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Abstract—As radar sensors are being miniaturized, there is a
growing interest for using them in indoor sensing applications
such as indoor drone obstacle avoidance. In those novel scenarios,
radars must perform well in dense scenes with a large number of
neighboring scatterers. Central to radar performance is the detec-
tion algorithm used to separate targets from the background noise
and clutter. Traditionally, most radar systems use conventional
constant false alarm rate (CFAR) detectors but their performance
degrades in indoor scenarios with many reflectors. Inspired by the
advances in nonlinear target detection, In this article, we propose
a novel high performance, yet low-complexity target detector and
we experimentally validate our algorithm on a dataset acquired
using a radar mounted on a drone. We experimentally show that
our proposed algorithm drastically outperforms ordered statistics
CFAR (OS-CFAR) (standard detector used in automotive systems)
for our specific task of indoor drone navigation with more than
19% higher probability of detection for a given probability of false
alarm. We also benchmark our proposed detector against a number
of recently proposed multitarget CFAR detectors and show an
improvement of 16% in probability of detection compared to cen-
sored harmonic averaging CFAR, with even larger improvements
compared to both outlier-robust CFAR and truncated statistics
log-normal CFAR in our particular indoor scenario. To the best of
authors’ knowledge, this article improves the state-of-the-art for
high-performance yet low-complexity radar detection in critical
indoor sensing applications.

Index Terms—Constant false alarm rate (CFAR), drone
navigation, indoor drone obstacle avoidance, indoor radar sensing,
radar target detection.

I. INTRODUCTION

THE use of radar sensors for indoor applications has been
enabled recently thanks to the enormous progress in radar

miniaturization [1], [2] and energy efficiency [3], making use
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of the frequency modulated continuous wave (FMCW) de-
sign principle [4]. Among those indoor sensing applications,
the navigation of small unmanned aerial vehicles or drones
is extensively being investigated for applications ranging from
automated logistics [5] and indoor maintenance inspection [6]
to people search and rescue in partially damaged infrastruc-
tures [7] all requiring robust obstacle avoidance. Currently, most
autonomous drone systems solely use camera-based sensing to
perform obstacle avoidance, path planning [8], and simultaneous
localization and mapping [9]. As standard cameras have sensory
limitations such as sensitivity to lighting conditions, occlusion
by dirt, and no intrinsic ranging [10], many teams are investi-
gating the use of complementary sensors such as light detection
and ranging [11], dynamic vision sensors [12], and radars [13].
The latter is the focus of this article. Radars are well-suited
as a complementary sensing modality because, unlike cameras,
they intrinsically provide range information, are very robust
toward environmental effects and are independent of lighting
conditions [16]. Usually, radar sensors are tightly coupled to
preprocessing units that provide range, velocity, and angle of
arrival spectra (so-called range-Doppler-angle profiles), which
must be filtered afterward by detection algorithms in order to
separate target peaks from the background noise and clutter [17].

Traditional detectors used within the radar community are
the so-called constant false alarm rate (CFAR) class of algo-
rithms, from low-complexity cell averaging (CA) CFAR to more
computationally complex ordered statistics (OS) CFAR [17].
As CA-based methods require a minimal separation distance
between targets, OS-CFAR has been proposed as a better ap-
proach to the CA-CFAR-based methods for multitarget sce-
narios where reflecting objects are closer to each other [18].
OS-CFAR has, thus, widely been adopted in critical areas
such as outdoor automotive applications as its probability of
detection PD for a given probability of false alarm PFA is
larger compared to CA-based methods [19]. On the other hand,
indoor scenes are usually composed of a much larger number
of reflecting objects placed closer to each other compared to
the outdoor case. During our experiments, we have observed
that OS-CFAR fails to detect all potential targets systematically
when processing radar signals during an indoor drone flight
(a discussion is provided in Section V-D), while achieving a
PD close to 1 is essential for a safe obstacle avoidance. Thus,
reliable radar target detection remains a challenge as missed
detections can jeopardize the obstacle avoidance mechanisms
and may crash the drone. Therefore, there is a need for a better,
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yet low-complexity detection algorithm featuring a higher PD

for a certain PFA compared to the conventional CFARs, not
only including OS-CFAR but also more recent, state-of-the-art
CFAR variants such as outlier-robust CFAR (OR-CFAR) [40],
truncated statistics (TS) log-normal (CFAR) TS-LNCFAR [41],
and censored harmonic averaging CFAR (CHA-CFAR) [42].

Finally, it is important to clarify that our aim is to achieve a
safe obstacle avoidance rather than odometry. When performing
odometry (i.e., indoor positioning), it is well known that detect-
ing and tracking all potential targets (even the weak ones) may
worsen the positioning results (only good, repeatable features
must be tracked). On the other hand, when performing obstacle
avoidance like in our case, detecting all potential obstacles (PD

close to 1) is key for a safe drone flight (false alarms can be
further removed by fusion with other sensing modalities).

The rest of this article is organized as follows. Section II
briefly reviews the related state-of-the-art works. Section III
describes the background theory. Section IV presents our pro-
posed methods. Section V describes our experimental validation.
Finally, Section VI concludes this article.

II. RELATED WORKS

To the best of authors’ knowledge, radar sensing for drones
has mainly been investigated for outdoor navigation above
wasteland containing a sparse number of ground objects (while
our article addresses the indoor setting). Most recent among
those works, M. Mostafa et al. [13] demonstrated outdoor drone
navigation using an inertial measurement unit (IMU, magne-
tometer, gyroscope, and accelerometer), a camera and a 24-GHz
FMCW radar, and reported a lower rms navigation error against
the ground-truth GPS compared to older radar-based drone
solutions [20], [21]. In addition, M. Mostafa et al. [13] clearly
demonstrated that conventional CFAR filters can suffer from a
large number of missed detections and, therefore, proposed an
alternative detection mechanism by first filtering the radar maps
with a Gaussian kernel and then keeping the five largest peaks
as detection. While such detection algorithm is well suited for
navigation above wasteland containing an a priori known num-
ber of targets, it is much less the case for the dense indoor setting
where the (potentially large) number of scatterers is unknown.

