
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2021, No. 3, pp. 1–35. DOI:10.46586/tosc.v2021.i3.1-35

1, 2, 3, Fork: Counter Mode Variants based on a
Generalized Forkcipher

Elena Andreeva1, Amit Singh Bhati2, Bart Preneel2 and Damian Vizár3

1 Technische Universität Wien, Vienna, Austria, elena.andreeva@tuwien.ac.at
2 imec-COSIC, Katholieke Universiteit Leuven, Leuven, Belgium

{amitsingh.bhati,bart.preneel}@esat.kuleuven.be
3 Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland,

damian.vizar@csem.ch

Abstract. A multi-forkcipher (MFC) is a generalization of the forkcipher (FC)
primitive introduced by Andreeva et al. at ASIACRYPT’19. An MFC is a tweakable
cipher that computes s output blocks for a single input block, with s arbitrary but
fixed. We define the MFC security in the ind-prtmfp notion as indistinguishability
from s tweaked permutations. Generalizing tweakable block ciphers (TBCs, s = 1),
as well as forkciphers (s = 2), MFC lends itself well to building simple-to-analyze
modes of operation that support any number of cipher output blocks.
Our main contribution is the generic CTR encryption mode GCTR that makes
parallel calls to an MFC to encrypt a messageM . We analyze the set of all 36 “simple
and natural” GCTR variants under the nivE security notion by Peyrin and Seurin
from CRYPTO’16. Our proof method makes use of an intermediate abstraction called
tweakable CTR (TCTR) that captures the core security properties of GCTR common
to all variants, making their analyses easier. Our results show that many of the
schemes achieve from well beyond birthday bound (BBB) to full n-bit security under
nonce respecting adversaries and some even BBB and close to full n-bit security in
the face of realistic nonce misuse conditions.
We finally present an efficiency comparison of GCTR using ForkSkinny (an MFC
with s = 2) with the traditional CTR and the more recent CTRT modes, both are
instantiated with the SKINNY TBC. Our estimations show that any GCTR variant
with ForkSkinny can achieve an efficiency advantage of over 20% for moderately long
messages, illustrating that the use of an efficient MFC with s ≥ 2 brings a clear
speed-up.
Keywords: Forkcipher · CTR mode · Encryption · Nonce · Tweak · MFC

1 Introduction
Forkcipher (FC) [ALP+19b] is a novel symmetric primitive, originally conceived for efficient
authenticated encryption (AE) of short messages. It transforms a fixed length (n-bit)
plaintext input X into a larger (2n-bit) fixed length output Y via a secret key K and an
(optional) public tweak T . The security notion of an FC is given as indistinguishability
from two pseudorandom tweakable permutations (ind-prtfp) [ALP+19b]. An FC is then
used to build secure nonce-based AE schemes that require strictly one primitive (FC)
call per message block. The FC modes for nonce-based AE (r)PAEF and SAEF are
the first examples of such one-primitive-call-per-block constructions. Other nonce-based
AE schemes, such as TAE [LRW02], ΘCB [RK11], GCM [MV04], CCM [WHF03], and
OCB [RBB03], incur at the very least one additional primitive call. Combined with an
efficient FC, the FC-based AE modes evidently minimize computational cost for short
messages.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-06-01 Accepted: 2021-08-01 Published: 2021-09-17

https://doi.org/10.46586/tosc.v2021.i3.1-35
mailto:elena.andreeva@tuwien.ac.at
mailto:amitsingh.bhati@esat.kuleuven.be, bart.preneel@esat.kuleuven.be
mailto:damian.vizar@csem.ch
http://creativecommons.org/licenses/by/4.0/

2 MFC and Encryption Modes

Forkcipher applications beyond efficient short-message AE are still to be explored,
especially their possible efficiency and security advantages over regular and tweakable
ciphers. For example, recently, a stronger security for the forkcipher based AE mode
SAEF has been proved to support its defense in depth. Additional to the classical
nAE [Rog02] security, SAEF has been shown secure [ABV20, ABV21, ABD+20] under
both OAE [FFL12] and INT-RUP [ABL+14] security notions.

In this work we focus on the applications of forkciphers to counter(CTR)-mode-like
encryption. CTR mode is one of the most deployed symmetric encryption schemes. Its appli-
cations include random number generator AES-CTR DRNG [BK07], asynchronous transfer
modes, network security: TLS/SSL and low power protocols, and IP security, among others.
Furthermore, many standardized AE modes, such as GCM [MV04], CCM [WHF03], and
SIV [RS06] make use of the CTR mode internally.

CTR mode was introduced in 1979 [LRW00] and is part of the US National Institute
of Standards and Technology NIST SP 800-38A Recommendation for block cipher modes
of operation. In his survey, P. Rogaway says “I regard CTR as the “best” choice among the
classical confidentiality-only techniques. Its parallelizability and obvious correctness, when
based on a good blockcipher, mean that the mode should be included in any modern portfolio
of modes.”, and “Overall, usually the best and most modern way to achieve privacy-only
encryption” [Rog11].

For an underlying block cipher EK with a key K, a message M , an initialization vector
IV (either a nonce as a non-repeating value, or a random value), and a counter j, the
classical CTR mode is defined as cj = EK(f(IV, j))⊕Mj . The output of f is the counter
block and is a unique input to each call of the block cipher. A secure and hence typical
choice of f is the simple concatenation operation, or f(IV, j) = IV ‖j, e.g., the IV takes
the upper 64 bits and the counter takes the lower 64 bits of a 128-bit counter block.
For a non-repeating nonce IV , CTR mode is indistinguishable from random bits under
chosen plaintext attack (CPA). If the nonce is reused, the CTR security is completely
compromised. When EK is a 128-bit block cipher, such as the AES-128, the CTR mode
achieves confidentiality under CPA up to the birthday bound (BB), that is up to 264

encrypted data blocks, assuming that EK is a secure pseudorandom permutation (PRP).
The CTR mode’s most desirable features are the forward-only primitive operation in both
encryption and decryption (known as the inverse-free property), and the full parallelizability.
These make CTR particularly efficient and well-suited for modern architectures with
multiple cores and SIMD extensions where blocks can be encrypted (and decrypted) in
parallel.

Although classical blockciphers, such as the AES, are still broadly used, a new class of
tweakable blockciphers [LRW02] (TBC), such as CRAFT [BLMR19], Deoxys [JNPS16],
SKINNY [BJK+16], etc., has proliferated in the last decade. A tweakable cipher takes
an additional public input called tweak. The tweak is used to ensure both the cipher
“variability” and increased resistance against precomputation attacks.1 The variability
factor is particularly useful when analyzing security of TBC-based modes: if two AES
calls are made with the same plaintext block X, the result will be identical, yet, under
distinct tweaks T1 and T2 a “good” (indistinguishable from a tweak-indexed collection of
random permutations) TBC returns computationally independent ciphertexts ET1

K (X) and
ET2
K (X).
The CounTeR in Tweak (CTRT) encryption mode was proposed by Peyrin and

Seurin [PS16]. It is a TBC-based CTR-style encryption mode where the tweak value T is set
to the counter block computed as the XOR of the random IV value and a counter (IV ⊕ j),
and the cipher input value X is set to a unique nonce value N (fixed per message). For a

1TBCs (including those based on the TWEAKEY framework thanks to near-independent key and
tweak-related computations in the tweakey schedule [JNP14]) typically achieve these properties more
efficiently than having to re-key a blockcipher.

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 3

block size of n bits and a tweak of t bits, the CTRT mode achieves beyond birthday bound
(BBB)2 (n+ t)/2-bit security under the nivE notion (defined as indistinguishability from
random bits with fresh nonces for each encryption), and a graceful security degradation
when the nonce is repeated. The CTRT mode retains the features of the classical CTR
mode and, in addition, brings in beyond birthday bound security and improved resistance
against nonce misuse.

Nonce-misuse resistance (NMR) has been considered a theoretical abstraction, but
recent attacks illustrated its severity in practice. In USENIX’16 Böck et al. [BZD+16]
investigated NMR of the CTR-based AES-GCM deployed in TLS 1.3 and managed to
completely break the authenticity of those connections where servers repeated nonces. The
next year at CCS’17 [VP17] Vanhoef and Piesens introduced the key reinstallation attack
which forces nonce repetitions and breaks the WPA2 wireless protocol.

Contributions
In this work, we explore the security, efficiency and resulting advantages of tweakable
primitives in CTR-style encryption through the prism of multiforkciphers. Our main
reference points are the classical CTR and the recent CTRT encryption modes.

Multiforkciphers. First, we extend the forkcipher definition to that of a generic multi-
forkcipher (MFC). MFC is a tweakable cipher with an arbitrary but fixed length output,
which generalizes over and covers both TBCs and tweakable FCs. An MFC transforms
a single input block into s ≥ 1 output blocks. When s = 1, MFC becomes a TBC and
when s = 2, it becomes an FC. We present the MFC security definition – ind-prtmfp
(indistinguishable pseudorandom tweakable multi-fork permutation), which similarly to
the ind-prtfp notion [ALP+19b], captures indistinguishability from multiple pseudorandom
tweakable permutations. We use MFCs to tackle the security of CTR-style encryption
schemes. When s is left as a fixed but arbitrary parameter in a security analysis, one
obtains a result valid simultaneously for TBCs, FCs and (hypothetical) MFCs with s > 2.
This means, for example, that our results are directly applicable to both TBC-based and
FC-based instances of CTR-like modes, among others.

Generic CTR mode. Our main contribution is the novel generic counter GCTR
structure that uses an MFC as its underlying primitive. GCTR makes parallel MFC calls
where the MFC inputs X (the plaintext) and T (tweak) are determined via two input
generator functions fX and fT , taking as input a nonce N , a random IV denoted by R,
and a counter j. We focus on the simplest and most natural generator functions, defined
as either the concatenation, XOR, or the copy operations of two (respectively one) out of
these three inputs, or simply a constant function independent of its inputs. We identify 36
instances, (most of) which implement secure nonce based, or IV-based or nivE schemes.
In the special case of MFC with s = 1 (TBC), our results include, and offer alternatives
to CTRT, which coincides with GCTR-3. To the best of our knowledge, this is the first
systematic treatment of the popular CTR-style encryption.

TCTR abstraction. We analyze the security of all our GCTR variants. To do so, we
define the tweakable CTR (TCTR) as an intermediate abstraction. TCTR directly takes
two sequences of tweaks and plaintexts and feeds the input (T,X) pairs into parallel calls
to MFC to generate a key stream. The security of TCTR is defined via the concept of a
sequence-builder, capturing the common properties of all GCTR variants. We then bound
the generic distinguishing advantage between the TCTR output and a truly random key
stream, and apply this result in the analysis of our GCTR variants.

2We understand birthday-bound security of modes as n/2 bit security in the “blocksize” n of the
BC/TBC/FC/MFC, as does a majority of recent publications.

4 MFC and Encryption Modes

Security. Our results show interesting security advantages overall, and particularly
improve over the classical CTR mode. We prove that some of our variants achieve security
beyond the birthday bound of n/2 bit (BBB) and some even full n-bit security with n being
the size of the input blocks. We provide a detailed interpretation of our security results
in Sect. 5 and pick a selection of variants GCTR-3 (= CTRT when s = 1), and GCTR-7
that excel in security. For a total of σ MFC calls, GCTR-7 provides perfect information-
theoretic security against nonce-respecting adversaries and BBB-security against nonce
misusing adversaries (for � σ nonce repetitions). GCTR-3 comes with BBB-security
against nonce misusing adversaries (for � σ nonce repetitions). Our security bound for
GCTR-3 additionally improves over the original bound of CTRT. CTRT [PS16] was proven
BBB secure with a degradation in the bound (nonce misuse and nonce respecting) as
2σ(x−1)

2t + σ2

2n+t+1 where q and x are the number of total CTRT queries and the maximum
number of nonce repetitions over CTRT queries, respectively. In this work, we reduce the
gap to (2σ−q)(x−1)

2t+1 + (q−1)(2σ−q)
2n+t+1 . Our results also show that GCTR-3 with larger tweaks of

2n bits provide ≈ n-bit security for all adversary (nonce-misuse and respecting) types (see
Sect. 5). To achieve these security improvements, however, we may need to pay with an
increase in the communication bandwidth with the nonce/IV size as compared to regular
CTR mode.

Revisiting Tweakable HCTR. We reanalyze Tweakable HCTR (or THCTR; a VIL
enciphering scheme [DN18]) that uses as an internal building block a CTR-like encryption
mode that is in fact equal to our GCTR-4. We invalidate its existing security bound
(claiming beyond birthday security with respective TSPRP [DN18] security notion) by
identifying a flaw in its existing proof. Further, we provide a birthday attack confirming
that THCTR does not achieve TSPRP-security beyond the birthday bound in its present
form and recommend to replace its internal GCTR-4 component by either of our preferred
variants (namely, GCTR-3 or GCTR-7) to achieve the intended BBB-security.

Efficiency. A large part of our motivation for the study of GCTR variants is the idea
that an MFC with a large s, that is more efficient than s TBC calls, results in more
efficient encryption, with the advantage accumulating as the message grows. Our findings
in Fig. 4 confirm that the only existing MFC with s > 1 ForkSkinny [ALP+19b, ALP+19a]
yields a more efficient encryption scheme than its TBC counterpart (with identical round
and tweakey functions) SKINNY [BJK+16] (s = 1) when plugged in GCTR. For example,
ForkSkinny in any of our GCTR modes achieves an efficiency improvement of over 20%
over SKINNY in GCTR modes for the same tweak and nonce sizes.

2 Preliminaries
All strings used in this paper are binary strings. Strings of length n > 0 are referred to
n-bit strings. The set of all n-bit strings is denoted as {0, 1}n. Any sequence of n-bit
strings is denoted by ({0, 1}n)+. We denote the set of all permutations of {0, 1}n by
Perm(n). For any string A, |A| represents the bit-length of A and truncc(A) represents
the string defined by the first c bits of A. For a set S, the notation 2S denotes the power
set of S and |S| denotes the size of S. For any real number r, dre denotes the least integer
which is greater than r (the ceiling function). We denote any vector B with components
B1, B2, . . . , Bi as 〈B1, B2, . . . , Bi〉. For any two numbers a and b, a · b or ab represents
their scalar multiplication.

