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Abstract – Over the past few years, Deep learning (DL) has revolutionized the field of data analysis. Not only are the algorithmic 
paradigms changed, but also the performance in various classification and prediction tasks has been significantly improved with 
respect to the state-of-the-art, especially in the area of computer vision. The progress made in computer vision has produced a spillover 
in many other domains, such as biomedical engineering. Some recent works are directed towards surface electromyography (sEMG) 
based hand gesture recognition, often addressed as an image classification problem and solved using tools such as Convolutional 
Neural Networks (CNN). This paper extends our previous work on the application of the Hilbert space-filling curve for the generation 
of image representations from multi-electrode sEMG signals, by investigating how the Hilbert curve compares to the Peano- and 
Z-order space-filling curves. The proposed space-filling mapping methods are evaluated on a variety of network architectures and in 
some cases yield a classification improvement of at least 3%, when used to structure the inputs before feeding them into the original 
network architectures.

Keywords – classification, CNN, Deep Learning, electromyography, hand gesture recognition, Hilbert curve, Peano curve, sEMG,  
space-filling curve, Z-order curve

1. INTRODUCTION

Hand gesture recognition finds many applications in 
human computer interaction [1], sign language recog-
nition [2], prosthesis control [3] and gaming for reha-
bilitation [4, 5]. The electrical signals generated by the 
forearm muscles during the execution of hand ges-
tures provides useful information about muscle activ-
ity and hand motion [6]. These signals can be recorded 
by means of surface electromyography (sEMG) sensors.

The type of hand motions and gestures has tradition-

ally been determined from sEMG data using a com-
bination of (hand-crafted) feature extractors and Ma-
chine Learning (ML) classifiers. More precisely, the com-
ponents of an ML-based pattern recognition system 
include data acquisition, feature extraction, classifica-
tion, and inference from new data. In the hand gesture 
recognition case, the electrodes (sensors) that acquire 
the sEMG signals, are attached to the arm and/or fore-
arm. Then, features such as Root Mean Square (RMS), 
variance, zero crossings and frequency coefficients are 
extracted from the sEMG signals. Finally, these features 
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are fed into classifiers like k-Nearest Neighbours (k-NN), 
Support Vector Machine (SVM), Multi-Layer Perceptron 
(MLP) or Random Forests [7].

The success of Deep Learning (DL) models in solv-
ing the problem of sEMG-based hand gesture recogni-
tion has been well-documented in numerous studies. 
In these works, a usual approach is to represent sEMG 
data as images and feed them into a Convolutional 
Neural Network (CNN) that outputs a probability that 
an sEMG signal corresponds a certain gesture class. In 
a typical CNN architecture, the output label is obtained 
from a sequence of convolutional and pooling layers 
followed by fully connected (i.e. dense) layers and a 
softmax activation layer. Consequently, CNN models 
transform the input image layer by layer, from its pixel 
values to the final classification label.

Although an architecture based on Recurrent Neural 
Networks (RNN) would seem more appropriate for pro-
cessing time-series signals, little research has been done 
on this. The problem might be that Long Short-Term 
Memory (LSTM) networks, the main type of RNN mod-
els, require many parameters which cannot be trained 
efficiently with the limited sEMG datasets available. In 
addition, recent work [8, 9] has shown that CNN can out-
perform RNN in a wide range of sequence problems.

There has been considerable progress in the use of 
CNNs for feature extraction, image classification and 
particularly for combined feature extraction and clas-
sification within the same network. On the other hand, 
converting time-series into image-like structures that 
can be used as inputs to CNN models is not a simple 
task. Methods proposed in the open literature include 
the partitioning of multi-channel signals using win-
dows and the application of 2D transformations such 
as the Fourier and Wavelet Transforms.