Regarding the use of radar in indoor drone navigation, J. Yan
et al. [14] proposed an indoor FMCW SAR imaging system
mounted on a drone and tested in an indoor setting with four cor-
ner reflectors and one large obstacle placed in the middle of the
scene. Although promising a challenge faced with such system
is the lack of sufficient space in constrained indoor environments
in order to form a large aperture. In addition, as only a few strong
reflectors were present in the scene, it remains unclear how the
system would behave in realistic indoor scenarios in terms of
effective detection and false alarms as no explicit detection is
performed (only imaging is provided). Another work aiming at
indoor SAR imaging using FMCW radars was proposed in [15],
still without a discussion on radar target detection.

As conventional CFAR filters can severely suffer from missed
detection, a large number of alternative methods have been
proposed. E. Wang et al. [22] proposed a detector, which

combines multiple conventional CFAR variants and chooses
the best one depending on the clutter homogeneity. A. L.
Dzvonkovskaya and H. Rohling [23] proposed to estimate the
detection threshold of conventional CFARs using polynomial
regression on the maps to be filtered, which, compared to the
conventional CA-CFAR, provided a better threshold estimate as
higher statistical moments are used during the estimation.

Recently, a number of CFAR detectors based on the TS
principle have been proposed for multitarget detection in outdoor
environments (e.g., ship detection from SAR images), using a
careful modeling of the clutter statistics [40]–[42]. In addition to
OS-CFAR, the applicability of those aforementioned methods
to indoor scenarios is also investigated in this article. Using
modern machine learning techniques, a CFAR detector using
support vector machines was proposed in [24] and a neural
network-based CFAR was proposed in [25]. Although highly
efficient in scenarios well captured by the training data, those
methods based on supervised training are not guaranteed to
perform well across radically different scenes.

Closely related to our work, H. Kwon and N. M.
Nasrabadi [26] proposed the kernel Reed–Xiaoli (RX) (KRX)
detector as an enhancement of the classical RX detector used in
hyperspectral imagery [27]. They showed that KRX significantly
outperforms RX (in terms of the reachable PD for a certain
PFA) without being significantly more computationally complex.
Still, the KRX detector can be too computationally expensive, as
it requires a large number of matrix inversions [26]. Therefore,
we have derived our detector based on the same principles used
within KRX while proposing several modifications to simplify
the computational cost of the algorithm, such that implementa-
tion is possible in extreme edge devices, in contrast to the KRX
detector.

III. BACKGROUND THEORY

First, the FMCW radar theory and preprocessing are briefly
introduced. Then, the conventional CFAR detectors are briefly
discussed. Finally, the principles behind the KRX detector are
presented. These are needed to explain our method in the fol-
lowing section.

A. FMCW Radar

In single input multiple outputs mode, a radar uses one TX
antenna andm = 1, . . ., NRX RX antennas, usually spaced by an
interantenna distance da = λ

2 where λ is the radar carrier wave-
length [28]. In each sensing frame, the radar sends a sequence
of q = 1, . . ., Nc chirps defined by

pq(t) = exp j(2πfct+ παt2) (1)

where fc is the radar carrier frequency (77-GHz in this article)
and α is the chirp slope [29]. By reflection on surrounding
objects, a mix of delayed and attenuated versions of pq(t)
is received at each RX antennas. Those received signals are
demodulated by the in-phase/quadrature (IQ) receiver such that
for each chirp q and each antenna m, an intermediate frequency
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(IF) signal is obtained as follows:

rqm(t) =

Nt∑
i=1

ξie
j(−2παTdi

t−2πfcTdi
+παT 2

di
+mφi) (2)

where Nt is the number of target reflectors in the scene, ξi is the
attenuation of the target reflector i, φi is the phase shift of target
i induced by its angle of arrival, and Tdi

is the round-trip time
from the radar antenna to the target i, which is proportional to the
distance di between the radar and the target as Tdi

= 2di

c (where
c is the speed of light) [17]. The phase shiftφi for target i is given
by φi = π sin θi [28] where θi is the angle of arrival of the signal
reflected by target i. The IF signals rqm(t) (2) are then sampled
by an ADC with a sampling periodTf to obtain the discrete-time
signals rqm[n] for each chirp q and each antenna m. It is then
possible to retrieve the range, Doppler radial velocity, and angle
of arrival of each target i by computing the discrete Fourier
transform (DFT) of rqm[n] alongn, q, andm, respectively (a 3-D
DFT for each radar frame) [30]. The magnitude of the resulting
data cube exhibits Nt peaks at the bin locations corresponding
to the range, velocity, and angle of arrival of each target i in the
scene.

Noise, clutter (ground echo) and multipath will also result
in additional undesired peaks that must be filtered using a
detection algorithm such as conventional CFAR algorithms [17].
To reduce the number of DFT and detection operations (and thus,
to increase the maximal frame rate achievable by the sensing
system), the 3-D DFT is not done at once; rather, a 1-D DFT
is first performed along n to obtain the so called range profile
(RP) with its magnitude containing peaks at target locations.
The magnitude of the RP is then filtered by a detector such as
a CFAR, obtaining a subset of populated range bins. It is then
possible to perform the DFTs along q and m for each populated
range bin only, to reduce the computational costs. It must be
noted that this solution is well-suited when the relative velocity
between the radar and the obstacles is relatively low so that the
target remains within the same range bin at different time epochs,
which is the case in indoor navigation, where the drone speed is
relatively low due to the size of the drone and the weight of the
payloads (for a drone flying at 10 kph with a typical coherent
processing interval of 12 ms as used in our radar setup, the
maximum range migration of obstacles will be about 2.8 m/s
× 0.012=3.36 cm, which falls below the range resolution of
7.1 cm used in our radar setup).

Another, more expensive approach is to first perform the 2-D
DFT along n and q to obtain the so-called range-Doppler profile
(RDP). The RDP is then filtered along each range and Doppler
bin to find the subset of populated bins. As this second method
introduces an additional decorrelation, conventional CFAR de-
tectors will perform better at the expense of a severe increase
in computation (i.e., the detection in this second approach must
be performed along each range and Doppler bin with typical
dimensions of, e.g., 256× 128 bins versus only one detection
pass for the first approach) [31].

As high frame rates are desired for our indoor drone appli-
cation to increase the dynamic responsiveness of the drone, we,
therefore, adopt the first approach even though this method

Fig. 1. Typical RP being filtered by a CFAR detector. The CUT is the cell S
in the middle, the training cells form a vector Z[x], and the remaining bins are
the guard cells.

trades off lower signal processing gain for higher speed. In
addition, this will allow us to assess the performance of our
algorithms on more challenging data in Section V as a sec-
ond decorrelation introducing the additional Doppler processing
gain is not introduced.