Given a string A and an integer n with |A| = cn+ d for some 0 < d ≤ n, we use the
notation A1, A2, . . . , Ac+1

n←− A to represent the partitioning of A into a maximum number
of n-bit blocks, such that |Ai| = n for 1 ≤ i ≤ c and |Ac+1| = d. The symbol ⊥ represents
an undefined value or error. We let r ←$ R denote the random sampling of an element

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 5

r from a finite set R considering the uniform distribution. We let N denote the set of
natural numbers.

The notation (p)q denotes the falling factorial p · (p− 1) · (p− 2) · . . . · (p− q+ 1) where
(p)0 = 1. A predicate P(x) is defined as P(x) = 1 if it is true and P(x) = 0 if it is false.
All comparisons that are used in the work for integer tuples are lexicographic comparisons
(to exemplify, (i′, j′) < (i, j) iff i′ < i or i′ = i and j′ < j).

2.1 Nonce- and IV-based Encryption
We target the syntax and security of nonce- and IV- based encryption schemes (nivE) [PS16].
An nivE scheme is a tuple Π = (K, E ,D) where K is a key distribution (typically a finite
key space with uniform distribution), E : K ×N ×R×M→ {0, 1}∗ is the deterministic
encryption algorithm, and D : K ×N ×R× {0, 1}∗ →M is the deterministic decryption
algorithm with N and R representing the sets of nonces and IV s, respectively. The
encryption algorithm maps a key K, a nonce N , an IV R and a message M with
(K,N,R,M) ∈ K ×N ×R×M to a ciphertext C = E(K,N,R,M) and the decryption
maps key, nonce, IV and a ciphertext to a message M = D(K,N,R,C).

We require that D(K,N,R, E(K,N,R,M)) = M for all K,N,R,M ∈ K×N ×R×M
and we assume that both E and D return ⊥ if any of the inputs is not in its intended
domain. In this paper, we further require that R is a finite set, M ⊂ {0, 1}∗ such
that M ∈ M and |M | = m ⇒ {0, 1}m ⊆ M and that |E(K,N,R,M)| = |M |. We let
E$: K×N×M→ R×{0, 1}∗ denote the randomized encryption algorithm, which internally
samples an R←$ R with uniform distribution, computes C ← E(K,N,R,M) and returns
R,C. We further let EK(N,R,M) = E(K,N,R,M) and E$

K(N,M) = E$(K,N,M).

nivE Security and ivE Security. We define the security of nivE through indistin-
guishability of ciphertexts from random strings in a chosen plaintext attack. More precisely,
given an nivE scheme Π and a nonce respecting (i.e., using a fresh nonce for each en-
cryption query) adversary A, we define A’s advantage at breaking the security of Π as
AdvnivE

Π =
∣∣∣Pr
[
K ←$ K : AE$

K(·,·) ⇒ 1
]
− Pr

[
ARand$(·,·) ⇒ 1

]∣∣∣ , where Rand$(N,M) in-
ternally samples an R ←$ R and returns R with an independent random string of |M |
bits upon every query. If A is not nonce-respecting (may reuse a nonce), we define its
advantage with the same experiment, but denote it as AdvivE

Π .

Relation to Nonce-based and IV-based Encryption. The syntax and notion of nivE
schemes capture both nonce-based encryption (with R = {ε} which makes E$ deterministic)
and random initialization vector-based encryption (with N = {ε}). Beyond these two basic
types of encryption, nivE also captures a generalized type of symmetric encryption that
uses a nonce and an IV simultaneously, previously shown useful to achieve high security
levels [PS16].

On the use of nivE notion and schemes. At the first glance, the reader may question
the usefulness of the “true” nivE schemes. Practice-wise, an encryption scheme requiring
a nonce and an IV to be transmitted would indeed not be the first choice for mainstream
applications. There are nevertheless scenarios where nivE schemes are useful as-is. For
example, in an encryption-only scenario where two-pass processing is unacceptable and
nonce-misuse resistance is desirable (e.g., a micro controller with embedded TRNG and
constrained RAM, streaming sensor-data and having a reset-related possibility of nonce-
repetition), a nonce-IV scheme seems the only viable option.

In addition, nivE schemes are useful building blocks for higher-level constructions,
where the nonce, the IV, or both can be implicit, as exemplified by SCT [PS16] (AEAD)
and HCTR [DN18] (enciphering). Generally speaking, the benefits of nivE can be leveraged
wherever an implicit nonce exist or some form of a synthetic IV can be computed. We
conjecture that this is the case in many constructions and communication protocols (think

6 MFC and Encryption Modes

about TLS, where each frame has a sequence number). Our results can then be used as a
blackbox in the analyses of such constructions, as seen on the example of HCTR.

Finally, the nivE definition is an umbrella notion, that captures nonce-based, IV-based
and nonce-IV-based symmetric encryption schemes. This lets us characterize and study
interesting constructions of all three types simultaneously, dispensing with the need for a
dedicated treatment for each type.

2.2 Coefficient-H Technique
The coefficient-H technique is a simple but powerful proof technique by Patarin [Pat09]
which is often used to prove indistinguishability of a given construction from an idealized
object by an information-theoretic adversary. The Coefficient-H technique characterizes
an indistinguishability experiment, in which an information-theoretic adversary A tries
to distinguish two sets of oracles Oreal (the “real world”) and Oideal (the “ideal world”),
in the form of transcripts. A transcript is defined as a complete record of the interaction
of an adversary A with its oracles. To exemplify, if A has a single oracle, (Mi, Ci)
representing the input and output of the i-th query to this oracle and q is the total number
of queries made by A then the corresponding transcript (denoted by τ) is defined as
τ = 〈(M1, C1), . . . , (Mq, Cq)〉. The goal of A here is to distinguish interactions in the real
world Oreal from the ones in the ideal world Oideal.

Let us denote the distribution of transcripts in the real and in the ideal world by Θreal
and Θideal, respectively. We call a transcript τ attainable if the probability of achieving
τ in the ideal world is non-zero. Further, we also assume w.l.o.g. that A does not make
any duplicate or prohibited queries. We can now state the fundamental lemma of the
coefficient-H technique. We refer the reader to an excellent tutorial on the coefficient-H
technique by Chen and Steinberger [CS14].

Lemma 1 (Fundamental Lemma of the coefficient H Technique [Pat09]). Consider that
the set of attainable transcripts is partitioned into two disjoint sets Tgood and Tbad. Also,
assume there exist ε1, ε2 ≥ 0 such that for any transcript τ ∈ Tgood, we have Pr[Θreal=τ]

Pr[Θideal=τ] ≥
1− ε1, and Pr[Θideal ∈ Tbad] ≤ ε2. Then, for all adversaries A, it holds that |Pr[AOreal ⇒
1]− Pr[AOideal ⇒ 1]| ≤ ε1 + ε2.

3 Multi-Fork Cipher (MFC)
In this section, we define the syntax and security of symmetric key primitive we name multi-
forkcipher (MFC). MFC generalizes the primitive called forkcipher [ALP+19b]. Informally,
a forkcipher takes as input a secret key, a public tweak and an input block, and evaluates
two independent permutations of the input block at the same time.3 An MFC generalizes
this concept to an arbitrary (but fixed) number of encryption branches (i.e., arbitrary but
fixed number of output blocks). More precisely, a multi-forkcipher takes a secret key, a
public tweak, and an n-bit plaintext block as input and produces s n-bit output blocks.
Additionally, the input X should be computable backwards from any of the output blocks,
and any of the output blocks should be reconstructible from any other output block.

Ideal MFC. With a random key as input, an ideal s-MFC implements an s-tuple of
independent random permutations πT,1, πT,2, . . . , πT,s for every tweak T , which for input
X and a set α ⊆ {1, 2, . . . , s} provides {vi | vi = πT,i(X) for i ∈ α} i.e. |α| many indexed
but independent outputs. We define a secure multi-forkcipher to be computationally
indistiguishable from such an ideal MFC. The ideal MFC is equivalent to a tuple of s ideal
tweakable block ciphers used in parallel.

3A trivial forkcipher can be constructed by concatenating the output of two tweakable blockciphers,
however a dedicated forkcipher is typically more efficient than a pair of TBCs.

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 7

Note that this formalism captures both conventional TBCs (MFC with a single output
block), the original forkcipher, and any future generalized constructions with three or more
branches. Results using the notion of MFC then have the advantage of being automatically
applicable to instantiations based on any of the aforementioned primitives. Furthermore,
forking primitives that can output a practically unlimited number of branches (akin to
Farfalle [BDH+17]) can be viewed as an MFC with the (maximum) number of branches
set to their operational (or security) limits.

3.1 Syntax
A multi-forkcipher Fs is a pair of deterministic algorithms, the forward Fs:

Fs : {0, 1}k × {0, 1}t × {0, 1}n × 2{1,2,...,s} →
s⋃
e=1
{0, 1}en

and the backward (or the inverse) F−1
s :

F−1
s : {0, 1}k × {0, 1}t × {0, 1}n × {1, 2, . . . , s} × 2{i,1,2,...,s} →

s⋃
e=1
{0, 1}en .

The forward algorithm Fs takes in a key K, a tweak T , an input block X and an output
selector set α. It then outputs the output blocks Ya1 , . . . , Yaz indicated by the output
selector α = {a1, a2, . . . , az}, such that a1 < a2 < . . . < az. We let Fs(K,T,X, α) =
Fs,K(T,X, α) = FTs,K(X,α).

Similarly, the backward computing algorithm F−1
s takes in a key K, a tweak T , a

block Y , an input indicator β and an output selector set α. It then outputs the blocks
Ya1 , . . . , Yaz indicated by α = {a1, a2, . . . , az}. If a1 = i then the first block is X (the
corresponding input block of Fs) and a2 < . . . < az, otherwise a1 < a2 < . . . < az. If
β ∈ α, then F−1

s (K,T, Y, β, α) = ⊥. We let F−1
s (K,T, Y, β, α) = F−1

s,K(T, Y, β, α). We call
k, n and t the keysize, inputsize and tweaksize of Fs, respectively.

A multi-forkcipher is said to be correct if for every K ∈ {0, 1}k, T ∈ {0, 1}t, X, Y ∈
{0, 1}n and β ∈ {1, 2, . . . , s} it satisfies the following conditions:

1. F−1
s,K(T,Fs,K(T,X, β), β, i) = X, i.e., decrypting a ciphertext block with the same

key, the same tweak and using the same output index gives the correct plaintext,

2. F−1
s,K(T,Fs,K(T,X, β), β, α) = Fs,K(T,X, α) for all α ∈ 2{1,2,...,s}\{β}, i.e., fixing the

key and the tweak and given a ciphertext block produced with output index β,
reconstructing the ciphertext block for output index α always gives the same value
as encrypting the same plaintext directly with the output index α,

3. (Fs,K(T,X, a1), . . . ,Fs,K(T,X, az)) = Fs,K(T,X, {a1, a2 . . . , az}) for each set
{a1, a2, . . . , az} ∈ 2{1,2,...,s}, i.e., fixing the key and the tweak, encrypting a plaintext
with a certain set of output indexes always produces the same output blocks as
encrypting the same plaintext with each of the output indexes individually,

4. (F−1
s,K(T, Y, β, a1), . . . ,F−1

s,K(T, Y, β, az)) = F−1
s,K(T, Y, β, {a1, a2, . . . , az}) for each set

{a1, a2, . . . , az} ∈ 2{i,1,2,...,s}\{β}, i.e., fixing the key and the tweak and given a
ciphertext block, reconstructing/decrypting with a certain set of output indexes
always produces the same output blocks as reconstructing/decrypting the same
ciphertext blocks with each of the output indexes individually.

8 MFC and Encryption Modes

3.2 Security of MFC
We define the security of a multi-forkcipher with the help of security games prtmfp-
real and prtmfp-ideal in Fig. 1.4 An adversary A who wants to break the multi-
forkcipher Fs plays games prtmfp-real or prtmfp-ideal. In either game, A makes q
queries in total, of the form (T i, Xi, αi) to the encryption oracle, or (T i, Y i, βi, αi) to
the decryption oracle for 1 ≤ i ≤ q. The oracle either processes the inputs with the real
Fs used with a random key, or with a random “multi-forked permutation” P . A multi-
forked permutation is an s-tuple of tweakable permutations, s.t. these s permutations
are always used with the same plaintext block (even when queried in the backward
direction). The selection of the tweakable permutations to be applied is based on the
selector α in the natural way. We define the advantage of A at distinguishing Fs from
a random multi-forked permutation P of |α| · n bits in a chosen ciphertext attack as
Advprtmfp

Fs (A) =
∣∣Pr[Aprtmfp-realFs ⇒ 1]− Pr[Aprtmfp-idealFs ⇒ 1]

∣∣ .
We will use a shorthand [s] to denote the set {1, 2, . . . , s}. In the rest of this paper,

we only use the forward direction of an MFC, with α = [s]. Thus, we fix α = [s], drop
the output selector from the input list, and use the notation Fs(K, ·, ·) = Fs,K(·, ·) =
Fs,K(·, ·, [s]). One can see this F as a multi-forkcipher with α hardwired to “all”.

MFC vs TPRI. An n-bit MFC with s branches syntactically resembles an n-bit input
tweakable pseudorandom injection PRI with sn-bit output, yet they differ in their proba-
bility distributions. While a TPRI simply samples sn-bit images w/o replacement, the
MFC concatenates s random permutations, resulting in a birthday gap between the two
objects.

Game prtmfp-realFs

K ←$ K
b← AE,D

return b

Oracle E(T,X, α)
return Fs,K(T,X, α)

Oracle D(T, Vβ , β, α)
return F−1

s,K(T, Vβ , β, α)

Game prtmfp-idealFs

for T ∈ {0, 1}t do πT,1, πT,2, . . . , πT,s ←$ Perm(n)

b← AE,D

return b

Oracle E(T,X, α) //α = {a1, a2, . . . , az}
return πT,a1(X), . . . , πT,az (X)

Oracle D(T, Y, β, α) //α = {a1, a2, . . . , az}
if β ∈ α then return ⊥
X ← π−1

T,β(Y)

if a1 = i then return X,πT,a2(X), . . . , πT,az (X)

else return πT,a1(X), . . . , πT,az (X)

Figure 1: Games prtmfp-realFs and prtmfp-idealFs defining the security of the multi-
forkcipher Fs.

