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ABSTRACT Identifying human activities using short-range and low-power radars has attracted much
attention among the researchers and consumer electronics industry. This paper considers human activity
recognition in the context of a single Frequency Modulated Continuous Wave (FMCW) radar as the mea-
surement tool. A classification pipeline is proposed to handle the data pre-processing and feature extraction
and a machine-learning based solution is devised to undertake the activity classification. The performance
of the proposed architecture is evaluated under both unseen subjects and new room layouts. We show
how the accuracy of the activity classification will be affected by situations such as poor aspect-angle and
occlusions created by furniture that normally arise in realistic scenarios where an unseen layout is considered.
A two-stage classifier will be then proposed to enhance the generalization of the model, especially, to unseen
rooms. Besides, an extensive feature exploration will be conducted and the importance of features in the
generalization will be studied. The results in this paper will conclude a machine learning pipeline that will
generalize well to unseen subjects and new room layouts, which are two main difficulties that arise in most
radar-based activity classification tasks.

INDEX TERMS Human activity recognition, multi-class classification, radar signal processing, robust
activity recognition.

I. INTRODUCTION
Recognizing human activities in an indoor environment has
recently received much attention among researchers [1].
Given the current revolution in the design and realization
of smart-home solutions, the necessity for the indoor human
activity recognition has raised, which brings with itself a need
for studying the capability of the activity recognition under
unseen human subjects and new room layouts. As a popular
choice, radar sensing has been also considered as a major
tool to tackle the indoor activity recognition [3], [7] due to its
resilience to the harsh environmental conditions such as dim
light and compatibility with the privacy concerns that may
arise in many camera-based activity recognition systems.

Radar-based human activity recognition has been for-
mulated as a multi-class classification problem and, there-
fore, classical machine learning techniques have been
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widely employed in the literature. The Support Vector
Machine (SVM) has been used in [11] to classify and distin-
guish human activities from indoor targets using a through-
the-wall radar system. SVM has been also applied in [22] to
detect human activities by an Ultra Wide-Band (UWB) radar.
Authors have extended their solution to a general activity
classification by the UWB radar and have presented results
in [23]. Authors in [20] have formulated the walking human
body detection as a multi-class classification problem and
have used a decision tree to undertake the classification task.
A multi-radar solution has been also proposed in [21] to
detect fine-grained human activities with a machine learning
pipeline being formed that uses the random forest classifier
as the backbone predictor. In [24], a novel class of Dynamic
Range-Doppler Trajectory (DRDT) features has been devised
for the purpose of continuous human motion recognition in
living environments. Combined with a multi-stage machine
learning model, authors in [24] have justified the superior
performance of the new features in recognizing continuous
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motions in various environments. Beside the supervised
machine learning model, unsupervised feature-extraction by
the Principle Component Analysis (PCA) has been also
applied to the radar data in [13] for feature extraction and
human activity classification. The feature-extraction module
in [25] has been also employed to detect simple walking and
standing activities of patients with a 4GHz radar and using
unsupervised machine learning techniques.

Recently and with the emergence of deep Artificial Neu-
ral Networks (ANN), the application of deep learning in
radar-based human activity recognition has attracted much
attention given the capability of theANNmodels in automatic
feature extraction from the received radar echoes. A survey of
recent ANN-based techniques for radar-based activity clas-
sification has been sketched in [7], [27]. It has been shown
that the activity recognition as a multi-class classification
problem can be well addressed by a variety of ANN models
any of which can extract useful features from the radar raw
echoes. For example, authors in [14] have used the radar
point-cloud detection as the input to an ANN called point-net
where the ANN model can tackle the multi-class classifica-
tion task. A low-power solution is proposed in [6] to detect
human activities in the kitchen using two mounted radars.
There authors also show how the data from the radars are
fused by a deep ANN model and the final performance is
evaluated using the signatures obtained from the fusion layer.
A Bidirectional Long Short-term Memory (Bi-LSTM) ANN
model has been proposed in [38] for the continuous detection
of human activities using an FMCW radar. Authors in [38]
have used micro-Doppler images as sequence of inputs to a
Bi-LSTM model that learns how to assign each radar frame
to a pre-defined set of 6 activities. A joint segmentation and
recognition model has been also devised in [39] for detecting
both the transition between human actions and the type of
executed activity. While statistical measures have been used
in [39] to find the transition times, a Convolutional Neural
Network (CNN) model has been proposed for detecting com-
mon human motions such as walking, sitting and running.
In [9], activity classification has been addressed for indoor
environments using both radar and camera as the sensing
tools with a series of deep ANNs handling the fusion of
data from different modalities. Real-time evaluation of HAR
methods for indoor scenarios has been also performed in [10]
where a Dynamical Neural Network (DNN) is proposed to
combine the raw-features from both the videos and radar.
In [4], activity classification has been tackled from a different
perspective. Authors have used the video captions as teaching
signals to train an ANN model that takes radar echoes as the
input and produces captions that describe human interactions
with the physical objects in a kitchen environment.