The current archival periodical article is based on the 
conference presentation [10], in which we describe a 
representation method for sEMG signals using the Hil-
bert curve to obtain images. Now, we investigate the 
application of several space-filling curves, namely the 
Hilbert, Peano, and Z-order curves, to represent sEMG 
signals as images that can be classified by CNNs. Com-
pared to [10], the added contribution presented in 
this paper is the evaluation of all these types of image 
representation methods and their performance com-
parison when applied on the problem of hand gesture 
recognition using CNNs.

The rest of the paper is structured as follows. Section 
2 contains a literature review of the methodologies 
used for hand gesture recognition. The details of the 
proposed methods and the CNN architectures applied 
in our experiments are given in Section 3. The experi-
ments performed for the evaluation of the models are 
given in Section 4, while the results and a discussion 
of these results are presented in Section 5. Finally, Sec-
tion 6 concludes by summarizing the outcomes of this 
work.

2. RELATED WORK

Hand gesture recognition based on sEMG has been 
investigated by both typical ML approaches and DL 
practices. In the case of ML methods, the first approach 
[11] for the classification of four gestures utilizes time-
domain features from two-electrode sEMG signals. An 
accuracy of 97% in categorizing three types of grasps is 
achieved in the work of [12] by using the RMS feature 
of seven electrodes as input to an SVM classifier. The 
authors of [13, 14, 15] evaluate a large amount of EMG 
features on a selection of different classifiers for the 
classification of 52 gestures from the Ninapro reference 
dataset [13, 16]. The highest performance, an accuracy 
of 75%, was achieved by a Random Forest classifier us-
ing a combination of statistical and frequency domain 
features.

In the case of DL methods, a large body of research 
results has been recently developed. The CNN defined 
in [17] for the recognition of six common gestures re-
sulted in improved accuracy compared to the one ob-
tained by applying an SVM classifier. In [18], a perfor-
mance comparable to ML approaches is achieved by a 
model consisting of convolutional and average pool-
ing layers. In [19], we developed techniques to increase 
the accuracy of the simple model, presented in [18]. 
Choosing max pooling and inserting dropout layers to 
reduce overfitting as suggested in [20], allowed us to 
obtain a 3% increase in accuracy (i.e. from 67% to 70%). 
The authors of [21, 22] follow a different approach not 
only in the choice of the model architecture but also 
in the recording of EMG signals. Their work is based on 
high-density electrode arrays, which is considered an 
effective approach in myoelectric control as described 
in [23, 24, 25]. Using instantaneous EMG images, the 
CNN model of [21] correctly classifies eight hand move-
ments achieving an accuracy of 89%. The multi-stream 
CNN described in [22] achieves an accuracy of 85% on 
the Ninapro dataset, which consists of 52 movements.

Research that utilizes different DL approaches has 
been carried out as well. The work presented in [26] 
follows a model adaptation strategy that applies adap-
tive batch normalization (AdaBN) [27] for updating 
the parameters of the normalization layers. The use of 
weighted connections between a source and a target 
network is presented in [28]. Data augmentation prac-
tices for sEMG signals are developed and evaluated in 
[28]. More recent work in this topic is presented in [29] 
where magnitude warping and wavelet decomposi-
tion showed considerable improvement in classifica-
tion accuracy.

The use of fractal curves, and in particular the Hilbert 
curve, for designing alternative image and signal rep-
resentations is long known, but never studied for sEMG 
signals. In [30] and [31], the properties of the Hilbert 
curve have been exploited to convert mammographic 
images to 1D vectors. In combination with a set of ap-
propriate features, this helped in detecting breast can-
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cer. In [32] a similar dimensionality reduction approach 
is followed. The mapping of 3D data into 2D and 1D 
representations facilitates the classification of 3D struc-
tural data by CNNs. Compared to the direct process-
ing of raw data, such an approach reduces training 
time and can be used in cases of data of an arbitrary 
number of channels. The sequence of the extracted im-
age patches is of importance for the detection of im-
age-forgeries by LSTM-based models [33]. The Hilbert 
curve is employed to determine the order of the image 
patches fed into the LSTM, thus preserving spatial lo-
cality.

