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Abstract: In this research, a methodology consisting of an X-ray tube, one Pyrex-glass pipe, and
two NaI detectors was investigated to determine the type of flow regimes and volume fractions
of gas-oil-water three-phase flows. Three prevalent flow patterns—namely annular, stratified, and
homogenous—in various volume percentages—10% to 80% with the step of 10%—were simulated by
MCNP-X code. After simulating all the states and collecting the signals, the Fast Fourier Transform
(FFT) was used to convert the data to the frequency domain. The first and second dominant frequency
amplitudes were extracted to be used as the inputs of neural networks. Three Radial Basis Function
Neural Networks (RBFNN) were trained for determining the type of flow regimes and predicting
gas and water volume fractions. The correct detection of all flow regimes and the determination
of volume percentages with a Mean Relative Error (MRE) of less than 2.02% shows that the use of
frequency characteristics in determining these important parameters can be very effective. Although
X-ray radiation-based two-phase flowmeters have a lot of advantages over the radioisotope-based
ones, they suffer from lower measurement accuracy. One reason might be that the X-ray multi-energy
spectrum recorded in the detector has been analyzed in a simple way. It is worth mentioning that
the X-ray sources generate multi-energy photons despite radioisotopes that generate single energy
photons, therefore data analyzing of radioisotope sources would be easier than X-ray ones. As
mentioned, one of the problems researchers have encountered is the lower measurement accuracy
of the X-ray, radiation-based three-phase flowmeters. The aim of the present work is to resolve
this problem by improving the precision of the X-ray, radiation-based three-phase flowmeter using
artificial neural network (ANN) and feature extraction techniques.

Keywords: volume fraction; RBF neural network; feature extraction; frequency domain

1. Introduction

One of the most vital challenges in the oil, gas, and petrochemical industry is deter-
mining the volume percentages and diagnosing the type of flow regimes passing through
the oil transmission lines. Hence, a lot of research has been done in this regard. There are
many non-invasive methods to determine these parameters, such as photon attenuation
methods, capacitive tomography, resistance tomography, X-rays, and so on. In recent
years, much research has been done to detect these parameters using photon attenuation
techniques [1–14]. The researchers in reference [1] studied three types of flow regimes
with the names of stratified, homogeneous, and annular in different volume percentages
using MCNP code. In this study, two radioisotope sources and three NaI detectors were
used to determine the volume percentages and the type of flow regimes. An artificial
neural network was designed to detect the type of flow regimes. Three separate networks
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were designed to determine the volume percentages of oil–water–gas three-phase flow. In
another study, researchers proposed a new structure for measuring volume percentages
in a stratified regime. This structure used an NaI detector next to a cesium-137 source to
record the backscattered gamma radiation’s energy spectrum. They also used the MLP
neural network to determine volume percentages with an error of less than 6.47% [2].

In recent years, researchers have paid special attention to feature extraction from
signals received from detectors. For example, Sattari et al. have researched the time domain
characteristics to introduce the most appropriate ones [3]. In this study, a measurement
system consisting of a cesium-137 source and two NaI detectors and a Pyrex-glass was
implemented to determine the volume percentages and the type of flow regimes. After
collecting the data, some features in the time domain were extracted to better interpret the
data, and finally they were able to correctly identify the type of flow regimes using the
MLP neural network and predict the volume percentages with high accuracy. In another
study [4], researchers used time domain characteristics and the GMDH neural network
to determine the volume percentages and type of flow regimes using only one detector.
Roshani et al. used the dual energy method to study three-phase flows. Their detection
system consisted of two 241 Am and 137 Cs sources, and two NaI detectors. They used
the characteristics of recorded counts of 241 Am and 137 Cs in two detectors to train
the neural network, and they were finally able to predict volume percentages with an
MRE% of less than 5.68% [5]. Hanus et al. Presented several time [6] and frequency [7]
domain characteristics to determine the type of flow regimes in two-phase flows, and
finally identified the most effective characteristics for determining this parameter. In their
next research, they tried to determine the type of flow regimes by using these characteristics
and using various neural networks [8]. Hosseini et al. Used the FFT to convert recorded
signals to the frequency domain and then time domain characteristics were extracted from
the frequency domain signals. Using these characteristics, they were able to accurately
detect all flow regimes and predict the volume percentages in two-phase flows with high
accuracy [9].

