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Abstract—This paper proposes a customized genetic algorithm
(GA) to generate the optimal cell-free topology for multi-user
massive MIMO (mMIMO) in a confined environment. As far as
we know, it is beyond the literature and is the first attempt to
apply GA in optimizing the base station (BS) antenna placement
for cell-free mMIMO. The BS antennas’ placement is encoded
with an adjusted binary matrix representation, which is straight-
forward for the subsequent genetic operations. The explored
candidates by GA can evolve beyond the parents, where the
fitness of individuals is evaluated dynamically via a ray tracer
channel simulator. Accelerated by a warm start strategy and elitist
replacement, the proposed customized GA provides near-optimal
results in experiments, applicable to generic environment with
multiple mobile users and different signal-to-noise ratios.

Index Terms—Massive MIMO, multi-user, topology, focusing
performance, radio propagation channel, ray tracer, genetic
algorithm

I. INTRODUCTION

We are experiencing an immensely increased wireless data
consumption via diverse applications and devices. Wireless
networks with even lower latency, higher spectral efficiency,
and higher reliability are in urgent need. The unused spectrum
at higher frequencies with large bandwidth opportunities are
exploited for commercial use. With higher carrier frequency,
massive multiple-input multiple-output (mMIMO) is a respon-
sive choice in order to maintain the link budget. A mMIMO
system is the system with unconventionally many active an-
tenna elements with a total number of M that can serve users
K (M >> K) in the same time-frequency resources [1]. The
ratio between M and K depends on the requirements of system
performance, the propagation environment, and so on. For sub-
6 GHz, massive multi-antenna base station (BS) with 64 or 128
antennas appeared as commercial products. For millimeter-
wave (mmWave) frequencies, systems equipping more than
128 antennas are foreseen. In perspective of functionality, a
mMIMO system can simultaneously transmit multiple indepen-
dent streams where each experiences unique and independent
propagation. Therefore the spectral efficiency increases as a
spatial multiplexing gain. It can also transmit coherent signals
to antennas so that the signals add coherently towards the
target user then the signal-to-noise ratio (SNR) increases
as a beamforming gain. mMIMO is hardly a point-to-point
solution and is for multi-user (MU) exploiting multiplexing
with beamforming.

The spatial resolution of a mMIMO system is not only
determined by the number of the BS antennas, but also the
aperture size and BS-user topology [2]. Typical topology
choices include the co-located, the distributed, and the cell-
free [3]. For the co-located topology, the BS array is configured
with closely spaced antennas with specific geometry, and there
is low requirement for the backhaul network. For the split
topology, the BS array is split and distributed in separated
locations, and the cooperative backhaul network is necessary.
For the cell-free (a.k.a. “radio stripes”), each user is essentially
surrounded by BS antennas, which differs from the current
commercial network deployment that each BS is surrounded
by users; it also requires cooperative backhaul network. Here
we are interested in the cell-free topology for MU-mMIMO.

Given certain mMIMO topology, the intrinsic challenge
posing between BS and MU is the dispersive and directive
radio propagation channel. The knowledge of the mMIMO
radio channel is crucial in order to evaluate the focusing
performances of BS over the spread of UE devices, with
tuning of precoding techniques including the maximum ratio
transmission (MRT), the regularized zero forcing (ZF) and
the minimum mean squared error (MMSE). Nevertheless, the
impacts of the mMIMO topology, the MU effect including mo-
bility, and the propagation mechanism on the system focusing
performance, should be understood as a whole and furthermore
should be able to feedback to us the optimal deployment. The
mMIMO topology shall be optimized in a smart way given the
generic MU mobility and propagation channel condition; hence
the goal of this paper. We propose to use the genetic algorithm
(GA) combined with a ray tracer (RT) channel simulator to
generate the optimal mMIMO topology serving for MU in
mobility.

Belonging to the broader class of evolutionary algorithms
(EA) inspired by the biological evolution, GA encodes candi-
date solutions using chromosomes and provides a fitness func-
tion determining their qualities [4]. Crossover and mutation
are performed on chromosomes while selection is effectuated
by their fitness values. GA has been applied in mMIMO tech-
nologies particularly for antenna design [5], antenna selection
[6], resource allocation [7], channel estimation [8] and multi-
objective optimization tasks [9]. Relevant to our work, GA has
been employed in [10] to find the optimal antenna placement in
a user equipment aiming for the best capacity. GA is also used
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TABLE I: Strengths and Challenges of GA and its potential on mMIMO BS antenna deployment

