The Future is Ours: Prophecy Variables in Separation Logic

RALF JUNG, MPI-SWS, Germany

RODOLPHE LEPIGRE, MPI-SWS, Germany

GAURAV PARTHASARATHY, ETH Zurich, Switzerland and MPI-SWS, Germany
MARIANNA RAPOPORT, University of Waterloo, Canada and MPI-SWS, Germany
AMIN TIMANY, imec-DistriNet, KU Leuven, Belgium

DEREK DREYER, MPI-SWS, Germany

BART JACOBS, imec-DistriNet, KU Leuven, Belgium

Early in the development of Hoare logic, Owicki and Gries introduced auxiliary variables as a way of encoding
information about the history of a program’s execution that is useful for verifying its correctness. Over a
decade later, Abadi and Lamport observed that it is sometimes also necessary to know in advance what a
program will do in the future. To address this need, they proposed prophecy variables, originally as a proof
technique for refinement mappings between state machines. However, despite the fact that prophecy variables
are a clearly useful reasoning mechanism, there is (surprisingly) almost no work that attempts to integrate
them into Hoare logic. In this paper, we present the first account of prophecy variables in a Hoare-style
program logic that is flexible enough to verify logical atomicity (a relative of linearizability) for classic examples
from the concurrency literature like RDCSS and the Herlihy-Wing queue. Our account is formalized in the Iris
framework for separation logic in Coq. It makes essential use of ownership to encode the exclusive right to
resolve a prophecy, which in turn lets us enforce soundness of prophecies with a very simple set of proof rules.

CCS Concepts: » Theory of computation — Separation logic; Programming logic; Operational semantics.
Additional Key Words and Phrases: Prophecy variables, separation logic, logical atomicity, linearizability, Iris

ACM Reference Format:

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart
Jacobs. 2020. The Future is Ours: Prophecy Variables in Separation Logic. Proc. ACM Program. Lang. 4, POPL,
Article 45 (January 2020), 32 pages. https://doi.org/10.1145/3371113

1 INTRODUCTION

When proving correctness of a program P, it is often easier and more natural to reason forward—that
is, to start at the beginning of P’s execution and reason about how it behaves as it executes. But
sometimes strictly forward reasoning is not good enough: when reasoning about a program step s,
it may be necessary to “peek into the future” and know ahead of time what will happen at some
future program step s;.

Authors’ addresses: Ralf Jung, MPI-SWS, Saarland Informatics Campus, Germany, jung@mpi-sws.org; Rodolphe Lepigre,
MPI-SWS, Saarland Informatics Campus, Germany, lepigre@mpi-sws.org; Gaurav Parthasarathy, Department of Computer
Science, ETH Zurich, Switzerland and MPI-SWS, Germany, gaurav.parthasarathy@inf.ethz.ch; Marianna Rapoport, Univer-
sity of Waterloo, Canada and MPI-SWS, Germany, mrapoport@uwaterloo.ca; Amin Timany, imec-DistriNet, KU Leuven, Bel-
gium, amin.timany@cs.kuleuven.be; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org;
Bart Jacobs, imec-DistriNet, KU Leuven, Belgium, bart.jacobs@cs.kuleuven.be.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART45

https://doi.org/10.1145/3371113

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3371113
https://doi.org/10.1145/3371113

45:2 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

To address this need, Abadi and Lamport [1988, 1991] introduced the idea of prophecy variables.
Prophecy variables are a form of auxiliary variable—a “logical” or “ghost” variable that encodes
state information relevant to the proof of a program that is not present in the physical state of
the program itself. Auxiliary variables were originally proposed by Owicki and Gries [1976] in
the form of history variables, which record information about what has happened in an execution
so far (the past). In contrast, prophecy variables supply information about what will happen later
on in the execution (the future). The focus of Abadi and Lamport’s original paper was on using
both history and prophecy variables to prove that one program (or program specification) is
a correct implementation of another, by showing that the first refines—i.e., has a subset of the
observable behaviors of—the second. Their main result was a theorem establishing that, under
some restrictions, the combination of history and prophecy variables offers a sound and complete
technique for proving valid refinement mappings.

However, despite the duality and complementarity of history and prophecy variables, there is a
striking difference between the formal settings in which these mechanisms have been deployed:

e History variables were introduced in the 1970s in the context of Hoare logic. They—along
with their modern descendants like user-defined ghost state [Dinsdale-Young et al. 2013;
Ley-Wild and Nanevski 2013; Turon et al. 2014; Jung et al. 2015; Sergey et al. 2015; Jung et al.
2018]—continue to this day to play an important role in deductive program verification.

e Prophecy variables were introduced as a tool for establishing refinement mappings be-
tween state machines, but compared to history variables they remain a fairly exotic and
under-explored technique. Moreover, although prophecy variables have been integrated into
verification tools based on reduction [Sezgin et al. 2010] and temporal logic [Cook and Koski-
nen 2011; Lamport and Merz 2017], there has been almost no work at all on incorporating
prophecy variables into a Hoare-style program logic.

1.1 Prior Work on Using Prophecy Variables in Hoare Logic

To our knowledge, there are only two pieces of prior work that utilize prophecy variables in the
context of Hoare logic. However, one of them suffers from a serious, previously undiscovered
technical flaw, and the other is quite limited in its expressiveness.

The first is Vafeiadis’s PhD thesis [Vafeiadis 2008], in which he shows how to prove linearizabil-
ity—a standard correctness criterion for concurrent data structures [Herlihy and Wing 1990]—using
RGSep [Vafeiadis and Parkinson 2007], a modern variety of separation logic [Reynolds 2002]. To
prove linearizability using Vafeiadis’s method involves finding a “linearization point” in each
concurrent operation—i.e., an instant during the execution of the operation when the operation
appears to atomically take effect—and updating a relevant bit of “ghost state” at that point. For some
more advanced data structures, though, the location of the linearization point may not be evident at
the point in time when it occurs, but perhaps only later, at a future step of execution. Vafeiadis gives
one such example, the RDCSS data structure [Harris et al. 2002], and uses prophecy variables to
guess the location of the linearization point ahead of time. But the treatment of prophecy variables
in his proof is informal: he suggests that they are a sound technique by reference to Abadi and
Lamport’s paper, but does not formalize their integration into his program logic.

The second piece of prior work is due to Zhang et al. [2012], who present a “structural” approach
to prophecy variables, motivated explicitly by the desire to put Vafeiadis’s technique on a more
formal footing. What makes their approach “structural” is that, to simplify the proof of soundness,
their prophecy variables have restricted scope: at program step sy, one can guess the result of what
will happen at future step s; only if both sy and s; occur in the same syntactic block. In particular,
their approach does not allow one thread to prophesy the result of a future step executed by a

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:3

different thread. Nevertheless, they claim that it is sufficient to handle the RDCSS example from
Vafeiadis’s thesis because his use of prophecy variables follows this structural discipline.

Unfortunately, we have discovered that Vafeiadis’s proof of RDCSS is flawed. (We reported
the flaw to him, and he has confirmed it.) Even more unfortunately, the flaw in Vafeiadis’s proof
pertains directly to his use of prophecy variables that follow the structural discipline. As we argue in
§6.1, for verifying RDCSS it seems necessary to employ non-structural prophecies (e.g., prophecies
across threads).

1.2 Our Contribution: Accounting for Prophecy Variables in Separation Logic

In this paper, we present the first account of prophecy variables in a Hoare-style program logic
that is sufficiently flexible to verify classic examples from the concurrency literature, such as
RDCSS [Harris et al. 2002] and the Herlihy-Wing queue [Herlihy and Wing 1990]. Unlike the
original work on prophecies, we make no claims about completeness, and we focus solely on safety
properties. Rather, our goal is to establish prophecy variables as a viable and useful addition to the
Hoare logic toolbox.

The key idea behind our approach is to model prophecy variables as an ownable resource in the
context of concurrent separation logic [O'Hearn 2007]. When we create a prophecy variable p in a
separation-logic proof, we will obtain exclusive ownership of a prophecy assertion Proph(p, v) for
some value v. This assertion tells us two things: (1) “the future is ours”—we own the exclusive right
to resolve (i.e., assign a value to) p—and yet (2) “we cannot escape our destiny”—p is prophesied to
be resolved to v, meaning that if p does get resolved in the future of the program’s execution, then
it will be resolved to v. In order to verify a subsequent step of execution in which p is resolved to a
value w, we must give up ownership of Proph(p, v), but in return we learn that v = w (i.e., that
our prophecy was correct). The exclusivity of Proph(p, v) here serves to guarantee that p can be
resolved at most once, so we do not have to worry about it being resolved in inconsistent ways
by different threads. Thus, by buying into the framework of concurrent separation logic, we get
soundness of prophecies for free!

Furthermore, we are not restricted to one-shot prophecies: we also support a more general form
of prophecy variables that can get resolved multiple times.! When such a variable p is created, it
will prophesy the sequence of values with which it will be resolved (i.e., Proph(p, [v1, . . ., v,])). We
can then use this exclusive assertion to resolve p multiple times, threading ownership of it through
the resolutions but popping another value v; off the head of the sequence each time we resolve.
Such sequence prophecies are useful, for example, when proving linearizability of a concurrent
data structure, because they allow us to predict the ordering of concurrent operations in advance.

We develop our formal account of prophecy variables in the higher-order concurrent separation
logic framework Iris [Jung et al. 2018]. We have several reasons for doing so. First, Iris provides
a modular foundation for rapid prototyping of new separation logics: much of the hard work of
proving soundness of a modern separation logic is already handled in the soundness proof of
the Iris “base logic”, and so the encoding of new logics can be done at a relatively high level of
abstraction. Second, Iris is implemented in the Coq proof assistant and provides good tactical
support for interactive development of machine-checked separation-logic proofs [Krebbers et al.
2017, 2018].

Last but not least, by developing prophecy variables in Iris, we can at last overcome one of
the major limitations of prior work on concurrent separation logic (Iris included). Specifically,
several advanced separation logics have established proof techniques for a very strong correctness
property for concurrent data structures called logical atomicity (a.k.a. “abstract atomicity”) [Jacobs

Lamport and Merz [2017] also support multiple resolutions in TLA+ with array and data structure prophecy variables.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:4 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

new_EA_coin() £ {val = ref(nondet_bool())} read_EA_coin(c) £ ! c.val

Fig. 1. An extremely simple implementation of eager coins.

read_LZ_coin(c) =

new_LZ_coin() £ match!c.valwith

letv = ref(None); Some(b) = b

let p = NewProph; | None = letr = nondet_bool();

{val = v, p = p} c.val < Some(r);

Resolvec.ptor;r
end

Fig. 2. The lazy coin implementation.

and Piessens 2011; da Rocha Pinto et al. 2014; Jung et al. 2015; Frumin et al. 2018]. Logical atomicity
can be seen as an “internalization” of linearizability within separation logic: operations on a
data structure that are proven to be logically atomic may be reasoned about by clients of the
data structure using much stronger proof rules that are normally reserved for physically atomic
operations (see §4 for details). However, there are certain concurrent data structures for which it
was seemingly impossible to prove logical atomicity in existing separation logics: namely, those
data structures (like RDCSS and the Herlihy-Wing queue) whose linearization points can only be
determined at some future step of execution. Using prophecy variables, we can finally prove logical
atomicity for such data structures in Iris.

The rest of the paper is structured as follows. In §2, we present our separation-logic account of
prophecy variables, and show how to use it to verify some simple motivating examples. In §3, we
describe how we establish the soundness of prophecy variables in Iris. In §4, using the RDCSS data
structure as a motivating example, we review the idea of logical atomicity and how it is proven in
Iris. In §5, we explore the implementation of RDCSS in detail and give an intuitive argument for its
correctness. In §6, we show how prophecies are useful in proving RDCSS formally in Iris. Finally,
in §7, we conclude with related and future work.

All the results in this paper are verified in Coq [Jung et al. 2019]. Our Coq formalization also
includes prophecy-based proofs of logical atomicity for several other examples, including an “atomic
snapshot” data structure [Sergey et al. 2015] and the Herlihy-Wing queue [Herlihy and Wing 1990].
In addition, we have extended the VeriFast program verifier [Jacobs et al. 2011] with support for
prophecy variables based on our separation-logic specification, and used that extension to verify
several interesting examples [Jung et al. 2019]. For space reasons, we focus here solely on our
account of prophecy variables in Iris.

2 KEY IDEAS

In this section we use a simple motivating example to illustrate the key ideas of how we incorporate
prophecy variables into separation logic and use them for reasoning about non-deterministic
behavior of programs. We begin by presenting our example (§2.1) to motivate the introduction of
one-shot prophecy variables (§2.2), which prophesy a single future value. We then present the more
general sequence prophecy variables (§2.3), which prophesy a sequence of values, and again give
an example to illustrate their use. We also show how one-shot prophecies can be derived using
sequence prophecies. We conclude the section by introducing atomic resolutions of prophecies
(§2.4), which are useful when verifying concurrent algorithms.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:5

2.1 Motivating Example: A Specification for Eager and Lazy Coins

Lazy coins. Consider the code in Fig. 1, which presents an extremely simple implementation of
eager coins. The function new_EA_coin flips a coin by non-deterministically choosing some boolean
value, and then stores the result in a freshly allocated ref cell. The function read_EA_coin simply
reads the value of the coin by dereferencing the ref cell. We call these coins “eager” because their
value is determined immediately upon their creation. (Note that the use of mutable state here is
gratuitous: it merely serves to build a better bridge to the next example.)