B. Conventional CFAR Detectors

CFAR filters are used to detect targets in unknown background
noise [17]. The most traditional CFAR is the CA-CFAR, which
computes a local detection threshold for the cell under test
(CUT) proportional to the average of the local training cells
in a sliding analysis window (see Fig. 1, where S is the CUT
and the Zl[x] and Zr[x] are the left and right training cells,
respectively). For locally open environments, where scatterers
are well isolated, CA-CFAR performs well, but its performance
can strongly degrade in nonhomogeneous environments where
multiple targets and clutter edges are present [24]. The greatest of
CA-CFAR (which chooses the greatest average between the left
training cells Zl[x] and the right training cells Zr[x]) performs
better compared to CA-CFAR in environments with several
clutter edges but suffers from a loss in PD when mulitple targets
are present locally. On the other hand, smallest of CA-CFAR
(which chooses the smallest average between the left training
cells Zl[x] and the right training cells Zr[x]) performs better in
the multitarget scenario but is very sensitive to clutter edges,
resulting in a significant increase in PFA [17].

It has been reported that the OS-CFAR performs significantly
better than CA-based CFARs for the multitarget case (its PD

is larger than CA-CFAR for a certain PFA) and, therefore, has
widely been adopted in (outdoor) automotive applications [18],
[19], [32]. OS-CFAR first sorts all the training cells in increasing
order and selects the kth element as the noise estimate β̂2. Then,
the local detection threshold is derived asT = αβ̂2, whereα sets
the PFA and k is a parameter to be chosen.

Clearly, as this method requires a sorting operation per CUT, it
is significantly more computationally expensive than CA-based
methods [32]. OS-CFAR has a typical complexity of O(LN2

tc)
when using Bubble sorting and O(LNtc ln (Ntc)) when using
quick sorting where Ntc is the number of training cells (noted as
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Z[x] in Fig. 1) and L is the total number of range bins [18]. On
the other hand, CA-based methods have a complexity ofO(L) as
multiply accumulate operations can be done in one clock cycle
on CPUs with vectored instructions, unlike sorting. The goal of
our proposed detector is to improve the performance beyond
OS-CFAR, while reducing the computational complexity. In
Section V, we will benchmark our proposed detector against
OS-CFAR as it is the standard detector adopted in most multi-
target applications [17].

C. State-of-the-Art CFAR Principles for Multitarget Scenarios

Even though still widely used in practice, the conventional
CFAR detectors discussed in Section III-B have shortcomings
in a number of situations where their clutter statistics estimation
performance becomes poor (multitarget environments, nonho-
mogeneous clutter, and so on) [39]. Thanks to the enormous
progress made by the remote sensing community, a number
of novel radar detectors specially tailored for the multi-target
scenario have been proposed, achieving state-of-the-art result in
anomaly detection from satellite SAR images [40]–[43]. Among
those, we consider three candidate detectors in this work, in
addition to OS-CFAR.

1) Outlier-Robust CFAR: OR-CFAR [40] has been proposed
as a well-suited detector for Gaussian clutter scenarios subject
to an important number of outliers that could jeopardize the
noise estimation performance of conventional CFAR methods.
OR-CFAR achieves a robust noise estimation performance by
using a TS mechanism where outliers in the training cells Z[x]
are removed if

Z[x]− μ > γσ (3)

whereγ is the truncation depth,μ is the mean of the training cells,
and σ their standard deviation. Then, the maximum-likelihood
(ML) estimate of the clutter mean μ̂ and standard deviation σ̂
from the remaining training cells Z̃[x] after truncation by (7) are
given by [40]

σ̂ =

√√√√√ 1

χ

⎧⎨
⎩ 1

n

n∑
i=1

Z̃[i]2 −
(
1

n

n∑
i=1

Z̃[i]

)2
⎫⎬
⎭ (4)

μ̂ =
1

n

n∑
i=1

Z̃[i] + ασ̂ (5)

α =
e−

γ2

2√
2πφ(γ)

, β = 1− γα, χ =
1

β − α2
(6)

where φ(.) is the CDF of the standard normal distribution and n
the number of training cells after truncation. A CUT of amplitude
S is reported as a detection if S > μ̂+ tσ̂ where t is a parameter
setting the desired PFA.

2) TS Log-Normal CFAR: TS-LNCFAR [41] has been pro-
posed as a well-suited detector for log-normal clutter scenarios
subject to an important number of outliers. Similarly to OR-
CFAR, TS-LNCFAR uses a TS approach for outlier rejection,
followed by an ML estimation of the clutter mean and standard

deviation. Outliers in the training cells are removed if

lnZ[x]− μ > γσ (7)

with γ is the truncation depth and μ and σ are the mean and
standard deviation of the log training cells lnZ[x]. The ML
estimate of the clutter mean μ̂ln and standard deviation σ̂ln are
then given by a set of equation similar to those in OR-CFAR [41].
A CUT of amplitude S is reported as a detection if lnS > μ̂ln +
tσ̂ln where t is a parameter setting the desired PFA.

3) Censored Harmonic Averaging CFAR: CHA-CFAR [42]
has been proposed as a well-suited detector for exponential clut-
ter scenarios affected by a large number of outliers. In contrast
to methods that seek to hardly remove outliers by truncation
(such as in OR-CFAR and TS-LNCFAR), CHA-CFAR softly
removes the effect of outliers using the harmonic mean and the
OS principle to estimate the noise level ω̂

ω̂ = (z−1
m+1 + z−1

m+2 + · · ·+ z−1
N )−1 (8)

where {z1, . . ., zN} is a set obtained by sorting the elements
of Z[x] in increasing order and m is the number of discarded
samples (with the smallest amplitude) [42]. A CUT of amplitude
S is reported as a detection if S > tω̂ where t is a parameter
setting the desired PFA.

As those state-of-the-art, multitarget techniques have mostly
been demonstrated for earth and ocean observation, it is interest-
ing to study their applicability in indoor environments. There-
fore, in addition to OS-CFAR (standard detector for automotive
applications), we will also benchmark our proposed detector
against OR-CFAR, TS-LNCFAR, and CHA-CFAR in Section V.