4 MFC-based CTR Mode and its Variants
The Counter (CTR) [LRW00] mode of operation has been considered as one of the best
choices among the set of block cipher modes for message confidentiality. The inverse-freeness
and parallelism of the original CTR mode are simple but very powerful in confidentiality-
only protocols. Yet, the classical CTR mode provides only n/2 security when used with
an n-bit block cipher and fails completely in the face of nonce reuse (in the cases where
IV is implemented as a nonce). In this section, we define a generic CTR (GCTR) with

4The CCA variant of this notion is easily obtained by giving A access to the decryption oracle, which
is naturally defined in both games. We do not formally add this definition as it is not necessary for this
paper.

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 9

the same design properties as the original CTR construction but aiming to achieve higher
security levels in the spirit of the recent tweakable block-cipher-based CTRT mode [PS16]
and aiming for the nivE security notion.

GCTR implements an nivE encryption scheme that uses an MFC as a lower-level
primitive and similarly to CTRT takes as input both a nonce and a random value, as
opposed to the classical CTR mode’s single IV value. We then show that at the cost of
an additional input we obtain encryption schemes with significantly improved security.
More precisely, we present and investigate the security of 36 concrete instances which
are distinguished by the way a nonce N , an IV (a random value R) and a counter j
are combined as inputs to the MFC primitive. Our research is exhaustive regarding the
simplest of operations (XOR, copy or concatenation), covering the classical CTR as well.
Furthermore, via the abstraction of MFC we incorporate and enable the comparison of
security and efficiency features of tweakable primitives with variable output sizes.

4.1 Generic CTR
There are many possible definitions of a CTR-like mode with an MFC by combining the
MFC tweak and plaintext inputs: a nonce N , a block counter j, and a random IV value
denoted by R. We formally capture the space of the MFC-based CTR-like modes through
the generic CTR mode (GCTR), which uses placeholder functions fT (N,R, j) 7→ T and
fX(N,R, j) 7→ X to compute the tweak T and the MFC plaintext X. An instance, or else
a GCTR variant, is obtained by fixing those functions.

For a fixed multi-forkcipher Fs : K×{0, 1}t×{0, 1}n → {0, 1}sn and two functions fT :
{0, 1}ν ×{0, 1}r×N→ {0, 1}t and fX : {0, 1}ν ×{0, 1}r×N→ {0, 1}n, GCTR[Fs, fT , fX]
mode implements an nivE scheme with key space K, nonce space N = {0, 1}ν , IV space
R = {0, 1}r, message spaceM =

⋃`
i=0{0, 1}i and the encryption and decryption algorithm

defined in Fig. 2. The exact values of ν, r and ` depend on the concrete instantiation. We
also use the shorthand GCTR, leaving Fs, fT and fX implicit.

GCTRs[Fs, fT , fX] Encryption: EK(N,M)

1 : R←$ R
2 : M1, . . . ,M`

n←−M
3 : for j ← 1 to d`/se do
4 : Xj = fX(N,R, j)

5 : Tj = fT (N,R, j)

6 : Sj = trunc|M(j−1)s+1‖···‖Mmin(js,`)|(Fs,K(Tj , Xj))

7 : S ← S1‖ · · · ‖Sd`/se
8 : C ←M ⊕ S
9 : return R,C

Figure 2: Encryption algorithm of the generic CTR mode instantiated with a MFC
Fs : K×{0, 1}t×{0, 1}n → {0, 1}sn. Different definitions of the functions fX and fT yield
concrete variants of the GCTR (see Table 2).

Similar to the conventional CTR mode, GCTR is inverse-free, i.e., the inverse direction
of the underlying multi-forkcipher Fs is never used. We note that the security of GCTR
mode depends not only on the security of the underlying multi-forkcipher but also on
the functions fX and fT that compute MFC inputs and tweaks. In the next section, we
exhaustively investigate a well-defined subset of the GCTR variants’ space.

10 MFC and Encryption Modes

4.2 GCTR Variants: CTR Mode of Encryption using MFC
The space of all possible GCTR instances is huge (there are 2(t+n)·(2ν ·2r·jmax) of them
with ν = |N |, r = |IV | and jmax being the maximal allowed counter value) but only
a significantly smaller subset of those is of practical interest. The main criterion is
computational complexity of the functions fX and fT ; they must be computed efficiently
for the instance to make any sense. In this section, we exhaustively investigate the set
of arguably most efficient GCTR variants, with fX and fT defined using the simplest
operations.
Simple variants. The class of GCTR variants we investigate are what we call “simple
and natural”. The class is induced by imposing the following restrictions on the functions
fT , fX :
Simple operations: fT (N,R, j) (resp. fX(N,R, j)) can only be (1) a concatenation of two out of

the three input arguments, or (2) an xor of two out of the three input arguments, or (3) a
simple copy of one of the three input arguments, or (4) a constant function independent of
the input arguments.

No argument reuse: No input argument can be used by fT and fX at the same time (e.g if
fT = N ⊕R then fX = N‖〈j〉 is invalid due to the use of N).

We put no restrictions on the integer parameters ν, r, jmax defining the domains {0, 1}ν , {0, 1}r
and {1, 2, . . . , jmax} of respectively the nonce N , the random IV R and the counter j
insofar the functions fX and fT are well-defined. For example, for fX = N ⊕R we must
have ν = r = n while for fT = N‖j we must have ν < t and jmax = 2t−ν−1. Note that we
assume that for an evaluation of the functions fT and fX the counter is suitably encoded
as a fixed-size binary string 〈j〉. The restriction to simple operations leaves 10 choices for
each fT and fX (three possibilities for the xor, three for the concatenation, three for the
copy plus the constant function), yielding a set of 100 GCTR variants. Further filtering
this set by prohibiting the reuse of arguments leaves 36 variants:

• for a constant fT , we are free to use any of the nine non-trivial possibilities for fX
(9 variants in total);

• for an fT that is a copy of one of the three input arguments, fX can be a binary
operation of the remaining arguments or a copy of one of the remaining arguments
or a constant function (15 variants in total);

• for an fT that is a binary operation, fX can be a copy of the remaining argument or
a constant functions (12 variants).

The individual 36 variants are listed in the remaining paragraphs of this section.

Table 1: Trivially insecure GCTR variants.

No. 23 24 25 26 27 28 29 30 31 32 33 34 35 36
fT γ N‖R γ N ⊕R γ N γ R R N γ 〈j〉 N ⊕ 〈j〉 γ
fX N‖R γ N ⊕R γ N γ R γ N R 〈j〉 γ γ N ⊕ 〈j〉

Trivially insecure variants. As the first step of our investigation, we immediately
identify three sets of trivially insecure simple variants:
Counter only: If one of the functions fT and fX is a copy of the counter j, and the other is a

constant γ, the GCTR variant is trivially insecure, as the key stream blocks it generates
repeat in each query. This set consists of variants 33 and 34 in Table 1.

No counter: If none of the functions fT and fX uses the counter j, the GCTR variant is trivially
insecure, all key stream blocks in a query have the same value. This set consists of variants
23 to 32 in Table 1.

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 11

Nonce XORed with counter only: If one of the functions fT and fX is N ⊕〈j〉, and the other is a
constant γ, the GCTR variant is trivially insecure, as the key stream blocks it generates will
always have repetitions among queries where the adversary chooses nonces with ensuring
that some of the N ⊕ 〈j〉 inputs are the same among these queries. Note that such
repetitions of block outputs are unavoidable here even when we restrict the adversary to be
nonce-respecting. This set consists of variants 35 and 36 in Table 1.

We refer the reader to the full version of the paper (see Appendix C) for a more formal
treatment of nivE attacks on the trivially insecure variants.

Interesting variants. We investigate the 22 variants that remain after the previous
filtering. All of them are named and listed in the Table 2 as GCTR-1 to GCTR-22. We
give a formal statement of security for these 22 secure GCTR variants and support them
with security proofs. The formal claim about the security of these 22 secure GCTR variants
is stated in Theorem 1 (see Table 2 for the definition of adversarial resources).

Theorem 1. Let Fs be a tweakable multi-forkcipher with tweak space = {0, 1}t. Then for
any adversary A who makes at most q encryption queries such that the total number of
multi-forkcipher calls induced by all the queries is at most σ =

∑q
i=1d

`i
s e, we have (here `i

represents the length of ith queried message in terms of n-bit blocks and ` = maxi{`i})

Adv(n)ivE
GCTR-z[Fs](A) ≤ Advprtmfp

Fs
(B) + deg(n)ivE

GCTR-z[Fs]; z ∈ {1, 2, . . . , 22} (1)

for some adversary B who makes at most σ queries, and runs in time given by the running
time of A plus γ0 ·σ for some constant γ0. Here deg(n)ivE

GCTR-z[Fs] represents the corresponding
degradation in the (n)ivE security of the variant GCTR-z as given in the Table 2 for all
values of z.

Table 2: GCTR[Fs] variants for constructing a nivE scheme using a multiforkcipher. The
columns “fT ” and “fX” respectively show computation of the jth t-bit tweak and n-bit
plaintext to the MFC Fs. Here, q and σ are the total number of plaintext queries and MFC
calls, respectively, R is an r-bit random value, N is a ν-bit nonce, j is a counter, γ is a
constant, 〈j〉 is a constant-size encoding of an integer j, ` is the maximum of query lengths
`is with 1 ≤ i ≤ q, and 1 ≤ x ≤ q is the upper bound on number of reuses (repetitions) for
any nonce Ni (x = 1 means no nonce repeats). The column “`max” contains the maximum
number of possible n-bit blocks in a query.

z (No.) fT fX ν r `max degnivE
GCTR-z[Fs] (x = 1) degivE

GCTR-z[Fs] (x > 1)

1 R‖〈j〉 N n < t s2t−r sqσ
2n+r+1

qx
2r+1 + sqσ

2n+r+1

2 N R‖〈j〉 t < n s2n−r sσ`
2n+1

qx
2r+1 + sσx`

2n+1

3 R⊕ 〈j〉 N n t s2t sqσ
2n+t

xσ
2t + sqσ

2n+t

4 N R⊕ 〈j〉 t n s2n sσ`
2n+1

xσ
2n + sσx`

2n+1

5 N‖R 〈j〉 < t t− ν s2n sσ`
2n

qx
2r+1 + sσ`

2n ; x ≤ 2r

6 〈j〉 N‖R < n n− ν s2t sqσ
2n+1

qx
2r+1 + sqσ

2n+1

7 N‖〈j〉 R < t n s2t−ν 0 (sσ+q)x
2n+1

8 R N‖〈j〉 < n t s2n−ν sσ`
2n+1 ; σ ≤ 2t qx

2t+1 + sσ`
2n+1 ; σ ≤ 2t

9 N ⊕R 〈j〉 t t s2n q2

2t+1 + sσ`
2n+1 ; σ ≤ 2t q2

2t+1 + sσ`
2n+1 ; σ ≤ 2t

10 〈j〉 N ⊕R n n s2t (sσ+q)q
2n+1

(sσ+q)q
2n+1

11 R‖〈j〉 γ 0 < t s2t−r q2

2r+1
q2

2r+1

12 γ R‖〈j〉 0 < n s2n−r q2

2r+1 + sσ2

2n+1
q2

2r+1 + sσ2

2n+1

13 R⊕ 〈j〉 γ 0 t s2t qσ
2t

qσ
2t

14 γ R⊕ 〈j〉 0 n s2n qσ
2n + sσ2

2n+1
qσ
2n + sσ2

2n+1

12 MFC and Encryption Modes

z (No.) fT fX ν r `max degnivE
GCTR-z[Fs] (x = 1) degivE

GCTR-z[Fs] (x > 1)

15 R 〈j〉 0 t s2n q2

2t+1 + sσ`
2n+1 ; σ ≤ 2t q2

2t+1 + sσ`
2n+1 ; σ ≤ 2t

16 〈j〉 R 0 n s2t (sσ+q)q
2n+1

(sσ+q)q
2n+1

17 N ⊕ 〈j〉 R t n s2t q2

2n+1 + sqσ
2n

q2

2n+1 + sqσ
2n

18 R N ⊕ 〈j〉 n t s2n q2

2t+1 + sσ`
2n+1 ; σ ≤ 2t q2

2t+1 + sσ`
2n+1 ; σ ≤ 2t

19 N‖〈j〉 γ < t 0 s2t−ν 0 Insecure

20 γ N‖〈j〉 < n 0 s2n−ν sσ2

2n+1 Insecure

21 N 〈j〉 t 0 s2n sσ`
2n+1 Insecure

22 〈j〉 N n 0 s2t sqσ
2n+1 Insecure

We defer the proof of Theorem 1 to Sect. 6.2.

5 Discussion
In this section, we give an interpretation of the bounds in Theorem 1. We then discuss the
performance benefits that can be gained from MFC-based GCTR.

5.1 Security

(Mis)use of Nonce and IV. The GCTR variants 1-18 that use the random IV R input
remain secure under nonce reuse. Some of these do not use the nonce N at all, making
the nivE and ivE bounds equal (variants 11-16). Most of the variants using both nonce
and random IV have a better nivE bound than ivE (here most means all except GCTR
variants 9, 10, 17 and 18 because despite of having both N and R as inputs these variants
use the nonce N as XORed with either R or the counter which negates the benefits of the
nonce).

(Beyond) Birthday-Secure Variants. The classical CTR mode, a.k.a. GCTR-20, is
among our 22 secure variants. Interestingly, the bounds of all other 21 variant are superior
to that of the CTR mode (variant 20), which becomes void at ≈ 2n/2 processed blocks.
More specifically, all of these (n)ivE bounds are dominated by a quadratic term, but unlike
the CTR mode, this term is not only in the number of blocks σ but has q or ` as well.
(see Table 2). Recall that we (informally) consider a GCTR variant beyond birthday
bound (BBB) secure when having a security bound that does not become void around
2n/2 queried blocks. With this definition, we have 6 variants in the 22 that are BBB-secure
namely, variant 1, 3, 7, 11, 13 and 19.

Our pick. The variants GCTR-3 and GCTR-7 are the best two modes in terms of
security. Table 2 shows that out of all 22 modes, GCTR-7 achieves the best quantitative
security for x ≤ 1 + sq/D where D = ((sσ+ q)/(2σ− q))2t− 2n whereas for x > 1 + sq/D,
GCTR-3 provides the best security. In other words, for the nonce respecting case GCTR-7
is the best choice whereas for the general nonce misuse case GCTR-3 with t = 2n is the
best choice (in practical cases σ and q are upper bounded by 2n). The same can also be
verified in Fig. 3 (plot F) which shows the security degradation of these variants with
increasing number of nonce-repetitions.