The Hilbert curve can be also used in the inverse 
problem, i.e. transforming 1D data in 2D images. The 
authors of [34] found that long-term interactions be-
tween regions of the DNA sequence are important for 
its classification. Thus, instead of very deep networks or 
larger filters, the Hilbert curve was employed to map 
the DNA sequence into an image such that proximal 
elements stay close, and the distance between distant 
elements is reduced.

Besides the more popular Hilbert curve, also Z-order 
curves have been used in representation problems, 
though less frequently. For example, in [35] the Z-order 
curve is chosen because of its good balance between 
locality preservation and computational complexity to 
map the neighbourhood around a point in a 3D point 
cloud into a 1D sequence. These sequences are fed into 
a CNN to predict the displacement between the cur-
rent and the next point. The authors of [36] represent 
the 4D coordinates of a crystal structure as a 1D fea-
ture vector using the Z-order curve. An MLP predictor 
takes as input these representations and estimates the 
energy of the organic molecular structure.

3. PROPOSED DATA REPRESENTATION METHODS

3.1. Space-filling curves

Space-filling curves, such as the Peano, Hilbert, and 
Z-order (Morton) curves, have found applications in 
various domains, such as database access, data com-
pression, and image processing. The key property of 

Fig. 1. First iterations of the Hilbert (a), Peano (b) and Z-order (c) curves.

space-filling curves is that they constitute a mapping 
between a multidimensional space and a lower dimen-
sional space while, in general, they preserve locality be-
tween the data points.

The Hilbert curve or Hilbert space-filling curve was 
first described by the German mathematician David 
Hilbert in 1891. The main property of this continuous 
fractal space-filling curve is the superiority in preserv-
ing locality compared to alternative curves [37, 38]. The 
Hilbert curve can be constructed recursively. Firstly, the 
2D plane is divided into four quadrants that are tra-
versed according to a fundamental pattern as shown 
in Fig. 1-(a). In each subsequent iteration, all existing 
subsquares are subdivided into four smaller subs-
quares. These four subsquares are connected by a pat-
tern obtained by rotation and/or reflection of the fun-
damental pattern. Fig. 1-(a) visualizes Hilbert curve tra-
versals of the 2D space after the first iterations, where 
the numbers are the index within the 1D sequence that 
is mapped to the specific pixel of the 2D image.

The Peano curve is the first example of a space-filling 
curve to be discovered, by Giuseppe Peano in 1890. 
To construct the Peano curve the 2D plane is initially 
divided into nine squares (i.e. a 3 × 3 grid) that are 
traversed according to a fundamental pattern. From 
each iteration to the next, all existing subsquares are 
subdivided into nine smaller subsquares connected as 
shown in Fig. 1-(b).

The Z-order (also known as Morton curve) is another 
locality preserving space-filling curve named after Guy 
Macdonald Morton, who first applied the order to file 
sequencing in 1966. Its basic pattern looks like the let-
ter ‘Z’. The curve is constructed as shown in Fig. 1-(c).

3.2. sEMG representation

Fractal curves are used to transform multi-channel 
sEMG signals into 2D image representations. The sEMG 
signals are recorded by K electrodes (channels), while 
performing a hand gesture. These are organized into 
small segments of N samples. Such an arrangement 
results in sEMG data of size N×K. The fractal curve map-



26 International Journal of Electrical and Computer Engineering Systems

ping can be applied in two ways, either (i) across the 
time dimension, i.e. map each time sequence of sEMG 
channel into a 2D image, or (ii) across the sEMG chan-
nels, i.e. map the values of the sEMG channels of each 
time instant into a 2D image (Fig. 2).

