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Abstract—Signals traveling through a Satellite Communication
(SatCom) channel are subject to noise and interference effects,
impacting their Signal-to-Noise ratio (SNR). Furthermore, non-
linear distortion arising from the nonlinear characteristic of the
amplifiers in the system also adversely impacts performance.
Current state-of-the-art techniques estimate these effects by
including a sequence of known pilot symbols in the trans-
mitted signals. While robust, a downside of these approaches
is that pilot symbols do not include useful information, thus
introducing overhead. This paper presents a Machine Learning
(ML) approach to characterize the SNR, using the received
signal in the return link of SatCom systems, independent of the
signal’s distortion level and without relying on pilot symbols. The
proposed technique is validated through a suitable application
example: the characterization of SNR in a SatCom system using
a 16-APSK modulation scheme.

I. INTRODUCTION

Satellite communication (SatCom) has become ubiquitous
in our current society. Satellites are used in almost all commu-
nication systems around us: broadcast TV, videoconferencing,
aeronautical and maritime communications, to name but a few.
One important field where SatCom is rapidly gaining momen-
tum is the cellular communications sector. Historically, mobile
service providers have been reluctant to integrate SatCom as
part of their cell backhaul due to the delay-introducing charac-
teristic and lower-bandwidth of SatCom systems compared to
terrestrial systems. However, these limitations are now being
overcome owing to the many technological advancements in
the sector, such as High Throughput Satellites (HTS), data-
prefetching and higher-order modulation schemes [1]. Mobile
operators are therefore ready to embrace SatCom next to the
existing terrestrial solutions.

However, using higher-order modulation schemes in modern
SatCom technologies also brings a few new challenges. Due to
their high Peak-To-Average Power Ratio (PAPR), they are very
sensitive to nonlinear effects, induced, e.g., by the nonlinear
characteristic of High-Power-Amplifiers (HPAs) onboard the
transmitting user terminal. Furthermore, frequency interfer-
ence and thermal noise also have a negative impact on the
satellite-terrestrial radio system and need to be accounted for.
A correction mechanism typically applied at the transmitter is
called predistortion [2]. As the name suggests, the signal is
predistorted using an approximation of the inverse amplifier

Fig. 1. Overview of the SatCom system return link.

input-output characteristic and channel non-idealities. Other
techniques, which cancel out the non-idealities at the receiver
side, such as symbol-based equalization, are able to provide
significantly better performance and energy efficiency. How-
ever, these techniques rely on the knowledge of the channel’s
characteristics. In practice, acquiring this information is not
only difficult, it also introduces overhead [3].

This paper focuses on the characterization of the SNR in
the satellite return link, which is of paramount importance to
ensure the desired performance of modern SatCom systems.
Figure 1 illustrates the system under study with the relevant
nonideal components, where the satellite channel is modeled
as an additive white Gaussian noise (AWGN) channel. In
particular, we aim at characterizing the SNR via Machine
Learning (ML) methods, without making use of pilot symbols
and independent of the distortion level of the signal arising
from the nonlinear characteristic of the HPA. Hence, only
the raw and unknown received symbols at the gateway are
to be used to quantify the signal’s noise level. Reaching this
goal independent from the distortion level of the signal is
challenging, but of paramount importance, since, in practice,
the distortion level introduced by HPAs is not known upfront.



Fig. 2. Overview of the SatCom system’s model in MATLAB.

In this framework, we first build a MATLAB1 model of
the SatCom system in Fig. 1, which is described in detail
in Section II. This model is used to generate the required
signals for the training and testing of our ML-based technique.
Next, Section III describes how the proposed ML approach
can be employed to quantify the SNR, independent of the
distortion level. A relevant application example, based on a 16-
APSK modulation scheme, is presented in Section IV, while
conclusions are drawn in Section V.

II. MODELING THE SATCOM SYSTEM

In order to characterize the non-idealities of the system
based on the received signals, a reliable model of the SatCom
system is necessary. First we give a general overview of the
system and its components, then we discuss in detail the
characteristics of the HPA and AWGN channel.