One possible Hoare-style specification for these functions is the following:

{True} new_EA_coin() {c. 3b. EagerCoin(c, b)}
{EagerCoin(c, b)} read_EA_coin(c) {v. v = b = EagerCoin(c, b)}

Here, the abstract predicate EagerCoin(c, b) asserts that the coin ¢ has value b. Thus, when we
create a new coin ¢, we learn that there exists some boolean b such that ¢ has the value b; and when
we subsequently read c, the result must be b. Note that the postconditions of the two functions
contain a binder, which binds the result value of the expression being verified. (This is standard in
many modern presentations of separation logic for functional languages. We will omit the binder
when the result value is unit, i.e., ().)

To prove this spec, the abstract predicate EagerCoin(c, b) can be defined simply as follows:

EagerCoin(c, b) £ c.val — b

This is the famous “points-to” predicate of separation logic, which asserts both ownership of the
ref cell c.val and the knowledge that c.val points to b. With this definition in hand, the coin spec
follows directly from the basic rules of standard separation logic.

Now consider the implementation of lazy coins shown in Fig. 2. For the time being, ignore
the code colored in red—it is prophecy-related “ghost code”, whose purpose we will explain in a
moment.

Lazy coins differ from eager coins in that the coin flip does not take place when a coin is created
but rather when the coin is first read. To achieve this, the lazy coin’s value is represented as a
reference to a boolean option. When the coin is created, it starts out with value None. Then, when
the coin is read for the first time, a boolean b is non-deterministically chosen and the coin’s value
is updated to Some b. Thereafter, all reads of the coin return b.

From the point of view of a client, lazy coins are indistinguishable from eager coins, since there is
no way to observe the value of a coin in between its creation and the first time it is read. Therefore,
we ought to be able to prove the same specification for lazy coins as we did for eager coins:

{True} new_LZ_coin() {c. 3b. LazyCoin(c, b)}
{LazyCoin(c, b)} read_LZ_coin(c) {v. v = b * LazyCoin(c, b)}

However, under the usual semantics for Hoare triples in separation logic, there is no way of defining
LazyCoin that would validate this spec. The problem is that, when verifying new_LZ_coin(), we
don’t know how to instantiate the existential quantifier for the boolean value b in the postcondition.
The identity of b will only be known later, when c is read for the first time.

This is precisely the type of verification problem that prophecy variables were born to solve.

2.2 One-Shot Prophecies

We begin here by introducing a simple form of prophecy variables we call one-shot prophecies. To
make use of these prophecies in our verification, we must instrument our code with prophecy ghost
variables, along with ghost operations for manipulating them. This ghost code does not in any way

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:6 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

alter the behavior of the program and is only inserted to facilitate program verification. We use the
color red to distinguish ghost code from regular code, and in §3.5, we will formally prove that such
ghost code is safely erasable.
The specifications for the one-shot prophecy operations NewProph and Resolve are as follows:
ONE-SHOT-PROPHECY-CREATION ONE-SHOT-PROPHECY-RESOLUTION

{True} NewProph {p. Jv. Proph,(p, v)} {Proph,(p,v)} Resolvep tow {v = w}

The prophecy creation operation NewProph returns a fresh prophecy identifier p, along with a
prophecy assertion Proph,(p, v) for some existentially-quantified value v. This assertion describes
both the exclusive right to resolve the prophecy p, as well as the knowledge that p will be resolved
to v later in the execution of the program. Given this prophecy assertion, the resolve operation,
Resolvep tow, resolves p to the value w. This resolution guarantees in the postcondition that the
prophesied value v is in fact the same as the value w to which p was actually resolved. Crucially,
prophecy resolution consumes the right to resolve the prophecy: this is essential for ensuring that
a one-shot prophecy variable is not resolved more than once in a single execution trace (as that
would lead us to a logical inconsistency).

Note that Resolve p to w places no restriction on the value w to which p is resolved. The reader
may wonder: if we own Proph;(p, v) and we resolve it to w # v, won't this lead us to a contradiction
in our proof? Yes, it will, and that is the whole point! Ownership of Proph;(p, v) tells us something
about the future execution trace of the program we are currently verifying, namely that p will get
resolved to v. If we then get to the point of resolving p to a different value, we know we must be in
an impossible case of the proof. Indeed, we will see an example of this kind of reasoning in §6.3.

That said, there are situations where it is useful to place some restrictions on the values to which
a prophecy is resolved, in the interest of simplifying the proof. For that purpose we introduce typed
prophecy assertions. Specifically, let V be a nonempty set of values representing a “type”. We can
define the V-typed prophecy assertion Proph; (p, v) as follows:

Proth(p, v) = Juy. Proph,(p,vg) * (vg = v V vy & V) (1)

We can then derive the following spec for typed one-shot prophecies from the untyped spec above:

ONE-SHOT-PROPHECY-CREATION-TYPED ONE-SHOT-PROPHECY-RESOLUTION-TYPED
{True} NewProph {p. Jv € V. Proph! (p,v)} {ProphY (p,v) * w € V} Resolve p tow {v = w}

These are the same as the rules for untyped prophecies, except that: (1) the typed prophecy creation
rule is stronger—it ensures that p will be resolved to an inhabitant of V—and (2) the typed prophecy
resolution rule is weaker—it requires that we resolve p to an inhabitant of V. In the coin example,
we will make use of Boolean prophecies, where V is chosen to be B = {true, false}.

The key idea for the proof of ONE-SHOT-PROPHECY-CREATION-TYPED is, in case the actually prophesied
value vy is not in V, to just use any “fake value” v € V. This corresponds to the right disjunct in (1).
In ONE-SHOT-PROPHECY-RESOLUTION-TYPED, that case leads to a contradiction since vy = w € V.

Verifying the lazy coin spec. With one-shot prophecies in hand, we will now be able to verify the
spec for lazy coins shown in §2.1.

The first step is to instrument the implementation of lazy coins with a one-shot prophecy, which
will tell the creator of a lazy coin what value the coin will eventually take on. Specifically, we now
equip coins with an additional prophecy field p, along with ghost code for manipulating p. When a
coin is created, the prophecy p is created along with it. When a coin is read for the first time, the
value r gets chosen for it, and the coin’s prophecy field p gets resolved to r.

The second step is to define the predicate LazyCoin(c, b) used in the lazy coin spec. Intuitively,
LazyCoin(c, b) holds either if (1) ¢ has been read already and it stores b, or if (2) ¢’s prophecy field

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:7

{LazyCoin(c, b)}
read_LZ_coin(c) &
{(c,val > Some b) V (c.val > None Proph?’(c.p, b))}

{True} {c.val — Some b} {c.val — None Proph]]B(c.p, b)}
new_LZ_coin() £ match! c.valwith match ! c.valwith
let v = ref(None); | Some b = b | Some b = b
{v > None} | None = - - . | None =
let p = NewProph; {v. v = b x LazyCoin(c, b)} letr = nondet_bool();
{v — None * PrOph?‘"(p, b) c.val « Some r;
{LazyCoin({val = v;p = p},b)} c.val — Some r
{val = v,p = p} Proph?(c.p,b)+r € B
{c. 3b. LazyCoin(c, b)} Resolvec.ptor;
{c.val — Some r = r = b}
;
{v. v = b = LazyCoin(c, b)}

{v. v = b LazyCoin(c, b)}

Fig. 3. Proof outline for lazy coin operations.

indicates that it will be set to b in the future. Formally, it is defined as follows:
LazyCoin(c, b) £ (c.val — Some b) V (c.val — None * Proph]?(c.p, b))

Here, the logical connective * is the separating conjunction of separation logic; the proposition
P+ Q asserts ownership of disjoint resources, one satisfying P and the other Q. Given this definition
for LazyCoin, Fig. 3 depicts a proof outline for the lazy coin spec.

Concerning the creation operation: When a lazy coin is created, the value of the coin is None.
However, upon creating the prophecy p, we obtain Proph]IB(p, b) for some Boolean value b. Hence,
we can establish the required postcondition by proving the right disjunct of LazyCoin(c, b).

Concerning the read operation: There are two different cases to be considered, corresponding
to the two disjuncts of LazyCoin; these are shown on either side of the vertical separating bar.
The left disjunct of LazyCoin corresponds to the case where the coin already has a value, i.e., the
read operation has been called before. This case is straightforward as the stored value is simply
returned. In the other case, i.e., on the first call to the read operation, the value of the coin is None.
Hence, a Boolean value r is generated non-deterministically and the value Some r is stored in the
coin’s internal reference. After this, the prophecy is resolved to r. At this point, we obtain that the
generated value r equals the prophesied value b, which allows us to recover LazyCoin(c, b), this
time by proving the left disjunct.

2.3 Sequence Prophecies

In more complex scenarios, it is useful to be able to prophesy not only a single future event, but a
sequence of future events. For this purpose we introduce sequence prophecies.

As motivation for sequence prophecies, consider the implementation of the clairvoyant coin
shown in Fig. 4, for the moment ignoring the ghost code. The implementation itself is mostly
straightforward. The creation operation initializes the coin to a non-deterministically chosen
Boolean value, the read operation reads it—and unlike the coins we have considered so far, there is
also a toss operation that assigns a new, non-deterministically chosen Boolean value to the coin.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:8 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

new_CL_coin() £ read_CL_coin(c) £ toss_CL_coin(c) &
let v = ref(nondet_bool()); c.val letr = nondet_bool();
let p = NewProph; c.val « r;
{val = v,p = p} Resolvec.ptor

Fig. 4. The clairvoyant coin implementation.

{ClairvoyantCoin(c, bs)}
toss_CL_coin(c) £
{bs =b:bs’ % cval — b Proph‘?'(c.p, bs’)}
letr = nondet_bool();
cval —r
{bs = b bs’ % c.val — 1 Proph®(c.p, bs’) x 1 € 15%}
Resolvec.ptor;
{bs =bubs xbs’ =r:ubs’ xcval v rx Prophg(c.p, bs”)}
{Eb, bs’. bs = b :: bs" * ClairvoyantCoin(c, bs/)}

Fig. 5. Proof outline for the toss operation of the clairvoyant coin.

What is interesting is the specification that we aim to give to this coin implementation, which
explains the sense in which it is clairvoyant:

{True} new_CL_coin() {c. Ibs. ClairvoyantCoin(c, bs)}
{ClairvoyantCoin(c, bs)} read_CL_coin(c) {x. 3bs’. bs = x = bs’ * ClairvoyantCoin(c, bs)}
{ClairvoyantCoin(c, bs)} toss_CL_coin(c) {3x, bs’. bs = x == bs" = ClairvoyantCoin(c, bs")}

Here, the predicate ClairvoyantCoin(c, bs) indicates that bs is the sequence of values that ¢ will
take on in the course of the program’s execution, with the head of bs being ¢’s current value.
Consequently, when we read the coin, we know that the value x we read must be whatever value
is at the head of bs; and when we toss the coin, we pop that head element of bs off. Of course, the
challenge is that in order to verify the spec for new_CL_coin, we must somehow be able to predict
the entire sequence of coin flips up front.

This is precisely the functionality that sequence prophecies provide. We write Proph(p, vs) to
express that the sequence prophecy variable p prophesies the sequence of values described by
vs. Here, vs is in fact a list of pairs of values—and the reason for that will be explained when we
introduce atomic resolutions in §2.4—but for the moment we will essentially work with pairs of the
form ((), w) where () is the element of the unit type and w is a value to which p gets resolved.

The formal specifications for sequence prophecy creation and resolution are as follows:

SEQUENCE-PROPHECY-CREATION

{True} NewProph {p. Jvs. Proph(p, vs)}

SEQUENCE-PROPHECY-SIMPLE-RESOLUTION

{Proph(p, vs)} Resolve p tow {3vs". vs = ((), w) :: vs’ = Proph(p, vs')}

When p is created using NewProph, we obtain Proph(p, vs) for some sequence vs prophesying all
the subsequent resolutions of p. When p gets resolved using Resolve p to w, the postcondition of
the prophecy resolution tells us that vs = ((), w) :: vs’ for some sequence vs’. In other words, we

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:9

learn that our prophecy was correct: w was the first value to which p was resolved. Furthermore,
after resolution, we are left owning Proph(p, vs’), i.e., we have popped the first element w off the
sequence, but the remaining predictions remain to be observed (at subsequent resolutions).