D. KRX Detection Principle

The novel detector that we propose in this work (in Section IV)
is based on the principles behind KRX detection [26]. The
KRX detector has initially been proposed for hyperspectral
images, where each pixel x̄ is a vector with each vector entry
corresponding to a certain spectral band [as opposed to the RP
that we aim to filter in this article, obtained after applying range
processing on (2), where each pixel x̄ of the RP reduces to a
scalar]. In order to introduce KRX, the original RX detector, on
which KRX is built, must be introduced first. The RX detector
can be seen as a generalization of the CA-CFAR method to
the multivariate Gaussian case (pixels are not scalars but rather
vectors) [27]

RX(x̄) = (x̄− ˆ̄μ)T Ĉ−1(x̄− ˆ̄μ) (9)

where a pixel x̄ is detected when RX(x̄) > T , where T is a
threshold setting the PFA. ˆ̄μ and Ĉ, respectively, denote the
mean vector and the covariance matrix of the multivariate
Gaussian noise estimated from the training cells in the sliding
window (similar to Fig. 1). When the background statistics
cannot be modeled by a single Gaussian distribution (as in our
multitarget scenario), the RX detector performance degrades
significantly [33]. KRX was proposed in [26] as a nonlinear
version of RX, which expresses the original RX model of (9) in
a high-dimensional feature space F of dimension D through a
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nonlinear transformation Φ(x̄) as

KRX(x̄) = (Φ(x̄)− ˆ̄μΦ)
T Ĉ−1

Φ (Φ(x̄)− ˆ̄μΦ) (10)

where ˆ̄μΦ and ĈΦ denote the estimated mean and covariance in
F , respectively. The covariance matrix in the feature space F
is defined as ĈΦ = (Φ(Xtc)− ˆ̄μΦ)

T (Φ(Xtc)− ˆ̄μΦ) where Xtc

defines a matrix containing the training pixel vectors along each
column and Φ(Xtc) denotes the application of Φ to each of the
individual vectors inXtc. Equation (10) is derived by considering
that, once projected to F , the model is well-approximated by a
Gaussian distribution, even though the process is non-Gaussian
in the original space [33]. As F could possibly be of infinite
dimensions, (10) is simplified using the kernel trick [34], which
replaces the inner products found by expanding the terms in (10)
by a kernel function k(x̄i, x̄j) = 〈Φ(x̄i),Φ(x̄j)〉.

A common choice for k(x̄i, x̄j) is the radial basis function
(RBF) k(x̄i, x̄j) = exp(−γ||x̄i − x̄j ||22) for which the Gaussian
assumption inF holds [26]. Thus, KRX nonlinearly projects the
input data in a space F , which is such that a simple threshold
decision region in F corresponds to a much more complex
decision region in the original space. This enables the algorithm
to perform significantly better in environments with complex
background statistics such as highly cluttered and multitarget
indoor scenes [26]. Also, other hyperspectral detectors have
been extended using the nonlinear projection principle described
earlier and it was demonstrated that the nonlinear versions
always outperformed the original ones in terms of reaching a
high PD for a given PFA [35].

Although promising for our near-sensor detection application,
the approach given above still presents the following three chal-
lenges for implementation on resource-constrained computing
platforms.

1) Even when the kernel trick is used, (10) requires a large
matrix inversion per CUT (Ntc ×Ntc) [26], making is
unsuited for fast near-sensor detection.

2) The RBF kernel is an exponential model requiring a high
bit precision as its scale changes rapidly [36]. Can we
find a nonlinear transformation Φ well-suited for heavy
quantization, even down to 1-b precision?

3) If such Φ that is well-suited for 1-b quantization exists,
the Gaussian assumption in the feature space will not
hold anymore. How can we then correct for this initial
assumption?

These challenges will be addressed by our proposed detector
(see the following section).

IV. PROPOSED DETECTOR

In this section, we derive our novel detector starting from
(10). We first remark that (10) is the square of the Mahalanobis
distance between Φ(x̄) and ˆ̄μΦ, which is a measure of distance
between Φ(x̄) and the background statistics in F [33]. When
this distance is larger than a threshold T0, x̄ is reported as a
detection. We can consider the dual problem [37]: when the
correlation between Φ(x̄) and the background statistics in F is
smaller than a threshold T1, x̄ is reported as a detection. The

original detection problem

(Φ(x̄)− ˆ̄μΦ)
T Ĉ−1

Φ (Φ(x̄)− ˆ̄μΦ) > T0 (11)

then becomes

(Φ(x̄)− ˆ̄μΦ)
T ĈΦ(Φ(x̄)− ˆ̄μΦ) < T1 (12)

where the computationally expensive matrix inversion does not
appear anymore. Equations (11) and (12) are dual in the sense
that searching for a Φ(x̄) with a distance larger than a certain
threshold from a distribution parametrized through ˆ̄μ and ĈΦ

(11) is conceptually the same as searching for a Φ(x̄) with
a correlation smaller than a certain threshold from the same
distribution (12). It is important to note that, although solving
the same problem, (11) and (12) are not identical per se as they
are solutions to different optimization problems (see [37] for
a review). In order to simplify (12) even more, we choose a
transformation Φ such that ˆ̄μΦ −→ 0̄ with ˆ̄μΦ defined as

ˆ̄μΦ =
1

Ntc

Ntc∑
i=1

Φ(x̄i) (13)

where Ntc is the number of training cells in the window from
which the noise estimation is performed. We, therefore, choose
a Φ which induces sparse projections Φ(x̄) in F , with only a
few (possibly one) nonzero entries, such that ˆ̄μΦ can be dropped
in (12). Under this sparse projection, (12) becomes

Φ(x̄)TΦ(Xtc)Φ(Xtc)
TΦ(x̄) < T1 (14)

where Xtc is a D ×Ntc matrix with D the dimension of F ,
containing the projection of the training cells in F . We can
further rewrite (14) as

Φ(x̄)T N̄Φ < T1 (15)

where N̄Φ can be seen as a summary of the background noise
statistics integrated through Φ(x̄) against which the correlation
is measured. As remarked in Section III-D, (15) holds under
Gaussian assumption in the feature space. As we are aiming
for a sparse Φ, well-suited for 1-b quantization, the Gaussian
assumption does not hold and we need to modify how the
background noise statistics are summarized in F through a
modification of N̄Φ.

