabilities; how-
ever, this layer works directly on the output probabilities (i.e.,
Q(t)). Specifically, the product S = AQ(t−1)M ∈ Rn×s rep-
resents the aggregated discrepancy of the nodes with regard
to their neighboring nodes; hence, a small value of Sku will
increase the confidence of assigning label Lu to node k and
vice versa. This means that node k is more likely to have label
Lu if its neighboring nodes also have label Lu. Eventually,
nodes within the same cluster (i.e., having the same label)
tend to have similar output probabilities. However, stacking
too many layers leads to over-smoothing, which may reduce
the performance of the model [43]. Thus, the number of the
mean-field layers T is a hyper-parameter in the proposed
method.

B. MULTIVIEW DEEP MRF FOR FAKE NEWS DETECTION
Fake news typically has special language patterns (e.g., exag-
geration and rhetoric) [44] and is being shared by unreliable
users (i.e., users with a history of sharing unreliable news) [6].
Moreover, the reaction of social media users towards fake
news tends to be different compared to the reaction towards
real news [45]. With that in mind, we design a Generic Deep
MRF Neural Network architecture for detecting Fake News,
referred to as GDMFN. The model exploits the aforemen-
tioned observations and also the correlation between news
articles.

The architecture of the GDMFN model is presented
in Fig. 3. It consists of three sequentially connected com-
ponents, namely, feature learning, classifier and mean-field.
The feature learning component has multiple branches. Each
branch transforms a raw input feature to a high level feature
(i.e., a vector embedding). The high-level features are then
concatenated to obtain a shared representation of the inputs.
The shared representation is then passed to the subsequent
classifier component. This component consists of several
fully connected layers followed by a softmax classifier to
produce the class specific probabilities. Finally, these prob-
abilities are passed through the last component that consists
of several mean-field layers (see Fig. 2). The aim of this
component is to smoothen the class probability values by
leveraging the correlation between the news articles.

The GDMFN model can be instantiated by using differ-
ent sets of features. For instance, in our previous research
work [5], our DMFN model leverages four types of features:
term frequency-inverse term frequency (TF-IDF), word2vec
embeddings, node2vec embeddings, and time series. The
input features of the DMFN model are encompassed in the
dashed box signified with Base component. The Additional
component is not part of the DMFN architecture. The features
in the Base component are described in what follows.

TF-IDF is a weighting scheme widely used in information
retrieval and data mining. It has been recently used along with
deep learning models leading to promising results in various
tasks [5], [46], [47]. TF-IDF evaluates the level of importance
of a particular term (e.g., token) for a document belonging
to a corpus of documents. The importance increases pro-
portionally to the frequency of the term in the document
and it takes also into account the overall frequency of the
term in the corpus. We extract TF-IDF features from tweets
associated to the news articles. Specifically, tweets associated
with an article are grouped to a pseudo tweet document.
We then preprocess the documents by removing stop words,
URLs, and converting the words into lower case. We then
extract the TF-IDF features from the pre-processed tweet
documents.

We also exploit the use of word embeddings, namely,
the word2vec model [48] (see Fig. 3). Word2vec embed-
dings capture the semantics of individual terms, which has
been proven beneficial in a number of NLP tasks such as
entity recognition and relation extraction [49], text classifica-
tion [50], fact verification [13], etc.We rely on the pre-trained
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FIGURE 3. The GDMFN model for two-class fake news detection (i.e., True/False) has three main components: feature
learning, classifier, and mean field. The feature learning component can has multiple inputs. Here, it is depicted with two
subcomponents: Base and Additional. The Base subcomponent has four features (i.e., TF-IDF, word2vec, node2vec, and time
series), which form the DMFN model, proposed in our previous work [5]. This work extends our previous research by adding
the Additional subcomponent with features based on graph neural networks (GNN branch) and transformer models.

FIGURE 4. The construction of the user graph. A node represents a social
media user (i.e., Twitter user) and a connection between two users is
based on their common engagements with news articles. The weight of a
connection is equal to the number of common engagements.

word2vec1 model provided by Google for word2vec feature
extraction.