A. Overview of the Communication Framework

The information from the user terminal, represented as a
sequence of random bits, is first modulated using a 16-APSK
modulation scheme. The resulting complex baseband signal,
consisting of a sequence of complex-valued symbols, is then
upsampled with an oversampling rate of 16 and pulse shaped,
in this case using a Square-Root Raised Cosine (SRRC) filter.
Another SRRC filter, which is matched to the transmitter filter
(i.e., its complex conjugate), is used at the receiver. After pulse
shaping, the last component in the transmitter is the HPA,
which introduces distortion into the signal due to its non-
linear input-output characteristic. The signal is consequently
sent through the AWGN channel, corrupting the signal with
Gaussian noise, to finally arrive at the receiver filter. Here it
is again filtered and finally decimated, to obtain the received
distorted symbol sequence. Figure 2 schematically shows the
architecture of the SatCom system under study.

B. HPA & AWGN channel

For the HPA, which is the last component in the transmitter,
the Amplitude-to-Amplitude (AM-to-AM) and Amplitude-to-
Phase (AM-to-PM) characteristics were sampled from a 3W

1The Mathworks Inc., Natick, MA, USA.

Fig. 3. General architecture of an autoencoder.

solid state Ka-band amplifier, and saved into a tabular dataset
in MATLAB. The power of the generated input signal is such
that, for an input-backoff (IBO) of 0dB, the average signal
power is equal to the input saturation power of the amplifier,
as desired. Higher IBO levels result in more backoff from the
saturation point, and thus less distortion.

The AWGN block is modeled by generating a sequence of
Gaussian noise samples that are added to the signal, in such
a way that the desired SNR is obtained. The noise power is
equally divided over the real and complex parts of the samples.
Now, the distorted and noisy sample sequence reaches the
receiving gateway station. The ML model discussed in the
sequel employs the received signal at this point, i.e., the
received sequence of samples before sending it through the
receiver filter. This signal better resembles an analog signal,
due to the pulse shaping operation at the transmitter, and this
is beneficial for the considered ML-based approach.

III. METHODOLOGY

A two-step procedure is proposed to quantify the SNR
of the received signal. First, a suitable autoencoder (AE) is
trained using the signals generated by the SatCom model. An
overview on AEs and their application in our problem set-up
is given in Section III-A, while the architecture of the specific
AE used in this application is presented in Section IV. Second,
in Section III-B we define three different metrics that relate the
output of the AE to the signal’s SNR, and investigate which
one provides the best performance in Section IV.

A. Autoencoders for SNR estimation

AEs are Neural Networks with the same input and output
dimensions, which are trained to compress the input into a
lower-dimensional space (also called latent space), in such a
way that the input can again be recovered from the latent space
with minimal error [4]. In the literature, AEs have been used
for several applications, including dimensionality reduction [5]
and detection of errors and anomalies [6]–[8].

Figure 3 shows the structure of a generic AE, which is
formed by two parts: the encoder and decoder. The first is
given by the layers reducing the dimensionality of the input,



Fig. 4. Schematic overview of the proposed approach for quantifying the
SNR in received signals.

while the layers responsible for reconstructing the original
input form the decoder. It is important to note that both
encoder and decoder typically are nonlinear functions of the
inputs, which is achieved by the use of nonlinear activation
functions at the node outputs [4].

In our problem set-up, first a suitable AE is trained to
reconstruct “ideal” received signals, i.e., signals with high
SNR. For this application, a SNR of 40dB is used during
the training phase. Then, during the testing phase, feeding
unknown signals with different ranges of SNR to the AE
will yield different latent space representations and higher
reconstruction errors than during the training phase, as the
AE was not trained to reconstruct them. By defining suitable
metrics based on the density of the latent space or on the
reconstruction error, as shown in Section III-B, it is possible
to accurately estimate the SNR of unknown received symbol
sequences. This methodology is summarized in Fig. 4, where
the data transformation step refers to a suitable preprocessing
of the received signal, which is described in Section IV.