Similar to one-shot prophecies, it is again useful to develop a typed variant of sequence prophecies.
We thus define a predicate Proph" (p, vs), similar to Proph} (p, v) from §2.2, that allows us to enforce
that the values we prophesy are drawn from a non-empty set of values V representing a “type”
(using notation (v1, v3).2 = vy):

ProphY (p, vs) £ 3vs’. Proph(p, vs') = |vs| = |vs'| * Vi < |vs|. vs}.2 = vs; V vs,.2 ¢ V

Using the untyped rules, we can easily derive the following rules for typed prophecies, where the
notation V* denotes the set of lists of elements of V:

SEQUENCE-PROPHECY-CREATION-TYPED
{True} NewProph {p. 3vs € V*. Proph" (p, vs)}

SEQUENCE-PROPHECY-SIMPLE-RESOLUTION-TYPED
{Proph¥ (p, vs) * w € V}Resolve p tow {3vs". vs = w :: vs" % Proph” (p, vs')}

Going back to the clairvoyant coin example, we can now use typed sequence prophecies to define
the ClairvoyantCoin predicate as follows:

ClairvoyantCoin(c, bs) = 3b, bs’. bs = b :: bs’ * c.val > b * ProphB(c.p, bs")

The proof of correctness of the toss operation is given in Fig. 5. (We omit the proofs of correctness
of the creation and reading of clairvoyant coins since they are rather straightforward.)

Encoding one-shot prophecies with sequences. Unsurprisingly, sequence prophecy variables are
more powerful than their one-shot counterpart. In fact, one-shot prophecies can be encoded using
sequence prophecies. The idea is to encode the value v of the one-shot prophecy variable as the
first predicted resolution of the underlying prophecy sequence. Formally, we define:

Proph,(p, v) £ Jvs. Proph(p, vs) * (vs = [] V head(vs).2 = v)

With this, the specifications for one-shot prophecies can be derived from those for sequence
prophecies. The only interesting part is in the proof of sEQUENCE-PROPHECY-SIMPLE-RESOLUTION, Where
vs = [] will lead to a contradiction.

2.4 Atomic Prophecy Resolution

Another use-case of sequence prophecies is to predict the interleaved sequence of future actions by
several threads. In particular, when many threads are racing to be the first to update some shared
location, it can be important to know in advance which thread will win (e.g., we will need this in §6).

Prophecy variables as we described them so far are insufficient for this use-case. We can use
sequence prophecies to determine which thread will be the first to resolve a prophecy p, but the
problem is that resolving p takes place in its own step of execution. To accurately predict the
interleaving of atomic actions by multiple threads, we need a way to resolve p in the same step
that we perform some other atomic action that we care about (e.g., updating a shared location).

This is the purpose of the atomic resolution operation: Resolve(e, p, w). This operation evaluates
atomically to a value v if e evaluates to v atomically. Furthermore, during this atomic step, the
prophecy variable p also gets resolved to the value (v, w), i.e., the pair comprising the result of the
underlying atomic operation together with the resolution value w.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:10 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

We can give the following specification for the atomic resolution operation:
SEQUENCE-PROPHECY-RESOLUTION
phys_atomic(e)
{Proph(p, vs)} Resolve(e, p, w) {v. Ivs’. vs = (v, w) = vs’ = Proph(p, vs')}

In fact, the simple prophecy resolution operation we have seen so far is derived from the following
atomic resolution operation (using the do-nothing atomic operation skip):

Resolveptow £ Resolve(skip, p, w)

Here, skip reduces to (), which explains why () appeared in the spec of Resolve p to w from §2.3.

3 SOUNDNESS OF PROPHECY VARIABLES

In this section, we justify the soundness of prophecy variables by adapting Iris’s model of Hoare
triples to handle them. In Iris, Hoare triples are not a primitive construct; rather, they are encoded
in terms of a weakest precondition proposition as follows:

{Pye{®} = O(P + wp e {D})

Here, the logical connective - is the separating implication (a.k.a. magic wand) from separation
logic, and the O connective is Iris’s persistence modality, which is used to ensure that a Hoare triple
(once proven) is a freely duplicable fact.

The weakest precondition proposition wp e {®} says that if e reduces (in any number of steps) to
e’, then either e’ is a value and the postcondition ®(e”’) holds, or e’ reduces further. As a consequence,
wp e {®} implies that e is safe (i.e., never gets stuck in any execution). This intuitive understanding
of weakest pre is formalized in a theorem called Adequacy, which we present in §3.4.

The central insight behind our model of prophecy variables is the following:

e To extend Iris’s model of wp e {®} to one that supports prophecies, we parameterize it by the
sequence of future prophecy resolutions of e, and we use that parameter as the ground truth
for modeling prophecy assertions.

e In the proof of the Adequacy theorem, we are given as input some reduction sequence %
starting at e and ending at e’. Since prophecy resolutions are performed by actual operations
during the execution of e, we can read off the sequence of values that each prophecy variable
will be resolved to, just by looking at the reduction sequence X. We can then use that
information to instantiate the new parameter in the model of wp e {®}.

In the rest of this section, we make this central insight precise. We first present the operational
semantics of our language (§3.1). Afterwards, we briefly introduce a specific variant of the authori-
tative resource algebra (§3.2), which is used in modeling both the heap and prophecy resources.
We then present the definition of weakest preconditions (§3.3) and formally state the Adequacy
statement (§3.4). We conclude with the presentation of the Erasure theorem for ghost code (§3.5).

3.1 Operational Semantics

The essence of the operational semantics of our language is captured by the small-step head
reduction relation (—y,), several rules of which are given at the top of Fig. 6. The reduction rules
are of the form (e, o7) — (€2, 09, Ef, K), which should be read in the following way: expression e,
in state oy steps to expression e in state oy, spawning threads computing the expressions in €,
and making the observations ¥ (used for recording prophecy resolutions). The state ¢ consists of
a pair of a heap (represented as a finite map associating locations to values) and a set of already
used names for prophecy variables. We write ¢.1 and o.2 for the first projection (the heap) and the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:11

Examples of rules for the head reduction step relation
(fork {e} .o) —=n (0 .0 el €)
(CmpX(£,v1,09), 0 W{l —w}) —p ((w,true) ,oW{l v}, e ,e) (v;=w)f
(Cmpx([’ U1, Uz)’ oy {f — W}) —h ((W7 false)’ oW {[— W} € E) (Ul * W)T
T To remain realistic, comparison requires one of the compared values to be “word-sized” (e.g., integers, but not pairs).

(e,0) =h (v,0,€,K)

(NewProph. o) =n (p.o Wik &) o vete.p w). o) —or (0. 0.2.% # [(p. @ w)])

Evaluation contexts, per-thread and thread-pool reduction relation

K :=K(e) | v(K) | ref(K) | !K | K < e | v « K | Resolve(ey, e;,K) | Resolve(e,K,v) | ...

(els Ul) —h (32, 02, gf’ ’-é) (els O—l) - (EZa 02, Ef? ’-é)
(K[e1],01) — (K[ez], 02, €5, K) (T1 + e = Ty, 01) —=p (Ty + g = Ty + €f, 03, K)
(Ti, 01) =>tp (T, 02, K1) (Ta, 02) >y, (T3, 03, K2)

(Tls Gl) _):p (Tl’ o1, [])

(Tl, O.l) _>rp (T3a 03, ’?1 +H ’?Z)

Fig. 6. Elements of the operational semantics.

second projection (the used prophecy variable names), respectively. For conciseness, we use the
notation o W {{ « v} for (6.1 W {£ « v}, 0.2), and notation o W {p} for (c.1, 0.2 W {p}).

The main novelty here, compared to previous languages considered in Iris, is the presence of
the list of observations K. It records events of interest during evaluation, which in our case are
prophecy resolutions: the rule for Resolve(e, p, w) adds (p, (v, w)) to the list of observations, where
v is the result of evaluating expression e atomically (i.e., in exactly one step).

The “compare and exchange” instruction CmpX(¢, vy, v;) atomically compares v; with the current
value w of location ¢ (requiring one of v; and w to be word-sized, to make atomic comparison
realistic), and if they are equal then stores v, in £. The instruction returns a pair of the previous
value w and a boolean indicating whether the exchange took place.

To complete the definition of the operational semantics, the per-thread reduction relation (—),
the thread-pool reduction relation (—p), and the transitive closure of the thread-pool reduction
relation are given by the rules at the bottom of Fig. 6. The per-thread reduction step corresponds
to a head step reduction performed under an evaluation context. The thread-pool reduction non-
deterministically picks a thread in the thread-pool and runs it for a single step, adding all the
threads spawned to the thread pool. The transitive closure of the thread-pool reduction (—>fp)
accumulates all the observations of individual thread-pool steps.

3.2 Authoritative Resource Algebra

One of the distinguishing features of Iris is its very general notion of (user-defined) ownership,
based on a form of resource algebras called cameras [Jung et al. 2018]. Most notably, the heap
and the associated ¢ +— v proposition (asserting the ownership of a location £ containing value
v) are encoded using the authoritative resource algebra that we will introduce shortly. Another
instance of the same resource algebra is used for prophecy variables, which intuitively have their
own (distinct) heap. The proposition Proph(p, vs) thus plays a role similar to £ +— v: it asserts the
exclusive ownership of a prophecy variable p with “value” (really: future resolutions) vs.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:12 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

The authoritative resource algebra contains two kinds of elements:? authoritative elements
(denoted e M), which carry a finite map, and fragment elements (denoted o {i « e}), which carry a
single key-value pair. The intuition is that there is only one authoritative element, and that every
existing fragment should agree (i.e., be compatible) with it. This is reflected in the following rule:

oM sio{i—e}! > {i—eleM (AUTH-AGREE)

The notation i r|" denotes ownership of an element r of the resource algebra where the “ghost
name” y is used to distinguish different instances of resource algebras. Later we will use arbitrary
but globally fixed names yugap and ypropn for the two resource algebras involved in the semantics
of weakest preconditions.

Owned resources can be updated using view shifts, P =k Q. The authoritative resource algebra
can be updated by allocating new fragments and by updating the value of a fragment; in each case
the authoritative part needs to be updated accordingly:

i ¢ dom(M) = ‘(;f\/ﬂy =k oMW {i — e}« o {i er !’ (auTH-ALLOC)

oMW {i—e " wio{i—e) =kleMwy{i—e}i" xofi— e} (AUTH-UPDATE)

The ownership of locations and prophecy variables are both defined in terms of a fragment of an
authoritative algebra as follows:

(o v2o{l — v} Proph(p, vs) £ o {p < vs} |

YeroPH

As we will see in the next section, the corresponding authoritative parts of these resource algebras
are used in the definition of weakest preconditions.

3.3 Model of Weakest Preconditions

The definition of weakest preconditions is given below, with our extensions for supporting prophecy
variables marked in blue.?

wp e; {®} £ if e; € Val then d(e) else (return value)
Yoy, K1, K2. S(01, K1 + K2) =K
reducible(ey, o) * (progress)
V 9 b € . 9 H 9 b € b K
€2 %2 if ((el 01) = (&, 02, ¢ Kl)) =K (preservation)
5(02.12) * wp ez {®} * % .z, wp e {True}
S(o,%)2ieg.1"™ « 310 e 11| « dom(Il) = 5.2 * (state interpretation)

V{p « vs} € IL. vs = filter(p, ¥)

Let us ignore the new parts for the moment. If e; is a value, then the weakest precondition simply
requires the postcondition to hold. If, on the other hand, e; is not a value, then e; should be reducible
under any state o7 (consisting only of the heap for now) that matches the existing ¢ +— v assertions.
This connection is made by the state interpretation S: the authoritative element is tied to oy, and
thus we know that the £ +— v, which are fragments of the same resource algebra, must agree
(auts-AGreE). Furthermore, for any (ez, 02, €r) that (e, 01) steps to, we should be able to update
resources so that the new state still satisfies S. Finally, the expressions e, that we step to should
still satisfy the weakest precondition w.r.t. ¢ while the spawned threads should satisfy a weakest
precondition with the trivial postcondition (we do not care about the end result of spawned threads).

2We are only considering a particular instance of authoritative resource algebra here.
3For lack of space, we will gloss over some details (e.g., the use of guarded recursion and mask-changing view shifts); these
details are orthogonal to the present work and can be found in Jung et al. [2018] and the Coq development of Iris.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:13

The key in supporting prophecies is to change the state interpretation S to be a predicate not
only on the heap but also on the sequence of future prophecy resolutions. Now this predicate
additionally asserts authoritative ownership of a mapping IT, which maps each prophecy variable
to the sequence of its future resolutions (here, the function filter(p, K) removes all resolutions not
corresponding to p from k). Since the second argument ¥ of the state interpretation predicate is the
sequence of future prophecy resolutions, each step s of computation removes from ¥ the prophecies
resolved by s—hence, in the definition above, the state interpretation is S(ay, ¥; + K) before the
step and S(o3, K3) after the step, with ¥; being the prophecies resolved in this step.