We further illustrate the security gap between GCTR-3, GCTR-7 and the classical
CTR mode for a fixed input sizes of n = 128 in Fig. 3 (plots A to C). For simplicity, q is
replaced by its worst-case value, i.e. q = σ. Further, in Fig. 3 (B, D and E), we give the
advantage for more realistic values of q to illustrate that the degradation slope is preserved

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 13

also for those q values. We note that the advantage slopes for other choices of n have the
same shape.

0 20 40 60 80 100 120
0

20

40

60

80

100

120
x = 1
(nonce-respecting setting)
q = σ

(worst-case q value)

A

log2 σ

−
lo
g
2
A
d
v
(n

)i
v
E

0 20 40 60 80 100 120
0

20

40

60

80

100

120
x =
√
σ

(moderate-case nonce-misuse)
q = σ

(worst-case q value)

B

log2 σ

−
lo
g
2
A
d
v
(n

)i
v
E

0 20 40 60 80 100 120
0

20

40

60

80

100

120
x = σ
(worst-case nonce-misuse)
q = σ

(worst-case q value)

C

log2 σ

−
lo
g
2
A
d
v
(n

)i
v
E

0 20 40 60 80 100 120
0

20

40

60

80

100

120
x =
√
σ

(moderate-case nonce-misuse)
q = σ/4
(≈ 128 bytes length messages)

D

log2 σ

−
lo
g
2
A
d
v
(n

)i
v
E

0 20 40 60 80 100 120
0

20

40

60

80

100

120
x =
√
σ

(moderate-case nonce-misuse)
q = σ/128
(≈ 4 KB length messages)

E

log2 σ

−
lo
g
2
A
d
v
(n

)i
v
E

0 10 20 30 40 50 60 70
0

50

100

150

200

250
σ = 264
q = σ/128

(≈ 4 KB length messages)
F

log2 x

−
lo
g
2
A
d
v
(n

)i
v
E

GCTR-3 with s = 2, t = 256, GCTR-3 with s = 2, t = 128, GCTR-7 with s = 2, Classical CTR.

Figure 3: Security comparison (as logarithmic plots of the advantage functions) of GCTR-3
and GCTR-7 using an MFC with s = 2 with the classical CTR mode for n = 128. We plot
the (n)ivE advantage of an adversary as a function of the total number of queried blocks
σ (in plots A to E) and as a function of the total number of repeated nonces x (in plot F).

From Fig. 3, we infer for s = 2:

1. GCTR-3 with t = 2n provides ≈ n-bit security against all types of adversaries.
GCTR-3 with t = n provides ≈ n-bit security against nonce-respecting adversaries
and BBB-security against nonce misusing (with x� σ nonce repetitions) adversaries.

2. GCTR-7 provides n-bit security against nonce-respecting adversaries and BBB-
security against nonce misusing (with x� σ nonce repetitions) adversaries.

14 MFC and Encryption Modes

3. Even though GCTR-3 with t = n and GCTR-7 both provides ≈ n-bit security for
nonce-respecting adversaries, GCTR-7 has a comparatively slower/better security
degradation with increasing σs. For example, a nonce-respecting adversary who wants
to achieve an advantage of 2−120 (or more) requires at least 2128 128-bit encrypted
blocks against GCTR-7 whereas to achieve the same advantage for GCTR-3 with
t = n, it only requires 268 128-bit encrypted blocks.

GCTR Modes and CTRT. In our GCTR framework CTRT coincides with the variant
GCTR-3 while GCTR-4, GCTR-7 and GCTR-17 are just mentioned in [PS16] as other
possible secure variants. The existing instantiation Deoxys-II [JNPS16] of CTRT is the same
as the GCTR1-3 (with t = n) mode with the TBC Deoxys-BC [JNPS16]. In [PS16], CTRT
is shown BBB secure with (n)ivE degradation bound as 2σ(x−1)

2t + σ2

2n+t+1 . In this work, we
improve this CTRT security bound with updated degradation as (2σ−q)(x−1)

2t+1 + (q−1)(2σ−q)
2n+t+1 .

This improved bound is of practical relevance and strengthens the security of CTRT in
cases where average message length is longer.
Revisiting THCTR. Tweakable HCTR (THCTR) was proposed as a tweakable VIL
enciphering scheme that turns an n-bit tweakable block cipher to a variable input length
tweakable block cipher [DN18]. It uses a CTR-like encryption mode as an internal building
block. In the original publication, THCTR is claimed to be BBB-secure under the TSPRP
notion [DN18] and a security proof is provided to support this claim.

However, upon an inspection, the internal CTR-like component of THCTR can be seen
to be equal to GCTR-4, for which our own analysis yields BB-security (see Table 2). An
investigation of this discrepancy revealed that the claim of THCTR’s BBB-security under
the TSPRP notion is not correct. We give a BB-attack as Prop. 1 (included in App. D),
disproving the claimed TSPRP-security beyond the birthday bound. We also point to the
exact flaw in the security proof.

With GCTR-3 and GCTR-7 being better alternatives to GCTR-4 having gracefully
degrading BBB-security under the ivE notion, we recommend to replace the GCTR-4-like
component of THCTR by GCTR-3 or GCTR-7 to achieve the desired BBB security.
GCTR in AE schemes. There are existing known ways to construct AE schemes
from encryption and authentication schemes such as the Encrypt-then-MAC generic
composition [BN00] and SCT-style AE [PS16]. We recommend the later for GCTR as it
allows message generated pseudo-random IVs and thus reduces the bandwidth as well as
avoids the dedicated random sampling of IVs.

We note that the syntax of GCTR is a natural generalization of CTRT only in terms
of number of outputs which means that any secure variant of GCTR would yield an AE if
combined with an SCT-style overarching scheme.

5.2 Efficiency
A thorough performance evaluation of a GCTR instance would of course require a fixed
HW setup and concrete implementations, which is out of scope of this paper. Nevertheless,
we do provide an estimation of efficiency gain between GCTR, CTRT and basic CTR by
comparing the total number of primitive rounds for instances based on ForkSkinny [PARV19].
Since all GCTR variants follow the same MFC-based GCTR framework, it is sufficient to
analyze the efficiency of the generic GCTR mode.

In Fig. 4 we present an efficiency comparison of GCTR mode (instantiated with
ForkSkinny, having s = 2) with the traditional CTR mode and the CTRT mode (both
instantiated with SKINNY [BJK+16]). The estimation shows that the number of rounds
required for GCTR[ForkSkinny] is smaller than CTR[SKINNY] and CTRT[SKINNY] for all
values of queried bytes. In fact, any GCTR[ForkSkinny] variant with t = 2n is still more
efficient than the CTRT[SKINNY] mode with t = n.

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 15

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

of queried bytes

#
o
f
ro
u
n
d
s
re
q
u
ir
ed

CTR[SKINNY] n = 64, t = 0

CTRT[SKINNY] n, t = 64

GCTR[ForkSkinny] n, t = 64

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

of queried bytes

#
o
f
ro
u
n
d
s
re
q
u
ir
ed

CTR[SKINNY] n = 128, t = 0

CTRT[SKINNY] n, t = 128

GCTR[ForkSkinny] n, t = 128

CTRT[SKINNY] t = 2n = 256

GCTR[ForkSkinny] t = 2n = 256

Figure 4: Efficiency comparison of any GCTR[ForkSkinny] (with s = 2) with CTR[SKINNY]
and CTRT[SKINNY] modes. These plots show the number of rounds required to process
the queried bytes (snσ/8). The left figure corresponds to the input size n = 64 bits whereas
the right figure corresponds to the input size n = 128 bits.

6 Security
This section is dedicated to security analysis backing up Theorem 1. We first define the
Tweakable CTR (TCTR) construction and security notion. Rather than a full-fledged
security notion, TCTR is to be seen as intermediate abstraction layer, albeit powerful one.
It captures the core security aspects common to all GCTR variants in Lemma 2, thus
simplifying the security analysis. We then proceed and prove all the bounds of Theorem 1,
relying heavily on the aforementioned lemma.

6.1 Tweakable CTR framework
We define the tweakable CTR construction (TCTR), an algorithm that takes a sequence
of tweak-input pairs and generates a key stream by applying an MFC to each pair. When
paired with a security notion based on the concept of a sequence-builder defined below,
TCTR is easily seen to be what is common for all GCTR variants. We upper-bound the
distinguishing advantage for TCTR as a function of the properties of the used sequence-
builder, and then apply this result in the analysis of GCTR variants.

X1

Fs,K

T1

v1 v2 vs

.

.
Xd`/se

Fs,K

Td`/se

v`′−s+1 v`′−s+2 v`

Tweakable CTR algorithm : TCTRs,K(T,X)

1 : // K ∈ K
2 : (X1, . . . , Xd`/se)

n←− X
3 : (T1, . . . , Td`/se)

t←− T
4 : for j ← 1 to d`/se do
5 : (vsj−s+1, . . . , vsj)← F

Tj

s,K(Xj)

6 : V ← trunc`n(v1|| · · · ||vsd`/se)
7 : return V

Figure 5: Tweakable CTR. This algorithm is parameterized by a multi-forkcipher
Fs : K × {0, 1}t × {0, 1}n → {0, 1}sn. An input vector X = {Xj |1 ≤ j ≤ d`/se} and a
tweak vector T = {Tj |1 ≤ j ≤ d`/se} must be provided to generate the output vector V
having ` n-bit blocks. Here `′ is defined as sd`/se.

16 MFC and Encryption Modes

Definition of Tweakable CTR. For a fixed multi-forkcipher Fs : K×{0, 1}t×{0, 1}n →
{0, 1}sn, the tweakable CTR construction TCTRs takes in a key K ∈ K, a sequence of
tweaks; T ∈ ({0, 1}t)+ and a sequence of input blocks; X ∈ ({0, 1}n)+. It uses the
multi-forkcipher Fs as shown in the Fig. 5 and outputs the key stream vector V as
〈v1, v2 . . . v`〉.

GCTR mode is obtained from the TCTRs algorithm in a natural way, as shown in
Fig. 6. Taking a key K ∈ K, a nonce N ∈ N and plaintext M ∈ {0, 1}∗, GCTR mode
determines the number of components of the input sequence X and the tweak sequence T
as d|M |/sne, and computes them using the functions fX and fT . It then uses TCTRs and
outputs a ciphertext C.

X1, X2, . . . , Xd`/se

TCTRs

T1, T2, . . . , Td`/se

V = 〈v1, v2, . . . , v`〉

M = 〈m1,m2, . . . ,m`〉

C = 〈c1, c2, . . . , c`〉

GCTRs Encryption: EK(N,M)

1 : R←$ R
2 : for j ← 1 to d`/se do
3 : Xj = fX(N,R, j)

4 : Tj = fT (N,R, j)

5 : T,X ← 〈T1, . . . , Td`/se〉, 〈X1, . . . , Xd`/se〉
6 : V ← TCTRs,K(T,X)

7 : C ←M ⊕ V
8 : return R,C

Figure 6: GCTRs mode redefined with TCTR. This definition is equivalent with the
definition presented in Sect. 4.1.

Security of Tweakable CTR. Defining the security of TCTR as indistinguishability
from a random key stream generator, while giving the adversary the ability to directly
query the input-and-tweak sequences would not be meaningful, as there are adversaries
that would achieve an advantage close to one with constant resources. This also fails to
capture how TCTR is used in GCTR.

Game tctr-realTCTRs,s-build

K ←$ K
b← AO

return b

Oracle O(N, `)
R,X, T ←$ s-build(N, d`/se)
V ← trunc`·n(TCTRs,K(T,X))

return R, V

Game tctr-idealTCTRs,s-build

b← AO

return b

Oracle O(N, `)
R,X, T ←$ s-build(N, d`/se)
V ←$ {0, 1}`·n

return R, V

Figure 7: Games tctr-realTCTRs,s-build and tctr-idealTCTRs,s-build defining the security of
the TCTRs construction. Here s-build : {0, 1}ν ×N+ → {0, 1}r × ({0, 1}n)+ × ({0, 1}t)+ is
a sequence-builder, a possibly randomized algorithm that maps a nonce to a sequence of
MFC inputs and tweaks.

To address the latter, we define the security TCTR by slotting a possibly randomized
query-builder algorithm s-build : {0, 1}ν × N+ → {0, 1}r × ({0, 1}n)+ × ({0, 1}t)+ between
an adversary and TCTR. The query builder takes as input adversarially chosen nonce
N and sequence length `, and outputs random coins R (if used), the sequence of MFC

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 17

inputs X ∈ ({0, 1}n)` and the sequence of MFC tweaks T ∈ ({0, 1}t)`, which are then fed
to TCTR to produce the key stream V . The adversary gets R and V . The algorithm
s-build is a parameter of the security games tctr-real and tctr-ideal in Fig. 7, and is
fixed throughout the experiment, and known to the adversary. The adversary can thus
compute all MFC inputs and tweaks.

An adversary A who wants to break the TCTRs algorithm used in conjunction with
a sequence builder s-build plays the games tctr-real and tctr-ideal. A makes ora-
cle queries of the form N, ` as explained above. The oracle returns random coins
R (if any) and a string that is either the real TCTRs output for the inputs queried
by A, or a random string of the same length. We define Advind-tctr

TCTRs,s-build(A) =∣∣Pr[Atctr-realTCTRs,s-build ⇒ 1]− Pr[Atctr-idealTCTRs,s-build ⇒ 1]
∣∣. We say a TCTRs construction

is secure with s-build if the adversarial advantage Adv as described above is “small” for
all adversaries with “reasonable resources”.

The security notion for TCTR is intuitive. For the GCTR variants from Sect. 4,
the algorithm s-build consists of simply sampling the random IV R and applying the
function fX and fT in a loop. In Lemma 2 and the corresponding analysis, we express the
security of TCTRs, i.e. the adversarial advantage Advind-tctr

TCTRs[Fs],s-build(A) as a function of
the properties of s-build and of the security of the MFC Fs.