GA itself Applying GA to mMIMO BS antenna deployment

Strengths
• No need of large training data compared to machine learning methods • A brand new attempt to solve the problem
• Can find better solutions beyond the initialization candidates • A plain encoding and genetic operations are proposed
• Relatively simple to implement • Applicable to generic environments

Challenges
• Finding a feasible encoding is sometimes difficult • Better deployments may exist beyond the GA output
• There exist objectives that can not be converted to fitness functions • How to improve the GA is worth investigation
• There are concerns that the algorithm not work on some problems
• The algorithm could trap in local optima

in [11] for a comparison with a gravitational search algorithm
(GSA) to achieve the selection of optimal transmit antennas
maximizing both capacity and energy efficiency, without giving
implementation details.

In this paper, our investigated problem is beyond the scope
of the literature and aims at a general applicability of GA
for mMIMO topology optimization given MU in mobility
and propagation scenario with generic line-of-sight (LOS) and
specular reflections (SR). Our initial focus is to optimize the
BS antenna locations in a cell-free topology to achieve the
optimized sum-rate capacity. To the best of our knowledge,
this paper is an early effort to tackle the optimal mMIMO
topology using GA combined with ray tracer. Strengths and
challenges of GA and its potential in optimizing mMIMO BS
antenna deployment are summarized in Table I to support our
motivation statement.

II. SYSTEM MODEL AND FOCUSING PERFORMANCE

A. Cell-free Topology in Confined Environment

The cell-free topology aims at providing an almost-
uniformly good service quality for users everywhere [3].
Ideally, there is no division of cells, but just the spread out
of access points, or in other words, a massive number of
distributed BS antennas. In this topology, each user is served by
all the antennas in its area of influence, so that the user-centric
clustering is formed to reinforce channel hardening [12], [13].
The cell-free topology requires a lot of backhaul signaling;
the authors in this paper regard this cell-free topology positive
and feasible to implement in large confined environment, e.g.,
warehouse, parking lot.

B. Ray Tracer

The 3-D RT tool used in this paper is based on [14], and can
be used to capture propagation mechanisms including LOS,
SR with different order, penetration, diffraction, and diffuse
scattering. This RT tool has been utilized in the literature and
its effectiveness has been validated in [15], [16], [17], [18].
The input information are the geometrical and electromagnetic
descriptions of the environment, including walls, ceiling, floor
and furniture if any, as well as the antenna radiation properties.

C. mMIMO System Model

Considering channel reciprocity and only the downlink
(DL) channel of MU-mMIMO, the BS is equipped with M

scattered antennas serving simultaneously K single-antenna
users distributed randomly in the scenario. The received DL
signal for user k denoted by yk is given by [19]:

yk =
√
pkhkx+ nk (1)

where hk ∈ C1×M is the channel vector perceived by user k
and belongs to the k−th row of channel matrix H ∈ CK×M ,
pk is the power allocated to user k, nk ∼ CN(0, σ2) is the
complex Gaussian noise attributed to user k, σ is the standard
deviation of the noise power, and x ∈ CM×1 is the transmitted
signal with precoders:

x = Ws. (2)

In (2), s ∈ CK×1 is pre-coded data symbol vector, W ∈
CM×K is the precoding matrix formed by the beamforming
vectors for each user:

W =


HH MRT

HH(HHH)−1 ZF
HH(HHH + K

ρ Ik)
−1 MMSE

, (3)

W =
W

‖W ‖F
(4)

where {·}H indicates the conjugate transpose, Ik is the K×K
identity matrix, and ρ is the SNR. Assuming x and n have
unit power in (1), the allocated power p indicates the SNR and
equals to ρ. The use of (3) the classical linear precoder assumes
that BS has the perfect CSI. The use of linear precoders is
beneficial in terms of reducing the number of RF chains hence
subsequently results in a decrease in hardware and software
complexity. The performances of linear precoders combined
with heuristic power allocation schemes are typical indicators
on the effectiveness of the mMIMO strategy; such strategy
is plausible for the reduced complexity compared to, e.g.,
dirty paper coding. In (4), the precoding matrix W is power-
normalized. Combining (1), (2), (3) leads to:

yk = hkwks
′
k +

K∑
i=1,i6=k

hkwis
′
i + nk, (5)

s′ =
√
Ps. (6)
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D. Evaluation Metrics for MU

It is crucial to evaluate the mMIMO system performance
and here we adopt the sum-rate capacity as the metrics
indicating the focusing performance. First, the signal power
to interference ratio (SINR) is defined as:

SINRk =
pk |hkwk|2∑K

i=1,i6=k pi |hkwi|2 + σ2
, (7)

where

pk =

{
ρM Equal power allocation
p∗k Optimized power after waterfilling. (8)

Then the sum-rate capacity serving as an upper bound on the
achievable rates and spectral efficiency is given by:

C =
K∑
k=1

Ck, (9)

Ck = log2(1 + SINRk) [bit/s/Hz]. (10)

Note that the achievable rate depends on the topology as well
as the propagation channel.