Proving seQueNcE-proPHECY-CREATION. We will now use the definition of weakest preconditions
above to derive the prophecy creation rule (involving the NewProph ghost instruction):

SEQUENCE-PROPHECY-CREATION
{True} NewProph {p. vs. Proph(p, vs)}

The expression NewProph is not a value. Let us assume that we have S(o, K) for some state o and
future resolutions K. Obviously (see Fig. 6), NewProph is reducible under o. Thus, let us assume that
(NewProph, o) — (p, o W {p}, €, €) for some fresh p not appearing in ¢.2. Hence, we have to show:

S(o, k) =k S(c W {p},K) = wp p {p. Ivs. Proph(p, vs)}

Or equivalently, by unfolding the definition of weakest precondition and some simplification:

S(o, &) =k S(o W {p},K) = Ivs. Proph(p, vs) (2)

The domain of the authoritative prophecy map II existentially quantified in S should always match
the set of declared prophecy variables. Here, we are declaring a new prophecy variable and hence
we should update IT accordingly. Since we know that p is fresh, i.e, p ¢ 0.2, we know that it also
does not appear in the domain of II. Therefore, we can update IT using autn-aLLoc; we simply need
to pick a sequence of values for the future resolutions of p. This however is completely determined
by the second line of the definition of S: it must be filter(p,), just as we would intuitively expect.
Hence, we obtain (2) with vs £ filter(p, ¥). O

Proving seQUENCE-PROPHECY-siMPLE-RESOLUTION. We now sketch the proof of the resolution rule:

SEQUENCE-PROPHECY-SIMPLE-RESOLUTION
{Proph(p, vs)} Resolve p tow {Ivs’. vs = ((), w) :: vs' = Proph(p, vs')}

We start out with ownership of S(a, ¥; + K), and we know that (Resolve p tow, o) — ((), 7, €, K1),
which means that &; = [(p, ((), w))]. From Proph(p, vs) and autn-acrer, we have {p « vs} € II,
where II is the authoritative prophecy map, and hence vs = filter(p, (p, (), w)) :: K2) = (), w) = vs’,
where vs' = filter(p, k). Finally, using auta-uPDATE, We can simultaneously update the state
interpretation to S(o, K2) and the prophecy assertion to Proph(p, vs’), as required. O

3.4 Adequacy

The adequacy theorem states that if the weakest precondition of a program e is provable with
respect to a pure postcondition ¢, then e is safe with respect to that postcondition, which we write
as Safey(e). A predicate is pure if it can be written at the meta-level (e.g., Coq), and does not use
any Iris logic connectives. The proposition Safe(e) asserts that when e is executed, all the involved

threads are safe. Moreover, if the main thread (i.e., e itself) reduces to a value, then the postcondition
¢ holds for that value.

Safe(e) £ VT, 0,%. ([e], @) = (€ 2 T,0,K) = propery(e’, o) A Ve, € T. properre(er, o)
propery (e, o) 2 (e € Val A (e)) V reducible(e, o)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:14 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

THEOREM 3.1 (ADEQUACY). Let e be an expression and ¢ be a pure predicate over values.
If +wpe{g} then Safe,(e).

To prove Adequacy, we are given up front a full reduction sequence ([e], @) —>;‘p (e/ = T,o0,K)
starting at the expression e under the empty heap &. Crucially, this execution trace gives us access
to the full sequence ¥ of prophecy resolutions that will be made in this execution. We can thus
construct an initial state interpretation S((&, @), ¥) with an empty heap and an empty prophecy
map II (no prophecy variable has been created yet). We can then instantiate wp e {¢} with our
state interpretation and step through our execution trace until we eventually obtain wp e’ {¢} and
wp e; {True} for all e; € T, and our state interpretation becomes S(o, €). To conclude the proof, we
then simply use the “progress” and “return value” parts of the weakest preconditions.

3.5 Erasure

As we have seen, in order to use our prophecies, one must not only work with prophecy assertions
in the logic, but also instrument the code with prophecy-related “ghost” operations. Intuitively,
it is expected that such ghost operations do not affect the operational behavior of programs and
should be safely erasable. To make this formal, we first define a function erase, which eliminates
ghost operations from programs. The interesting cases of the definition of erase are the following:

erase(NewProph) = (1_. #)()
erase(Resolve(ey, ez, e3)) = 11 (11 ((erase(ey), erase(ez)), erase(es)))
erase(CmpX(ey, ez, e3)) = CmpX(erase(e;), erase(ey), erase(es))

The erased NewProph still takes a step of computation to simplify the proof, but instead of a
prophecy name it returns a special poison value #. This ensures that the erased program has
the right behavior when a prophecy name is being compared with other values: comparing two
prophecy names with each other is forbidden (they are not considered word-sized), while (real and
erased) prophecy names are considered unequal to any word-sized value. For non-ghost operations
such as CmpX and all omitted cases, the erase function just proceeds structurally.

We are now ready to state our Erasure theorem:

THEOREM 3.2 (ERASURE). Let e be a program and ¢ be a pure predicate over values such that
Safe¢(e) holds. Then, Safeq;(erase(e)) where ¢ is as follows: ¢(v) 2 Fv’. p(v') A v = erase(v’).

It is worth emphasizing that both Adequacy and Erasure pertain only to whole (closed) pro-
grams that have been proven safe unconditionally (i.e., under trivial precondition True) and whose
postconditions ¢ are pure. In particular, Erasure says nothing about preserving Hoare triples in
general because erasure does not preserve them! Hoare triples may involve prophecy assertions,
whose meaning is fundamentally tied to the prophecy resolutions in the code, so erasing prophecy
resolutions from the program will not preserve the meaning of those assertions. But this is fine,
because we only care about erasing prophecy code for whole programs that can actually execute.

4 LOGICAL ATOMICITY

We will now move on from the illustrative but contrived coin examples to showcase a much more
interesting and sophisticated application of prophecy variables. In particular, we will show how
prophecy variables enable us to prove Iris-style logical atomicity—a relative of linearizability—for
certain tricky concurrent data structures.

To make the presentation concrete, we will show how to prove logical atomicity for the RDCSS
data structure of Harris et al. [2002]. RDCSS is a key building block in the implementation of

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:15

another data structure, MCAS (multi-word CAS), which allows one to compare and exchange any
number of machine words atomically. As explained in §1, RDCSS has already served as a key case
study in prior work that attempted to integrate prophecy variables into Hoare logic [Vafeiadis 2008;
Zhang et al. 2012], but previous accounts of its verification were unsatisfactory.

In this section, we describe the abstract semantics that RDCSS is supposed to provide, and we use
this as high-level motivation for explaining the general concept of logical atomicity and how it is
formalized in Iris. Then, in §5, we present the actual RDCSS implementation, along with an intuitive
argument for its correctness which motivates the need for prophecies. Finally in §6, we explain in
significant detail how we prove logical atomicity of RDCSS formally in Iris using prophecies.

4.1 RDCSS Semantics

To explain the operational behavior of RDCSS, let us for a moment pretend that we would just
add it as a primitive to our programming language. So we would have a new language operation
RDCSS_prim(¢y,, £,,, m1, ny, nz) with the following reduction rule:

(RDCSS_prim(Cy,, £n, my, ny, n3), 0 W {€y, «— m,{, <« n})
—h (oW {lm —mly — ((mn)=(my,n) ? ny : n)}ee)
In other words, if m and n are the original values of ¢,,, and ¢,,, then RDCSS_prim(¢,,, ,,, my, ny, ny)

atomically compares them to m; and ny, respectively, and if both of them compare equal, ¢, is
updated to point to n,. Either way, the old value n is returned by the operation.

4.2 Logical Atomicity: Who Needs It?

Of course, our programming language does not actually contain RDCSS_prim as a primitive opera-
tion, and neither does real hardware. To actually use RDCSS in an implementation of MCAS, one
has to somehow implement it on top of the existing primitives. In §5, we will present the code for
an efficient implementation of RDCSS, which we will refer to as RDCSS (see Fig. 7). But before we
can think about verifying RDCSS, we first need to have a clear idea of what specification we want
to prove for it.

Naively, one might think that the following Hoare triple is a good specification for RDCSS:

{lm > mx* €ty > n}
RDCSS({m, Ens M1, N1, N2) (RDCSS-SPEC-SEQ)
{n'.n" =nslym—>m=l,— ((mn)=(my,n) ? np : n)}
This specification directly reflects the operational semantics: m and n are the initial values stored
in the two locations, and if m = m; and n = n; then the value in ¢, is updated to n,.
Unfortunately, while rocss-spec-seq would indeed be a valid specification for RDCSS (as well as

for RDCSS_prim), it is not a terribly useful one. To see why, observe that we could prove the same
specification for the following, non-thread-safe implementation of RDCSS:

RDCSS_Seq(fm, €n, m1, 01, n2) = letm = 16,,;
letn=!0,;
t, «— (if m = m; && n = n; thenn, else n);
n

Why is that? Because the precondition of rRocss-spec-seq gives RDCSS exclusive ownership of the
locations ¢, and ¢, at the beginning, and requires that the operation return exclusive ownership
of these locations at the end. Given such a strong precondition, the non-thread-safe RDCSS_Seq
behaves indistinguishably from the thread-safe RDCSS and the primitive RDCSS_prim. However, such

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:16 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

a spec is fundamentally sequential: it requires the client of RDCSS to give up exclusive ownership
of the data structure in order to invoke the operation, thus prohibiting concurrent accesses to the
data structure. To support concurrent accesses, we need to find a stronger, thread-safe spec, one
which RDCSS will satisfy but RDCSS_Seq will not.

Towards a thread-safe, Hoare-style spec for RDCSS. The canonical, strong, thread-safe specification
for concurrent data structures like RDCSS is linearizability [Herlihy and Wing 1990]: it says that
even if multiple RDCSS operations are running interleaved with one another, they still behave the
same as some linear sequence of RDOCSS_prim operations. The problem with linearizability is that
it operates outside of Hoare logic—it is expressed formally in terms of traces, whereas we want a
property that we can gainfully employ when verifying clients of RDCSS inside of Hoare logic.

Enter logical atomicity. The point of logical atomicity (which we will define below) is to reflect
the idea of linearizability into the logic of Iris, so that client verifications can make use of it—i.e., so
that clients can program against RDCSS but pretend for the purposes of verification that they are
programming against RDCSS_prim.

This begs the question: what is so special about RDCSS_prim that clients would want to pretend
that they are programming against it? The answer is atomicity: the key property that RDCSS_prim
has, which RDCSS does not, is that it is physically atomic—i.e., it completes in a single step of
computation. And the reason, in turn, that we care about atomicity is that it enables clients to
invoke RDCSS_prim when accessing an invariant.

Invariants are the central mechanism in concurrent separation logic for enforcing protocols on
the use of shared resources by concurrently running threads. Resources governed by an invariant
may be accessed using the invariant rule:*

INV

{R+P}e{v.R = Q(v)} phys_atomic(e)
F{P}e{v.Q(v)}

Here, asserts the existence of an invariant guarding the resources described by the assertion R.
Once established, | R| is a duplicable fact that can be freely shared between multiple threads so that
they can apply vv in parallel. The rule itself is best read clockwise, beginning at the bottom-left
(the precondition of the conclusion): starting with resources P, when one is reasoning about a
physically atomic operation e, one can temporarily gain ownership of the shared resource described
by R so long as one returns ownership of some (potentially modified) shared resource that still
satisfies R when e is finished executing. One is left with Q(v) in the postcondition of the conclusion,
describing other resources that one gets to keep. The requirement that e be physically atomic
ensures that, even if the invariant R is broken at some point within the verification of e, no other
thread will notice so long as R holds before and after.

Because RDCSS_primis physically atomic, we can use inv to verify programs that call RDCSS_prim
on shared locations. For example, suppose we established an invariant R which asserted ownership
of ¢, and ¢, together with the stipulation that £, pointed to an even number. In that case, the
rule inv would enable multiple threads to invoke RDCSS_prim on these locations concurrently, so
long as the RDCSS_prim operations only ever updated ¢, to an even number. In contrast, RDCSS is
not physically atomic, so even in the presence of |R|, it would not be possible to use inv to verify
concurrent calls to RDCSS on ¢,, and ¢,,.

To summarize: the key advantage of physically atomic operations is that one can access invariants
around them. In concurrent separation logics, this is the only “special power” that physically atomic

4Technical details related to the “later” modality and to “namespaces” have been omitted for simplicity. They are not directly
relevant to what we are discussing here, but the interested reader can refer to Jung et al. [2018].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:17

operations have, but it is a big one. The goal of logical atomicity is to also grant this special power
to operations like RDCSS that behave as if they were physically atomic, even though they are not.

Logically atomic triples. Formally, logical atomicity is encoded using logically atomic Hoare triples.
We write them just like normal Hoare triples, but with angle brackets instead of curly braces. The
key benefit of logically atomic triples (from the point of view of their clients) is expressed by the
logically atomic invariant rule:

LOGATOM-INV

(R*P)e(v.R*Q(v))
k(P e (v. Q(v))

Compared to inv, this rule is almost the same, except there is no side condition of physical atomicity.
The ideal specification for RDCSS thus looks as follows:

(myn.ly > m=L{, — n)
RDCSS(m, En, My, 1y, n2) (RDCSS-SPEC-IDEAL)

(n'.n" =nxtly > msly, > ((mn)=(m,n) ? ny : n))

This specification concisely expresses that RDCSS has the same pre- and postcondition as in our orig-
inal sequential specification rocss-spec-seQ, but moreover clients can verify concurrent invocations
of RDCSS because they can use LocaTom-INV to access invariants around it.