For simplicity, the lemma uses a shorthand P̃r which is defined as follows. Let E(a)
be an event that depends on an integer index a ≥ a0 where a0 is a constant. Then
P̃r(E(a)) = Pr(E(a) ∧ Ē(a− 1) ∧ · · · ∧ Ē(a0)) ≤ Pr(E(a)) . Further, with this notation, it
also holds that Pr(E(a) ∨ E(a− 1) ∨ · · · ∨ E(a0)) =

∑a
i=a0

P̃r(E(i)) . This equality holds
for any ordering of the indices [a0, a], however, we stick to the lexicographical ordering.
Note that the equality also holds for events that are dependent on multiple indices such
as E(i, j). Further, with a slight abuse of notation, we will leave the number q of queries
and the length of ith query (in blocks) `i implicit when summing over all MFC calls, using∑

i,i′,j,j′
instead of

∑
1≤i′≤i≤q, (i′,j′)<(i,j),

1≤j′≤d`i′/se, 1≤j≤d`i/se

.

Lemma 2 (Security of TCTR). Let Fs be a tweakable multi-forkcipher with tweak space
= {0, 1}t and s-build : {0, 1}ν × N+ → {0, 1}r × ({0, 1}n)+ × ({0, 1}t)+ a sequence-builder
algorithm. Then for any adversary A who makes at most q TCTRs queries of the form
(Ni, `i), such that the ith query is internally mapped to Ri, ((T i1, Xi

1), . . . , (T id`i/se, X
i
d`i/se))

by s-build, we have

Advind-tctr
TCTRs[Fs],s-build(A) ≤ Advprtmfp

Fs
(B) +∑

i,i′,j,j′

[s
2n P̃r(Xi′

j′ 6= Xi
j ∧ T i

′

j′ = T ij) + P̃r
(

(Xi′

j′ , T
i′

j′) = (Xi
j , T

i
j)
)]

for some adversary B who makes at most σ =
∑q
i=1d

`i
s e queries, and runs in time given

by the running time of A plus γ0 · σ for some constant γ0.

Note that the distribution of the tweak-input pairs, and consequently the bound, is
determined by fixing the sequence builder s-build.

Proof. [Lemma 2] We first replace the multi-forkcipher Fs(·, ·) with a tweak-indexed
collection of s-tuples of independent random permutations πiT,1(·), πiT,2(·), . . . , πiT,s(·)←$

Perm(n) for each T ∈ {0, 1}t. We let TCTRs[π] denote the TCTRs that uses these
random permutations instead of Fs,K(·, ·). We have that Advind-tctr

TCTRs[Fs],s-build(A) ≤
Advprtmfp

Fs
(B)+Advind-tctr

TCTRs[π](A) . Now, the adversary A is left with the goal of distinguish-
ing between the games tctr-realTCTRs[π] and tctr-idealTCTRs[π]. For simplicity, we denote

18 MFC and Encryption Modes

these games by “real world” and “ideal world”, respectively. Hence, we want to bound
Advind-tctr

TCTRs[π],s-build(A) =
∣∣Pr[Atctr-realTCTRs ,s-build ⇒ 1]− Pr[Atctr-idealTCTRs ,s-build ⇒ 1]

∣∣ .
Transcripts. Following the coefficients-H technique [Pat09], we describe the interactions
of A with its oracle in a transcript:

τ = 〈((T i1, . . . , T id`i/se), (X
i
1, . . . , X

i
d`i/se), (v

i
1, . . . , v

i
`i))

q
i=1〉 .

Coefficient-H. Let us now represent the distribution of the transcripts in the real world

and the ideal world by Θre and Θid, respectively. The proof relies on the fundamental
lemma of the coefficient-H technique as defined above in Lemma 1. We say an attainable
transcript τ is bad if one of the following conditions occurs:

BadT1 (input collision) – There exists (i′, j′) < (i, j) such that (Xi′

j′ , T
i′

j′) = (Xi
j , T

i
j).

BadT2 (output collision) – There exists (i′, j′) < (i, j) such that Xi′

j′ 6= Xi
j , T

i′

j′ = T ij

and vi′(j′−1)s+p = vi(j−1)s+p for at least one of the values of 1 ≤ p ≤ s.

We use Tbad to denote the set of “bad” transcripts which is defined as the set of attainable
transcripts for which the transcript predicate BadT(τ) = BadT1(τ) ∨ BadT2(τ) = 1.
Further, we use Tgood to denote the set of attainable transcripts that are not in the set
Tbad. Transcripts of the set Tgood are therefore called good transcripts.

Lemma 3. For Tbad as defined above, we have

Pr(Θid ∈ Tbad) ≤
∑

i,i′,j,j′

[s
2n P̃r(Xi′

j′ 6= Xi
j ∧ T i

′

j′ = T ij) + P̃r
(

(Xi′

j′ , T
i′

j′) = (Xi
j , T

i
j)
)]

.

Proof. [Lemma 3] For any transcript in Tbad with BadT1 set to 1, we know that there
exists at least one pair of block indices (i′, j′) < (i, j) for which (Xi′

j′ , T
i′

j′) = (Xi
j , T

i
j).

One can notice that there are in total q values of i and i′, and for each such i and i′,
there are d`i/se and d`i′/se values for j and j′, respectively. Now, since the values of Xs
and T s are independent of the corresponding world being real or ideal, we have

Pr(BadT1(Θid) = 1) =
∑

i,i′,j,j′

P̃r(Xi′

j′ = Xi
j ∧ T i

′

j′ = T ij) .

Similarly, for any transcript in Tbad with BadT2 set to 1, we know that there exists
at least one pair of block indices (i′, j′) < (i, j) for which Xi′

j′ 6= Xi
j , T i

′

j′ = T ij and
vi
′

(j′−1)s+p = vi(j−1)s+p for at least one of the values of 1 ≤ p ≤ s.

Clearly, as the values of vs are uniformly and independently distributed in Θid and as
p can take at most s values, the probability of vi′(j′−1)s+p = vi(j−1)s+p is upper bounded
by s/2n. Now, since the values of Xs and T s are independent of the corresponding world
being real or ideal, with same bounds on i, i′, j, j′ as above, we get

Pr(BadT2(Θid) = 1) ≤
∑

i,i′,j,j′

s

2n · P̃r(Xi′

j′ 6= Xi
j ∧ T i

′

j′ = T ij)

and now using the union bound we obtain the claim of the lemma.

Lemma 4. For every good transcript τ ∈ Tgood, Pr(Θre=τ)
Pr(Θid=τ) ≥ 1.

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 19

Proof. [Lemma 4] Note that any good transcript τ does not contain input or output
collisions as described in the bad events above which means all inputs and outputs blocks
(of n-bits) that correspond to the same tweak are distinct in τ . Also, one should keep
in mind that the values of input Xs and T s are not dependent on the corresponding
world. We can now compute the probability to obtain a good transcript in the real and
ideal worlds as follows. Let SM denotes the multiset of all tweaks used during a session
of q queries with query lengths d`1/se, . . . , d`q/se in terms of (n + t)-bit blocks (here
an n + t-bit block denotes the corresponding input-tweak pair (T,X)). Let SS be the
largest subset of SM (i.e. a set with all distinct elements of SM) and let ηa denote the
multiplicity of Ta ∈ SS in SM . In the real world, since the output vs are defined using
a random permutation, we get Pr(Θre = τ) = Π|SS |a=11/(2n)ηa . On the other hand, in the
ideal world, the output vs are chosen uniformly and independently at random which gives
us Pr(Θid = τ) = Π|SS |a=1(1/2n)ηa . From these two expressions, we get

Pr(Θre = τ)
Pr(Θid = τ) = Π|SS |a=1(2n)ηa

Π|SS |a=1(2n)ηa
≥ 1

and hence the claim.

Combining the results of Lemma 3 and 4 (taking ε = 0) into Lemma 1, we get the upper
bound

Advind-tctr
TCTRs[π],s-build(A) ≤

∑
i,i′,j,j′

[s
2n P̃r(Xi′

j′ 6= Xi
j ∧ T i

′

j′ = T ij) + P̃r
(

(Xi′

j′ , T
i′

j′) = (Xi
j , T

i
j)
)]

and hence the result of Lemma 2.

In the following, we upper bound the probability terms in Lemma 2 for certain choices of
s-build.

Lemma 5. Let Fs be a tweakable multi-forkcipher with tweak space = {0, 1}t and let
s-build(Ni, `i) output ((T i1, Xi

1), . . . , (T id`i/se, X
i
d`i/se)) where T ij is computed as Ni‖〈j〉.

Then for any adversary A who makes at most q TCTRs queries, such that each nonce value
repeats no more than x times and σ =

∑q
i=1d

`i
s e, we have

∑
i,i′,j,j′

s

2n Pr(T i
′

j′ = T ij) ≤
s(x− 1)σ

2n+1 .

The proof of Lemma 5 is straightforward from the fact that there are at most σ choices
of T ij = Ni‖〈j〉 and for each choice (as 〈j〉 gets fixed) there are at most x− 1 choices of
T i
′

j′ = Ni′‖〈j′〉 such that T ij = T i
′

j′ with non-zero probability. Further, we multiply by an
extra 1/2 as we are only interested in exactly half of these pairs due to the ordering of
indices as defined in the sum expression.

Lemma 6. Let Fs be a tweakable multi-forkcipher with tweak space = {0, 1}t and let
s-build(Ni, `i) output ((T i1, Xi

1), . . . , (T id`i/se, X
i
d`i/se)) where T ij is computed as Ni‖Ri.

Then for any adversary A who makes at most q TCTRs queries, such that each nonce value
repeats no more than x times, σ =

∑q
i=1d

`i
s e and ` = maxi{`i}, we have

∑
i,i′,j,j′

s

2n Pr(T i
′

j′ = T ij) ≤ min
{
sσ(`− 1)

2n+1 + sσ

2n+r+1 ·min{(x− 1)`, σ}, sσ
2

2n+1

}
.

20 MFC and Encryption Modes

Proof. [Lemma 6] Since there are σ possible ways to choose the block index pair (i, j)
and for each choice of (i, j), there are at most (` − 1) choices for another block index
pair (i′, j′) 6= (i, j) such that i′ = i, Ni = Ni′ and Ri = Ri′ with probability 1, the sum
expression which corresponds to these collisions is bounded by the first term as shown
above in Lemma 6. Here, we multiply by an extra 1/2 as we are only interested in exactly
half of these pairs due to the ordering of indices as defined in the sum expression.

For all the remaining tweak pairs that are not counted in the above explanation (i.e.
tweak pairs with tweaks from different queries), we can have a collision only if the tweak
pair corresponds to same N and R. There are σ possible ways to choose the block index
pair (i, j) and for each choice of (i, j), there are at most min{(x−1)`, σ} choices for another
block index pair (i′, j′) 6= (i, j) such that i′ 6= i, Ni = Ni′ and Ri = Ri′ with probability
1/2r. Hence, the sum expression which corresponds to these collisions is bounded by the
second term as shown above in Lemma 6. Here again, we multiply by an extra 1/2 as we
are only interested in exactly half of these pairs due to the ordering of indices as defined
in the sum expression.

The third term can be understood from the fact that Pr(T i′j′ = T ij) ≤ 1 for all
(
σ
2
)
pairs

of block indices (i, j), (i′, j′).

Lemma 7. Let Fs be a tweakable multi-forkcipher with tweak space = {0, 1}t and let
s-build(Ni, `i) output ((T i1, Xi

1), . . . , (T id`i/se, X
i
d`i/se)) where T ij is computed as Ri‖〈j〉.

Then for any adversary A who makes at most q TCTRs queries, such that σ =
∑q
i=1d

`i
s e,

we have ∑
i,i′,j,j′

s

2n Pr(T i
′

j′ = T ij) ≤
s(q − 1)σ
2n+r+1 .

The proof of Lemma 7 is straightforward from the fact that there are at most σ choices
of T ij = Ri‖〈j〉 and for each choice (as 〈j〉 gets fixed) there are at most q − 1 choices of
T i
′

j′ = Ri′‖〈j′〉 such that T ij = T i
′

j′ with non-zero probability and since all Ri are uniformly
chosen at random, this probability is equal to 1/2r. Further, we multiply by an extra 1/2
as we are only interested in exactly half of these pairs due to the ordering of indices as
defined in the sum expression.

Lemma 8. Let Fs be a tweakable multi-forkcipher with tweak space = {0, 1}t and let
s-build(Ni, `i) output ((T i1, Xi

1), . . . , (T id`i/se, X
i
d`i/se)) where T ij is computed as Ri ⊕ 〈j〉

and the distributions of Xi
js and T ij s are statistically independent over the coins of the

adversary and s-build. Then for any adversary A who makes at most q TCTRs queries,
such that σ =

∑q
i=1d

`i
s e, we have

∑
i,i′,j,j′

s

2n P̃r(Xi′

j′ 6= Xi
j ∧ T i

′

j′ = T ij) ≤
∑

i,i′,j,j′

s

2n P̃r(T i
′

j′ = T ij) ≤
s(q − 1)(2σ − q)

2n+r+1 .

Proof. [Lemma 8] There are at most σ choices for a block index (i, j) and for each such
choice there are at most q − 1 choices for another block index (i′, 1) with i′ 6= i such that
Ri⊕Ri′ = 〈j〉⊕ 〈1〉 with probability 1/2r. Clearly, this counts all possible tweak collisions.
However, one can notice that we have counted each pair of indices ((i, j), (i′, 1)) twice
whenever j = 1 due to their ordering. Since we are only interested in unordered pairs of
indices, we subtract these extra cases from the counted ones. Let us now count these extra
cases. There are at most q choices for a block index (i, j) with j = 1 and for each such
choice there are at most q − 1 choices for another block index (i′, 1) 6= (i, 1). Since we are
only interested in exactly half of these pairs (i.e. the unordered pairs), we multiply by
1/2. The final bound on tweak collision probability after subtracting these pairs becomes
(q − 1)(σ − q/2)/2r .

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 21

Lemma 9. Let Fs be a tweakable multi-forkcipher with tweak space = {0, 1}t and let
s-build(Ni, `i) output ((T i1, Xi

1), . . . , (T id`i/se, X
i
d`i/se)) where Xi

j is γ, a constant fixed for
all block tuples (i, j). Then for any adversary A who makes at most q TCTRs queries, we
have ∑

i,i′,j,j′

s

2n P̃r(Xi′

j′ 6= Xi
j ∧ T i

′

j′ = T ij) = 0 .

The proof of Lemma 9 is straightforward from the fact that for Xi
j = γ, we have Xi′

j′ = Xi
j

for all block index pairs (i, j) > (i′, j′) .

