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Abstract: Scale deposits can reduce equipment efficiency in the oil and petrochemical industry.
The gamma attenuation technique can be used as a non-invasive effective tool for detecting scale
deposits in petroleum pipelines. The goal of this study is to propose a dual-energy gamma attenuation
method with radial basis function neural network (RBFNN) to determine scale thickness in petroleum
pipelines in which two-phase flows with different symmetrical flow regimes and void fractions exist.
The detection system consists of a dual-energy gamma source, with Ba-133 and Cs-137 radioisotopes
and two 2.54-cm × 2.54-cm sodium iodide (NaI) detectors to record photons. The first detector
related to transmitted photons, and the second one to scattered photons. The transmission detector
recorded two signals, which were the counts under photopeak of Ba-133 and Cs-137 with the energy
of 356 keV and 662 keV, respectively. The one signal recorded in the scattering detector, total counts,
was applied to RBFNN as the inputs, and scale thickness was assigned as the output.

Keywords: scale thickness; radial basis function; dual-energy gamma source; two phase-flow

1. Introduction

Scale deposits on the inside of surface production equipment can cause problems
such as the reduction of the internal diameter of pipelines, perforation of equipment and
pipelines due to corrosion, high energy consumption costs, reduced equipment life cycle,
and decreased equipment efficiency in the petroleum industry. Scale problems occur in
some of the oilfields around the world, caused by floods containing barium, strontium
sulfate scales, and calcium. Scale deposits can hinder oil production by clogging the matrix
of oil-producing formations. Moreover, scales can clog the production equipment and
flowlines and hence block damage the fluid flow. The scale deposits may also occur in the
down-hole pumps, heater treaters, blocking flow lines in tubes, tanks, and other production
facilities. This can cause an emergency shutdown, production equipment failure, increased
maintenance costs, and a reduction in overall production efficiency [1–8].

Previous studies have shown that the gamma attenuation technique can be used as
an effective method for detecting mineral scales in petroleum pipelines. Oliviera et al.
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(2015) used a 5.08-cm × 5.08-cm NaI detector and one Cs-137 radioactive source to scan
a pipe with scale deposits [7]. To scan the pipe, both source and detector were moved
simultaneously with steps of 0.5 cm. For each step, a transmission gamma spectrum was
captured with the NaI detector, and the measurement duration was set to 60 s. The results
showed that with gamma transmission scanning, it is possible to predict the presence
of scale and measure scale as well as thickness in a pipe. However, it is not possible to
estimate the exact distribution of scale on the pipe wall with the technique. Teixeira et al.
(2018) proposed a gamma attenuation technique to inspect scale in a pipe. The researchers
implemented the Monte Carlo simulation code (MCNP) and analytical method in the
study [8]. Because of the complexity of the problem, they used Artificial Neural Networks
(ANN) as their analytical method. ANNs are proven solutions for complex problems and
accurate predictions using less statistical training compared to other techniques used in
non-linear estimations [9]. The simulated geometry contained a steel pipe that had an
external diameter of 28 cm, a Cs-137 radioactive source with a divergent beam, and one
5.08-cm × 5.08-cm NaI detector. The scale considered was made of barium sulfate scale
(BaSO4) with a thickness ranging between 0.5 and 6 cm, and a step of 0.4 cm as scale layer
inside the pipe. First, the optimum opening size for the collimator was established before
simulating the pipe with different diameters in the range of 15–27 cm. A single-phase
fluid existed inside the pipe. The research team used the internal diameter of the pipe and
acquired gamma spectrum with the detector as the inputs to an artificial neural network,
and the thickness of scale was the output. With this method, scale thickness was estimated
with deviations below 10% for 70% of the cases. Salgado et al. (2020) utilized the MCNP6
code to investigate the possibility of using gamma attenuation technique combined with
ANN for predicting scale thickness in a pipe in which a gas–oil–water three-phase flow
existed [10]. The proposed simulation geometry included an iron pipe with an outer
diameter of 25 cm, a Cs-137 collimated source with a divergence angle of 8.84◦, and one
3.17-cm × 1.90-cm NaI detector. The study investigated an annular flow regime of three-
phase flow with a constant volume fraction (30 % water, 60 % oil, and 10% gas) inside the
pipe. The scale considered was BaSO4 with thicknesses ranging from 0 to12.4 cm and a
step of 0.4 cm as a scale layer. The recorded gamma energy spectrum in the detector and
scale thickness were the ANN input and output, respectively. This technique estimated the
scale-thickness with a relative error of 0.6%.