Notice the binders for m and n in the precondition: usually, free variables in a Hoare triple are
interpreted as universally quantified, so that the client is free to instantiate them however they
want when using the triple. But m and n are somewhat special in that during the execution of
RDCSS (which is logically atomic but still takes many steps to execute), their values can actually
change. To support this, logically atomic triples come with a special binder in the precondition. The
technical details of this point do not matter so much for our presentation in this paper, so we refer
the reader to Jung et al. [2015] for details.

Separating abstract from physical state. Sadly, rRpcss-sPEc-IDEAL turns out to be too restrictive for
the implementation. As is common when verifying complex data structures, we have to separate
the physical state that makes up the data structure implementation from the abstract state that is
currently represented by the data structure. For the RDCSS implementation of Fig. 7, the current
abstract value of location ¢}, is not stored literally; instead a more complex physical state is used to
coordinate all threads involved in the concurrently running RDCSS operations. In the specification,
this means we cannot work with ¢, — n as that exposes the underlying physical value stored at ,,.
Instead we use an abstract predicate RState({,, n) to express that the current abstract value stored
at £, is n. How exactly that is represented physically is considered an implementation detail. In
particular, this “seals off” €, in the sense that clients of RDCSS can only interact with £,, through the
operations provided by the RDCSS library: using normal loads or stores would require ownership
of ¢, — n which is never exposed to clients.

For {,, it turns out that abstract and physical state coincide, so we do not need an abstract
predicate there. This is useful for clients to know as it means that they can use any other heap
operations (loads, stores, CmpX) on ¢y, even in parallel with RDCSS—a property that MCAS, built on
top of RDCSS, relies on. The specification thus becomes:

{m,n. €y, — m = RState({,, n))

RDCSS(€m, €n, My, N1, N2) (rRDCSSs-SPEC)

(n'.n’ = n={, — m=RState({,,(m,n) = (my,ny) ? ny : n))

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:18 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

4.3 Proving Logically Atomic Triples

Although the idea of logically atomic triples is conceptually simple, their formalization remains
one of the most technically advanced constructions in the Iris logic. Fortunately, we need not go
into the full gory details of this construction in order to get across the main ideas about how these
triples are proved and how prophecy variables can play an instrumental role in proving them.

To understand how logically atomic triples are proved, let us recall how they are used. Once
we have proven the logically atomic triple rocss-spec, clients of RDCSS will be able (thanks to
rule Locatom-1nV) to access invariants around applications of the RDCSS operation in their code. In
order for it to be sound for clients to do this, there must be a single physical step during the execution
of RDCSS at which the abstract states of £,, and ¢, are transformed as specified by rocss-spec. This
point is known as the linearization point: it is the point in time when, abstractly, RDCSS “happens”.

Consequently, when we prove (P) e (Q), we should intuitively think of P and Q as really being
pre- and postconditions not to e in its entirety but to e’s linearization point. In other words, unlike
the proof of a standard Hoare triple, the proof of (P) e (Q) is not given ownership of precondition
P at the beginning of e’s execution, with the mandate to transform it into ownership of Q by the
end. Rather, the transformation from P to Q is only allowed to take place during a single atomic
step, namely the linearization point.

The question now is how this requirement of atomically transitioning from P to Q is reflected in
the logic. To this end, the Iris encoding of logically atomic triples relies on an atomic update: a token
AUp o(®), which represents both the right and the obligation to transition in one physical step
from an abstract state satisfying P to an abstract state satisfying Q. In the proof, we will use this
atomic update at the linearization point in order to “commit” the abstract effect of the operation.
At that point, the atomic update is consumed and the assertion ® is given back as a receipt.

The role of the receipt ® is to enforce the “obligation” part of this contract, as shown by the
following introduction rule for logically atomic triples:®

LOGATOM-INTRO

(P)e(Q)

To prove the logically atomic triple in the conclusion, we have to prove an ordinary Hoare triple
with a different pre and post. The precondition is an atomic update permitting us to transition the
abstract state from P to Q (at the linearization point). The postcondition is simply the receipt @,
which means we must consume the atomic update from the precondition at some point: since ® is
universally quantified, picking a linearization point is the only way to obtain a proof of it.

4.4 Summary of Logical Atomicity
Before going further, let us review the main points about Iris-style logical atomicity:

e Logically atomic triples are useful because they allow us to grant the same "special power"
to concurrent method calls that we otherwise only grant to physically atomic operations,
namely that clients who call those methods can access invariants around them.

e Proving logical atomicity of an operation involves identifying the linearization point, a single
step during the operation when it abstractly takes place.

o To prove a logically atomic triple (P) e (Q) in Iris, we start out with ownership of an atomic
update AUp o(®), and we must finish with ownership of a receipt ®. The former provides the

SFor simplicity, we have omitted details about the bound variables appearing in logically atomic triples, as they are orthogonal
to our focus on prophecy variables. For details, see Jung et al. [2015].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:19

NewRDCSS(n) £ ref(inl(n));

1 RDCSS(€pm, £n, mi, n1,na) 2
rec Get((y) A 2 letp = NewProph;
. 3 let{lgpser = ref(fm, my, ny, ng,p);
match!{, with 4 rec rdessimer() =
inl(n) =n 5 let (v, b) = CmpX(£y, inl(ny), inr(€geser));
| inr(€goser) = Complete(€gosers €n); Get(€n) 6 match v with
end; 7 inl(n) =
8 if b then
15 Complete({gesers £n) = 9 Complete(lyescrs tn); M
16 let (Cm,m1,n1,n2,p) = Waesers 10 else n
17 let tid = NewGhostId,; 11 | inr (¢},) =
18 letm = py; 12 Complete(l’{’iescr, Cn); rdessinner()
19 letnpe, = if m = my thenny elseny; 13 end;
20 Resolve(CmpX(€y, inr(€ geser), in1(npew)), p, tid); 14 rdessinner()

21 ()

Fig. 7. The RDCSS implementation.

right to execute the abstract transition from P to Q, and the latter enforces that the atomic
update was used (exactly once) during the proof, namely at the linearization point.

5 UNDERSTANDING THE RDCSS IMPLEMENTATION

Now that we have formalized the specification for RDCSS using logical atomicity, we take a closer
look at the actual implementation in Fig. 7 (ignoring the ghost code for now). Our goal here is to
understand the correctness argument of the implementation at an intuitive level, focusing on the
identification of the linearization point, as this will motivate why we need prophecies.

To use the RDCSS implementation, a client would first call NewRDCSS(n) to create an “RDCSS
location” ¢,, with initial value n. The current value of such a location can be read using Get({},).
Our focus is on the key operation RDCSS(¢y,, €, mi, n1, n2) for an RDCSS location ¢, and a location
€m, which (modulo minor technical details, as we will see) implements the specification rocss-spec.

The key to verifying that RDCSS satisfies rocss-spec is to develop an invariant which connects the
physical state of £,, with its abstract state. In the following, we will first explain how the physical
state of £, maintained by this implementation is used to coordinate concurrent threads, and we
will give some first insights into how the invariant relates the physical and abstract states of ¢, (we
will make this invariant explicit in §6), before diving into the code.

The physical state of ;. The RDCSS implementation guarantees that at any point in time, at most
one RDCSS operation is active. Only once the active operation has been successfully completed can
another pending RDCSS operation be executed. If a thread wants to perform an RDCSS operation
but another operation is already active, then it tries to help complete the active operation before
attempting to perform its own operation again.

Concretely, an RDCSS location ¢, has two states, inactive and active:

e The inactive state is represented by the physical value inl(n). This indicates that the abstract
value at ¢, is n, and there is currently no RDCSS operation ongoing.

o The active state is represented by the physical value inr(€es.). The descriptor € ges.r stores
all the information needed about the active operation that is currently ongoing: it points to a

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:20 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

tuple of the form (¢,,, my, n1, ny), indicating that the operation currently being performed is
RDCSS(¢m, £n, m1, Ny, n2) and that the abstract value at ¢,, when this operation first became
active was nj (i.e, the physical value at £,, was in1(n,)). Crucially, each operation is associated
with a unique immutable descriptor, so we can compare two descriptors to see if they refer
to the same operation. This uniqueness prevents the well-known ABA problem, but it also
means descriptors cannot be reused (our implementation implicitly relies on them being
garbage-collected).

The RDCSS implementation. We now turn our attention to the code of RDCSS(&yy,, €n, my, 11, 12)°.

Before anything interesting happens, the thread #, executing RDCSS first has to register the new
operation it is attempting to perform as active. To this end, ¢y allocates a new descriptor €., with
all the required information in line 3, and runs rdcssyp.r to repeatedly attempt to register this as
the active descriptor using CmpX in line 5.

If the value v previously stored at ¢, is of the form inr(¢ (’imr), then the CmpX must have failed,
and there is already an active operation on ¢, initiated by another thread. In that case, ¢, tries to
help finish the active operation by calling Complete in line 12, and then loops to try registering its
own descriptor again.

Otherwise, v is of the form inl(n). In this case the CmpX might either have succeeded or failed. If
it failed (i.e., b is false), then that means n # n;. As a result, the current RDCSS operation behaves
like a no-op, and this failed CmpX is its linearization point.

In the remaining case, CmpX actually succeeded (i.e., b is true). In this case, t; has established
that the £, part of the comparison succeeded (the abstract value at £, is n; since the physical value
is inl(n;)), but m; still needs to be compared with the value stored at £,,,. So, the successful CmpX
has registered t,’s descriptor as the active one for this RDCSS location and ¢, calls Complete to try
to finish the operation.

While this descriptor is active, every subsequent thread which tries to register its descriptor
at the same location ¢, will fail and will enter the race to help finish #;’s operation by calling
Complete on fy’s descriptor. One of the threads competing in this race will win it by successfully
updating ¢, in line 20 before t,’s Complete call returns.

Let us now consider the code for Complete. First, we read the descriptor in line 16 to obtain the
information for the operation specified by the caller. We then read the value m at location ¢, in
line 18 and compare m with m; in line 19. If the values match, then we attempt to update ¢, in
line 20 to inl(n,), signalling that the corresponding RDCSS operation updates ¢,, from abstract
value n; to n,. Otherwise, we attempt to update ¢,, back to inl(n;) (the value it had when the
operation was first registered); the RDCSS operation is a no-op in this case.

Identifying the linearization point. To verify rocss-spec in the latter case where t,’s operation
is active, we must find the linearization point, which should occur during #,’s call to Complete.
This is the point at which the atomic update associated with t,’s operation is consumed, and the
abstract states of ¢, and ¢,,, are updated atomically according to the semantics of RDCSS_prim.

But where should this linearization point be? The first thing to note is that the linearization
point is not necessarily executed by t, itself—it will be executed by whichever thread t,, wins the
race to help complete fy’s operation (which may or may not be #y). And that is fine so long as it
occurs during ty’s execution of RDCSS. (This phenomenon is known in the concurrency literature
as “helping”.)

There are some minor differences compared to the implementation of RDCSS in Harris et al. [2002]. In the original version,
the descriptor is taken as an argument instead of being allocated by RDCSS like we did. Adjusting our implementation and

proof to handle that is straightforward. Moreover, they distinguish descriptors (active state) from the inactive state by
checking the least significant bits, while we use injections to avoid having to formalize bit-level representations of values.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:21

S1 ty : let (€m,mi,n1,n2) = Wyeser; // value at £y, is my, value at €5, is inr(€ gpse,)
S2 ty:letm=1y; //m=m

S3 ty :letnpew = ifm = my thenng elseny; // npey = no

S4 ty by — m; // value at €5, is now mi

S5ty : CmpX(Ly, inr(€geser)> inl(npery)) // thy’s CmpX succeeds

Fig. 8. Snippet of an execution trace involving two threads t,, and t;, where t,, is executing
Complete({yesers €n) (Winning the race) and ty interferes by updating p,.

The obvious (but wrong) choice, then, is for the linearization point to be when the winning
thread t,, uses CmpX to successfully update the physical value at ¢, in line 20. Intuitively, the reason
this does not work is that the read of ¢,, in line 18 and the subsequent CmpX in line 20 are not
performed atomically. Since ¢, is subject to arbitrary interference—it can be updated by concurrent
operations at any time—there is no reason to believe that £, has the same value at line 20 that it
did at line 18.

To show this more concretely, consider the possible execution trace in Fig. 8. The trace shows
the execution steps of Complete by t,,, where thread ¢, interferes by writing to ¢, in between
when t,, executes line 18 and line 20 of Complete. In execution step S5 of the trace, t,, successfully
updates £, to inl(n,) because this is consistent with the value m; which t,, read at ¢,, in execution
step S2. But due to ,’s interference, the abstract state of £, when t,, performs the update is m],
which is different from the value t,, read. This means t,, cannot consume the atomic update in
step S5, because the value of £, dictates that the abstract state of ¢,, cannot be updated here from
n; to ny according to the specification of RDCSS (since m; # m]). Hence the only option is for the
linearization point to be in step S2 when t,, reads ¢,,, since it is the only point where we can be
certain that the value read by t,, is consistent with £,,.