Node2vec is a method proposed in [51] to learn continuous
feature representations (embeddings) for nodes in a graph.
The embeddings reflect the local connectivity pattern of the
graph. We rely on node2vec embeddings to capture the pecu-
liarities of the graph of social media users who are involved
with events (a.k.a., articles or news items). We construct the
user graph in the following way. First, users engaged with
a set of all considered events are collected; these users are
considered as nodes of the user graph. Connections between

1https://code.google.com/archive/p/word2vec/

FIGURE 5. Time series feature extraction from tweets associated with a
news article. Vector Ex contains elements indicating numbers of tweets
associated with an article per hour after the article is shared on Twitter.

the nodes (a.k.a., users) are created based on common news
articles these users interact with, where the weight of a
connection between two users is the number of common
news articles. Figure 4 illustrates the construction of the
user graph. The node2vec model [51] is then trained on the
user graph, producing node2vec embeddings. The node2vec
feature vector of an article is then computed by averaging over
the node2vec embeddings of the users interacting with it.

The time series feature captures the number of reactions to
news items on social media across time. As shown in [45],
the per-hour number of social media posts associated to real
news is different to that associated with fake news. Motivated
by this, we extract the time when a news item appears on
social media and measure the number of associated tweets
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during subsequent time instants (hours). This produces a time
series vector representing the number of reactions per hour to
the news item (see Fig. 5).

IV. GRAPH-BASED COMPONENT INTEGRATION
In the DMFN model, the structural information of the user
graph is captured using node2vec embeddings [51]. This
feature is learned in an unsupervised manner, and thus it is
task-agnostic. Furthermore, the node2vec method leverages
the shallow architecture of the skip-gram model [48], thus
it may not express accurately the rich structural information
of the user graph. Therefore, we extend the DMFN model
by adding a graph-based model consisting of several graph
convolutional layers so as to better express the underly-
ing structure of the user graph. Specifically, we create an
extra branch that contains graph convolutional (GCONV)
layers [43] (see Fig. 3). The input of this branch is the graph of
users interacting with a news article; hence, each article has
one connected user sub-graph, which is a part of the entire
user graph as described in Section III-B (see Fig. 4).

Let D̃ be a diagonal matrix, where D̃ii =
∑n

j=1 Ãij and
Ã is the adjacency matrix defined in Section III-A with self-
connections added. We denote by H(k) and H(k+1) the input
and output matrices of a GCONV layer, respectively. A row
in these matrices is the feature vector of a node. The layer is
parameterized by matrixW. We employ the propagation rule
in Kipf et al. [7], which can be written as2:

H(k+1)
= D̃−

1
2 ÃD̃−

1
2H(k)W (5)

We extract node feature vectors as follows. Since a
social media user (e.g., Twitter or Weibo user) corresponds
to a node, we employ user profile information for node
feature vectors. Specifically, for Twitter users, we col-
lected the favourites_count, followers_count, friends_count,
geo_enabled status, statuses_count, verified status, url avail-
ability, and screen_name to form user feature vectors. In addi-
tion, the node degree is used as an extra feature. Finally, these
vectors are normalized by removing the mean and dividing by
the standard deviation (a.k.a., Z score). The Z-score vectors
then become the input for the graph-based branch. For other
social media platforms (e.g., Weibo), the feature extraction
process is similar.

V. TRANSFORMER-BASED EXTENSION
In the DMFNmodel, we have used two types of textual repre-
sentations, i.e., TF-IDF and word2vec. These representations
focus on individual words, ignoring the overall semantics
of the entire sequence (e.g., a sentence or a paragraph).
To address this shortcoming, we leverage a transformer-based
model, BERT [9], to represent the content of the news arti-
cles and their associated tweets via its deep bidirectional

2Different propagation rules can be defined for the GCONV layers, such
as the propagation rule, H(k+1)

= D̃−1ÃH(k)W, proposed in [52], or the
propagation rule, H(k+1)

= ÃD̃−1H(k)W, proposed in [43]. However,
we select the propagation rule in [7] as we found it the most effective in
our experiments.