III. GENETIC ALGORITHM FOR OPTIMIZATION

We propose a customized GA (CGA) as described in
Algorithm 1 to specially solve the aforementioned mMIMO
deployment optimization problem. This section provides a
general description of the proposed scheme and Section IV
dicusses the numerical investigations. In the proposed scheme
using GA combined with RT, a binary matrix encoding is
adapted to the candidate solutions enabling further employment
of genetic operations.

In the initialization stage, the first population is generated
by grouping individuals where each individual encodes the
randomly chosen M antenna locations. The individuals are
sorted by their fitness (performance), which is the sum-rate
capacity presented in Section II. The algorithm keeps running
until the stop condition [20] (specific execution time, iteration
number or fitness value) is reached. A warm start strategy
named truncation update [21] is introduced at the beginning of
each iteration, e.g., the bottom 50% individuals in the fitness
ranking are replaced by the individual with the best fitness.
Afterwards, roulette wheel selection [22] is performed on the
current population choosing two individuals named parents.
Single point crossover [23] is conducted on parents generating
two children, where bit flip mutation [24] is applied. An
intuitive example for the above mentioned genetic operations
is given as follows: suppose two parents are selected in one
iteration, denoted by p1 = [110011] and p2 = [101001].
The crossover point is after column 3, therefore two children
c1 = [110|001] and c2 = [101|011] are generated by changing
the second half of two parents. The mutation point is column
2, therefore c1 = [100001] and c2 = [111011] are updated
by bit filp on column 2. Finally, elitist replacement [25] is
implemented ensuring the two best in parents and children
would replace the selected parents. The updated population is
further sorted for the next iteration by fitness.

Algorithm 1 Customized Genetic Algorithm

Require: RT channel simulator and GA parameters settings
Return: a candidate deployment and its fitness

// Choose User Locations
ue← randomly choose K user locations
// GA Initialization
bs← randomly choose M antenna locations
fitness← sum rate(ue, bs)
individual← encode(bs)
population← sort α individuals by their fitness
while True do

// Truncation Update
population← keep and replace individuals
// Selection
parents← select(population)
// Crossover and Mutation
children← crossover(parents)
children← mutation(children)
// Elitist Replacement
calculate fitnesses of children
elitists← sort children and parents by their fitness
population← replace parents by elitists
// Evaluation
population← sort individuals by their fitness
check stop condition

end while
candidate← best individual in population
fitness← fitness of candidate

Considering the fitness function has the high time com-
plexity of O(K ∗ M) (calculating the sum rate), in the
implementation of CGA, fitnesses are calculated once and
stored in an additional sorted array, whose index is used for
sorting individuals. For a specific MU group ue, with the
population size α and a maximal iteration number N , the
CGA explores N ∗ (α + 2) candidate deployments of BS
antennas using the RT simulator. The candidate with the best
performance is returned as the CGA output.

IV. NUMERICAL INVESTIGATIONS

We apply the following setups for the numerical experiments
of the proposed CGA scheme in Section III. The confined
environment is a cubic (representing a room) with length,
width, and height as 5 meters. The walls are reflective and
lossy bricks. There is no scattering from dryground and the
ground is not penetrable. The dielectric and conductivity
properties of walls, ceiling and dryground follow the ITU
recommendations [26]. The target frequency is 5.9 GHz with
200 MHz bandwidth. The BS antennas are half-wavelength
vertical dipoles and each UE is one single dipole antenna as
well. The LOS and the 1st order SRs are captured in RT for
the radio channel between BS antennas and UE antnenas. In
this confined environment, the K users are randomly situated
in the horizontal plane with height of 1.6 meters; the M BS
antennas are assumed to be equally distributed on four walls
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surrounding users whearas the locations of the BS antennas
are randomly generated on the vertical walls. To evaluate the
sum-rate capacity, we assume a certain level of SNR and SNR
is variable. We use MMSE and equal power allocation. Note
that the priority of this paper is not to find the best power
allocation and precoding scheme, but rather to investigate the
applicability of CGA on optimizing cell-free MU-mMIMO.
The GA population size α is set to 4, and the maximal iteration
number N = 10 is chosen as the stop condition.