Existing gamma attenuation techniques for detecting scale layers in pipelines are
usually considered a single-phase flow. Even in cases where a multiphase flow was
considered, a simple model of a multiphase flow with a constant flow regime and volume
fraction was assumed. In a real situation, however, multiphase flows with varying flow
regimes and volume fractions usually exist in oil pipelines. The present study will focus
on determining scale thickness in pipelines in which two-phase flows with different flow
regimes and void fractions exist. To achieve this goal, a dual-energy gamma attenuation
method and RBFNN was proposed.

2. Numerical Tools
2.1. Monte Carlo Simulation

The present study aims to estimate scale thickness in pipelines in which a gas–liquid
two-phase flow exists. According to Beer–Lambert’s law, gamma radiation-based instru-
ments are sensitive to the amount and type of materials that are positioned between
detector and radiation source. A simple gamma radiation-based instrument comprising a
detector and a radiation source that follows Beer–Lambert’s law can detect changes in one
material. In the system, one known factor is the recorded signal in the detector, and one
unknown factor is the change in a material amount.

The present study will consider three unknowns: scale thickness, flow patterns, and
void fraction in a gas–liquid two-phase flow. In this case, a minimum of three known
signals is needed. To investigate the idea of using dual energy gamma sources and two
detectors for solving the aforementioned problem, MCNP-X [11] was implemented. The
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system includes two radioisotopes of Ba-133 and Cs-137 as the source and two NaI detectors
to record the transmitted and scattered photons.

The transmission detector was positioned 5 cm away from the pipe. Moreover, the
scattering detector was located at an orientation of 45o with respect to the axial line
connecting the transmission detector and the radiation source. The dual-energy source
was collimated with VEC and DIR cards in MCNPX code to have a narrow beam emitting
gamma radiation toward the transmission detector. In simulations, a steel pipe with a
diameter and thickness of 21 cm and 0.5 cm was specified. The scale considered was a
symmetric annular layer made of BaSO4 inside the pipe wall. Scale layers with thicknesses
ranging from 0 to 4 cm and a step of 0.5 cm were simulated. The liquid and gas phases in all
simulation trials were investigated, and oil and air with respective densities of 0.826 g/cm3

and 0.00125 g/cm3 were considered. The simulations modeled the three typical flow
patterns called stratified, homogenous, and annular flows. The percentages of the void
fraction for each flow pattern ranges from 10% to 85%, with an increment of 15%. In this
study, 162 simulations (3 flow patterns × 9 scale layers × 6 void fractions) were performed.
It is important to mention that many studies were conducted on the measurements of
multiphase flows in recent years [12–34].

Figure 1 shows the modeled three flow patterns with a void fraction percentage
around 25% and a scale thickness of 1.5 cm.

Figure 1. A schematic of the modeled flows for void fraction percentage of 25% and scale-thickness of 1.5 cm. The patterns:
(a) annular, (b) homogenous, and (c) stratified.

2.2. RBFNN

In the last few years, a lot of researchers implemented ANN for different engineering
applications [35–62]. An ANN employs computational units in the network to weigh and
combines data from input, hidden, and output layers. There is only one hidden layer in
the RBFNN and the neurons that use RBF to process the input data. The architecture of
a standard RBFNN is shown in Figure 2. Input signals (x0, x1, x2, . . . , xn) are weighted
by and connected to hidden neurons using “synaptic weights”. The neurons’ “activation”
values are neuron responses. These values are considered through the activation of non-
linear functions for calculating the weighted sum of their input with the addition of a
bias [63]:

Equation (1) gives the weighted sum of the input and bias.

y = ∑(weight ∗ input) + bias (1)

The average distance between the data points of a vector x is calculated with RBF
consisting of an N-dimensional feature and a center location v related to a template vec-
tor extracted from the training data [64]. The activation function of the hidden layer is
“radbas”.
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Figure 2. The architecture of a standard RBFNN with one input layer and hidden and output layer.