However, noise is not the only non-ideal characteristic of
received signals, the distortion caused by the HPA must be
taken into account as well. Hence, the training set must include
signals with a wide range of different distortion levels. For
this application, the IBO varies between -20dB and 15dB,
while the SNR is kept fixed at 40dB. In this way, the AE
will learn to reconstruct signals with different distortion levels.
Therefore, after training, a degradation of the reconstruction
performance will depend mainly on the SNR’s variations and
not on the different distortion levels. Since the training set
includes a broad range of possible signals, which the AE
must be able to reconstruct with sufficient and comparable
precision, we decided to use convolutional layers instead of
fully connected layers for the AE. This particular architecture
is called convolutional autoencoder (CAE). The convolutional
layers allow for extracting time-shift invariant temporal char-

acteristics of the signal under study (also called features in a
ML framework), and can learn more complex functions of the
input without significantly increasing the model’s complexity,
due to the weight sharing nature of convolutional kernels [9].
This means that one set of weights (forming a kernel) is
used (slides) over the entire input, allowing the CAE to better
handle the broader training dataset.

B. Metrics

We now discuss the three different algorithms, or metrics,
to relate the CAE’s output to the SNR value.

The first algorithm is the Local Outlier Factor (LOF),
which is applied to the latent space representation. The LOF
compares the local density of each point in the latent space
to the local density of its k nearest neighbors [10] in order
to individuate outliers. Typically, this algorithm is adopted in
combination with AEs in the framework of anomaly detection
problems [7], where the goal is to identify infrequent deviant
events, which do not conform to an expected behavior. The
main assumption of the LOF is that deviant events lie in
areas of lower density of the latent space compared to normal
samples. As a result, the more relevant the difference from
the “normal” behaviour, the higher is the corresponding score
given by the LOF algorithm. However, in our problem set-up
the noise constantly corrupts the received signal, rather than
occasionally causing an unexpected behaviour, as in anomaly
detection problems. Therefore, rather than using directly the
score provided by the LOF, the standard deviation of the LOF’s
score over an entire symbol sequence is used to estimate the
SNR of the received signal.

The second metric is the sparsity of the latent space. Con-
trary to the LOF algorithm, which compares local densities,
the sparsity metric here defined only considers the absolute
distances of each point in the latent space to its k nearest
neighbors, and averages out these distances over all points. In
particular, the sparsity of the latent space can be expressed as

sparsity =

N∑
X=1

∑
Y

|X−Y |

|HY |

∣∣∣∣
Y ∈HY

N
, (1)

where X and Y are two points in the latent space, HY the
set of k nearest neighbors of Y and N is the total number of
points in the latent space. Hence, it is a measure of the absolute
sparsity of the latent space: the more distance between the
points, on average, the greater the sparsity value.

The last metric adopted is the mean absolute error (MAE)
between the input and output of the CAE. Therefore, this
metric does not rely on the latent space representation, but
only considers the reconstruction error.

Applying the metrics here defined to the latent space or the
output of the CAE, as appropriate, constitutes the final step of
the proposed methodology, as shown in Fig. 4.

IV. APPLICATION EXAMPLE

In order to feed data to a CAE, the signals are first
preprocessed by standardizing them, such that their mean and



Fig. 5. Architecture of the CAE for quantifying the SNR.

standard deviation are equal to zero and one, respectively,
and then are split into sub-sequences. This corresponds to
the data transformation step in Fig. 4. In this application,
each sub-sequence is a vector of size 16, which is equal to
the oversampling rate of the adopted modulation scheme, as
described in Section II-A. In particular, each signal used for
training, generated using a specific combination of SNR and
IBO values, contains 220 samples, and is thus split up into
216 input vectors. It is important to remark that only the real
part of the signal was fed to the CAE. Since the noise equally
affects both real and imaginary parts of the received signal,
as described in Section II-B, by adopting only the real (or the
imaginary) part to detect the SNR it is possible to reduce the
complexity of the CAE, without sacrificing the accuracy in the
model’s prediction.

The architecture of the final, tuned CAE is shown in Fig. 5.
It consists of four convolutional layers and one intermediate
dense layer of four neurons. Dropout layers were added for
regularization. The input and output consist of 16 neurons,
corresponding to the length of each input sub-sequence. Note
that each input represents one symbol duration.

During the training phase, the Gradient Descent optimiza-
tion algorithm [11] is to used to modify the model parameters
in order to minimize a suitable loss function. The contractive
loss is adopted in this contribution, which is a variation of the
Mean Squared Error (MSE) loss function, adding a penalty
term which causes the latent space to contract [8]. This allows
the CAE to better handle small perturbations in the data during
training. The CAE is trained for 120 epochs, using a learning
rate of 8 · 10−4 and batch size of 64 for the Gradient Descent
algorithm.