6.2 Security of GCTR
Table 2 lists 22 instantiations for the GCTR mode. For each of the 22 variants, the
corresponding sequence-builder is defined in the natural way, using the functions fX
and fT of the given variant. For the variant GCTRs-i, we denote the corresponding
sequence-builder s-buildi. Additionally, we would like to emphasize that the plaintext M
which is also fed as an input to the GCTR mode plays no role, and can be w.l.o.g. omitted
in the rest of the analysis.

Proof. [Theorem 1] We use Lemma 2 and Lemmas 5-9 to prove this theorem. It is easy
to see that for any (n)ivE adversary A against GCTRs-i there exists an ind-tctr adversary
A′ against the underlying TCTRs and s-buildi which uses A as a subroutine, and for which
we have

Adv(n)ivE
GCTRs-i[Fs](A) ≤ Advind−tctr

TCTRs[Fs],s-buildi(A
′) . (2)

Let us now define Q as {(Ni, Ri) | 1 ≤ i ≤ q}; the set of q queries of A against GCTR with
ith query labeled as its corresponding pair (Ni, Ri). We define QN as {(Ni, Ri) | Ni = N
and 1 ≤ i ≤ q} i.e. a subset of Q with queries containing the same nonce N . By definition
of x, any such subset of Q can have at most x elements. We now define the two possible
generic events that are applicable against the defined 22 GCTR constructions namely
event U and V.

Event U – Let U be the event when in any QN ⊆ Q, we get (N,Ri1) = (N,Ri2) with
i2 < i1 (i.e. one of the randomly chosen Ri1s matches one of the previously chosen Ri2s
having the same nonce). Since for any QN we can have at most x such Ris and each one
is of size r bits, therefore, following the details as explained in Appendix A.1, we obtain
Pr(U) ≤ q(x− 1)/2r+1. Note that the r here is also a variable and its value depends upon
the underlying GCTR variant.

Event V – Let V be the event when in any QN ⊆ Q, for one of the randomly chosen Ri1 ,
an Ri1 ⊕ 〈j1〉 matches to one of the previously used/defined Ri2 ⊕ 〈j2〉s. For any QN we
can have at most x such Ris and each one is of size r bits, therefore, following the details
as explained in Appendix A.2, we obtain Pr(V) ≤ (2σ − q)(x− 1)/2r+1. Note that the r
here is also a variable and its value depends upon the underlying GCTR variant.

Note that the events U and V as defined are not dependent on the type of inputs of the
GCTR mode. However, the fact that the occurrence of one of these events results into one
or more input-tweak pair collisions (hereafter called trivial collisions) in the GCTR mode
depends upon the type of inputs of GCTR (i.e. X and T). To make it more clear, we
define event applicability for the GCTR mode.

22 MFC and Encryption Modes

Event Applicability – If the GCTR variant has R⊕ 〈j〉 as one of its inputs (i.e. either
X or T) then we say that the applicable event for that variant is V , if the variant has any
other combination with R as one of its input then we say that the applicable event is U
and if both inputs of the variant are independent of R then we say that none of the two
events are applicable. In Table 3, we classify the 22 GCTR modes according to their event
applicability.

Table 3: Classification of GCTR variants according to their event applicability.

Applicable event U V None
GCTR variants 1, 2, 5 to 12, 15, 16, 17 and 18 3, 4, 13 and 14 19 to 22

Case Analysis – We now perform an exhaustive case analysis to proceed with the
security proof of the GCTR mode. The motivation for doing this case analysis is to
define/branch some simplified advantage expressions from the inequality of Lemma 2 (over
the events U and V) which are valid for disjoint sets/categories of GCTR variants. We
can then further simplify one of these advantage expressions for individual variants that
belong to the corresponding category.

Note that every (sub)case in the upcoming case analysis is defined with some conditions of
event applicability and event occurrence of the events U and V , and the types of the inputs
that are fed to the GCTR mode. This shows that every (sub)case corresponds to the
particular set of GCTR variants where its imposed conditions apply. Further, note that
the length variables of N and R (ν and r) used in this analysis depend upon the variant
itself. N is considered fixed to an empty string for GCTR variants that don’t use N as
one of the inputs i.e. ν = 0. Similarly, R is considered fixed to an empty string for GCTR
variants that don’t use R as one of the inputs i.e. r = 0. We now define the cases as follows.

Case 1: When the event U is applicable to the given GCTR variant and –
Case 1.1: If the GCTR variant neither has N ⊕ 〈j〉 nor N ⊕R as one of its inputs (X or
T) then there will be repetition of some input-tweak pairs (trivial collisions) only when U
occurs. This is true as for any GCTR variant that belongs to this case we can map any
input-tweak collision of (X,T) to a collision of (N,R). In expression, we have∑

i,i′,j,j′

P̃r
(

(Xi′

j′ , T
i′

j′) = (Xi
j , T

i
j)
)
≤ Pr(U) ≤ q(x− 1)

2r+1 , (3)

where ((T i1, Xi
1), . . . , (T id`i/se, X

i
d`i/se)) denote the input-tweak pairs of the corresponding

ith query to the underlying TCTRs construction of that GCTR variant.
Case 1.2: If the GCTR variant has N ⊕ 〈j〉 (respectively N ⊕ R) as one of its inputs
(X or T) then there will be repetition of some input-tweak pairs (trivial collisions) only
when the pairs are not from a same query and at least their corresponding values of Rs
(respectively N ⊕Rs) are the same. Since there are in total q queries of A against GCTR,
we have ∑

i,i′,j,j′

P̃r
(

(Xi′

j′ , T
i′

j′) = (Xi
j , T

i
j)
)
≤ q(q − 1)

2r+1 , (4)

where ((T i1, Xi
1), . . . , (T id`i/se, X

i
d`i/se)) denote the input-tweak pairs of the corresponding

ith query to the underlying TCTRs construction of that GCTR variant.
Case 2: When the event V is applicable to the given GCTR variant then there will be a
repetition of some input-tweak pairs (trivial collisions) only when V occurs. This is true

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 23

as for any GCTR variant that belongs to this case we can map any input-tweak collision
of (X,T) to a collision of (N,R⊕ 〈j〉) and vice versa. In expression, we have∑

i,i′,j,j′

P̃r
(

(Xi′

j′ , T
i′

j′) = (Xi
j , T

i
j)
)

= Pr(V) ≤ (2σ − q)(x− 1)
2r+1 , (5)

where ((T i1, Xi
1), . . . , (T id`i/se, X

i
d`i/se)) denote the input-tweak pairs of the corresponding

ith query to the underlying TCTRs construction of that GCTR variant.
Case 3: When neither of the events U and V is applicable to the given GCTR variant
and all MFC calls made during the q queries contain distinct input-tweak pairs (only 4
variants namely GCTR-19, 20, 21 and 22 fall into this category when conditioned under
the nonce-respecting setting) then we know that there can not be a trivial collision here.
However, there can be repetitions of the tweaks used in these calls which lead us to the
Lemma 2 and one of the Lemmas 5-9.

Clearly, these generic cases are not only mutually exclusive but are also exhaustive for all
GCTR variants of Table 2. For simplicity, let us summarize here the classification of 22
GCTR variants according to their corresponding case and applicable lemma (if multiple
lemmas are applicable, the one with tightest bound is used).

Table 4: Classification of GCTR variants according to their corresponding case and
applicable lemma.

Case 1.1 Case 1.2 Case 2 Case 3
Lemma 5 7.
Lemma 6 2, 5, 8, 12 and 15. 9 and 18. 4 and 14. 20 and 21.
Lemma 7 1, 6 and 16. 10. 22.
Lemma 8 17. 3.
Lemma 9 11. 13. 19.

The remaining proof of the Theorem 1 relies on combining the results of Lemma 2 and
Lemmas 5-9 with the bounds as defined above in the case analysis for each variant of
Table 2. In the remaining proof, we use the following explanation for simplicity. If the
underlying GCTR variant uses the tweaks defined as nonce with XOR i.e. in the format of
Ni ⊕ 〈j〉 or Ni ⊕ Ri (this includes the GCTR variants 9 and 17 from the Table 2) then
we know that despite of the fact that Nis are distinct the corresponding values of tweaks
Ni ⊕ 〈j〉 (or Ni ⊕ Ri) can be the same for different values of j (or Ri). Note that such
collisions are unavoidable even in the case of a nonce-respecting adversary. However, we
can at least argue the following:

• For GCTR variants with tweaks T ij = Ni ⊕ Ri (GCTR-9), the probability of a
tweak collision is independent of the nonce repetition, therefore, the tweak collision
probability can be computed using Lemma 6 in a similar manner to GCTR variants
with tweaks T ij = Ri.

• For GCTR variants with tweaks T ij = Ni ⊕ 〈j〉 (GCTR-17), the probability of a
tweak collision is independent of the nonce repetition. However, what we still know
is that for any of the query pairs of GCTR-17, there can only be at most one tweak
collision due to some Ni ⊕ 〈j〉 repetition. More specifically, for any index pair (i, i′)
with 1 ≤ i′ < i ≤ q, Ni ⊕Ni′ = 〈j〉 ⊕ 〈1〉 can occur with probability at most 1. This
implies that the tweak collision probability for GCTR-17 can be easily computed
using Lemma 8 in a similar manner to GCTR variants with tweaks T ij = Ri ⊕ 〈j〉
but with |Ri| = 0 (note that here |Ri| = 0 is equivalent to setting 1/2r = 1).

24 MFC and Encryption Modes

We can now bound the (n)ivE advantage of A against each one of the 22 GCTR variants
as follows:
GCTR-1: In this variant Ri‖〈j〉 is used as the tweak and Ni as the input, hence applying
the results from Lemma 2, Lemma 7 and Eqn.(3), we get

Adv(n)ivE
GCTR-1[Fs](A) ≤ Advprtmfp

Fs
(B) + q(x− 1)

2r+1 + s(q − 1)σ
2n+r+1 .

GCTR-2: In this variant, Ni is used as the tweak and Ri‖〈j〉 as the input, hence applying
the results from Lemma 2, Lemma 6 with |Ri| = 0 and Eqn.(3) with |Ri| = r, we get

Adv(n)ivE
GCTR-2[Fs](A) ≤ Advprtmfp

Fs
(B) + q(x− 1)

2r+1 + sσ(x`− 1)
2n+1 .

GCTR-3 (CTRT mode): In this variant, Ri ⊕ 〈j〉 is used as the tweak and Ni as the
input, hence applying the results from Lemma 2, Lemma 8 with |Ri| = t and Eqn.(5) with
|Ri| = t, we get

Adv(n)ivE
GCTR-3[Fs](A) ≤ Advprtmfp

Fs
(B) + (2σ − q)(x− 1)

2t+1 + s(q − 1)(2σ − q)
2n+t+1 .

GCTR-4: In this variant, Ni is used as the tweak and Ri ⊕ 〈j〉 as the input, hence
applying the results from Lemma 2, Lemma 6 with |Ri| = 0 and Eqn.(5) with |Ri| = n,
we get

Adv(n)ivE
GCTR-4[Fs](A) ≤ Advprtmfp

Fs
(B) + (2σ − q)(x− 1)

2n+1 + sσ(x`− 1)
2n+1 .

GCTR-5: Here Ni‖Ri is used as the tweak and 〈j〉 as the input, hence applying the
results from Lemma 2, Lemma 6 and Eqn.(3), we get

Adv(n)ivE
GCTR-5[Fs](A) ≤ Advprtmfp

Fs
(B) + q(x− 1)

2r+1 + sσ(2`− 1)
2n+1 ; x ≤ 2r .

GCTR-6: In this variant, 〈j〉 is used as the tweak and Ni‖Ri as the input, hence applying
the results from Lemma 2, Lemma 7 with |Ri| = 0 and Eqn.(3) with |Ri| = r, we get

Adv(n)ivE
GCTR-6[Fs](A) ≤Advprtmfp

Fs
(B) + q(x− 1)

2r+1 + s(q − 1)σ
2n+1 .

GCTR-7: Here Ni‖〈j〉 is used as the tweak and Ri as the input, hence applying the
results from Lemma 2, Lemma 5 and Eqn.(3) with |Ri| = n, we get

Adv(n)ivE
GCTR-7[Fs](A) ≤ Advprtmfp

Fs
(B) + (sσ + q)(x− 1)

2n+1 .

GCTR-8: In this variant, Ri is used as the tweak and Ni‖〈j〉 as the input, hence applying
the results from Lemma 2, Lemma 6 with (|Ri| = t, |Ni| = 0, x = q) and Eqn.(3) with
|Ri| = t, we get

Adv(n)ivE
GCTR-8[Fs](A) ≤ Advprtmfp

Fs
(B) + q(x− 1)

2t+1 + sσ`

2n+1 ; σ ≤ 2t .

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 25

GCTR-9: Here Ni ⊕Ri is used as the tweak and 〈j〉 as the input which means we can
follow GCTR-8 and use Lemma 6 here as explained earlier. Now, applying the results
from Lemma 2, Lemma 6 with (|Ri| = t, |Ni| = 0, x = q) and Eqn.(4) with |Ri| = t, we get

Adv(n)ivE
GCTR-9[Fs](A) ≤ Advprtmfp

Fs
(B) + q(q − 1)

2t+1 + sσ`

2n+1 ; σ ≤ 2t .

GCTR-10: In this variant, 〈j〉 is used as the tweak and Ni ⊕ Ri as the input, hence
applying the results from Lemma 2, Lemma 7 with |Ri| = 0 and Eqn.(4) with |Ri| = n,
we get

Adv(n)ivE
GCTR-10[Fs](A) ≤ Advprtmfp

Fs
(B) + (sσ + q)(q − 1)

2n+1 .

GCTR-11: In this variant, Ri‖〈j〉 is used as the tweak and γ (can be treated here as a
nonce that is same for all queries i.e. x = q) as the input, hence applying the results from
Lemma 2, Lemma 9 and Eqn.(3), we get

Adv(n)ivE
GCTR-11[Fs](A) ≤ Advprtmfp

Fs
(B) + q(q − 1)

2r+1 .

GCTR-12: In this variant, γ (can be treated here as a nonce that is same for all queries
i.e. x = q) is used as the tweak and Ri‖〈j〉 as the input, hence applying the results from
Lemma 2, Lemma 6 with |Ri| = 0 and Eqn.(3) with |Ri| = r, we get

Adv(n)ivE
GCTR-12[Fs](A) ≤Advprtmfp

Fs
(B) + q(q − 1)

2r+1 + sσ2

2n+1 .