To this end, we use the simple heuristic used by SOCA-CFAR,
which states that the larger the norm of a pixel in the initial space,
the less likely it is noise, such that its effect should be attenuated
when summarizing the background noise statistics [17]. Using
this heuristic, we replace N̄Φ by a centroid across the training
cells where each weight is inversely proportional to theL2-norm
of its corresponding training pixel

N̄m
Φ =

1

Γ

Ntc∑
j=1

1

||Xtc[j]||2Φ(Xtc[j]) (16)

where Xtc is assumed to be normalized to a maximum pixel L2

norm of 1, with

Γ =

Ntc∑
j=1

1

||Xtc[j]||2 (17)
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being the amplitude normalization factor to effectively compute
a centroid. The test (15) then becomes

Φ(x̄)T N̄m
Φ < T1. (18)

Further simplifications can be made to reduce the amount
of multiply and divide operations in (16)–(18). First, we can
truncate the Taylor expansion of x−1 around 1 to the first-order
term as 1

x ≈ 2− x where we can substitute x = 2||Xtc[j]||2
(with x ∈ [0, 2] as we considered ||Xtc[j]||2 ∈ [0, 1]) to obtain

1

||Xtc[j]||2 ≈ 2(1− ||Xtc[j]||2). (19)

Therefore, instead of computing 1
||Xtc[j]||2 , we will compute

(1− ||Xtc[j]||2) where the constant 2 is dropped after normal-
ization by Γ. Second, we can remove the expensive multiply
accumulate operations in (18) by solving the dual problem: a
small (< T1) correlation between Φ(x̄) and N̄m

Φ corresponds to
a large distance between Φ(x̄) and N̄m

Φ

||Φ(x̄)− N̄m
Φ ||p > T2. (20)

We choose p = ∞ instead of p = 2 for two reasons. First, in
order to replace the explicit norm computation involving multi-
ply accumulate operations by a sequence of simple comparison
operations in parallel. Second, to attenuate the data-dependent
bias introduced in the relation between the correlation in (18) and
theL2 norm ||�a−�b||22 =

∑
i a

2
i +

∑
i b

2
i − 2

∑
i �ai

�bi where the
term

∑
i xiyi is the correlation and the term

∑
i x

2
i +

∑
i y

2
i

is a data-dependent bias. The L∞-norm attenuates this bias as
||�a−�b||∞ ≤ ||�a−�b||2 always holds [38]. At this point, we have
our final detector (20). In the sliding window, the CUT x̄ will be
reported as a detection if (20) holds with p = ∞.

Finally, we need to find a nonlinear and sparse transformation
Φ. As our goal is to filter a radar RP in this article, the pixels x̄
that were generically considered as vectors become scalars that
we note as ξ = x̄ in the remainder of the derivation. We found
that a well-suited Φ is the one-hot encoding of ξ as follows:

Φ(ξ)i =

{
1, if i = D − 
D

ξ �
0, else

(21)

where D is the dimension of the destination space F . Such
transformation is well-suited as it is binary (1-b precision),
sparse [as at most one element is nonzero, ˆ̄μΦ can be ignored
in (12)] and promotes linear independence between the pixel
projections in F [which better complies with the constraint of
non-singular covariance matrix ĈΦ in the original problem of
KRX (11)].

In summary, our detection algorithm performs the following
steps.

1) Φ (21) is applied to the CUT and the training cells in the
sliding window.

2) N̄m
Φ is computed following (16), (17) with the simplifica-

tion of (19).
3) Each entry i of the CUT projection Φ(ξ)[i] is compared

to T2 + N̄m
Φ [i] and the CUT is reported as a detection as

soon as an entry i gives Φ(ξ)[i] > T2 + N̄m
Φ [i] [by virtue

of the infinite-norm in (20)].

Fig. 2. Our NXP HoverGames drone with a 79 GHz Texas Instruments radar
and an on-board camera.

Similar to the original KRX detector, finding a closed-form
relation between the threshold T2 and the PFA is intractable,
and the threshold must rather be selected empirically by the
following:

1) acquiring a labeled dataset;
2) measuring the experimental PFA and PD values by sweep-

ing the threshold;
3) selecting a threshold returning the desired PFA and

PD [33].
The complexity of our proposed algorithm is O(LD) com-

pared to O(LN2
tc) and O(LNtc ln (Ntc)) for OS-based methods

(such as OS-CFAR and CHA-CFAR) and O(L) for CA-based
methods (such as OR-CFAR and TS-LNCFAR) [32], whereD is
rather small as (21) projects scalars to vectors (we foundD ≤ 15
to be well-suited during our experiments, see Section V).

Because of the simple heuristic rule used in (16), we expect
the performance of the algorithm to degrade for degenerated sit-
uations where an overwhelmingly large number of neighboring
targets are present, as most bins in the sliding window will then
miss-represent the noise statistics (those situations are unlikely
to happen through as realistic indoor scenes always have some
empty space between obstacles). Nevertheless, we found this
rule to be both necessary and efficient during our experiments in
a regular indoor scenario: removing it was causing a severe per-
formance degradation while incorporating it provided excellent
detection results (see the ablation studies in Section V-F).

V. EXPERIMENTAL PERFORMANCE ASSESSMENT

In this section, we will experimentally assess the perfor-
mance of our novel detector against OS-CFAR by generating
the receiver operating curves (ROC: PD versus of PFA) of both
solutions on labeled radar data acquired using a drone flying in
a dense indoor scene.

A. Experimental Setup

Fig. 2 shows the NXP HoverGames drone that we used to
acquire the radar data. This drone setup is well-suited for indoor
tasks such as automated logistics, as it has sufficient power to
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TABLE I
RADAR PARAMETERS

Fig. 3. Illustrative example RP obtained when the drone was moving toward
the shelves.

carry payloads in the kilogram range. In addition, the off-the-
shelve 79 GHz radar sensor is well-suited for precise obstacle
ranging due to its centimetre-scale range resolution. The radar
parameters are given in Table I, where L is the number of ADC
samples per chirp, Tf is the ADC sampling period, Nc is the
number of chirps in one frame, Tc is the chirp period, α is the
chirp slope, and dmax is the maximal distance that can be sensed.