New and unknown signals (indicated as test signals in the
following) can now be fed to the trained CAE, and the metrics
discussed in the previous section can be used to quantify the
SNR. Specifically, sequences are generated with IBOs between
-20dB (high distortion) and 15dB (no distortion), and SNRs
varying between 0dB and 40dB (in steps of 5dB). In order to
verify the robustness of our approach to the different symbol
sequence transmitted, 10 different signals are generated with

Fig. 6. MAE as a function of the test signal’s SNR for varying IBOs,
generated using seed = 1. Each discrete point represents a test signal with
specific SNR and IBO.

TABLE I
IMPACT OF VARYING SEEDS ON THE SNR ESTIMATION

a different seed of the random number generator for each
combination of SNR and IBO. This results in a total of 720
sample sequences (9 SNR levels, 8 IBO levels, 10 seeds
per level). The outcome of the metrics for each sequence is
consequently plotted as a function of the SNR, as shown in
Fig. 6 for the MAE metric. In particular, the results in Fig. 6
are obtained for a seed equal to one and varying IBO levels. It
can be seen that the MAE varies almost linearly with respect to
the SNR for a large range of values, and the test signal’s SNR
can be accurately predicted. The variability in the outcome
due to varying IBO levels, although small, causes some loss
in precision when predicting the SNR of a sequence. This is
indicated with blue bars in the figure. By interpolating between
the discrete points, it is possible to predict the SNR over a
continuous range of values between 0 and 40dB.

Using other seeds for the random number generator yielded
very similar results, indicating that the proposed method is
robust to the varying information content in the received
signal. After taking into account the impact of the varying
seeds, the final prediction accuracy is obtained: the results
for the MAE are summarized in Table I. Note that the last
column in the table is obtained by adding up the loss in
precision due to both the variability in sequences and unknown
distortion levels. Four main regions can be distinguished, each



Fig. 7. Real parts of two signals containing the same information content,
but with different distortion levels.

TABLE II
ACCURACY OF SNR ESTIMATION FOR THE CONSIDERED METRICS

represented by a row of the Table I, and the accuracy is the
highest for an SNR between 10dB and 30dB. Indeed, for an
SNR above 30dB the corresponding reconstruction error is low
(the test signal is similar to the training signal), reducing the
precision in estimating the SNR; while for an SNR close to
0dB the signal is extremely corrupted by noise, thus reducing
the accuracy of the model’s predictions.

As an example, Fig. 7 shows the real parts of two signals
representing the same symbol sequence with identical SNR,
but with very different distortion levels. The SNR and IBO
are considered unknown, and we want to estimate the SNR of
the signals with the proposed technique. Feeding both signals
to the CAE results in MAEs of 7.43 and 7.61 for the −10dB
and 15dB IBO signals, respectively. By looking at Fig. 6, this
indeed corresponds to an SNR of about 25dB, and according
to Table I this estimate is accurate within a margin of 1.6dB.

The results for all metrics are summarized in Table II. The
number of k nearest neighbours for the LOF and sparsity

metrics providing the best results is not known upfront: a
heuristic approach has been used, leading to k = 800 for
the LOF and k = 200 for the sparsity. Note that the standard
deviation of the LOF does not show significant changes for
an SNR between 30dB and 40dB, making it impossible to
estimate the SNR in that region. It can be seen that the MAE
yields the best results among all metrics, with the exception
of an SNR between 0dB and 10dB where the sparsity metric
is marginally more accurate.

V. CONCLUSIONS

A ML-based characterization of the SNR in a Satellite
Communication System is described in this contribution. The
proposed method represents an alternative to current state-of-
the-art approaches, which mainly rely on expert systems and
dedicated pilot symbols in the waveform. It is robust to the
nonlinear characteristic of the HPA onboard the transmitting
user terminal. The proposed method is based on training a
suitable CAE that, in combination with the MAE metric, is
able to accurately estimate the SNR in receiving sequences.
Many possibilities for future research exist. The current sys-
tem can be further extended to take into account multiple
amplifier characteristics and different constellation schemes.
Furthermore, in order to deploy such a system in the field,
other variables also need to be considered, such as fading or
interference effects.
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