The application of the Hilbert and Z-order mappings 
across the time dimension is as follows. Given a single-
electrode sEMG sequence of length N, a 2D represen-
tation of M×M size is produced, where N=M2 and M is 
a power of two, i.e. M=2n. In the case of K sEMG elec-
trodes, this process is repeated for every electrode, and 
the outputs are stacked into a K-channel image, result-
ing in an M×M×K image. For example, an sEMG signal 
of 10 electrodes and 64 samples is mapped into an 8 
× 8 × 10 image. The application of the Peano curve is 
similar, but M should be a power of three, i.e. M=3n . It 
is important to note that sequence segments of length 
smaller than M2, i.e. (M-1)2 <N<M2 , can be used as well, 
however, in that case the final image has to be filled out 
with zeros up to a length of M2.

In the second option, the curve mapping is applied 
across the sEMG electrodes. The number of sEMG elec-
trodes should be a square number, i.e. K=M2, where 
M=2n (for the Hilbert and Z-order curves) or M=3n (for 
the Peano curve). At every time instant of the sequence 
the set of K electrode values is mapped into an M×M 
image. Thus the dimensions of the Hilbert curve rep-
resentation of the N×K segment will be M×M×N. For 
example, an sEMG segment of 16 electrodes with 20 
samples is mapped into a 4 × 4 × 20 image. As in the 
previous case, the image will be zero-padded, if there 
are less electrodes than M2 (Fig. 2-c).

Fig. 2. The application of the Hilbert curve mapping to sEMG data [10]. (a) A 256-samples segment of 
sEMG signal, (b) the Hilbert representation (16 × 16) across time of electrodes 1, 2, 6, 8 and (c) the Hilbert 
representation (4 × 4) across electrodes at time instants 50, 100, 150, 200. In (c) there are less electrodes 

than pixel dimensions, thus the last six pixels on the right of the images are zero-filled.

The computation of the mapping from 1D to 2D us-
ing these space-filling curves requires only bitwise op-
erations based on Gray codes performed in O(1) time. 
For a given M×M grid, calculating the coordinates for 
a single data point requires O(log2 M) repetitions [39]. 
Since the mapping is the same for all images, it is com-
puted only once and then used as a look-up table. 
Therefore, the computational overhead is very small 
compared to training the CNN.

A common approach in image applications is to use 
1D (grayscale) or 3D (RGB) images as inputs to CNNs. 
In our approach, the dimensionality of the image cor-
responds either to the number of electrodes or to the 
sEMG segment duration.

4.  EXPERIMENTS

4.1. The dataset

For the evaluation of the proposed models the first 
dataset of the Ninapro database [13] was selected. This 
consists of sEMG recordings of 27 healthy subjects that 
repeat 52 gestures 10 times. The hand movements can be 
grouped into three categories: (i) basic finger movements, 
(ii) isometric, isotonic hand configurations and wrist 
movements, and (iii) grasps and functional movements. 
EMG signals are measured using 10 electrodes. Eight of 
them are equally spaced around the forearm. The remain-
ing electrodes are placed on the main activity spots of the 
large flexor and extensor muscles of the forearm [13].

As in previous studies involving the Ninapro data-
set, the sEMG signals are pre-processed by a low-pass 
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filter [18, 19, 21]. Augmentation of the training data is 
achieved by duplicating the signals of each repetition 
and adding Gaussian noise of 25dB signal to noise ratio 
(SNR). Magnitude-warping is also used for sEMG signal 

augmentation [40, 41]. As a last step, sEMG signals from 
the K = 10 channels are segmented into overlapping 
windows of length N with a step of 50ms and are orga-
nized into N × 10 arrays.