As we will formally show in §6, this observation can be generalized. In every scenario, it is
possible to set things up such that the winner ¢,, consumes the atomic update at the instant when
t,y reads {y, in line 18. Intuitively, it is “safe” to pick this point as the linearization point, because
we know that the physical value of £,, will not be changed (i.e., it stays in-sync with t,,’s view)
before t,, successfully executes the update in line 20.

The problem, of course, is that the linearization point occurs at line 18 only for the winning thread
t,y. The winning thread should consume #,’s atomic update at that point; the other threads in the
race should not. But in the Iris proof, how are we supposed to know up front which thread is the
winner? We only learn that later on when verifying line 20. This is known in the concurrency
literature as a future-dependent linearization point, and in order to handle it, we will need a prophecy.

6 FORMALLY VERIFYING RDCSS USING PROPHECIES

In the previous sections, we (1) gave a high-level specification for the correctness of RDCSS using
logically atomic triples, and (2) explained the working principle of the implementation shown in
Fig. 7 with a focus on determining its linearization point, the step during its execution at which
its abstract action takes place. In this section, we will now talk about how to actually verify the
desired specification in Iris, and why that requires a powerful form of prophecy variables.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:22 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

6.1 Using Prophecies for Proving RDCSS

As we saw in §4.3, when we are proving a logically atomic triple and we reach the program step
where the linearization point occurs, we must know that this is actually the linearization point
because we need to consume the atomic update associated with the operation at that point.

In the case of proving RDCSS(¢p, €, My, 1, n2), however, this is problematic. Recall that after the
thread t; succeeds in registering its descriptor with the CmpX operation in line 5, the linearization
point is when the thread t,,, which wins the race to complete the operation, reads ¢, in line 18. The
problem, of course, is that at the point when t,, reads ¢,,, it does not yet know that it is going to be
the winning thread (i.e., the thread whose CmpX update will succeed in line 20), and therefore in the
proof of Complete we do not know at this point whether the atomic update must be consumed or
not. Naturally, the solution to this problem is to use a prophecy variable: we will set up a prophecy
so that each thread knows whether its future update will succeed.

But how do we set up this prophecy? A first idea is to create a new prophecy at the beginning of
Complete. This is precisely what Vafeiadis [2008] did, as we mentioned in §1.1. However, there is a
flaw in this approach: for each thread ¢; trying to complete the active operation we would have a
separate prophecy p; predicting the outcome of the corresponding CmpX update. If p; predicts that
t;’s update will succeed, then the linearization point is when ¢; reads ¢,,,. Hence in the proof of
t;’s Complete operation, we will consume the atomic update at line 18 if the prophecy said that
our future CmpX will succeed. To do so, however, we must ensure that no other thread has already
consumed the atomic update for the same active operation, and it is not clear how to establish this.
It requires making sure that, for all the threads competing to complete the operation, only one of
them will have a prophecy that predicts its own success. But there was no mechanism to enforce
this condition in Vafeiadis’s proof, and thus (as we confirmed with him) it is incorrect.

The problem is that, when we learn about the contents of the prophecy, we might get a “spurious”
result that says something obviously wrong (e.g., predicting multiple winners). However, in such
a case, we cannot immediately derive a contradiction—that would be a cyclic argument, as the
correctness of the remainder of the proof relies on this information. Instead, we have to “play along”
with this clearly incorrect spurious prophecy until such a time when reality contradicts what the
prophecy predicted. Only then can we obtain a contradiction. In fact, this concern already came up
en passant in §2.2, where typed prophecies had to use a “fake value” in case the prophesied value
had the wrong type—a spurious prophecy. There too, the contradiction was only reached later,
when the prophecy got resolved with a value of the right type, refuting what had been prophesied.

To get around this spurious prophecy issue we take a fundamentally different approach. Instead
of creating one prophecy variable per thread trying to complete the active operation, we create a
single prophecy variable per active operation. The prophecy is created by the thread that registers
the RDCSS operation in the first place (see the NewProph statement in line 2 of RDCSS), and it is
stored in the operation’s descriptor. The prophecy predicts the sequence in which the threads
trying to complete the operation will execute the update in Complete—and clearly, the first one in
that sequence is the winner. Having a single prophecy controlling all the threads fixes the problem
in Vafeiadis [2008]’s argument. Note, however, that our use of prophecy variables is inherently
“unstructural”: one thread prophesies the updates of other threads. Hence, this proof cannot be
conducted using the “structural” prophecy variables of Zhang et al. [2012] (as described in §1.1).

For our approach to work, we need a way for threads to identify themselves. This is achieved in
Complete by using the NewGhostId statement’ to create a fresh “thread identifier”. In the logic this
creates a ghost resource GID(tid) which is exclusive, ensuring that tid is globally unique. Then, in
line 20, we can resolve the prophecy to the thread identifier tid that we have generated.

"NewGhostId can be encoded using NewProph. Hence the erasure theorem ensures that it has no effect on the original code.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:23

{True} NewRDCSS(n) {€,. RState({,, n) = IsSRDCSS(£,)}
ISRDCSS(¢,,) + {(n. RState({,, n)) Get(¢,) {(v.v = n * RState(¢{,, n))

IsSRDCSS(¢,) F

mn. £yt mx v=nx{y, > mx

RDCSS(Lm, €y mys i mz) | O
RState(¢y, n) RState((y,, (m,n) = (my,n1)?ny : n)

Fig. 9. Specification for the RDCSS operations.

6.2 RDCSS Specification

In the next section, we are going to highlight some important details of the proof that the RDCSS
implementation of Fig. 7 indeed satisfies the expected specification. To this end, we first complete
RDCSS-SPEC to a specification of all three RDCSS operations as shown in Fig. 9.3

The specification of the operations involves two assertions, ISRDCSS(¢,,) and RState(¢,, n), the
definitions of which are not exposed to the user. We have already seen RState(¢,, n) when we first
discussed rpcss-spEc: it asserts ownership of RDCSS location ¢, and also records that it is in abstract
state n. This is comparable to the “maps-to” assertion (£ +— v), but specific to RDCSS locations.
The new assertion, ISRDCSS(£,,), states that £,, is an RDCSS location and is thus governed by the
RDCSS invariant (which will be presented later). ISRDCSS(¢,,) is freely duplicable (“persistent” in
Iris lingo): it can be used arbitrarily often and is not subject to the usual “may be used only once”
rule of separation logic. This lets us call arbitrary RDCSS operations as often as we want.

As a side point: note that unlike the proof of Vafeiadis [2008], our setup allows dynamically
growing the set of RDCSS locations over time (by calling NewRDCSS).

6.3 Proving the RDCSS Specification

We are now going to give some details of the proof of the RDCSS specification that was informally
described in §6.1. As introduced in §4.3, to prove the logically atomic triple for RDCSS given in
Fig. 9, we must first apply Locatom-inTrO. We must hence prove’

ISRDCSS(£r) + {AURD,.RD oy (®)} ROCSS(€ s €y 1, 1, 1) { D}

for an arbitrary ®, where RD . and RD . respectively denote the pre- and postconditions of the
logically atomic triple. The only way to prove this Hoare triple is to consume the atomic update
AURD,,..RD,, (P) at the linearization point, by updating the abstract state of £, as specified by RD
and RD ps;.

The RDCSS and descriptor protocols. For this proof, we need a way to capture the protocols which
track the relation between the abstract state of ¢,, and the physical state as partially described in §5.
We already informally explained the RDCSS protocol distinguishing between ¢,, being inactive and
active. The inactive state is simple: £, points to inl(n), where n is its abstract state.

If ¢, is active—i.e., it points to inr({ s,)—the descriptor € e is governed by a separate descriptor
protocol, depicted in Fig. 10. At the point when the descriptor is first registered in line 5, the protocol
starts out in the Pending state, and the abstract state of £, in that state is n;. When the winning

8In the formal specification of RDCSS in Coq, we do not use the normal points-to assertion for £,, in the precondition.
Instead we use a “GC” points-to assertion which also guarantees that £, is never deallocated. This is required so that £,
can always be read safely, but we suppress this detail here since it is completely orthogonal to the main proof.

9We ignore the return value here for the sake of simplifying the presentation.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:24 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

t,,: lin. point t,,: update ¢ (1 ty: retrieve receipt ®
i P Accepted v TP "/ Done ’ P ~ Gone

Pending: {,, points to inr(€..), and linearization point (LP) has not yet occurred

Accepted: LP has occurred (consuming AU and producing ®), but £, still points to inr(€gescr)
Done: £, has been CmpX’d to next inactive (inl) state

Gone: ty’s Complete has returned, and #; has retrieved receipt ® from the protocol

Fig. 10. Descriptor protocol governing descriptor £ g5, Which is registered by the thread fy. Here, t,, is the
winning thread that will complete ty’s operation with a successful CmpX.

ISRDCSS(£,) = | Inactive(£,) V Active((y)]
Inactive(£,) = 3n. £, — inl(n) = RState®(£,, n)

ACtive(gn) £ Fdeser, q, mq, Ny, N2, p, ty, D, ITok, - - - . ISDescr(Zdescrs Cn, ni, p, tw, o, ITOk) *

0.5 . q
tp = 1nr(£descr) % € eser (Zma my, ny, nz,P) ¥

Fig. 11. IsRDCSS(¢,) specifies the knowledge of the RDCSS invariant encoding the RDCSS protocol which
governs {. Only a partial definition is shown (as hinted at by - -).

thread t,, (which might or might not be the same as the thread t, that registered this descriptor)
reads ¢, in line 18, the linearization point occurs—i.e., the atomic update (AU) is consumed, the
abstract state of ¢, is updated, and the receipt ® is produced—and the protocol moves to Accepted.
From that point onwards, €z, remains registered until t,, successfully updates ¢, back to an
inactive state and the protocol reaches the Done state. Finally, once the original thread ¢, returns
from Complete, the protocol moves to the Gone state, and ¢, retrieves its receipt .

Since these protocols govern shared resources, we encode them using Iris’s invariants, which
were presented in §4.2. Essentially, this encoding models a protocol as an invariant that maintains a
disjunction of assertions, where each disjunct corresponds to one possible state in the protocol and
stores the shared resources we need to track in that state. In the proof, when we need to inspect
the state of a protocol, we access the corresponding invariant using v to temporarily obtain
the resources guarded by it. Depending on what private resources we owned before accessing
the invariant, we may be able to rule out certain states (if the shared resources governed by the
invariant in those states are incompatible with our private resources). Finally, at the end of the same
execution step we either move the protocol to a new state or leave the state unchanged, in either
case giving back the shared resources as required by the corresponding disjunct of the invariant.

The definition of the RDCSS invariant, which encodes the RDCSS protocol for ¢, is given
in Fig. 11. In both states, the invariant contains ownership of ¢,, ensuring that threads can access
¢, concurrently (we explain this ownership in more detail below). When a thread t; registers
its descriptor €ges.r successfully, it simultaneously moves the state of ¢,,’s RDCSS protocol from
Inactive to Active. The resources Active((,) required to complete this state change serve to set up
the communication between all the threads trying to complete t,’s operation.

In particular, one of the resources t, must provide as part of Active(¢,) is the knowledge of the
descriptor invariant (Fig. 12), which encodes the descriptor protocol for €y that we depicted
in Fig. 10. In order to initialize the descriptor invariant in the Pending state, t, must transfer
multiple resources to the descriptor invariant, including: the prophecy resource Proph(p, tids)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:25

Pend(€gescr» tn, ni, P, tw, @) V Acc(lgescr, fn,P, tw, ®) V

IsDescr(£gesers n> M1, s thy, @, 1 Tok) £
Done(gdescrs P tw, (I)) M Gone(fdescr’Ps Lws ITOk)

& AURD,,.RD,,, (P) * (Itids. Proph(p, tids) * IsWinner(t,,, tids)) *

Pend(€gescr, tn, ni, p, tw, q)) 05 .
€p == inr(€yeer) * RState®(€y, nq) * - - -

a @ (3tids. Proph(p, tids) * IsWinner(t,,, tids)) *

Acc(gd s Zns > twa (D)
- p fn 'E) inr(fdescr) * GID(tw) Koewe

Done(Cgeser ps tw ®) = @ % (tids. Proph(p, tids)) = GID(t,,) * - - -
Gone(Cdescrs P b 1Tok) = 1Tok # (Itids. Proph(p, tids)) * GID(t,,) - - -
IsWinner(t,,, tids) = (tids # [] A head(tids).2 € GIDSet) = t,, = head(tids).2

Fig. 12. IsDescr(€gesers €n, - - -) specifies the knowledge of the descriptor invariant encoding the descriptor
protocol governing descriptor € e, In this case € g, stores a tuple (€m, m1, n1, n2, p) and hence identifies
an RDCSS operation RDCSS(¢,, £n, m1, n1, n2, p). Only a partial definition is shown (as hinted at by - - -).

which identifies the winner t,, of ¢,’s operation, the atomic update AUgp oresRD pm(@) needed at the
linearization point, and the resources for the physical and abstract ownership of ¢,,. We will now
explain the role that each of these resources play in the protocol, before showing some key steps of
the proof.