TABLE 1. Datasets used for fine-tuning BERT models. Note that the
sentiment analysis task has 3 labels, while the other tasks have 2 labels
(see Table 2 for details about the labels).

encoder representations. These representations, which are
context-aware and known to perform well in a number of
NLP tasks [9], are then used on top of the DMFN model
(see Fig. 3). These transformer-based features capture dif-
ferent aspects of the content of news and tweets, which are
derived from four individual tasks: (i) clickbait detection,
(ii) sentiment analysis, (iii) bias detection, and (iv) toxi-
city detection. We present two approaches to extract the
transformer-based features: we either train four individual
single-task BERT models (i.e., one for each task) or a uni-
fied model for the four tasks; the unified model is called
‘‘Tetrathlon’’. In the following two sub-sections, we describe
these models.

A. SINGLE-TASK MODELS
We follow the transfer learning paradigm to fine-tune
pretrained BERT models for the considered tasks. A pre-
trained BERT model is taken from the Hugging Face repos-
itory.3 This model was already fine-tuned from the original
BERTbase [9] to classify the sentiment of the IMDB reviews
as either positive or negative.

We leverage four datasets to fine-tune the aforemen-
tioned BERT model for the considered tasks. For clickbait
detection, we use the headlines of articles published by
Chakraborty et al. [53]. For sentiment analysis, we employ
a publicly available dataset from Kaggle,4 which was first
introduced in [54]. For bias detection, the BASIL dataset
is used [55]. Finally, we use the dataset published by
Pavlopoulos et al. [56] to fine-tune the BERT model for
the toxicity detection task. The details of the considered
datasets are described on Table 1. The datasets for click-
bait detection and sentiment analysis are balanced and thus
a normal training procedure is used; namely, the train-
ing is performed with small batches. The bias and toxic-
ity datasets are unbalanced; therefore, we rely on weighted
sampling.5

Figure 6 shows the architecture of a single-task model in
the context of clickbait detection. The input is the headline
of one clickbait article, which is ‘‘Leading Doctor Reveals
the No. 1 Worst Carb You Are Eating’’. This input gets
forwarded to the BERT model, which is followed by a binary

3https://huggingface.co/textattack/bert-base-uncased-imdb
4https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-

news
5Formally, let us consider a dataset D with a set of labels L =

{L1,L2, . . . ,Ls}. To sample a batch with size B, examples are selected based
on the proportion of each type of labels. Specifically, an example xk with
label u is selected with probability: P(xuk ) =

1
|L|nu , where nu is number of

examples with label u (i.e.,
∑s

u=1 nu = |D|).
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FIGURE 6. Architecture for the clickbait single-task model. The headline
input is ‘‘Leading Doctor Reveals the No. 1 Worst Carb You Are Eating’’
and at the beginning of the sentence we add the [CLS] token similar to
the work of [9]. The hidden state of the [CLS] token contains information
for the entire input sequence and it is used for the classification task.
In particular, on top of the [CLS] hidden state, we add a fully connected
layer (i.e., denoted by FC) and a softmax classifier to produce the
clickbait/not clickbait probabilities.

classifier. The classifier determines if the input sentence is
clickbait or not clickbait. Note that the classifier only acts on
the output that corresponds to the [CLS] token. This token
indicates the start of the sentence, and the output (i.e., hidden
representation) corresponding to this token can be considered
as the representation of the input sentence (a.k.a., sentence
embedding).

B. THE TETRATHLON MODEL
In the previous section, we train one individual BERT model
for a single task. However, it is known that training a model
with multiple tasks (multi-task learning) can help improve
performance over single-task models [57]. One noticeable
example is the decaNLP model [58], where ten NLP tasks
(e.g., question-answering, summarization, machine transla-
tion, sentiment analysis) are cast into a question-answering
(QA) problem in order to train a unified model. As a result,
the model can generalize to completely new tasks though
different but related task descriptions [58].We follow the con-
cept of the decalNLP model to train a unified BERT model,
called Tetrathlon, which can address the four tasks men-
tioned earlier (i.e., bias detection, sentiment analysis, click-
bait detection, and toxicity detection). We formulate these
tasks as a QA problem similar to the decalNLP model. How-
ever, different from decalNLP [58] that depends heavily on
bidirectional long short-term memory networks (BiLSTMs),
our method is based on the BERT model. BERT relies on
the self-attention mechanism introduced in the work of trans-
formers (see [8] for more details) and has been success-
fully used for many NLP tasks to produce state-of-the-art
results.