Equation (2) expresses the output from the hidden layer’s mth node as given in [65].

ym = e
(− ‖x−vm‖2

2σm2 )
(2)

The default of σ value (spread) in MATLAB software is 1, but this value was optimized
in this study. The activation function of the output layer is “purelin”.

Equation (3) gives the prediction of output from the jth node of the output layer [64,65].

zj =
M

∑
m=1

umjym + bj (3)

Training the RBFNN output weights is a mathematical procedure. Provided that the
centers of RBF and the scaling parameters are determined, the weights of the output layer
can be calculated. The matrix of the output layer weights (W) is the result of a minimization
of the error function [66]:

E (W) =‖ HW− Y ‖2 (4)

where H and Y are the outcome of radial basis functions and desired output, respectively.
The solution is given in the form W = H + Y, where H + denotes the pseudo-inverse matrix
of H. The solution W is unique and can also be found by gradient descent optimization of
the error function defined in Equation (4).

Despite the similarities of RBFNN with other neural network architectures such as
MLPNN, RBFNN behave differently. The proposed RBF model in this paper was developed
with the MATLAB 8.1.0.604 software.

The net = newrb(P, T, goal, spread, MN, DF) takes two of these arguments and returns
a new radial basis network. P, T, Goal, Spread, MN, and DF are R-by-Q matrix of Q input
vectors, S-by-Q matrix of Q target class vectors, Mean squared error goal, Spread of radial
basis functions, Maximum number of neurons, and number of neurons to add between
displays, respectively [67].

3. Application and Results
3.1. Monte Carlo Simulation

As shown in Figure 3, the transmission detector recorded two signals: the count under
photopeak of Ba-133 associated with 356 keV energy and the count under photopeak of
Cs-133 combined with 662 keV energy. The two signals and one signal recorded in the
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scattering detector, total count, were used to generate an adequate dataset for testing and
training artificial neural networks.

Figure 3. The NaI detector system and recorded signals from the detectors.

Figures 4–6 show the three recorded signals in the two detectors for different scale
thicknesses and flow patterns. Recorded counts under photo peaks of Ba-133 and Cs-
137 increase with decreasing the scale thickness and increasing the void fraction. In the
scattering detector, a small difference in trend is observed compared with the results
predicted by the transmission detector. When the scale thickness is zero, total counts
slightly decrease as the void fraction increases, while for the scale thicknesses more than
zero, total counts increase for the scale thicknesses greater than zero.

3.2. RBFNN

To predict the scale thickness deposited on the inner pipe wall, three different signals
were extracted from both detectors and applied to the RBFNN. Gamma peak counts of
Ba-133 and Cs-137 from the first transmission photons detector and total counts from
the second scattered photons detector were considered as RBFNN inputs, and the scale
thickness of the pipe was the RBFNN output. Figure 7 presents the flowchart of the specified
RBFNN.

The best configuration of the network was obtained with the trial-and-error method.
Table 1 shows the configuration, and the schematic of the network is presented in Figure 8.
In Figure 9, the error value versus the number of hidden layer neurons was plotted.

Table 1. Configuration of proposed ANN.

ANN Type RBFNN

Mean squared error (MSE) goal 0
Spread of radial basis functions 2
Maximum number of neurons 15

Number of neurons to add between displays 1
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Figure 4. Cont.
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Figure 4. Three recorded signals in two detectors versus different void fractions and scale thicknesses for annular flow:
(a) counts under photopeak of Ba-133 (b) counts under photopeak of Cs-137 (c) total counts from scattered photons detector.

Figure 5. Cont.
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Figure 5. Three recorded signals in two detectors versus different void fractions and scale thicknesses homogenous flow:
(a) counts under photopeak of Ba-133 (b) counts under photopeak of Cs-137 (c) total counts from scattered photons detector.
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Figure 6. Cont.
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Figure 6. Three recorded signals in two detectors versus different void fractions and scale thicknesses for stratified flow:
(a) counts under photopeak of Ba-133, (b) counts under photopeak of Cs-137, (c) total counts from scattered photon detector.

Figure 7. A simplified flowchart showing how the RBFNN predicted the scale thickness in the pipe with the 3 extracted
signals from NaI detectors.

Figure 8. The Schematic of optimized RBFNN.