Advantages such as the ability to adjust the emitted photons energy of the X-ray
tube, high-intensity photons emission, the ability to turn it on and off—this advantage is
very important for the health of people working with these devices—, and the ability to
transport it easily and steadily. Its energy retention over time has led current researchers
to use X-ray tubes instead of radioisotopes [15–18]. In [15], an X-ray densitometry system
was introduced. In this study, an X-ray tube (50 kV, 1 mA) and some linear detectors were
applied for two-phase flow metering. In the research [16], an X-ray tube and one NaI
detector were used. The annular and stratified flow patterns were simulated. Obtained
accuracy of the proposed methodology showed the ability to use X-ray tubes and ANN to
determine the characteristics of multiphase flows. In [17], a structure consisting of an X-ray
tube and two detectors was implemented to determine the volume percentages and type of
flow regimes in three-phase flows. In this study, characteristics of recorded photon energy
spectra from the two detectors and the GMDH neural network were used to determine the
mentioned parameters. All flow regimes were correctly detected except one case, and vol-
ume percentages with RMSE less than 3.1 were predicted. In Reference [18], a methodology
was proposed for determining the volume percentages in three-phase flows by simulating
two flow regimes of stratified and annular at different volume percentages. The proposed
structure consists of an X-ray tube and a NaI detector. One hundred characteristics were
extracted from the received data from the detector and were considered as the input of
the GMDH neural network. Since the GMDH neural network has the ability to determine
effective inputs to predict the target, this network was applied as a tool for feature selection.
Finally, volume percentages were predicted with an MRE% of less than 6.69%.

The purpose of this study is to use X-ray tubes, feature extraction techniques in the
frequency domain, and the RBF neural network to increase the accuracy in determining
critical parameters such as volume fractions and the type of flow regimes in oil–gas–water
three-phase flows.
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2. Materials and Methods
2.1. Radiation-Based System

In this research, a detection system consisting of an X-ray tube, a Pyrex-glass pipe,
and two NaI detectors with dimensions of 2.54 mm × 2.54 mm was simulated using the
MCNP-X code. In this system, detectors were placed at a distance of 20 cm from the source,
one of them was directly related to the source, and the other was at an angle of 15◦ to
the source. A Pyrex-glass has been used to simulate flow regimes at different volume
percentages. The structure of the designed system is shown in Figure 1. The three common
flow regimes, shown in Figure 2, were simulated in volume percentages from 10% to 80%
with a step of 10%. Thirty-six various volume fractions were simulated for each flow
pattern, which includes a total of 108 simulations.

Figure 1. The structure of the simulated detection system using MCNPX.

Figure 2. Simulated flow regimes: (a) homogenous (b) stratified (c) annular.

In this study, a typical industrial X-ray tube was used. The electron source and
a tungsten/rubidium target were mounted in X-ray tubes as the cathode and anode,
respectively. Complete X-ray tube simulation through MCNPX code, wherein a released
electron from the cathode reacts to the anode and produces X-ray radiation, is time-
demanding. Because the computation of photon tracking in MCNPX code is less than the
electron, in this scrutiny, a source of photon inserted in an X-ray tube’s shield was regarded
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for a cathode–anode assembly. TASMIC, a free package presented by Hernandez et al. [19],
was applied. It is mentioned that various investigations have been conducted on X-ray
spectra production via both theoretical and MCNP methods. Utilizing MCNPX code,
Hernandez et al. produced an X-ray spectrum for diverse voltages of the tube. To define
source energy, the achieved X-ray spectrum using the TASMIC package for 150 kV as tube
voltage was embedded into the input of MCNPX file by SI and SP choices in the SDEF card.
The aforementioned source of the photon was inserted in a cylinder serving as an X-ray
tube shield. On the shield surface, a section (the entitled output window) was left open
for the releasing of the congenial produced X-ray photons. For filtration of low energy
photons in this scrutiny, an aluminum filter with a thickness of 2.5 mm was placed against
the output window of the X-ray tube.