In our formulation, two inputs are needed for the QA
problem, including a question and its context. The model

FIGURE 7. Architecture of the Tetrathlon model. Embeddings of all tokens
are inputs to a linear layer to obtain logits. We then use the softmax
function and argmax functions to obtain start and end indices of the
extracted answer.

outputs the answer extracted from the context. Let us consider
a simple example as follows.

Question:Who do I owe money to?
Context: I owe Jack 10 euros.

Answer: Jack

The BERT model is fine-tuned to return a part of the text
from either the question or the context as the answer. Thus
the considered model returns the start and end indices as
output. These indices point to where the answer is in the input
that is given to the BERT model. It is worth mentioning that
this approach leads to a unique model that can be used for
different tasks. This has several advantages. First, no changes
are required if the task changes. For instance, the sentiment
analysis task has three classes (i.e., negative, neural, positive)
while the clickbait detection task has two classes (i.e., click-
bait or not clickbait). Hence, a modification needs to be made
to the single-task model if the task changes. On the other
hand, no modifications are needed for the Tetrathlon model to
handle both tasks. In addition, training the Tetrathlon model
is extremely simple. Datasets of different tasks can be mixed
together and used as a unique dataset since there are no
distinctions at the output of the model for considered tasks.
This could be helpful in case only small datasets are available
for specific tasks and we want to leverage the availability of
large datasets of other tasks.

A BERT model would slightly modify the question and
context by adding special tokens, namely ‘‘[CLS]’’ and
‘‘[SEP]’’, as follows:

[CLS] Who do I owe money to? [SEP] I owe Jack 10 euros.
[SEP]

Typically, the question goes before the context. The [CLS]
token indicates the start of the input and the [SEP] token is
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used to separate sentences or to mark the end of the input
sequence.

In order to leverage this QA approach, it is important
to ask the right questions. For instance, we could ask ‘‘Is
this sentence clickbait?’’ for the clickbait detection task.
However, the BERT model would not know how to answer
‘‘not clickbait’’ since ‘‘not clickbait’’ is not present in the
input sequence. Hence, a better question would be ‘‘Is this
sentence clickbait or not clickbait’’, which allows the model
to extract the right answer since both of the possible classes
are present at the question passage. We apply this strategy for
all considered tasks. The questions and possible answers for
each task are given in Table 2.

The architecture of the model is illustrated in Fig. 7. The
question and context are forwarded to the BERTmodel. Then
the output embeddings for input tokens are passed to a linear
layer with 2 outputs. The linear layer is the same for every
output of the BERTmodel. These 2 outputs are the start index
logits and the end index logits. These logits are determined by
using a softmax function. Formally, let Z ∈ RN×F denote the
output of the final encoder, where N is the length of the input
sequence and F is the dimensionality of the embeddings.
Adding a linear layer and a softmax function will result in:

Y = softmax(W T
· ZT ), (6)

where W ∈ RF×2. The largest outputs are then the start and
end indices of the answer, namely that y = argmax(Y , axis =
1). Thus, we have a range [start_index, end_index] that
locates the answer in the input sequence (i.e., the concate-
nation of the question and the context passage). One problem
with this approach is that there is a possibility that the model
outputs a nonsensical answer. Specifically, themodel behaves
correctly if it extracts either ‘‘clickbait’’ or ‘‘not clickbait’’
from the input. However, the model could extract the sub-
sequence ‘‘Reveals the No. 1’’ from the input sequence, which
does not properly answer the question. A possible approach
to address this problem could be to assign the closest valid
answer to the predicted sub-sequence as the answer. In addi-
tion, we can try to shorten the question to make the predicting
of the answer less challenging. We plan to explore these
possibilities in future work.