We navigated the drone in an indoor environment composed
of benches, chairs, shelves, and so on, and we obtained a dataset
of nearly 400 radar frames. Out of that dataset, we selected a
subset of 100 frames corresponding to the cases where the drone
was flying toward a dense part of the environment, either toward
the three shelves in Fig. 2 or toward benches and chairs. Those
cases represent the challenging, dense scenarios where missed
detection can be detrimental to the drone. We finally obtained
a dataset of 100 RPs and we visually labeled as a detection
each significant peak in each of the 100 RPs. Fig. 3 shows an
illustrative example of an RP acquired when the drone was flying
toward the shelves. The red stars denote the labeled indexes
against which the detection algorithms will be compared. Fig. 4
shows the effect of applying our detector to the RP of Fig. 3, as
per (20), ||Φ(x̄)− N̄m

Φ ||∞ is compared against a threshold level
T2 = 0.95 to obtain the subset of detected range bins. Fig. 4
shows the processing gain that our detector provides by mapping
not only the strong RP peaks, but also the minute but significant
peaks of the RP to high values of ||Φ(x̄)− N̄m

Φ ||∞ (purple plot),
while keeping this value lower for noise bins.

B. ROC-Based Results

The standard method used to compare detectors is the gener-
ation of the ROC curves giving the probability of detection PD

versus the probability of false alarm PFA. PD is defined as the

Fig. 4. Effect of applying our detector to the RP of Fig. 3. The detection is
performed as in (20) by thresholding ||Φ(x̄)− N̄m

Φ ||∞ (purple plot) against T2.
The detections are shown in red. The D parameter was set to 15 in this example.

number of ground-truth detection labels found by the detector
under test over the total number of ground-truth detection labels.
Similarly, PFA is defined as the number of detections returned
by the detector under test and not associated to any ground-truth
detection label, over the total number of range-binL. The higher
the PD for a given PFA, the better. We compute PD and PFA for
both our method and OS-CFAR by applying them to each of the
100 RPs and by comparing their output to the labels. We consider
that a detection is a false alarm when it lies at a distance larger
than five range bins (35 cm) from any label and vice versa for a
correct detection. We, therefore, obtain the number of detected
labels NDi and the number of false alarms NFAi for each RP
i = 1, . . ., 100. PD is then obtained as 1

100

∑
i(NDi/li) where

li is the number of labeled indexes for RP iwhilePFA is obtained
as 1

100

∑
i(NFAi/L) where L = 256 is the number of range bins

in the RPs. The tuples (PD, PFA) are computed for different
threshold values T2 for our detector (see Section IV), different α
and k parameters for OS-CFAR (see Section III-B) and different
numbers of training and guard cells (Ntc, Ng) for both methods.
Each threshold value leads to a different tuple (PD, PFA) and
the set of tuples is plotted as the ROC curve. For our proposed
detector, we set the dimensionalityD of the transformationΦ(ξ)
to 15 as it gave us the best results. Fig. 5 shows the ROC curves
for our proposed detector. Figs. 6–8 jointly show the ROC
curves for our proposed detector and for OS-CFAR, for different
values of order parameter k and for the same combinations of
Ntc and Ng as in Fig. 5. It is visually clear that our method
significantly outperforms OS-CFAR without the requirement
for computationally expensive sorting operations per CUT. Our
proposed algorithm always achieves a significantly largerPD for
a given PFA, for the different combinations of k, Ntc, and Ng ,
with a measured average gain of more than 19% between ROCs
of the same Ntc and Ng on the achievable PD for a given PFA,
for PFA values smaller than 1% (typical values used in practice).

In addition, we compare our proposed detector to OR-CFAR,
TS-LNCFAR, and CHA-CFAR (see Figs. 9–11) by tuning the
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Fig. 5. ROC curves for our proposed detector, for different combinations of
Ntc and Ng . D = 15.

Fig. 6. k = 0.5 for OS-CFAR. Average gain of 40% on PD compared to
OS-CFAR for PFA < 1%.

truncation parameter γ of OR-CFAR and TS-LNCFAR, and the
order parameter m of CHA-CFAR such that each competing
detector reaches its best performance on the indoor drone dataset
used for the assessment. A trend similar to the OS-CFAR case is
observed where our proposed detector systematically leads to a
higherPD for a givenPFA for our particular indoor scenario (OR-
CFAR, TS-LNCFAR, and CHA-CFAR are rather tailored for
remote earth observation with higher resolution SAR images).
This shows the effectiveness of our new detection algorithm
when used in indoor, industrial settings.

C. Result Confirmation With Ground-Truth Data

As our goal is to detect as many targets as possible for a safe
obstacle avoidance, the assessment presented in Section V-B
has been conducted with manually labeled RP data, where each
significant peak is marked as a potential obstacle. The potential
downside of this visual labeling methodology is that noise and
clutter could also lead to peaks in the RP, which, once labeled,
would jeopardise the ROC assessment. On the other hand, the
scenes acquired by our drone and radar are rich of obstacles. This

Fig. 7. k = 0.7 for OS-CFAR. Average gain of 19% on PD compared to
OS-CFAR for PFA < 1%.

Fig. 8. k = 0.9 for OS-CFAR. Average gain of 21% on PD compared to
OS-CFAR for PFA < 1%.

motivates the fact that the overwhelming majority of labeled
peaks would correspond to actual targets. Still, it is impor-
tant to confirm this fact using a well-controlled, yet realistic
radar dataset with ground-truth measurements. Therefore, we
acquired a second RP dataset in an empty room by keeping our
drone and radar setup static, with two people walking in front
of it. During the radar acquisition, a Marvermind indoor GPS
device was used to acquire the ground-truth location of the two
walking people. This scenario was chosen as it is more realistic
than using usual corner reflector beacons (e.g., the scenario
simulates a drone waiting for instructions with people walking
in its neighborhood). Yet, the chosen scenario enables precise
ground-truth measurements using the indoor GPS. Fig. 12 de-
picts the acquisition scenario.

Similar to Section V-B, an ROC-based comparison of our
method against OS-CFAR has been conducted. The results are
shown in Fig. 13. The OS-CFAR parameter k is set to 0.7 as this
value corresponds to the smallest gain between our proposed
method and OS-CFAR in the previous assessment of Section V-B
(see Fig. 7). The parameter D of our proposed algorithm is set to
4 in order to reach a desiredPfa range of< 1% (the impact of the
D parameter will be further detailed in Section V-E). Compared
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Fig. 9. OR-CFAR with γ = 1.3. Average gain of 20% on PD compared to
CHA-CFAR for PFA < 1%.