In developing the optimal RBF model, several structures were constructed and tested.
The errors changed significantly until the number was increased to 15 neurons, and the
error change was negligible. This behavior was shown in Figure 10, which is a performance
graph. The number of neurons exceeding 15 did not improve the performance of the
network but increase the complexity of the network, and hence 15 neurons were selected.
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Figure 9. Error value versus the number of hidden layer neurons.

Figure 10. Performance graph (MSE versus number of epochs).

Figure 11 shows the scale thickness predicted with the proposed RBFNN (predicted
values) compared with the actual values are shown for training and testing sets.
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Figure 11. The Comparison of the actual and predicted values for: (a) training set (b) testing data set.

Figure 12 shows the regression plots of the actual scale thickness values and scale
thicknesses predicted with the proposed RBFNN for testing and training sets.

Figure 12. Predicted scale values versus actual data for: (a) training sets (b) testing sets.
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Table 2 presents the prediction errors of the proposed RBFNN model for one output.
The Mean Absolute Error (MAE), Mean Relative Error percentage (MRE%), Root Mean
Square Error (RMSE) and R-squared are calculated with Equations (5) to (8).

MAE =
1
N

N

∑
i=1
|Xi(actual)− Xi(Predicted)| (5)

MRE% = 100× 1
N

N

∑
i=1

∣∣∣∣Xi(actual)− Xi(Predicted)
Xi(actual)

∣∣∣∣ (6)

RMSE =


N
∑

i=1
(Xi(actual)− Xi(Predicted))2

N


0.5

(7)

R2 = 1− ∑N
j=1(Xj(actual)−Xj(Predicted))

2

∑N
j=1(Xj(actual)−Xj(actual))

2 , Xj(actual) = 1
N ∑N

i=1 Xj(actual) (8)

where N is the number of data and ‘Xi (actual)’ and ‘Xi (Predicted)’ denote actual values
and RBF predicted values, respectively.

Table 2. The errors obtained from the proposed RBFNN.

Error Training Data Testing Data

MAE 0.18 0.16
MRE% 0.29 0.16
RMSE 0.22 0.19

R2 0.969 0.974

The results presented in Figures 11 and 12 and Table 2 indicate a good performance of
the trained RBF neural network for estimating the scale layer thickness regardless of the
type of flow regime and variations in void fraction.

It is important to mention that the coefficient of determination (R-squared) is employed
as the goodness of fit index, which is defined as the proportion of variation explained by
the best line model.

4. Conclusions

The present study proposed a novel approach for estimating the scale thickness in
pipes in which two-phase flows with different flow patterns and void fraction exists. A
dual-energy gamma attenuation method with RBFNN was used. The proposed RBFNN—
with three inputs (photopeaks of Ba-133 and Cs-137 from the transmitted detector and
total count from scattering detector) and one output (scale thickness)—was optimized. The
optimized RBFNN consisted of 15 neurons in a hidden layer associated with a spread value
of 2. The regression diagrams for both testing and training sets that showed the precision
of the system were plotted. The MAE, MRE%, and RMSE of the proposed system were
0.18, 0.29, and 0.22, respectively. The results show the proposed system can be adopted in
the petroleum industry for measuring scale thickness in pipes.

It is worth mentioning that the advantage of the presented system in this study is
that no prior knowledge about the type of flow regime and volume fraction of multiphase
components inside the pipe is required for predicting the scale thickness in case the RBF
neural network is trained well. A comparative evaluation of the performance of RBFNN
with other machine learning approaches is proposed for future research. Moreover, for the
investigation of different pre-processing methods, different feature extraction methods,
such as time domain, frequency domain, or time-frequency domain and correlation analysis,
to improve the performance of the presented model are suggested.



Symmetry 2021, 13, 1198 14 of 16

Author Contributions: Conceptualization, M.A., M.B., E.N. and E.E.-Z.; Software, E.M.K., M.A.S.;
Validation, O.T. and E.N.; Writing—Review and Editing, E.M.K., O.T., E.N. and E.E.-Z.; Visualization,
M.B.; Supervision, M.A., E.N.; Funding acquisition, E.E.-Z. All authors have read and agreed to the
published version of the manuscript.