Similar to single-task models, we employ a pre-trained
BERTmodel, which was previously trained by Hugging Face
for the question-answering task on the SQuAD1.1 dataset.6

The pre-trained model is available online.7 We use the four
datasets used for training the single-task models with the
same train/test splitting settings (see Section V-A). In addi-
tion, we have randomly chosen 320 samples from the training
set of each of the four datasets in order to form the validation
set. We concatenate the sampled validation instances and we
obtain a balanced validation set of 1280 samples. Since the
four datasets have different sizes and some of the considered
datasets are unbalanced (i.e., toxicity and bias datasets), we

6https://rajpurkar.github.io/SQuAD-explorer/
7https://huggingface.co/csarron/bert-base-uncased-squad-v1

use again the weighted sampling strategy similar to the case
of training single-task models (see section V-A).8

C. FEATURE EXTRACTION
The single-task and Tetrathlon models are able to learn the
representation of textual content in order to classify sentences
for different tasks. Hence, we can leverage these models to
create extra features for the GDMFN model (see Section III).
We can use the logits9 as features, but the logits are only
2-dimensional (or 3-dimensional for the sentiment task), thus,
they do not contain much information. The authors of [9] pro-
pose multiple ways for feature extraction using the BERTbase
model. Specifically, for the BERTbase model consisting of 12
layers where the output of one layer is a 768-dimensional
vector, their feature-based approach includes using the output
of the last layer as a feature or to sum the outputs across all 12
layers. In the end, the authors of [9] found that concatenating
the outputs of the last 4 layers gives the best results. This
means that the feature vector has 3072 dimensions.We follow
this approach to extract extra features for the GDMFNmodel.

Using the aforementioned approach, every token that
is forwarded to the BERT model has an associated
3072-dimensional feature vector. For example, if we forward
the following sentence:

[CLS] Hello there [SEP],

we will get a 3072-dimensional feature vector for each of
the tokens ‘‘[CLS]’’, ‘‘Hello’’, ‘‘there’’ and ‘‘[SEP]’’. Fol-
lowing [9], we consider the feature vector corresponding to
the [CLS] token as the representation for the entire input
sequence. The entire procedure for feature extraction is
described graphically in Figure 8.

1) FEATURE EXTRACTION FOR ARTICLES
We aim to extract features from articles to enrich the input
information for the GDMFNmodel. This is done by forward-
ing the content of articles to the fine-tuned BERTmodels. The
3072-dimensional feature vector corresponding to the [CLS]
token is then considered as the representation for that par-
ticular article. We consider both the single-task models and
the Tetrathlon model. For the single-task models, the article
is forwarded to every fine-tuned single-task BERT model.
On the other hand, the article content and the corresponding
questions are forwarded to the Tetrathlon model. As there are
four questions, every article is forwarded to the Tetrathlon
model four times, each time with a different question.

8 Formally, letD = {Dk }
n
k=1 denote the set of considered datasets where

a dataset Dk has L(Dk ) = {Luk }
m
u=1 labels. The probability of selecting an

example from dataset Dk with label Lu is given by

P(xuk ) =
1

|Dk | · |L(Dk )| · nuk
, (7)

where nuk represents the number of examples having label Lu in dataset Dk .
9Logits are the output values before applying the softmax function to

obtain probabilities.
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TABLE 2. Questions and possible answers for all the Tetrathlon tasks.

TABLE 3. Fake news detection performance of the proposed model (i.e., GDMFN) in comparison with baseline models. We report the best result for the
GDMFN model with the original feature set (i.e., TF-IDF, word2vec, node2vec, time series) and the transformer-based features as well as the GNN module.
Our results are calculated by averaging over 10 runs, hence they are more robust than the results of baseline methods.

FIGURE 8. Feature extraction for an input sequence. Following the
original work [9], the last four embeddings corresponding to token [CLS]
are concatenated to obtain the final representation for the input
sequence.

2) FEATURE EXTRACTION FOR TWEETS
Since there are many tweets related to a single article, we pass
all the tweets to the BERT models one by one and extract
a 3072-dimensional feature vector for each of the tweets.10

The final representation of the tweets associated to one event
is found by averaging the feature vectors of the tweets that
correspond to that specific event.

VI. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In order to evaluate the proposed models, we employ three
benchmark datasets: Twitter, Weibo, and PHEME [31], [59].

10URLs were removed from the tweets before tokenizing them.