2.2. Frequency Domain Feature Extraction

Feature extraction is performed from the measured raw data and provides a derivative
amount of data that aims to reduce the size, eliminate useless data, facilitate the training
process, and generalize the data. It also improves the interpretation of the data. When
the available data is too large for processing, feature extraction methods are utilized to
decrease the dimensions while preserving the properties of the data. When the amount of
data available is large, not only is data analysis very difficult, but the designed detection
system may be incompatible with the data set, and the detection system may be gener-
alized to a limited set of data. There are various methods for feature extraction, such as
feature extraction in the time, frequency, and time–frequency domain, and some innovative
techniques that can be used (in proportion to raw data) to reduce the dimensions of the
data. In this research, feature extraction in the frequency domain has been used, such that
the FTT (Equation (1) [20]) was used to convert the received signals into the frequency
domain. Then, the first and second dominant frequencies of the signals were extracted. As
mentioned, two detectors have been used in this study and two characteristics have been
extracted from each detector. Therefore, four characteristics were implemented for training
the neural networks.

Y(k) =
n

∑
J=1

x(J)w(y−1)(k−1)
n (1)

where Y(k) = FFT(X) and wn = e(−2πi)/n is one of n roots of unity.
Figure 3 shows the received and converted signals into the frequency domain for all

three mentioned flow regimes.
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Figure 3. Recorded signals in time domain and converted signals into the frequency domain: (a)
annular (b) homogenous (c) stratified flow regimes.

2.3. RBF Neural Network

In the last few years, various computational techniques have been utilized for various
applications in the engineering research area [21–80]. RBF Neural Network is one of the
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most widely used neural networks that applies radial basis functions as an activation
function. This network is used in many applications, such as function approximation, time
series prediction, classification, and system control [81,82]. This neural network is a feed-
forward neural network, which consists of three layers called the input layer, the hidden
layer, with a nonlinear activation function, and the output layer, with linear function [83].
The output of the ith hidden neuron is obtained by the following equation [83]:

zi = k

(
‖x− ri‖

σ2
i

)
i = 1, 2, . . . , k (2)

where k is the neurons number in the hidden layer, σi is the width of the receptive field
in the input space from unit i, k is a strictly positive radially symmetric function (kernel)
with a unique maximum at its center (µi), which drops off promptly to zero away from the
center. This means that zi is a significant value when the distance of ‖x− µi‖ is less than
the width of σi [84]. By considering the input vector of X, the output of the nth neuron of
the output layer is obtained by [84]:

yn(x) =
k

∑
i=1

winzi(x) n = 1, 2, . . . , N (3)

where win is the weighting factor.

E (W) = ‖HW− Y‖2 (4)

which H and Y are the outcome of radial basis functions and desired output, respec-
tively [84].

The available data are divided into two categories: training and testing data. The
use of test data in the network training process reassures us to avoid under-fitting and
over-fitting problems.

3. Results and Discussion

In this study, three RBF neural networks have been designed to determine the type
of flow regimes and detect volume percentages. The inputs of these networks are the
first and second dominant frequencies of the recorded signals of both detectors. The ratio
of data sharing as training data and test data is 70% to 30%, respectively. The designed
classifier network has four input neurons, 35 hidden neurons, and one output neuron. The
configuration of the classifier network is shown in Table 1. The output of this network are
the numbers 1, 2, and 3, which are related to the annular, homogeneous, and stratified
regimes, respectively. It should be noted that several thresholds are considered for the
output of this network, so that the outputs between 0.5 and 1.5 are in the annular class, the
outputs between 1.5 and 2.5 are in the homogeneous class, and the outputs between 2.5 and
3.5 are in the stratified class. Figure 4 shows the network structure of the classifier network,
which is responsible for classifying flow regimes. Figure 5 illustrates the performance of
this network for training and testing data using a confusion matrix, which represents 100%
accuracy.

Table 1. Configuration of classifier network.

ANN Type RBFNN

Goal of Mean Squared Error (MSE) 0

Radial basis functions spread 4

Maximum neuron in hidden layer 35

Number of neurons to add between each test 1
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Figure 4. The structure of the flow regime classifier neural network.

Figure 5. Performance of classifier network for (a) training and (b) testing data.

Two predictor neural networks are designed to determine the volume percentages
of the gas phase and the water phase. It is necessary to say that, because the volume of
the pipe is constant, by determining the volume percentage of the two phases, the volume
percentage of the third phase is easily obtained. In this research, to show the performance
of designed networks, a fit diagram (in which both network outputs and targets are plotted
on a diagram), an error diagram, error histogram diagram, and a regression diagram
have been illustrated. The structures of the neural networks used to estimate the volume
percentage of the gas and water phases and the performance of these networks are shown in
Figures 6–9, respectively. The configuration of the gas and water volume fraction predictor
network is shown in Table 2.