Setting up the prophecy resource. Each thread t; trying to complete an operation needs to know,
before reading ¢, who is the winning thread f,, for which the update in line 20 is going to succeed.
This will decide whether t; should consume the atomic update when it reads ¢,,,. To support this
reasoning, t, (the initiator of the operation) creates a prophecy p in line 2 which predicts the
sequence in which the threads helping to complete the operation will execute the update in line 20.
The first thread in this sequence is the winning thread ¢,,.

to transfers its prophecy resource Proph(p, tids) to the descriptor invariant in Pending, which
can be used by helping threads when they need to do prophecy resolution. Since at this point, as
well as in the Accepted state, p has not yet been resolved (the winner has not yet executed the
update), t,, must still be the first thread in the current sequence tids predicted by the prophecy.
This property is expressed by IsWinner(t,,, tids), whose definition additionally accounts for the
possibility that tids could contain spurious values.

Note that the prophecy resource Proph(p, _) is kept around in all states of the descriptor invariant,
so that any thread competing in the race will be able to perform its prophecy resolution.

Communicating the atomic update. The only way for t; to obtain the receipt @ is if the winner t,,
consumes the atomic update when it reads ¢,,,, since that is the linearization point for ¢,’s operation.
This means #, must somehow transfer its atomic update to t,, which in turn transfers the receipt
back to ty. ty initiates this transfer over the descriptor invariant by giving up its atomic update to
the invariant in the Pending state when registering its descriptor. At the linearization point, t,,
gets hold of the atomic update from the invariant and consumes it, obtaining the receipt ® in the
process. t,, then moves the protocol to the Accepted state by putting the receipt into the invariant,
where it remains until the transition from Done to Gone occurs.

How can t, now retrieve the receipt? For this final step in the transfer, we use two ingredients.
First, we introduce a unique initiator token 1Tok, which ¢, creates prior to establishing the descriptor

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:26 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

invariant, and which it owns privately until its Complete operation is finished. So long as fy owns
ITok privately, we can rule out that the protocol is in state Gone, since in that state the descriptor
invariant owns ITok, and the token cannot be owned by both t, and the invariant at the same
time. Second, we will prove a specification for Complete (see below) which guarantees in its
postcondition that the descriptor protocol is either Done or Gone. So, when #;’s call to Complete
returns, ty can use ITok to conclude that the protocol must be exactly in the Done state. At that
point, it can transition the protocol to the Gone state by trading ITok for the receipt ®.

Tracking the abstract and physical state of €,,. As already mentioned, one of the key ingredients
in proving RDCSS correct is to track the abstract and physical state of £,. We track the abstract state
using the resource RState®(£,, n)'%, expressing that the abstract state of ¢, is n.

In the Inactive state, the RDCSS invariant specifies that the physical state (expressed using the
points-to assertion) is inl(n) and that the abstract state is n. In the Active state, the RDCSS invariant
only specifies that the physical state is inr(€ge.) for some descriptor € gese;-

In the latter case, the physical state is expressed using the fractional points-to assertion [Boyland
2003] ¢, =N inr(€gescr). Fractional ownership permits one to distribute ownership of ¢, (the sum
of all the fractions is 1 and a non-zero fraction is sufficient for reading). We keep the other half of
the ownership in the Pending and Accepted states of the descriptor protocol. This expresses that in
those states the descriptor described by this protocol is still the active descriptor pointed to by ¢,,.
Note that we use a similar technique for sharing access to €y, keeping fractional ownership of
Cgeser in the RDCSS invariant so that it can be safely read in Complete.

Furthermore, as we explained above, once the descriptor is registered, the abstract value of ¢,
stays the same until the protocol is moved from Pending to Accepted (i.e., until the linearization
point happens). This is expressed by RState®({,, n1) in the Pending state. Note that when the
registered descriptor is in the Accepted state, it is the only point in time where we do not explicitly
track in any invariant what the abstract value of ¢, is. The reason is that only the winner knows
the abstract value at this point! We will see how this is reflected in the proof.

Controlling transitions using ghost resources. It is important that only certain threads can trigger
specific transitions in the descriptor protocol. For example, the winner t,, should be able to prove
at the linearization point that the protocol must be in the Pending state, since only t,, should be
allowed to transition to Accepted. Otherwise the winner would not be able to get hold of the atomic
update which it must consume at the linearization point. We achieve this using ghost resources.

As an example, let us consider the transition from Pending to Accepted. When we create the
thread identifier tid in line 17, we obtain the ghost resource GID(tid). This ghost resource is
exclusive, i.e.,

GID(tid) * GID(tid) + False

If we are the winner (i.e, t,, = tid), then we obtain GID(t,,). As long as we keep private ownership
of GID(t,,), we can prove that the descriptor protocol must be in the Pending state, using the same
kind of reasoning (described above) that t, uses when establishing that the protocol is not in the
Gone state. We use similar ghost resources to control the other transitions, but have suppressed
the details of these resources in Fig. 12.

10RState® (£, n) is not the same resource as RState(£,,, n’) used in the specification, although the two of them together
imply that n = n’. We need this differentiation to control how the abstract state is updated: RState® is owned by the invariant,
and RState is owned by the client. Only when applying the atomic update, when we momentarily own both RState®(¢,,, n)
and RState(¢,,, n’) at the same time, can we update both simultaneously to RState®(¢,,, n”) and RState(¢,,, n”’) for some
new value n”. This is a standard approach in Iris, which can be implemented using the authoritative RA (see §3.2).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:27

Now that we have understood the main elements in the RDCSS and descriptor invariants, we
highlight some important steps in the proof, for the interesting case where we succeed in registering
our descriptor.

A specification for Complete. In line 9, right after ¢, registers its operation, ¢, invokes Complete
to finish it. We would like a specification for Complete that can be used compositionally, not only
by the initiator t, of the operation, but also by the threads helping the operation. With this in mind,
we prove the following specification for Complete:

{gdescr 'i> (fm, my, ny, N, P)}
ISRDCSS(€r), IsDescr(€gescrs €ns 11, Py b, @, 1Tok) F Complete(Cyescrs €n)
{IsDoneOrGone(d, ITok)}

The preconditions a client must provide to use this specification are fairly straightforward: we only
need read access to the descriptor, so any fraction g suffices. The interesting part is the postcondition
IsDoneOrGone(®, ITok), which asserts that the protocol governing €gs., is either Done or Gone.!!

IsDoneOrGone(®, 1Tok) is a persistent, freely duplicable assertion, which reflects the fact that
the protocol can never move to a previous state. As we mentioned above, the important point
is that the initiator of the RDCSS operation, #j, can use this assertion to exchange its ownership
of ITok for the receipt ® and finish its proof. The reason we do not put @ into the postcondition
directly is that such a specification would only be provable for t, not for the other threads helping
to complete the operation—they do not own the necessary ITok.

In the proof of Complete, right after creating a thread identifier tid in line 17, we make a case
distinction on whether tid is the winner t,, or not (recall that we know the winner by inspecting
the prophecy resource in the descriptor invariant):

Case 1: tid is the winner t,,. In this case, while reading {,,,'* we can establish that the descrip-
tor protocol must be Pending (using the ghost resource GID(t,,) as explained above). Since the
descriptor invariant provides RState®({,, n;) in this state, we know that the abstract state of £,
is n;. Hence we can consume the atomic update (also provided by the invariant) by updating the
abstract state depending on the value read in €,,: if it is my, then update to n,, otherwise keep it at
n;. We then move the protocol to Accepted by putting the obtained receipt ® into the invariant
and keeping the resource for the abstract state, namely RState®({,, npew) (Where ny,,, is the correct
new value for ;).

Finally, we attempt to update ¢, to inl(n,,,,), which we expect will succeed, since tid is the
winner (but we have to prove now that the update will succeed!). At this point we access the RDCSS
and the descriptor invariant. Using additional ghost resources (not shown) we can prove that the
descriptor protocol must still be in Accepted and hence we know that the invariant guarantees
that s is still registered at £,,. This means the update will succeed and we can move the RDCSS
invariant back to Inactive by giving up RState®({y, npew), which is in-sync with the physical value
of £, at this point.

In the same step, we also move the descriptor protocol to Done and can thus establish the
postcondition of Complete.

¥or Iris aficionados, we encode this using a view shift, i.e., IsDoneOrGone(®, ITok) £ D(ITok =k o).
12Note that, since we are consuming the atomic update here, we can justify reading ¢,, via RDyre, which provides the
required ownership of £,.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:28 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

Case 2: tid is not the winner. In this case, we are not responsible for executing the linearization
point, so we do not do anything special when reading £,,,.!> We then attempt to update £, in line 20
(which we expect should fail, since we are not the winner).

At this point, we again inspect the RDCSS and descriptor invariants. Assume the descriptor
protocol is either Done or Gone (as we expect, since the winner must have moved it at least to
Done). In this case, we can prove that £, is not registered anymore at £,, and hence we can show
that the update fails, which means we need not reason about a change in the physical state of ¢,
and we can easily establish the postcondition of Complete.

Otherwise, contrary to our expectation, the descriptor protocol is not Done or Gone yet. This
means that the winner has not yet updated £,, and hence our CmpX should succeed. In this case the
descriptor invariant asserts (via IsWinner(t,,, tids)) that if the next prophesied value is a thread
identifier, then it must be the winner t,,. Therefore, after resolving the prophecy to tid, we learn that
tid must be t,,. But since we assumed tid is not the winner, we have arrived at a contradiction! 0O

This completes the proof of logical atomicity for RDCSS. Despite the complexity of the argument,
our formal mechanization of the proof [Jung et al. 2019] takes just 450 lines of Coq (ignoring
comments), largely thanks to the powerful tactics of the Iris proof mode [Krebbers et al. 2017, 2018].

7 RELATED AND FUTURE WORK

Abadi and Lamport [1988, 1991] introduced the idea of prophecy variables as a complement to
history variables. They observed that both kinds of auxiliary variables were in general necessary
to prove that a more concrete state machine S; implements (i.e., has a subset of the observable
behaviors of) a more abstract one S, by means of a refinement mapping (a mapping of the states).
Their main result is a completeness result: if S; implements S,, then, under certain conditions,
there exists a state machine S obtained from S; by adding a history and a prophecy variable,
such that there exists a reﬁnement mapping from S;” to S,. They then stipulate a number of
conditions which together ensure soundness, i.e., that the instrumented S, "P has the same traces as
the original state machine S;. It is difficult to precisely compare their method to ours, since their
framework is presented at the level of state machine refinement, and ours is specifically geared
toward compositional reasoning in separation logic. That said, it seems that the way we extend our
ghost state with a sequence of future observations could be seen as an instance of their notion of
prophecy variable.

Vafeiadis [2008] was the first (to our knowledge) to propose the use of prophecy variables in Hoare
logic, and for precisely the purpose that we have explored in this paper: verifying data structures
with future-dependent linearization points. He does not give a formal justification, however, for
their semantics in the context of Hoare logic, or how precisely to ensure that they are used soundly.
Moreover, as we have explained in §6, the proof of his main example demonstrating the efficacy
of prophecy variables—namely, RDCSS—is flawed. Nevertheless, as we have demonstrated in this
paper, the idea to utilize prophecy variables for this purpose was fundamentally sound, and it has
inspired others to follow suit. For example, Garcia-Pérez et al. [2018] have recently used prophecy
variables in formalizing linearizability arguments for Paxos-based systems.

As we explained in §1.1, Zhang et al. [2012] were the first (to our knowledge) to formalize any
kind of prophecy variables in a Hoare logic. They restrict prophecies to be “structural”, meaning that
they must be resolved in the same syntactic scope in which they were created. Structural prophecies
are enough to account for some data structures (e.g., the “atomic snapshots” we have verified in our
Coq development), but not others. In particular, all other data structures considered in this paper

131n this case, to justify reading £,,, we rely on the fact that £, is modeled as a location that cannot be deallocated. See
footnote 8 in §6.2.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:29

(besides snapshots) use non-structural prophecy variables (where the prophecy may be resolved in
a different thread than where it was created). Ironically, Zhang et al.’s main example to illustrate
the power of structural prophecy variables is RDCSS, but their verification is buggy because it
relies directly on the flawed proof of Vafeiadis [2008]. The flaw in his proof is precisely that his
prophecies adhere to the structural discipline: each thread prophesies independently whether it
will win the CmpX race, when in fact (as we argue in §5) the threads need to coordinate through a
single non-structural prophecy variable to ensure there is only one winner.

Fu et al. [2010] avoid the need for history variables when reasoning about optimistic concurrency
by using a Hoare logic where assertions describe the history trace leading up to the current state
rather than just the current state. It seems plausible that the need for prophecy variables could be
similarly eliminated by using assertions over the future trace, but this remains to be investigated in
future work.