In the Twitter dataset, there are 992 events, 233K Twitter
users and 592K tweets. The Weibo dataset is a larger dataset
with 4664 events, 2.8M users, and 3.8M posts. An event,
described by a news article, is associated with a set of tweets
(or posts for the Weibo dataset). For both datasets, an event
is associated to a True or a False label. Specifically, a True
label means an event has actually happened while a False
label suggests that the event has been fabricated. The PHEME
dataset contains 5802 discussion threads on Twitter related to
5 main events. Note that an event has multiple threads, and
a thread contains a source tweet and many reaction tweets.
The total number of tweets for the PHEME dataset is approx-
imately 103K. Similar to the Weibo and Twitter datasets,
the PHEME dataset has also binary labels (i.e., rumor and
non-rumor). Following existing works [5], [31], we use a
4-fold cross-validation setting to evaluate the performance of
the proposed model on the Twitter and Weibo datasets. For
the PHEME dataset, we employ the 5-fold leave-one setting
presented in [59]. In this setting, for each fold, an event,
associated with a number of discussion threads, is kept for
testing and the four remaining events are used for training.
It is worth noting that cross-validation is typically used for
hyper-parameter optimization and model selection. However,
to ensure a fair comparison with existing methods, we opt
for using this procedure. We evaluate the performance of
our models in terms of the accuracy, precision, recall, and
F1 score. Since the parameters of the proposed models are
initialized randomly, the results may vary at different runs.
In order to obtain robust results, we measure the performance
of the proposed model over 10 runs, where each run produces
an intermediate result of the 5-fold leave-one cross valida-
tion. We report the average results over the 10 runs along
with the standard deviation. The set of benchmark models
includes DTC [3], SVM-RBF [4], RFC [30], SVM-TS [31],
GRU-2 [31], CAMI [32], and TD-RvNN [60] for the Twitter
and the Weibo datasets. Similarly, for the PHEME dataset,
we employ Naive Bayes, CRF, and TD-RvNN as benchmark
models following [33], [59]. We also compare the proposed
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TABLE 4. Results for PHEME dataset with 5-fold leave-one setting in
comparison with existing methods.

method (i.e., the GDMFN model with both Base compo-
nent and Additional component) against the original DMFN
model from our previous work [5].

B. PARAMETER SETTINGS
Similar to [5], we employ one hidden layer for each feature
branch; a hidden layer has 100 hidden units. Likewise, one
hidden layer with a dimensionality of 100 is used after the
concatenation. The number of mean-field layers is set to
T = 5, and the pairwise potential coefficient γ (see Eq. (4))
is set to 0.05. Regarding the GNN module, we chose the
propagation rule proposed in the work of Kipf et al [7] com-
pared to the rest of the approaches indicated in Section IV
as we found that this propagation rule performs the best.
Two hidden GCONV layers are used, and each of them has
100 dimensions. In order to address over-fitting, we deploy
dropout with a drop rate of 0.9. In addition, early stopping
is used and we set the maximum number of training epochs
to 100. The learning rate is set to 0.001.

C. RESULTS
1) CLASSIFICATION RESULT
The results for the Twitter and Weibo datasets are shown
in Table 3. Unlike the rest of the benchmark models, for our
models, we present results that are averaged over 10 runs
along with the corresponding standard deviations. Among the
benchmark models for these datasets, CAMI [32] is the most
effective one, achieving F1 scores of 0.776 and 0.933 for the
Twitter and Weibo datasets, respectively. The DMFN model,
which our model relies on, outperforms the CAMI model by
a noticeable margin (i.e., 0.1 and 0.2 in terms of F1 score)
on both datasets. The proposed model, namely the generic
DMFN (GDMFN), achieves the best performance on both
datasets.

The results on the PHEME dataset are presented in Table 4.
The Naive Bayes models are not able to perform well due
to the imbalance between the rumor/non-rumor labels in
the PHEME dataset, which results in a noticeable differ-
ence between the Precision and Recall scores. This leads to
overall low F1 scores (i.e., approximately 0.43). Although,
the CRF model suffers from the same problem, it is able to
perform better in terms of the F1 score evaluation metric. The
TD-RvNNmethod (see Table 4) performs the best among the
benchmarkmethods, and achieves an F1 score of 0.609. Com-
pared to these methods, the original DMFN model performs
much better by a large margin for all the performance evalu-
ation metrics. Again, the generic DMFN (GDMFN) achieves

TABLE 5. Ablation results for Twitter dataset. A row in this table shows
the performance of the GDMFN model when a new feature set is added
to the original feature set.

TABLE 6. Ablation results for Weibo dataset. As Chinese datasets for
clickbait detection, bias detection, and toxicity detection are not publicly
available, only feature for sentiment analysis is extracted from the
corresponding BERT model.