GCTR-13: In this variant, Ri ⊕ 〈j〉 is used as the tweak and γ (can be treated here as a
nonce that is same for all queries i.e. x = q) as the input, hence applying the results from
Lemma 2, Lemma 9 and Eqn.(5) with |Ri| = t, we get

Adv(n)ivE
GCTR-13[Fs](A) ≤ Advprtmfp

Fs
(B) + (2σ − q)(q − 1)

2t+1 .

GCTR-14: In this variant, γ (can be treated here as a nonce that is same for all queries
i.e. x = q) is used as the tweak and Ri ⊕ 〈j〉 as the input, hence applying the results from
Lemma 2, Lemma 6 with |Ri| = 0 and Eqn.(5) with |Ri| = n, we get

Adv(n)ivE
GCTR-14[Fs](A) ≤Advprtmfp

Fs
(B) + (2σ − q)(q − 1)

2n+1 + sσ2

2n+1 .

GCTR-15: Here Ri is used as the tweak and 〈j〉 as the input which is same as the inputs
of GCTR-5 but with Ni fixed to N = ” ”; an empty string for all i i.e. ν = 0 and x = q.
Hence, applying the results from Lemma 2, Lemma 6 with |Ri| = t and Eqn.(3) with
|Ri| = t, we get

Adv(n)ivE
GCTR-15[Fs](A) ≤ Advprtmfp

Fs
(B) + q(q − 1)

2t+1 + sσ`

2n+1 ; σ ≤ 2t .

GCTR-16: Here 〈j〉 is used as the tweak and Ri as the input which is same as the inputs

26 MFC and Encryption Modes

of GCTR-6 but with Ni fixed to N = ” ”; an empty string for all i i.e. ν = 0 and x = q.
Hence, applying the results from Lemma 2, Lemma 7 with |Ri| = 0 and Eqn.(3) with
|Ri| = n, we get

Adv(n)ivE
GCTR-16[Fs](A) ≤ Advprtmfp

Fs
(B) + (sσ + q)(q − 1)

2n+1 .

GCTR-17: In this variant, Ni⊕〈j〉 is used as the tweak and Ri as the input which means
we can follow GCTR-3 and use Lemma 8 here with |Ri| = 0 as explained earlier. Now,
applying the results from Lemma 2, Lemma 8 with |Ri| = 0 and Eqn.(4) with |Ri| = n,
we get

Adv(n)ivE
GCTR-17[Fs](A) ≤Advprtmfp

Fs
(B) + q(q − 1)

2n+1 + s(q − 1)(2σ − q)
2n+1 .

GCTR-18: Here Ri is used as the tweak and Ni ⊕ 〈j〉 as the input, hence applying the
results from Lemma 2, Lemma 6 with (|Ri| = t, |Ni| = 0, x = q) and Eqn.(4) with |Ri| = t,
we get

Adv(n)ivE
GCTR-18[Fs](A) ≤ Advprtmfp

Fs
(B) + q(q − 1)

2t+1 + sσ`

2n+1 ; σ ≤ 2t .

GCTR-19: Here Ni‖〈j〉 is used as the tweak and γ as the input. Further, the adversary
is assumed here to be nonce-respecting (x = 1) which allows us to apply the results from
Lemma 2, Lemma 9 and Case 3 (as defined in the analysis above), we get

Adv(n)ivE
GCTR-19[Fs](A) ≤Advprtmfp

Fs
(B) .

GCTR-20 (CTR mode): In this variant, γ is used as the tweak and Ni‖〈j〉 as the input.
Further, the adversary is assumed here to be nonce-respecting which allows us to apply
the results from Lemma 2, Lemma 6 with |Ri| = 0, |Ni| = 0, x = q (note that this x = q
is specific to the Lemma 6 as the tweak γ here can be considered as a tweak N‖R with
|N | = |R| = 0 which gives x = q. It has nothing to do with the GCTR-20 adversary being
nonce-respecting or not) and Case 3 (as defined in the analysis above), we get

Adv(n)ivE
GCTR-20[Fs](A) ≤Advprtmfp

Fs
(B) + sσ2

2n+1 .

GCTR-21: Here Ni is used as the tweak and 〈j〉 as the input, hence applying the results
from Lemma 2, Lemma 6 with |Ri| = 0 and Case 3 (as defined in the analysis above), we
get

Adv(n)ivE
GCTR-21[Fs](A) ≤ Advprtmfp

Fs
(B) + sσ(x`− 1)

2n+1 .

GCTR-22: In this variant, 〈j〉 is used as the tweak and Ni as the input, hence applying
the results from Lemma 2, Lemma 7 with |Ri| = 0 and Case 3 (as defined in the analysis
above), we get

Adv(n)ivE
GCTR-22[Fs](A) ≤Advprtmfp

Fs
(B) + s(q − 1)σ

2n+1 .

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 27

7 Conclusion and Open Problems
We presented MFC, a generalization of the forkcipher, and used it to define and analyze a
generic counter (GCTR) mode construction for tweakable primitives. Our results show
that most variants of GCTR outperform the traditional CTR in terms of security and
that use of a random IV can help to mitigate the impact of nonce reuse. Further, we also
show that an efficient MFC instance can make any GCTR variant more efficient than the
comparable CTRT instance. This work seems to be the first systematic investigation of
CTR-style modes, which is surprising given its popularity.

In the security proof, we were able to rigorously analyse 22 GCTR variants. An
appropriate choice of the abstraction layer combined with the unusual choice to express
a bound as a function of elementary probabilities maximizes the common parts of the
analyses. We obtained tight bounds that even improve on the state of the art in the case
of CTRT (a.k.a. GCTR-3). We show that two variants stand out in terms of security.
Our improvement of CTRT’s bound illustrates that an investigation of tightness of these
bounds is an interesting open problem. The result on GCTR-4 from the appendix D
indicates that our security bounds could be tight and that one can define simple attacks
satisfying these bounds. However, a full study of the tightness of these bounds is beyond
the limit of this paper and we leave it to the future work.

An MFC is a resourceful primitive that boosts the security, and when supported by
an efficient instance, can also improve the performance of applications that span beyond
GCTR and AEAD for short messages. We leave to future research the questions of
designing more efficient MFC instances, especially with s > 2, as well as the identification
of novel applications benefiting from MFCs.

Acknowledgments
This work was supported by CyberSecurity Research Flanders with reference number
VR20192203. This work was supported in part by the Research Council KU Leuven C1 on
Security and Privacy for Cyber-Physical Systems and the Internet of Things with contract
number C16/15/058 and by the Flemish Government through FWO Project G.0835.16 A
security Architecture for IoT.

References
[ABD+20] Elena Andreeva, Amit Singh Bhati, Arne Deprez, Jowan Pittevils, Arnab

Roy, and Damian Vizár. New Results and Insighs on ForkAE. In NIST LWC
workshop, 2020.

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to Securely Release Unverified Plaintext in Authenti-
cated Encryption. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT
2014, volume 8873 of LNCS, pages 105–125. Springer, 2014.

[ABV20] Elena Andreeva, Amit Singh Bhati, and Damian Vizár. Nonce-Misuse Se-
curity of the SAEF Authenticated Encryption mode. In Selected Areas in
Cryptography, pages 512–534. Springer, 2020.

[ABV21] Elena Andreeva, Amit Singh Bhati, and Damian Vizár. RUP Security of the
SAEF Authenticated Encryption mode. Cryptology ePrint Archive, Report
2021/103, 2021. https://ia.cr/2021/103.

https://ia.cr/2021/103

28 MFC and Encryption Modes

[ALP+19a] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. ForkAE v. Submission to NIST LwC Stan-
dardization Process, 2019.

[ALP+19b] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. Forkcipher: a New Primitive for Authenticated
Encryption of Very Short Messages. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 153–
182. Springer, 2019.

[BDH+17] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Farfalle: parallel permutation-based cryptography. IACR
Transactions on Symmetric Cryptology (ToSC), pages 1–38, 2017. https:
//eprint.iacr.org/2016/1188.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Annual International Cryptology Conference, pages 123–153. Springer, 2016.

[BK07] Elaine B Barker and John Michael Kelsey. Recommendation for random
number generation using deterministic random bit generators (revised). US
Department of Commerce, Technology Administration, NIST, 2007.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection
Against DFA Attacks. IACR Transactions on Symmetric Cryptology (ToSC),
2019(1):5–45, 2019.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 531–545. Springer, 2000.

[BZD+16] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp
Jovanovic. Nonce-Disrespecting Adversaries: Practical Forgery Attacks on
GCM in TLS. In 10th USENIX Workshop on Offensive Technologies, 2016.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in
Computer Science, pages 327–350. Springer, 2014.

[DN18] Avijit Dutta and Mridul Nandi. Tweakable HCTR: A BBB Secure Tweak-
able Enciphering Scheme. In Debrup Chakraborty and Tetsu Iwata, edi-
tors, Progress in Cryptology – INDOCRYPT 2018, pages 47–69, Cham, 2018.
Springer International Publishing.

[FFL12] Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A Family
of Almost Foolproof On-Line Authenticated Encryption Schemes. In Anne
Canteaut, editor, Fast Software Encryption - 19th International Workshop,
FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers,
volume 7549 of Lecture Notes in Computer Science, pages 196–215. Springer,
2012.

https://eprint.iacr.org/2016/1188
https://eprint.iacr.org/2016/1188

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 29

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part
II, volume 8874 of Lecture Notes in Computer Science, pages 274–288. Springer,
2014.

[JNPS16] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Submission
to CAESAR : Deoxys v1.41, October 2016. http://competitions.cr.yp.
to/round3/deoxysv141.pdf.

[LRW00] Helger Lipmaa, Phillip Rogaway, and David Wagner. Comments to NIST
concerning AES modes of operations: CTR-mode encryption. In National
Institute of Standards and Technologies. Citeseer, 2000.

[LRW02] Moses Liskov, Ronald L Rivest, and David Wagner. Tweakable block ciphers.
In Advances in Cryptology-Crypto 2002, Proceedings, volume 2442, pages
31–46, 2002.

[MV04] David McGrew and John Viega. The Galois/counter mode of op-
eration (GCM). submission to NIST Modes of Operation Process,
20, 2004. https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/
proposedmodes/gcm/gcm-revised-spec.pdf.

[PARV19] Antoon Purnal, Elena Andreeva, Arnab Roy, and Damian Vizár. What
the Fork: Implementation Aspects of a Forkcipher. In NIST Lightweight
Cryptography Workshop 2019, 2019.

[Pat09] Jacques Patarin. The “Coefficients H” Technique, page 328–345. Springer-
Verlag, Berlin, Heidelberg, 2009.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-tweak: authenticated encryp-
tion modes for tweakable block ciphers. In Annual International Cryptology
Conference, pages 33–63. Springer, 2016.

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode
of operation for efficient authenticated encryption. ACM Transactions on
Information and System Security (TISSEC), 6(3):365–403, 2003.

[RK11] Phillip Rogaway and T. Krovetz. The Software Performance of Authenticated-
Encryption Modes. FSE. LNCS, 6733:306–327, Springer (2011).

[Rog02] Phillip Rogaway. Authenticated-Encryption with Associated-Data. In Proceed-
ings of the 9th ACM conference on Computer and communications security,
pages 98–107, 2002.

[Rog11] Phillip Rogaway. Evaluation of some blockcipher modes of operation. Cryptog-
raphy Research and Evaluation Committees (CRYPTREC) for the Government
of Japan, 2011. https://crossbowerbt.github.io/docs/crypto/rogaway_
modes.pdf.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. Advances in Cryptology-EUROCRYPT 2006, pages
373–390, 2006.

http://competitions.cr.yp.to/round3/deoxysv141.pdf
http://competitions.cr.yp.to/round3/deoxysv141.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://crossbowerbt.github.io/docs/crypto/rogaway_modes.pdf
https://crossbowerbt.github.io/docs/crypto/rogaway_modes.pdf

30 MFC and Encryption Modes

[VP17] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing nonce
reuse in WPA2. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1313–1328. ACM, 2017.

[WHF03] Doug Whiting, Russ Housley, and Niels Ferguson. Counter with
CBC-MAC (CCM). submission to NIST Modes of Operation Pro-
cess, 2003. https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/
proposedmodes/ccm/ccm.pdf.

A Upper bounds on Pr(U) and Pr(V)
A.1 Event U
Let us consider Q = {(Ni, Ri) | 1 ≤ i ≤ q} is the set of q queries of A against GCTR
mode with ith query labeled as its corresponding pair (Ni, Ri). We define QN as
{(Ni, Ri) | Ni = N and 1 ≤ i ≤ q} i.e. a subset of Q with queries containing the
same nonce N . By definition of x, any such subset of Q can have at most x elements.
Now, let us recall that U is the event when in any QN ⊆ Q, we get (N,Ri1) = (N,Ri2)
with i2 < i1 (i.e. one of the randomly chosen Ri1s matches one of the previously chosen
Ri2s having the same nonce).

For any QN we know that we can have at most x such Ris and each one is of size r bits.
Since each one of these Ris is chosen uniformly and independently at random we have
Pr(U) = B/2r where B is the total number of query pairs in Q having same nonce. In other
words, B is the total number of (unordered) pairs in Q of the form ((Ni1 , Ri1), (Ni2 , Ri2))
with Ni1 = Ni2 .

Claim. For Q, QN and x defined as above, B ≤ (x− 1)q/2.

Proof. Let QN1 , . . . , QNd be the mutually exclusive and spanning (exhaustive) sets of
queries with nonce inputs as N1, . . . , Nd respectively (i.e. Q = ∪dc=1QNc).
Hence, we have,

Pr(U) =
d∑
c=1

Pr(Uc) and B =
d∑
c=1

Bc , (6)

where Uc is the event U conditioned on the set QNc for queries and Bc is the total number
of query pairs in QNc . Let |QNc | = θc for all c then for x as the maximum number of
nonce-repetitions, we have

d∑
c=1

θc = q, Bc = θc(θc − 1)
2 and θc ≤ x ∀ c . (7)

Using Eqn.(7) in (6) gives us

B =
d∑
c=1

(
θc
2

)
= 1

2

d∑
c=1

θ2
c −

q

2 . (8)

We now define the functions f and g of θ = (θ1, . . . , θd) as

f(θ) = B =
d∑
c=1

θ2
c/2− q/2 and g(θ) =

d∑
c=1

θc − q = 0 .

https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 31

One can easily see that ∇θ(g) 6= 0 and therefore for λ as a Lagrange multiplier we can
define a Lagrange function L as

L(θ, λ) = f(θ)− λg(θ) .