AtzoriNet [18, 19] VGGNet [42] DenseNet [43] SqueezeNet [44]

CONV(32, 1×10), ReLU,

CONV(32, 3×3), ReLU,

POOL(max, 3×3),

CONV(64, 5×5), ReLU,

POOL(max, 3×3),

CONV(64, 5×1), ReLU,

CONV(G, 1×1), Softmax

CONV(16, 3×3), BN, ReLU,

CONV(32, 3×3), ReLU,

CONV(32, 3×3), ReLU,

POOL(max, 2×2),

CONV(64, 3×3), ReLU,

CONV(64, 3×3), ReLU,

POOL(max, 2×2),

GLPOOL(avg),

FC(G), Softmax

CONV(16, 3×3)

DSBLOCK(4), TRBLOCK(50),

DSBLOCK(3), TRBLOCK(75),

ReLU,

CONV(G, 1×1), ReLU,

GLPOOL(avg),

Softmax

CONV(16, 3×3), BN, ReLU,

SQBLOCK(4, 16, 32),

SQBLOCK(3, 16, 64),

CONV(G, 1×1), ReLU,

GLPOOL(avg),

Softmax

DSBLOCK(n)

{BN, ReLU, CONV(16, 3×3)}n

SQBLOCK(a, b, c)

{FIRE(b, c)}a, POOL(max)

TRBLOCK(k)

BN, CONV(k, 1×1), POOL(max)

FIRE(b, c)

CONV(b, 1×1), ReLU,

CONV(c, 1×1), ReLU + CONV(c, 
3×3), ReLU

Parameters                                     85K 74K 71K 69K

CONV: convolutional layer, POOL: pooling layer, GLPOOL: global pooling layer, FC: fully-connected layer, BN: batch normalization, { }k: repetition k times, 
‘+’: concatenation
G: number of gesture labels

Table 1. CNN model architectures used in this work [10]

4.2. Network architectures

A number of neural networks have been used for 
hand gesture recognition [19]. Apart from those, we 
also investigate CNN architectures that are typically 
found in image related tasks, but have not yet been ap-
plied to sEMG-based hand gesture recognition, such as 
VGGNet [42], DenseNet [43], and SqueezeNet [44]. For 
the comparisons to be fair, an effort is made to keep the 
number of trainable parameters of the networks ap-
proximately equal. The model architectures are shown 
in Table 1.

4.3. Baseline

As our baseline for comparison, we follow the ap-
proach where none of the fractal curve mappings is 
used. This means that the N × 10 arrays are fed into the 
CNN models as single-channel images. For the window 
length N, we experiment with two different values: 16 
and 64 samples. The reason for choosing N = 16 is that 
for a real-time application the window size should be 
as small as possible [11, 45]. We also report results for a 
bigger window, i.e. N = 64, because of the highest ac-
curacy that was achieved during the validation experi-
mentation (Fig. 3). The explanation for the trend in Fig. 
3, is that with longer segments (N > 64) one can gener-
ate less training examples compared to smaller N val-
ues. Therefore, the CNN models tend to overfit. On the 
other hand, too small segments do not contain enough 
information for the classification task.

4.4. Mapping across time (xxxxTime)

Regarding the space-filling curve mapping across 
the time dimension (xxxxTime), the N × 10 segments 
are organized into M × M × 10 images. In the case of 
Hilbert and Z-order mappings, for N values equal to 16 
and 64 the resulting image sizes are 4 × 4 × 10 and 8 × 8 
× 10, respectively, while for the Peano curve the image 
sizes are 4 × 6 × 10 (zero-padded and cropped) and 9 × 
9 × 10 (zero-padded).

4.5. Mapping across electrodes  
 (xxxxElect)

The mapping across the sEMG channel dimension 
(xxxxElect) is performed in a similar fashion. Given the 
number of channels K = 10, the N × 10 segments are 
organized into images with dimensions 4 × 4 × N. The 
pixels corresponding to the last six positions that the 
three fractal curves traverse are set to zero.

In this approach we retain the spatial resolution con-
stant due to the small number of available electrodes. 
Regarding the window length, we only experimented 
with N = 16, since a longer segment would generate 
very deep image representations that in turn would 
increase the number of parameters in the first convo-
lutional layer increasing the probability of overfitting.