The CGA encoding procedure is performed as follows.
BS antenna positions on each wall have a fixed value in
one dimension of the 3D Cartesian coordinates (Fig. 3). The
location of an antenna is represented using a binary matrix of
2 rows and 6 columns, with the locating precision of 5/64
meters. Each row is a binary representation of the decimal
value indicating its relative position in one dimension.

In the first experiment the CGA is executed on the scenario
with K = 5 users at fixed locations (denoted as ue1), M = 20
BS antennas, and SNR of 30 dB. The search trend of CGA
is shown in Fig. 1, where the mean and the best fitness
(performance in sum-rate capacity) values of each iteration
are captured. The figure indicates the convergence of the
algorithm, with the increasing mean fitness over iterations.
Compared to the traditional GA (TGA) [27] without the warm
start strategy of truncation update, the CGA has a faster con-
vergence speed and provides a better result after 10 iterations,
since the quality of initial individuals in each iteration are
improved. The box plots in Fig. 2 further demonstrate the
convergence of fitness in a detailed view over iterations. With
the elitist replacement strategy, final individuals after evolution
(truncation update, crossover, mutation, elitist replacement)
outperform the initial ones in all iterations. Upon iteration ter-
mination, a near-optimal deployment of BS antenna locations
denoted as dp1 is found with performance converged at 4.56
bit/s/Hz, denoted as f1. In this experiment the CGA explores
10 ∗ (4 + 2) = 60 candidates and returns the best one. We
further evaluate dp1 with p groups of 5 randomly generated
users, simulating the scenario of generic mobile users. For
p = 5, calculated by the RT simulator without the CGA ex-
ecution, performances ([sum rate(ue1i, dp1)], i ∈ [1..p]) are
[4.52, 4.55, 4.54, 4.54, 4.54] bit/s/Hz, relatively good compared
to f1.

In the second experiment the CGA is applied to q groups of
5 random users with 20 BS antennas. Therefore, the algorithm
runs q epochs in such experiment rather than one in the first
experiment. Each epoch on our working desktop (Intel i7 7700,
16G RAM with Matlab R2017b) the CGA requires about 3
hours. For q = 2, none of the result ((ue2, dp2), (ue3, dp3)
with [3.04, 3.77] bit/s/Hz) from those epochs has a converged
performance outperforming dp1. This phenomenon indicates
that for the generic environment “K mobile users with M
antennas”, we could apply the CGA within one epoch on
K randomly situated users to achieve an acceptable and
near-optimal M antenna deployment. All users and antenna
locations are visualized in Fig. 3. Compared with an arbitrary
deployment (dp4 with 2.83 bit/s/Hz), our method could provide
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Fig. 1: Search trend for CGA and TGA in experiment 1
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Fig. 2: Box plots for each iteration of CGA in experiment 1

solutions with better performances (7.4% with dp2, 33.2% with
dp3, and 61.1% with dp1). Conventional approach to mMIMO
antenna deployment are based on empirical analyses, with our
method more competitive candidates are provided. Additional
experiments of CGA applications on scenarios with different
SNRs are also performed. The same antenna deployment is
produced for different SNR scenarios when other settings keep
the same.

Tuning GA parameters by applying larger population size
α and maximal iteration number N could improve the per-
formance of CGA, resulting in a faster convergence speed
or a better solution. Adjusting the truncation, crossover, and
mutation rate also has notable influence on the search progress
[28]. However, according to the no free lunch theorem [29],
better performance also requires higher execution cost, e.g.
time consumption in this case. The proposed CGA is designed
with truncation update and elitist replacement, accelerating the
convergence speed without significantly increasing the running
time.
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Fig. 3: Positions of users and antennas

V. CONCLUSION

This paper presents a customized genetic algorithm and
its application to the problem of massive MIMO cell-free
topology optimization. The genetic algorithm is combined with
a ray tracer simulator as a dynamic measure of performances
for candidate deployments for base station antenna placement.
Elitists outperforming the initial individuals over iterations of
the CGA guarantee the effective search of candidate solutions.
Numerical investigations indicate the general applicability of
the algorithm in different settings in a confined environment
where radio propagation is dominant by line-of-sight and spec-
ular reflection. Further research and development include how
to make the algorithm converge fast in dynamic environment
scenarios, and how this convergent near-optimal approaches
the reality.
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