TABLE 7. Ablation results for PHEME dataset with 4-fold cross validation
setting, which is identical to the setting used for the Twitter and Weibo
datasets.

TABLE 8. Ablation results for PHEME dataset with 5-fold leave-one
setting. A row in this table shows the performance of the GDMFN model
when the corresponding feature is added to the original feature set.

the best performance thanks to its capability of exploiting
many aspects of the data.

2) ABLATION STUDY
In this section, we evaluate the effectiveness of the extra fea-
tures and the additional module (see Section IV and Section V
for more details) added on top of the original DMFN model.
Specifically, in our ablation study, we are able to identify
the contribution of the features extracted from (i) single-
task models (see Section V-A), (ii) the Tetrathlon model (see
Section V-B), and (iii) the GNN module (see Section IV)
when they are added to the original set of features used in
the DMFN model (see Section III-B). Our naming conven-
tion is as follows. Features extracted from the Tetrathlon
model are referred to as ‘‘Multi’’ (e.g., ‘‘Tweet-Multi’’) as
the Tetrathlon is a multi-task model. It should be noted that
‘‘Tweet-Multi’’ is not a single feature. Instead, it refers to a
feature set that consists of four types of features, including
bias, sentiment, clickbait, and toxicity. The features extracted
from single-task BERT models are denoted with ‘‘Single’’
(e.g., ‘‘Tweet-Single’’). Similarly, the ‘‘Tweet-Single’’ term
refers to the four features mentioned earlier.

Table 5 shows the ablation study results for the Twitter
dataset. For ease of comparison, the result for the original
DMFN model is also included (i.e., the row ‘‘Original’’).
It can be seen that adding more features generally improves
the performance of the proposed model. The GNN module
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helps the GDMFN model achieve the best performance with
an F1 score of 0.792. However, using all features (i.e., row
‘‘All’’) does not guarantee a better performance compared to
the original set of features. Instead, the model will be more
prone to overfitting as more parameters are included in the
model.

The ablation study results for the Weibo dataset are sum-
marized in Table 6. Similar to Table 5, the result for the
DMFN model with the original feature set is included (i.e.,
row ‘‘Original’’). As we were not able to find Chinese
datasets for bias detection, toxicity detection, and clickbait
detection, only one single-task BERT model for sentiment
detection was fine-tuned. Thus for theWeibo dataset, the only
new feature extracted from BERT is the sentiment feature
(i.e., row ‘‘Sentiment’’). Similar to the Twitter dataset, adding
a new feature or the GNN module produces slightly better
results. The best performance on this dataset is achieved
when all features are used. In particular, the proposed model
achieves the best numbers in terms of accuracy (96.3%),
precision (0.963), recall (0.963), and F1 score (0.963).

Tables 7 and 8 show the ablation study results for the
PHEME dataset. We study two settings for this dataset,
Specifically, (i) the normal 4-fold cross validation and (ii) 5-
fold leave-one settings are considered. For setting (i), adding
one feature type (e.g., Tweet-Multi, Tweet-Single) or the
GNN module increases the performance of the GDMFN
model in terms of all the performance evaluation metrics.
The improvement increases when all features are exploited.
Similar results could be observed with setting (ii). However,
the best performance in that setting is obtained only when the
GNN module is added.

VII. CONCLUSION
In this paper, we showed the analogy between mean-field
layers and GCONV layers in terms of smoothing the charac-
teristics of nodes in a graph, which explains the effectiveness
of the proposed GDMFN model. In addition, we extended
the original DMFN model by adding an extra GNN module
to exploit the correlation of social media users involved with
news articles. Furthermore, we formulated four different NLP
tasks as a QA problem, which we addressed by using either
the Tetrathlon or the single-task transformer-based models,
enabling unified deep bidirection representations of news
articles, which contribute to the ultimate task of fake news
detection. Experiments on popular benchmark datasets show
that the proposed method consistently improves over the state
of the art in fake news detection approaches.While promising
results have been obtained, the proposed model is not fully
end-to-end, namely that the transformer-based models are
fine-tuned separately from the training of theGDMFNmodel.
Hence, our future work will focus on designing a truly end-
to-end model, which will simplify the training process.
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