4.6. Model hyper-parameters

All networks were trained using stochastic gradient 
descent for 60 epochs with an initial learning rate of 0.1 
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halved every 15 epochs, and a batch size of 1024. To 
avoid overfitting the networks due to the small training 
set, dropout layers were appended after each convolu-
tional layer with a forget rate of 0.3. In addition, weight 
decay regularization with a value of 0.0005 was applied 
to all convolutional layers. These values were selected 
after performing a grid search on a validation set of ten 
randomly selected subjects.

Fig. 3. Validation accuracy vs window size for 
N={16, 64, 128, 256}.  

Error bars correspond to standard deviation. 
Highest performance is achieved for N = 64.

4.7. Evaluation

The evaluation follows the approach that has been 
used by other researchers that use the Ninapro dataset 
[18, 19, 21]. Specifically, a new model is trained for each 
subject on the data of seven repetitions and is tested 
on the remaining three. The performance metrics 
used are the top-1 and top-3 accuracies, i.e. the accu-
racy when the highest and any of the 3 highest output 
probabilities match the expected gesture, as well as the 
precision and recall values. The average across the 27 
subjects in the dataset is reported for each metric. For 
the statistical comparison of the methods, repeated 
measures Analysis of Variance (ANOVA) and paired Wil-
coxon tests are employed, with the F-value being the 
test statistic and the p-value the corresponding prob-
ability.

5. RESULTS

In the experiments, we evaluate two methods for gen-
erating sEMG image representations from multi-channel 
sEMG signals using three different space-filling curves. 
The evaluation across four CNN models is shown in Table 
2, where an ‘*’ denotes a significant difference (Wilcoxon 

Fig. 4. Comparison of the evaluation metrics for the AtzoriNet[18, 19] and the best performing 
combinations of representation method and CNN model from Table 2 for N = 16 and N = 64.

Segment Model Baseline HilbTime HilbElect PeanTime PeanElect ZordTime ZordElect

N = 16

VGGNet
0.7115 0.7192* 0.7469* 0.6957* 0.7346* 0.7045 0.7404*

(0.0682) (0.0670) (0.0653) (0.0688) (0.0648) (0.0685) (0.0639)

DenseNet
0.7225 0.7064* 0.7319* 0.6838* 0.7069* 0.6866* 0.7025*

(0.0639) (0.0634) (0.0598) (0.0689) (0.0562) (0.0613) (0.0597)

SqueezeNet
0.5611 0.5585 0.5742 0.4062* 0.5934 0.3986* 0.5908

(0.2342) (0.1995) (0.2144) (0.3017) (0.1798) (0.2514) (0.1816)

N = 64

VGGNet
0.7592 0.7908* - 0.7527 - 0.7535 -

(0.0629) (0.0570) - (0.0560) - (0.0590) -

DenseNet
0.7493 0.7757* - 0.7544 - 0.7449 -

(0.0648) (0.0588) - (0.0535) - (0.0547) -

SqueezeNet
0.6297 0.5188 - 0.3307* - 0.3281* -

(0.1445) (0.3298) - (0.3499) - (0.3297) -

Table 2. Top-1 accuracy metric across sEMG representation method and CNN model. An ‘*’ denotes a 
significant difference (α = 5%) between the baseline and the corresponding space-filling representation. 

Values in parentheses correspond to the standard deviation.
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signed rank test at α = 5% significance level) between 
the corresponding representation and the baseline 
method. Fig. 4 shows the evaluation metrics (top-1 and 
top-3 accuracies, precision, and recall) for the best per-
forming combination of representation method and 
CNN model for N = 16 and N = 64. In Table 3, repeated 
measures ANOVA followed by Wilcoxon signed rank 
tests assess the significance of the differences between 
the space-filling curves. On the left, the p-values of the 
ANOVA are reported, while on the right side of the Table, 
the pairwise comparisons based on the Wilcoxon test 
are shown, where the values above the diagonal corre-
spond to p-values for N = 16, and the values below the 
diagonal are for N = 64. An ‘x’ denotes an invalid com-
parison, and an ‘*’ a significant difference (α = 5%).