Fig. 10. TS-LNCFAR with γ = 1.8. Average gain of 35% on PD compared
to CHA-CFAR for PFA < 1%.

Fig. 11. CHA-CFAR with m = 0.65×Ntc. Average gain of 16% on PD

compared to CHA-CFAR for PFA < 1%.

Fig. 12. Ground-truth and radar acquisition. The two walking people hold
their indoor GPS beacon on their head during the radar acquisition.

Fig. 13. k = 0.7 for OS-CFAR. Average gain of 19% on PD compared to
OS-CFAR for PFA values smaller than 1%.

to the results of Section V-B, Fig. 13 shows a similar trend where
our proposed detector provides again a significant gain (44%)
on PD compared to OS-CFAR for the different combinations of
Ntc and Ng (same as in Fig. 5).

In addition, Fig. 14 shows the performance of CHA-CFAR
against our proposed detector (OR-CFAR and TS-LNCFAR
do not reach a PD > 10% on the tested PFA range and are,
therefore, not shown). The order parameter m of CHA-CFAR is
chosen such that the detector performs at its best. Even though
CHA-CFAR outperforms OS-CFAR, our proposed method still
outperforms CHA-CFAR with an average gain of 32% between
the corresponding curves. Again, this validates the effectiveness
of our novel method for indoor radar sensing.

D. Discussion

At this point, we have experimentally shown that our proposed
detector outperforms OS-CFAR, OR-CFAR, TS-LSCFAR, and
CHA-CFAR in our specific indoor sensing scenario. The rea-
son for this is twofold. First, conventional CFAR methods and
their state-of-the-art derivatives (see Sections III-B and III-C)
perform detection by ML estimation of the clutter statistics
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Fig. 14. m = 0.4×Ntc for CHA-CFAR. CHA-CFAR achieves a better
performance compared to OS-CFAR (see Fig. 13) but is still outperformed by
our proposed method by an average gain of 14%.

Fig. 15. Log-normal fitting. The KS distance is 0.048.

given a prior clutter distribution model [40], [41]. Therefore, the
performance of those conventional techniques degrade when the
clutter distribution severely deviates from their prior hypothesis.
In outdoor scenarios such as remote earth sensing, clutter distri-
bution is often analytically well modeled by distributions such as
Gaussian, log-normal, and so on [39] as the wave propagation
paths are simpler. In contrast, indoor scenarios lead to severe
multipath effects as a large number of reflectors are present.
In addition, floor reflectively is not always uniform which can
lead to an increased number of clutter edges. Finally, compared
to satellite SAR radars (as used in [40]–[43]), our radar setup
provides a much more modest resolution, which may lead to
residual correlations between the bins in the RP, violating the
assumption of interbin statistical independence [17]. Figs. 15
and 16 show the goodness-of-fit of an RP data distribution
against the log-normal and the exponential models, which gave
the smallest Kolmogorov–Smirnov (KS) distances out of a
set of typical hypothesis distributions (log-normal, Gaussian,
Exponential, Gamma, and Weibull) [17]. For both hypothesis

Fig. 16. Exponential fitting. The KS distance is 0.056.

PDFs, the KS distance is above one order of magnitude larger
than what is considered to be acceptable in ML-based CFAR
estimation [40], [42].

The second reason behind the superiority of our method
is the following. Conventional CFAR methods based on the
OS principle (OS-CFAR and CHA-CFAR in this work) reject
the outliers within the training cells by sorting the cells and
choosing either the nth entry as the clutter statistics (as done
in OS-CFAR) or either a combination of all entries above n
(as done in CHA-CFAR). For OS-CFAR, this means that a
maximum ofNtc − n outliers can be rejected, making it difficult
to find a suitable n in the dense, indoor case (the number of
outliers per training window is nonhomogenous). CHA-CFAR
performs slightly better than OS-CFAR in the indoor case (see
Fig. 13 versus Fig. 14) as it estimates the clutter statistics
through a combination of the training cell entries above n.
This harmonic averaging combination is such that entries with
large values have a smaller contribution than entries with small
values. Consequently, the order n can be chosen smaller than
in the OS-CFAR case, which allows an adaptive rejection of an
increased number of outliers in each training window (in contrast
to the hard rejection of OS-CFAR).

On the other hand, modern hyperspectral detection techniques
such as SVDD or KRX [33] (from which our proposed method
is derived) do not estimate the clutter statistics explicitly, and
therefore, must not rely on a prior PDF model for ML estimation.
Rather, those techniques solve a binary classification problem
by expressing the local data (training cells and CUT) in a high-
dimensional feature space F where the separability between
samples is enhanced [33]. Simple decision contours in F will
then correspond to much more complex decision boundaries
in the original space, enabling high-performance detection in
unknown and complex clutter statistics [33]. As experimentally
shown in this article, such a detection principle is especially
attractive for indoor radar sensing where the goodness-of-fit of
usual PDF models is not as good as in the outdoor case due to
the complexity of the sensed environment. Finally, it must be
noted that such high-dimensional, nonlinear methods come at
the cost that finding analytical expressions for, e.g., setting the
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Fig. 17. ROC curves for different D values. The diamond-shaped points
denote the (PD, PFA) achieved in the limit of T2 → 1.

detection threshold T2 to meet a target PFA is mathematically
intractable. This is not only the case for our proposed detector
[which uses (21) as a discontinuous nonlinearity function], but
is also the case for the original KRX formulation (which uses a
smooth RBF kernel [26]).

E. Effect of the D Parameter

In order to evaluate the effect of the D parameter [dimen-
sionality of the transformation Φ(ξ) in (21)], we fix Ntc = 20,
Ng = 10 and we evaluate the ROC curves of the proposed
detector using the same dataset used in Section V-B for a range
of D values. The results are shown in Fig. 17.