Turon et al. [2013] and Liang and Feng [2013] explore how to prove linearizability (or, in the
case of Turon et al., the related notion of contextual refinement) for fine-grained concurrent data
structures in separation logic. Both specifically tackle the verification of data structures with
future-dependent linearization points (Liang and Feng in fact proved RDCSS, and Turon et al.
proved a somewhat simplified version of RDCSS called conditional increment). To handle such
data structures, both employ speculation, a mechanism that allows the auxiliary state to record
multiple possible logical states the program could be in. Thus, for example, in the case of RDCSS,
speculation would allow one, at the read of ¢,,, to speculate whether the linearization point should
happen there or not, producing two alternate “universes”. Later on in the proof, once it became
clear whether the CmpX succeeds, one could keep the “right” universe and discard the “wrong” one.

Speculation and prophecy variables are clearly related approaches in spirit, but different in detail.
In a proof with speculation, one must reason about all possible future eventualities simultaneously,
and can only discard some of them later on once it is clear they have become irrelevant. In our
experience, this can sometimes complicate invariants in proofs. In a proof with prophecies, one is
told the future up front, so there is no need to account for more than one possible future at a time.
However, with prophecies, one must sometimes do explicit reasoning to show that unexpected
“spurious” predictions imply a contradiction with what actually happens (e.g., see the end of our
RDCSS proof in §6), which brings its own complications.

Our initial motivation for exploring prophecy variables instead of speculation stemmed from our
interest in proving Iris-style logically atomic triples, which were inspired by the atomic triples of the
TaDA logic [da Rocha Pinto et al. 2014]. As we have seen in §4, logically atomic triples are stronger
than linearizability or contextual refinement in that they internalize atomicity of concurrent
operations in a Hoare-style specification, enabling clients to reason about such operations as if they
were physically atomic. In proving logical atomicity of an operation, however, one must consume
an “atomic update” resource (§4.3) when one reaches the linearization point; and given that atomic
updates in Iris are represented using higher-order assertions involving magic wands and view
shifts, it is unclear how one could speculate about a potential linearization point because Iris does
not support speculative consumption of resources. In contrast, our account of prophecy variables
constitutes a very lightweight extension to Iris, whose soundness is straightforward to establish.

Delbianco et al. [2017] achieve Hoare-style specifications for data structures with future-dependent
linearization points, but without relying on prophecy variables. Their specifications are in terms
of an auxiliary variable tracking the data structure’s history, i.e., the set of operations that have
occurred on the data structure, partially ordered by their logical order. Specifically, they relate the
data structure’s history in the post-state of an operation to the one in the pre-state. This approach
avoids having to identify a linearization point as it occurs, instead requiring only that a logical
order be determined on overlapping operations by the time they terminate. However, while their

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

45:30 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

approach supports talking about the abstract state of the data structure at some past instant ¢ at
which the history has “settled”, in contrast to our approach it does not support talking about the
current abstract state. Their approach thus does not validate the logically atomic invariant rule
(rocaTom-1nv), whereas our logically atomic specs do.

Even outside of Hoare logic, prophecy variables remain a fairly exotic technique, but there are a
few verification systems we know of that have adopted them. Sezgin et al. [2010] use prophecy
variables to integrate backward reasoning into QED, a static verification tool for verifying concurrent
algorithms using reduction [Lipton 1975]. Cook and Koskinen [2011] propose an algorithm for
automatically proving temporal properties (expressed in LTL) of programs given as a transition
system. Their algorithm adds prophecy variables to the transition system so as to determinize it
sufficiently to be able to apply the faster CTL methods. Lamport and Merz [2017] integrate prophecy
variables into TLA+ and give a number of examples to illustrate their use in proving refinement
mappings. They present one-prediction prophecy variables (akin to our one-shot prophecies), as
well as array and data structure prophecy variables (which support multiple resolutions like our
sequence prophecies but are different in detail). Their paper is intended more as a kind of tutorial
guide for TLA+ users, and leaves formal soundness arguments to future work.

Since we introduced prophecy variables into Iris, they have already been put to good use.
Penninckx et al. [2019] use them for giving abstract specifications of I/O behavior. In a paper
appearing alongside ours in the present issue of PACMPL, de Vilhena et al. [2020] use them in
an essential way in verifying a “local generic solver” in Iris. Interestingly, the latter application
of prophecy variables has nothing at all to do with concurrency. As part of their development,
de Vilhena et al. introduce rules for prophecy disposal and typed prophecies (not present in the
original version of our paper). Our rules for typed prophecies in §2 loosely follow the style of theirs.

As far as we are aware, the idea of using separation logic and ownership to ensure the soundness
of prophecy-based reasoning has not been proposed before and is a novel contribution of our paper.

Future work. In future work, we hope to address a limitation of our approach pertaining to logical
atomicity. The entire raison d’étre of logical atomicity is to be able to treat linearizable operations
on a data structure as if they were physically atomic, i.e., to grant them the same privileges that
are afforded to physically atomic commands in concurrent separation logic. Unfortunately, our
account of prophecy variables introduces a new operation that (at present) privileges physically
atomic operations over logically atomic ones: namely, atomic prophecy resolution Resolve(e, p, w)
(described in §2.4). This mechanism allows one to resolve prophecy p to w in an atomic step
together with any physically atomic operation e. That is sufficient for verifying logical atomicity of
data structures implemented internally using physically atomic memory operations (like RDCSS
implemented with CmpX). But in order to fulfill the promise of logical atomicity as described in
the TaDA and Iris papers [da Rocha Pinto et al. 2014; Jung et al. 2015]—in particular, the ability
to build logically atomic data structures from other logically atomic data structures—we would
ultimately like to be able to attach prophecy resolution to any logically atomic operation as well. Our
preliminary attempts to support such a mechanism suggest it will require a non-trivial extension
of our present framework.

ACKNOWLEDGMENTS

This research was supported in part by a European Research Council (ERC) Consolidator Grant for
the project “RustBelt”, funded under the European Union’s Horizon 2020 Framework Programme
(grant agreement no. 683289), and in part by the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 731453 (VESSEDIA). Amin Timany is a postdoctoral
fellow of the Flemish research fund (FWO).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

The Future is Ours: Prophecy Variables in Separation Logic 45:31

REFERENCES

Martin Abadi and Leslie Lamport. 1988. The existence of refinement mappings. In Proceedings of the Third Annual Symposium
on Logic in Computer Science (LICS °88), Edinburgh, Scotland, UK, July 5-8, 1988. 165-175. https://doi.org/10.1109/LICS.
1988.5115

Martin Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theor. Comput. Sci. 82, 2 (May 1991), 253-284.
https://doi.org/10.1016/0304-3975(91)90224-P

John Boyland. 2003. Checking interference with fractional permissions. In SAS (LNCS), Vol. 2694. 55-72.

Byron Cook and Eric Koskinen. 2011. Making prophecies with decision predicates. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York, NY, USA, 399-410.
https://doi.org/10.1145/1926385.1926431

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A logic for time and data abstraction. In
ECOOP (LNCS), Vol. 8586. 207-231.

Paulo Emilio de Vilhena, Frangois Pottier, and Jacques-Henri Jourdan. 2020. Spy game: Verifying a local generic solver in
Iris. PACMPL 4, POPL, Article 33 (Jan. 2020). http://gallium.inria.fr/~fpottier/publis/de-vilhena-pottier-jourdan-spy-
game-2020.pdf

German Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2017. Concurrent data structures linked
in time. In 31st European Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz International Proceedings in
Informatics (LIPIcs)), Peter Miiller (Ed.), Vol. 74. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
8:1-8:30. https://doi.org/10.4230/LIPIcs. ECOOP.2017.8

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew]. Parkinson, and Hongseok Yang. 2013. Views:
Compositional reasoning for concurrent programs. In POPL. 287-300.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A mechanised relational logic for fine-grained concurrency.
In LICS. 442-451.

Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about optimistic concurrency using a program
logic for history. In CONCUR (LNCS), Vol. 6269. 388-402.

Alvaro Garcia-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey. 2018. Paxos consensus, deconstructed and abstracted.
In Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 912-939.

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A practical multi-word compare-and-swap operation. In DISC.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst. 12, 3 (1990), 463-492. https://doi.org/10.1145/78969.78972

Bart Jacobs and Frank Piessens. 2011. Expressive modular fine-grained concurrency specification. In POPL. 271-282.

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A
powerful, sound, predictable, fast verifier for C and Java. In NASA Formal Methods.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ale$ Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground
up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28, €20 (Nov.
2018), 1-73. https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2019.
The future is ours: Prophecy variables in separation logic — Artifact. https://doi.org/10.5281/zenodo.3570660 (latest
version available on paper website: https://plv.mpi-sws.org/prophecies/).

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL. 637-650.

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,
and Derek Dreyer. 2018. MoSeL: A general, extensible modal framework for interactive proofs in separation logic.
PACMPL 2, ICFP (2018), 77:1~16:30.

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic. In
POPL. 205-217.

Leslie Lamport and Stephan Merz. 2017. Auxiliary variables in TLA+. CoRR abs/1703.05121 (2017). http://arxiv.org/abs/
1703.05121

Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained concurrency. In POPL. 561-574.

Hongjin Liang and Xinyu Feng. 2013. Modular verification of linearizability with non-fixed linearization points. In PLDL

Richard J. Lipton. 1975. Reduction: A method of proving properties of parallel programs. Commun. ACM 18, 12 (Dec. 1975).
https://doi.org/10.1145/361227.361234

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375, 1 (2007), 271-307. https:
//doi.org/10.1016/j.tcs.2006.12.035

Susan Owicki and David Gries. 1976. An axiomatic proof technique for parallel programs I. Acta Informatica 6, 4 (1976),
319-340. https://doi.org/10.1007/BF00268134

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/1926385.1926431
http://gallium.inria.fr/~fpottier/publis/de-vilhena-pottier-jourdan-spy-game-2020.pdf
http://gallium.inria.fr/~fpottier/publis/de-vilhena-pottier-jourdan-spy-game-2020.pdf
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.1145/78969.78972
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.5281/zenodo.3570660
https://plv.mpi-sws.org/prophecies/
http://arxiv.org/abs/1703.05121
http://arxiv.org/abs/1703.05121
https://doi.org/10.1145/361227.361234
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/BF00268134

45:32 R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and B. Jacobs

Willem Penninckx, Amin Timany, and Bart Jacobs. 2019. Specifying I/O using abstract nested hoare triples in separation
logic. In Proceedings of the 21st Workshop on Formal Techniques for Java-like Programs (FIfJP ’19). ACM, New York, NY,
USA, Article 5, 7 pages. https://doi.org/10.1145/3340672.3341118

John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In LICS. 55-74.

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Specifying and verifying concurrent algorithms with
histories and subjectivity. In ESOP. 333-358. https://doi.org/10.1007/978-3-662-46669-8_14

Ali Sezgin, Serdar Tasiran, and Shaz Qadeer. 2010. Tressa: Claiming the future. In VSTTE.

Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013. Logical relations for fine-grained
concurrency. In POPL.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating weak memory with ghosts, protocols, and
separation. In OOPSLA. 691-707. https://doi.org/10.1145/2660193.2660243

Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph.D. Dissertation. University of Cambridge, Computer
Laboratory. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.pdf

Viktor Vafeiadis and Matthew J. Parkinson. 2007. A marriage of rely/guarantee and separation logic. In CONCUR (LNCS),
Vol. 4703. 256-271.

Zipeng Zhang, Xinyu Feng, Ming Fu, Zhong Shao, and Yong Li. 2012. A structural approach to prophecy variables. In TAMC.
https://doi.org/10.1007/978-3-642-29952-0_12

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

https://doi.org/10.1145/3340672.3341118
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/2660193.2660243
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-726.pdf
https://doi.org/10.1007/978-3-642-29952-0_12

	Abstract
	1 Introduction
	1.1 Prior Work on Using Prophecy Variables in Hoare Logic
	1.2 Our Contribution: Accounting for Prophecy Variables in Separation Logic

	2 Key Ideas
	2.1 Motivating Example: A Specification for Eager and Lazy Coins
	2.2 One-Shot Prophecies
	2.3 Sequence Prophecies
	2.4 Atomic Prophecy Resolution

	3 Soundness of Prophecy Variables
	3.1 Operational Semantics
	3.2 Authoritative Resource Algebra
	3.3 Model of Weakest Preconditions
	3.4 Adequacy
	3.5 Erasure

	4 Logical Atomicity
	4.1 RDCSS Semantics
	4.2 Logical Atomicity: Who Needs It?
	4.3 Proving Logically Atomic Triples
	4.4 Summary of Logical Atomicity

	5 Understanding the RDCSS Implementation
	6 Formally Verifying RDCSS using Prophecies
	6.1 Using Prophecies for Proving RDCSS
	6.2 RDCSS Specification
	6.3 Proving the RDCSS Specification

	7 Related and future work
	Acknowledgments
	References