In general, from Table 2 we see that the Hilbert curve 
mappings perform always equally well or better com-
pared to the baseline. On the other hand, the image 
representations of the other two space-filling curves are 
mostly inferior to the baseline, except for the represen-
tations across the electrode dimension (PeanElect and 
ZordElect). A comparison between the performances of 
the CNN architectures, reveals that the VGGNet and the 
DenseNet yield similar results, whereas the performance 
of the SqueezeNet is always lower. Considering how 
much these architectures differ, it is difficult to identify 
which model components are responsible for this deg-
radation in accuracy performance. The highest top-1 ac-
curacy on the test data is achieved with HilbElect for N = 
16 and HilbTime for N = 64, which improves the baseline 
performance by more than 3%. These representations 
perform better than the performance of the AtzoriNet 
architecture, developed specifically for the problem of 
hand gesture recognition, as shown in Fig. 4.

In Table 3, comparing the top-1 accuracy of the space-
filling curves representations shows significant differ-
ences for both N = 16 and N = 64. Then, the pairwise 
comparisons confirm that the sEMG images generated 
by the Hilbert curve lead to higher performance. In ad-
dition, the differences in accuracy between the Peano 
and the Z-order curves are not significant in general.

For the difference between the representations across 
time (xxxxTime) and across the electrodes (xxxxElect), 
we can assume that the former yield better results, since 

HilbTime PeanTime ZordTime HilbElect PeanElect ZordElect

ANOVA (N = 16) HilbTime - 9e-5 * 0.0006 * x x x

F = 9.6077 p = 8e-8 * PeanTime 0.0003 * - 0.4004 x x x

ZordTime 0.0010 * 0.6309 - x x x

ANOVA (N = 64) HilbElect x x x - 0.1075 0.0088 *

F = 7.7856 p = 0.0011 * PeanElect x x x x - 0.7548 

ZordElect x x x x x -

Table 3. Repeated measures ANOVA. On the left, the F and p values of the ANOVA are reported for N = 16 
and N = 64. On the right, the p-values of the pairwise comparisons based on the Wilcoxon test are shown. 
Values above the diagonal correspond to N = 16, and the values below the diagonal are for N = 64. An ‘x’ 

denotes an invalid comparison, and an ‘*’ a significant difference (α = 5%).

the dataset used in this work contains data from only ten 
electrodes. Thus, approximately 1/3 of the pixels of every 
image correspond to zero padded values, resulting in a 
limited set of patterns that can be detected by the CNN 
models compared to the xxxxTime images.

Regarding the advantage of the Hilbert curve in de-
tection accuracy, we can attribute it to the better lo-
cality preserving properties between the examined 
curves. The reason might be that less convolutions are 
required to extract useful patterns in data, since data 
are tightly clustered. Therefore, given a network archi-
tecture the Hilbert curve image allows for a better utili-
zation of the model parameters.

6. CONCLUSIONS

This work explored the application of the space-filling 
curves as a means of representing sEMG signals as imag-
es for solving the problem of hand gesture recognition. 
Three curves, i.e. Hilbert, Peano, and Z-order, and two 
mapping approaches, i.e. traversal across the time di-
mension and traversal across the electrodes dimension, 
were evaluated. We made an experimental comparison 
of three CNN models based on architectures that have 
been widely used in image processing tasks along with 
a model optimized for the problem of hand gesture rec-
ognition. The results showed that in general, gesture 
detection accuracy can be improved if sEMG signals are 
converted to images using fractal curves. The improve-
ment is more evident in the Hilbert curve representa-
tions, where the classification accuracy is significantly 
increased by more than 3% using a VGG-based network. 
We speculate that this is probably due to the better lo-
calization preserving properties of the Hilbert curve. 
Finally, the differences in accuracy between the Peano 
and the Z-order curves were not significant in general.
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