As Fig. 17 shows the D parameter affects the minimum
reachable PFA. This can be explained as follows. Each element
of the vector N̄m

Φ in (16) can take a maximum value of 1 because
of the normalization by Γ during the centroid computation and
following the definition of Φ(ξ) in (21) where each element
of the vector Φ(ξ) is either 0 or 1. Indeed, if all elements of
Φ(Xtc[j]), ∀j are equal to 1 (which is the limit case of the Φ(ξ)
encoding), the evaluation of (16) will result in a vector N̄m

Φ with
all of its components equal to 1 because of the normalization by
Γ. From (20), we can, therefore, write

||Φ(x̄)− N̄m
Φ ||∞ ≤ 1 (22)

as the entries of Φ(x̄) are either 0 or 1 by the definition of Φ(ξ)
in (21). Therefore, only values of T2 in (20) below 1 will affect
the PD and PFA of the proposed detector. The PFA achieved
in the limit of T2 → 1 for a certain D value will, thus, be the
minimal reachable PFA for that D. Then, the smaller D is, the
less quantization slots are available during the binary coding
induced by Φ(ξ) in (21). As a consequence, the likelihood
that the training cells in the vector Xtc have a 1 in the same
quantization slot [i in (21)] will grow, leading to larger elements
in N̄m

Φ , which will lower the evaluation of ||Φ(x̄)− N̄m
Φ ||∞,

lowering both the PD and the PFA. This can clearly be observed
in Fig. 17, where the smaller the value of D, the smaller the
minimum reachable PFA is. Naturally, a similar discussion holds

Fig. 18. ROC curves for different methods (k = 0.7 for OS-CFAR). Our
method uses (16).

concerning the maximum reachable PD in the limit of T2 → 0,
where, the smaller the D, the smaller the maximum reachable
PD will be.

F. Ablation Studies

It is now important to verify the impact of the choices made for
our detector in Section IV on the performance of the algorithm.
We have introduced a heuristic rule (16) that replaced the usual
computation of (14) by a centroid since we did not expect the
projection of the RPs in the feature space F to be Gaussian,
as opposed to the assumption of (14). Fig. 18 compares our
heuristic rule against (14) and against OS-CFAR with k = 0.7
(as it was the closest to our method in terms of performance). As
expected, using (14) results in a significant loss of performance
compared to (16). This experimentally validates the need for our
heuristic rule (16).

Finally, we have decided to use theL∞ norm in (20) instead of
the L2 norm and we gave motivations for this choice is section
IV. Fig. 19 compares the use of the L∞ norm against the L2

norm.
It is interesting to see that OS-CFAR performs better for low

PFA values compared to using the L2 norm in (20). Finally, it
is visually clear that our method (using the L∞ norm) leads to
a significantly better performance compared to the L2 norm for
PFA < 0.015.

G. System Implementation and Hardware Metrics

We have implemented our proposed detector in an ARM
Cortex R4F processor running at 40 MHz and integrated in
the 79 GHz radar chip used during the data acquisitions. Our
detector returns a list of populated range bins, which are then
passed to a conventional beamformer algorithm [37] to compute
the angle of arrival of each detection. As OS-CFAR involves
an expensive search operation for each CUT, it is already
clear that our method is less computationally expensive. It is,
however, more meaningful to compare our method against the
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Fig. 19. ROC curves for different methods (k = 0.7 for OS-CFAR). Our
method uses the L∞ norm.

TABLE II
MEASURED AVERAGE INTERFRAME PROCESSING TIME MARGIN

The Radar frame rate is set to 10 FPS.

standard detection API provided by the chip vendor, which uses
a hardware-accelerated CA-CFAR applied on the full RD map
(2-D detection performed along each range and Doppler bin)
followed by additional clutter filtering. Compared to our detector
written in plain C, their detector is not running in the CPU
but in a dedicated hardware accelerator specially tailored for
their 2-D CA-CFAR implementing vectored computation. This
hardware acceleration is needed to meet the interradar frame
timing as, unlike our single-pass detection, they perform de-
tection along each range and Doppler bin (256× 128 detection
passes versus 1 in our case). Then, as CA-CFAR is subject to a
high amount of clutter false alarms, their API performs a final
clutter filtering step and the detection list is returned to a con-
ventional beamformer algorithm (identical to the one used with
our proposed detector) to compute the angle of arrival of each
detection.

We have compared our method against theirs in term of
average interframe processing time margin, meaning the time
slack available between the execution of each complete radar
frame processing (reception of raw ADC data—range-Doppler
processing—detection—angle of arrival estimation). Table II
presents the measured average interframe processing time
margin.

Table II clearly presents that our method executes nearly two
times faster, providing a significant increase in the time slack
available between the execution of each frame processing step,
even though our method does not rely on any dedicated hardware
acceleration. In addition, a video in our supplementary material
showcases the reduction in measured CPU load reported by the
graphical interface provided by the radar vendor. This additional
time slack enables our system to run at frame rates ∼35 FPS

Fig. 20. Radar-camera snapshot of our drone flying through industrial aisles.
The right and left shelves can easily be identified.

before the dead-lock of the MCU (due to the fact that radar chirps
are incoming at speeds larger than what the MCU can process),
while the standard method can run at maximum 17 FPS before
the dead-lock of the MCU. This larger frame rate allows our radar
system to detect obstacles faster, enabling safer drone flights.
Furthermore, this additional time slack can be used to execute
more complex angle of arrival algorithms after the detection
step to enhance the poor angle resolution of the conventional
beamformer [37]. Finally, Fig. 20 shows a radar-camera snapshot
of our drone flying through industrial shelves with our proposed
detector running online in the MCU of the radar chip at 30 FPS,
with a conventional beamformer [37] estimating the angle of
arrival of the detections. The aisles can clearly be observed
thanks to the high PD over PFA ratio that our detector provides,
which qualitatively shows the effectiveness of our detector. A
video showing the full flight can be found in the supplementary
material.

VI. CONCLUSION

This article has focused on reliable radar target detection
in dense indoor environments for drone applications requir-
ing obstacle avoidance for safe navigation. We have proposed
a novel radar target detection algorithm with low computa-
tional cost suitable for near-sensor implementation in edge
devices. It is shown that the proposed detector outperforms
OS-CFAR with more than 19% higher PD and outperforms
CHA-CFAR with more than 16% higher PD for the same
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PFA in our indoor drone navigation scenario where missed
detection can be detrimental, while being less computationally
complex than both OS-CFAR and CHA-CFAR (as no sorting
operations are needed). To the best of authors’ knowledge, this
work improves the state of the art for high-performance yet
low-complexity radar detection in very dense indoor sensing
applications.
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