Figure 6. The structure of the gas phase volume fraction predictor RBF neural network.
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Figure 7. The structure of the water phase volume fraction predictor RBF neural network.

Figure 8. The fit diagram, the error histogram diagram, the error diagram, and the regression diagram to show the
performance of the gas phase volume fraction predictor network for (a) train data (b) test data.

Figure 9. The fit diagram, the error histogram diagram, the error diagram, and the regression diagram to show the
performance of the water phase volume fraction predictor network for (a) train data (b) test data.
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Table 2. Configuration of gas and water volume fraction predictor network.

ANN Type
RBFNN

Gas Water

Goal of Mean Squared Error (MSE) 0 0

Radial basis functions spread 4 3

Maximum neuron in hidden layer 45 58

Number of neurons to add between each test 1 1

In fact, for the purpose of obtaining the optimal RBF model, several structures have
been constructed and tested. The number of neurons was increased one by one from 1
neuron until the obtained error became almost constant. Until 35 neurons for classifier
network, 45 neurons for gas volume fraction predictor network, and 58 neurons for water
volume fraction predictor network, the errors changed meaningfully; however, after that,
the error change was negligible. This behavior has been shown in Figures 10–12, which
are performance graphs. In other words, selecting more neurons not only improves the
performance of the neural network, but also increases the complexity of the designed
networks.

Figure 10. Performance graph of the flow regime classifier network.

Figure 11. Performance graph of the gas volume fraction predictor network.
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Figure 12. Performance graph of the water volume fraction predictor network.

To illustrate the performance of the designed networks, two error criteria, root mean
square error (RMSE) and mean relative error (MRE), are calculated as follows and tabulated
in Table 3:

RMSE =

[
∑N

j=1 (Xj(EXP)− Xj(pred))2

N

]0.5

(5)

MRE% = 100× 1
N

N

∑
j=1

∣∣∣∣∣Xj(EXP)− Xj(pred)
Xj(pred)

∣∣∣∣∣ (6)

Table 3. Calculated the network’s error.

Output RMSE Train MRE Train RMSE Test MRE Test

Gas fraction 2.07 1.43 1.99 1.85

Water fraction 1.57 2.02 1.97 1.56

A comparison between current research and previous studies is shown in Table 4. As
is clear from the table, the use of frequency characteristics and RBF neural network is very
effective in increasing the accuracy in determining the parameters of volume percentages
and the type of flow regimes. It should be noted that the available data are often affected
by uncertainty or imprecision, therefore it would be interesting to design non-destructive
systems based on fuzzy logic approaches [85–87]. This subject could be used in future
research in this area.
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Table 4. Comparison of the proposed method with some previous research.

Reference Type of ANN Flow Regime Regime
Classification

Volume Fraction Prediction

MRE% RMSE

[2] MLP Three Phase
(Stratified) - 6.47 1.6

[17] GMDH Three Phase
(Annular, Stratified, Homogenous) Not completely - 5.39

[88] MLP Three Phase
(Annular, Stratified, Homogenous) Completely 3.5 -

[89] Jaya optimization algorithm
and neuro-fuzzy network

Three Phase
(Stratified) - 1.31 0.56

[90] adaptive neuro-fuzzy
inference system

Three Phase
(Annular) - 2.73 -

[91] MLP Three Phase
(Stratified) - 4.64 1.49

[92] MLP Three Phase
(Stratified) - 7.08 2.48

This study RBF Three Phase
(Annular, Stratified, Homogenous) completely 2.02 2.07

4. Conclusions

In this study, the application of characteristics of the signal in the frequency domain as
well as the RBF neural network to determine the type of flow regimes and volume percent-
ages in three-phase flows have been investigated. The structure of the detection system,
which consists of an X-ray tube, a Pyrex-glass, and two NaI detectors, was implemented
using the MCNP-X code. From each received signal, two characteristics named amplitude
of the first and second dominant frequency were extracted and used as neural network
inputs for network training. As a result, three networks were implemented to diagnose
the type of flow patterns and determine the gas and water phase volume percentages.
Reducing the error in determining the mentioned parameters due to the use of frequency
characteristics and the RBF network is a great achievement of this research.
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