Clearly, for any “extrema” of f , we have ∇θL = 0 which gives us

(θ1, . . . , θd) = (λ, . . . , λ) . (9)

Further, using the first result of Eqn.(7), we get

θ1 = θ2 = · · · = θd = q/d

and therefore in Eqn.(8), we get the extrema of B as

B|ext =
d∑
c=1

θ2
c/2− q/2 = (q/d− 1)q/2 .

Calculating B for few inputs (other than this extrema) results into comparatively small
values which means this only extremum of B is indeed a “maximum”. Additionally, we
know from the pigeonhole principle that the number of QN s in Q can not be smaller than
q/x (i.e. d ≥ q/x) and therefore,

B ≤ (x− 1)q/2 .

A.2 Event V
Let us reconsider Q = {(Ni, Ri) | 1 ≤ i ≤ q} as the set of q queries of A against GCTR
mode with ith query labeled as its corresponding pair (Ni, Ri). Let again QN be defined
as {(Ni, Ri) | Ni = N and 1 ≤ i ≤ q} i.e. a subset of Q with queries containing same
nonce N . By definition of x, any such subset of Q can have at most x elements. Now, let
us recall that V is the event when in any QN ⊆ Q, for one of the randomly chosen Ri1 , an
Ri1 ⊕ 〈j1〉 matches one of the previously used/defined Ri2 ⊕ 〈j2〉s, where j1 and j2 can
take any value from the counters used in the ith1 and ith2 query, respectively.

Since R⊕〈j〉 is a cyclic permutation in j, we can define the set A of R⊕〈j〉 pairs where such
collisions can occur as A = {(Ri1 ⊕ 〈j1〉, Ri2 ⊕ 〈j2〉) | 1 ≤ i2 < i1 ≤ q, 1 ≤ j1 ≤ `∗i1 , 1 ≤
j2 ≤ `∗i2 , Ni1 = Ni2 and min{j1, j2} = 1}. Here `∗i = d`i/se represents the number of MFC
blocks calls used in the ith query and thus can be treated as the maximum value for the
corresponding counter of ith query. Note that any other pair for possible collision of R⊕〈j〉
with j2 ≥ j1 > 1 (w.l.o.g.) can be mapped back to the pair (Ri1 ⊕ 〈1〉, Ri2 ⊕ 〈j2 − j1 + 1〉)
in the set A.

Now, for any QN we know that we can have at most x many of these Ris and each one
is of size r bits. Since each one of these Ris is chosen uniformly and independently at
random we have Pr(V) = A/2r where A is the size of the set A.

Claim. For Q, QN and x defined as above, A ≤ (x− 1)(σ − q/2).

Proof. Let QN1 , . . . , QNd be the mutually exclusive and spanning (exhaustive) sets of
queries with nonce inputs as N1, . . . , Nd respectively (i.e. Q = ∪dc=1QNc).
Hence, we have,

Pr(V) =
d∑
c=1

Pr(Vc) and A =
d∑
c=1

Ac , (10)

32 MFC and Encryption Modes

where Vc is the event V conditioned on the set QNc for queries and Ac is the number of
elements in A with Ni1 = Ni2 = Nc . Let |QNc | = θc for all c then for x as the maximum
number of nonce-repetitions, we have

d∑
c=1

θc = q and θc ≤ x ∀ c . (11)

Further, as `∗i = d`i/se is the number of MFC calls made during the ith query, we can
write

q∑
i=1

`∗i = σ . (12)

Now, since R⊕ 〈j〉 is a cyclic permutation, by definition of Ac, we have

Ac =
∑

1≤i1<i2≤θc

(`∗i1 + `∗i2 − 1)

=
{ θ∗c∑
i=1+θ∗

c−1

`∗i (θc − 1)
}
−
(
θc
2

)
, (13)

where θ∗c =
∑c
i=1 θi and θ∗0 = 0. Now, from Eq.(10) and (13), we have

A =
d∑
c=1

[{ θ∗c∑
i=1+θ∗

c−1

`∗i (θc − 1)
}
−
(
θc
2

)]

= (θ1 − 1)
(
`∗1 + . . .+ `∗θ∗1 −

θ1

2

)
+ . . .+ (θd − 1)

(
`∗1+θ∗

d−1
+ . . .+ `∗θ∗

d
− θd

2

)
.

For Lc defined as
(
`∗1+θ∗

c−1
+ . . .+ `∗θ∗c −

θc
2

)
, we have

A =
d∑
c=1

(θc − 1)Lc (14)

and
d∑
c=1

Lc = σ − q/2 . (15)

We now define the functions f, g1 and g2 of θ = (θ1, . . . , θd) and L = (L1, . . . , Ld) as

f(θ, L) =A =
d∑
c=1

θcLc − (σ − q/2) ,

g1(θ, L) =
d∑
c=1

θc − q = 0 ,

g2(θ, L) =
d∑
c=1

Lc − (σ − q/2) = 0 .

One can easily see that ∇θ,L(g1, g2, g1 + g2) 6= 0 and therefore for λ1 and λ2 as Lagrange
multipliers we can define a Lagrange function L as

L(θ, L, λ1, λ2) = f(θ, L)− λ1g1(θ, L)− λ2g2(θ, L) .

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 33

Clearly, for any “extrema” of f , we have ∇θ,LL = 0 which gives us

(L1, . . . , Ld, θ1, . . . , θd) =(λ1, . . . , λ1, λ2, . . . , λ2) . (16)

Further, using the results of Eqn.(11) and (15), we get

L1 = L2 = · · · = Ld = (σ − q/2)/d ,
θ1 = θ2 = · · · = θd = q/d ,

and therefore, in Eqn. (14), we get the extrema of A as

A|ext =
d∑
c=1

θcLc − (σ − q/2)

=
d∑
c=1

q/d2(σ − q/2)− (σ − q/2)

= (q/d− 1)(σ − q/2) .

Calculating A for few inputs (other than this extrema) results into comparatively small
values which means this only extremum of A is indeed a “maximum”. Additionally, we
know from the pigeonhole principle that the number of QN s in Q can not be smaller than
q/x (i.e. d ≥ q/x) and therefore,

A ≤ (x− 1)(σ − q/2).

B Combinatorial explanation for the bounds of Appendix A
B.1 Event U
For Q,QN , x and B as defined above in Appendix A.1, we know that there are at most
q choices for a query index i and for each such choice there are at most x − 1 choices
for another query index i′ 6= i such that Ni = Ni′ . Now, since we are only interested in
exactly half of these pairs (i.e. the unordered pairs), we multiply by 1/2 and get,

B ≤ (x− 1)q/2 .

B.2 Event V
For Q,QN , x and A as defined above in Appendix A.2, we know that there are at most σ
choices for a block index (i, j) and for each such choice there are at most x − 1 choices
for another block index (i′, 1) with i′ 6= i such that Ni = Ni′ and Ri ⊕ Ri′ = 〈j〉 ⊕ 〈1〉
with probability 1/2r. Clearly, this counts all possible elements of A. Further note that we
have counted each pair of indices ((i, j), (i′, 1)) twice whenever j = 1 due to their ordering.
Since we are only interested in unordered pairs of indices, we subtract these extra cases
from the counted ones. Let us now count these extra cases. There are at most q choices
for a block index (i, j) with j = 1 and for each such choice there are at most x− 1 choices
for another block index (i′, 1) 6= (i, 1) such that Ni = Ni′ . Since we are only interested in
exactly half of these pairs (i.e. the unordered pairs), we multiply by 1/2. The final bound
after subtracting these pairs becomes

A ≤ (x− 1)(σ − q/2) .

34 MFC and Encryption Modes

C General Attack for the Insecure Variants
Since the security of all GCTR variants relies on the underlying TCTR construction, it
suffices to show that the underlying TCTR is insecure for a variant to prove it insecure.

Let us recall that in a GCTR variant, the inputs X and T of the underlying TCTR
are functions of N,R and 〈j〉 as fX(N,R, j) and fT (N,R, j). Let us now consider another
function fX,T (N,R, j) as fX,T = fX‖fT . From the security definition of TCTR, we know
that TCTR is not secure if the input-tweak pairs of its underlying MFC have repetitions.
In other words, a GCTR variant is insecure if any two of the queried MFC calls contain
the same values for fX,T .

We can now define a TCTR adversary A who makes 2 queries of size 2 (n + t)-bit
blocks to this TCTR. In total, A queries the underlying MFC 4 times with inputs as (in
the form of fX,T)

fX,T (N1, R1, j1), fX,T (N1, R1, j2), fX,T (N2, R2, j1) and fX,T (N2, R2, j2)

with ensuring that N1 ⊕N2 = 〈j1〉 ⊕ 〈j2〉. Clearly, if any two of these 4 outputs are the
same for a variant then we know that A can easily distinguish the final outputs from
random bits and hence the variant is insecure. One can now easily verify for all of the
variants which are either mentioned as trivially insecure (all 14 variants of Table 1) or are
labeled insecure for a particular setting in Table 2 (i.e. the nonce-reuse setting and thus
for these variants A intentionally uses N1 = N2 to perform the attack), that they contain
two same values in the first 3 entries of these 4 fX,T s. To exemplify, let us consider the
case when X = R and T = N (variant 32 in Table 1) then we have

fX,T (N1, R1, j1) = R1‖N1 = fX,T (N1, R1, j2) .

D A BB attack on Tweakable HCTR
In this section, we propose a BB-attack (in n) as Prop. 1 that shows that THCTR
construction can not achieve TSPRP-security beyond birthday in its existing form. Since
our attack specifically targets the underlying CTR-like structure of THCTR and the other
primitives of THCTR like the underlying hash functions don’t play any role in it, we
slightly abuse the notation and leave these other primitives and their input arguments
implicit in Prop. 1 (and its proof). We refer the reader to [DN18] for the full definition of
THCTR.

Proposition 1. Let Π be the tweakable HCTR VIL enciphering scheme (as defined in
[DN18]) that takes a plaintext M of size m, a tweak T of size t and a TBC key K of
size k along with the other inputs and returns a ciphertext C of size m as output. Let
Ẽ : {0, 1}k × {0, 1}t′ × {0, 1}n → {0, 1}n be the underlying n-bit TBC (with k-bit key and
t′-bit tweak) of tweakable HCTR. Then, there exists an explicit algorithm A that makes
q = 1 query to the tweakable HCTR with σ ≤ 2n/2−1 queries to the underlying TBC Ẽ, so
that

AdvTSPRP
Π (A) ≥ σ(σ − 3)

2n+2 .

In other words, A can distinguish THCTR from a true tweakable random permutation
within O(2n/2) TBC queries with reasonably large probability.

Proof. Let us consider the following algorithm A that makes a single THCTR query with
plaintext input M = 0m of size m such that m is a multiple of n (i.e. m = σn) and any
arbitrary but valid tweak T . Later, when provided with the query response C, A defines
C0, C1, . . . , Cσ−1

n←− C and returns 1 if there exists i 6= 0, j 6= 0 with i 6= j such that
Ci = Cj and 0, otherwise.

Elena Andreeva, Amit Singh Bhati, Bart Preneel and Damian Vizár 35

Now, since we know that an output of a random permutation is information-theoretically
indistinguishable from an output of a random function when only one forward query is
allowed to these oracles, we have for q = 1,

AdvTSPRP
Π (A) ≥

∣∣∣Pr
[
K ←$ K : AΠK(T,M) ⇒ 1

]
− Pr

[
ARand$(T,M) ⇒ 1

]∣∣∣ .
One can verify that by definition of THCTR, Pr[K ←$ K : AΠK(T,M) ⇒ 1] is always 0 as
in a single query all except the first underlying TBC block calls are fed with same tweak
but distinct inputs which implies all output blocks Cis with i 6= 0 are always distinct.
On the other hand, we can show for Rand$(T,M) (see Sec. 2.1 for definition) with basic
probability calculations that

Pr[ARand$(T,M) ⇒ 1] = 0 + 1
2n + 2

2n

(
1− 1

2n

)
+ · · ·+ σ − 2

2n
σ−3∏
j=1

(
1− j

2n

)

=
σ−1∑
i=1

i− 1
2n

i−2∏
j=1

(
1− j

2n

)
.

This implies

AdvTSPRP
Π (A) ≥

σ−1∑
i=1

i− 1
2n

i−2∏
j=1

(
1− j

2n

)
(17)

≥
σ−1∑
i=3

i− 1
2n

(
1− (i− 2)

2n

)i−2
+ 1

2n .

Now, for all i with 3 ≤ i ≤ σ ≤ 2n/2−1, one can show with basic algebra that

(i− 2)
2n +

(
1
2

)1/(i−2)
≤
(

1
2

)n/2+1
+
(

1
2

)2(−n/2+1)

≤ 1 .

Thus, we get

AdvTSPRP
Π (A) ≥

σ−1∑
i=3

i− 1
2n

((
1
2

)1/(i−2)
)i−2

+ 1
2n

≥ σ(σ − 3)
2n+2 . (18)

Further, it is clear from Eqn. 17 that Eqn. 18 is also valid for σ = 1 and 2 and hence, we
get the claim of Proposition 1.

We note that the exact flaw in the security proof of THCTR lies in the bad case analysis
of case B.2 (σ(µ− 1) should be σ`(µ− 1)) and case B.3 (σ(µ− 1) should be σ(µ`− 1)).
We refer the reader to our security analysis of GCTR for more details on these cases.

We would like to again emphasize that despite the fact that our security analysis targets
a completely different security notion called nivE notion than the targeted TSPRP [DN18]
notion of THCTR, our attack and case analysis holds for settings with q = 1 as shown
above in the proof of Prop. 1.

	Introduction
	Preliminaries
	Nonce- and IV-based Encryption
	Coefficient-H Technique

	Multi-Fork Cipher (MFC)
	Syntax
	Security of MFC

	MFC-based CTR Mode and its Variants
	Generic CTR
	GCTR Variants: CTR Mode of Encryption using MFC

	Discussion
	Security
	Efficiency

	Security
	Tweakable CTR framework
	Security of GCTR

	Conclusion and Open Problems
	Upper bounds on Pr(U) and Pr(V)
	Event U
	Event V

	Combinatorial explanation for the bounds of Appendix A
	Event U
	Event V

	General Attack for the Insecure Variants
	A BB attack on Tweakable HCTR