Funding: We acknowledge support from the German Research Foundation and the Open Access
Publication Fund of the Thueringer Universitaets- und Landesbibliothek Jena Projekt-Nr. 433052568.
This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, under grant No. (RG-25-135-42). The authors, therefore, gratefully acknowledge the DSR
technical and financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bahadori, A.; Zahedi, G.; Zendehboudi, S. Estimation of potential barium sulfate (barite) precipitation in oilfield brines using a

simple predictive tool. Environ. Prog. Sustain. Energy 2013, 32, 860–865. [CrossRef]
2. BinMerdhah, A.B. Inhibition of barium sulfate scale at high-barium formation water. J. Pet. Sci. Eng. 2012, 90, 124–130. [CrossRef]
3. Zabihi, R.; Schaffie, M.; Nezamabadi-Pour, H.; Ranjbar, M. Artificial neural network for permeability damage prediction due to

sulfate scaling. J. Pet. Sci. Eng. 2011, 78, 575–581. [CrossRef]
4. Candeias, J.P.; De Oliveira, D.F.; Dos Anjos, M.J.; Lopes, R.T. Scale analysis using X-ray microfluorescence and computed

radiography. Radiat. Phys. Chem. 2014, 95, 408–411. [CrossRef]
5. Oliveira, D.F.; Santos, R.S.; Machado, A.S.; Silva, A.S.; Anjos, M.J.; Lopes, R.T. Characterization of scale deposition in oil pipelines

through X-Ray Microfluorescence and X-Ray microtomography. Appl. Radiat. Isot. 2019, 151, 247–255. [CrossRef]
6. Abdul-Majid, S. Determination of wax deposition and corrosion in pipelines by neutron back diffusion collimation and neutron

capture gamma rays. Appl. Radiat. Isot. 2013, 74, 102–108. [CrossRef]
7. Oliveira, D.F.; Nascimento, J.R.; Marinho, C.A.; Lopes, R.T. Gamma transmission system for detection of scale in oil exploration

pipelines. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 784, 616–620. [CrossRef]
8. Teixeira, T.P.; Salgado, C.M.; Dam, R.S.D.F.; Salgado, W.L. Inorganic scale thickness prediction in oil pipelines by gamma-ray

attenuation and artificial neural network. Appl. Radiat. Isot. 2018, 141, 44–50. [CrossRef]
9. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical

outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]
10. Salgado, W.L.; Dam, R.S.D.F.; Teixeira, T.P.; Conti, C.C.; Salgado, C.M. Application of artificial intelligence in scale thickness

prediction on offshore petroleum using a gamma-ray densitometer. Radiat. Phys. Chem. 2020, 168, 108549. [CrossRef]
11. Pelowitz, D.B. MCNP-X TM User’s Manual, Version 2.5.0; LA-CP-05e0369; Los Alamos National Laboratory: New Mexico, NM,

USA, 2005.
12. Vlasák, P.; Chára, Z.; Matoušek, V.; Konfršt, J.; Kesely, M. Experimental investigation of fine-grained settling slurry flow behaviour

in inclined pipe sections. J. Hydrol. Hydromech. 2019, 67, 113–120. [CrossRef]
13. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH

neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows.
Measurement 2021, 168, 108427. [CrossRef]

14. Mosorov, V.; Zych, M.; Hanus, R.; Sankowski, D.; Saoud, A. Improvement of flow velocity measurement algorithms based on
correlation function and twin plane electrical capacitance tomography. Sensors 2020, 20, 306. [CrossRef]

15. Salgado, C.M.; Brandão, L.E.B.; Conti, C.C.; Salgado, W.L. Density prediction for petroleum and derivatives by gamma-ray
attenuation and artificial neural networks. Appl. Radiat. Isot. 2016, 116, 143–149. [CrossRef]

16. Roshani, M.; Phan, G.T.; Ali, P.J.M.; Roshani, G.H.; Hanus, R.; Duong, T.; Corniani, E.; Nazemi, E.; Kalmoun, E.M. Evaluation of
flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness.
Alex. Eng. J. 2021, 60, 1955–1966. [CrossRef]

17. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial
intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef]

18. Roshani, G.; Hanus, R.; Khazaei, A.; Zych, M.; Nazemi, E.; Mosorov, V. Density and velocity determination for single-phase flow
based on radiotracer technique and neural networks. Flow Meas. Instrum. 2018, 61, 9–14. [CrossRef]
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