Although machine-learning based solutions have been
widely developed for radar-based activity classification,
the research has been recently steered towards studying the
generalization of the classifiers to the environmental changes
and unseen room layouts. In [28], authors have studied how
walking at different aspect angles affects the performance of

deep learning models in detecting human motions. A new
CNN architecture has then been proposed in [28] for motion
recognition and novel metrics have been devised to evaluate
the generalization of the model to the angle variation. Joint
motion recognition and person identification for multiple
human subjects has been addressed in [29] using a single
radar and in an indoor environment. The authors have also
conducted a cross-room generalization study and have veri-
fied the performance of a trained Dynamical CNN (DCNN)
in identifying walking patterns of multiple people when the
trained model in an empty room is tested in a different room
with furniture. The robustness of human activity recognition
has been also studied in [30] where the authors have examined
the efficiency of different classifiers in recognizing a set of six
human activities. Data portability has been the topic of [31]
where the classification models (both classical and deep
learning models) have been tested across different rooms
with different layouts. Authors in [31] show the consistent
performance of activity classification when the tests running
over four different rooms with Googlenet outperforming all
other architectures.

While the previous articles (e.g. [30], [31]) have dedicated
research to study the generalization of activity classification
over unseen rooms, some important research questions are
still unanswered. First, although a new recording scenario
might mean different reflections or multi-path effects, activ-
ities such as sitting/standing are usually affected by the way
they are performed by the human subject, as well as any
furniture affecting the radar’s line-of-sight. Note that both
above cases are very common in any realistic activity clas-
sification problem where a trained model may be used to
predict human activities in a new and unseen layout that
could provide any variation of aspect-angles and occlusions.
Therefore, apart from a general study on the generalization
of activity classification over unseen environments, a deep
investigation over the role of room layout on the accuracy
of the classifier will help understanding the limitations of
single-radar activity classification in real-world applications.

The following contributions significantly distinguish this
work from the current state of the art:
• A pipeline for signal-processing and activity classifi-
cation using FMCW radar has been built, including
an algorithm for trajectory tracking of human subjects
with a move-stop-move pattern. A set of novel tracking
features has been created for the purpose of activity
classification. It has been shown how a feature extrac-
tion pipeline can be designed using the results from the
tracker and post signal-processing data-cubes such as
micro-Doppler and point-clouds

• A two-stage classification algorithm has been developed
to predict human activities in a generic room scenario,
as the first stage, and in the presence of furniture, for
the second stage of classification evaluation. It has been
also shown that the new classifier shows much more
superior generalization capability when compared to a
single-stage activity classification.
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• A deep analysis of hand-crafted features has been
conducted by studying the importance of each feature
category in the generalization of machine learning mod-
els. We have also shown how a good feature selec-
tion can improve the cross-room model generalization.
One of the main contributions of this paper is then
to study which combination of features provides the
best model generalization capability, especially, when
executed activities are tested in rooms with different
layouts.

The rest of this paper is organized as follows. The
human activity recognition problem will be discussed
in Section II. Section III will present the measurement
campaigns for the generalization assessment. Signal pro-
cessing and machine-learning pipelines will be given in
Sections IV and V, respectively. Experimental results includ-
ing cross-room analyses will be provided in Section VI while
deep feature exploration will be explained in Section VII.
We conclude the paper in Section VIII.

II. PROBLEM STATEMENT
The scenario considered in this paper consists of a sin-
gle human subject who enters an indoor environment and
executes a set of pre-defined activities such as sitting and
standing, etc.1 A single radar is wall-mounted at a height
of about 1.5m and is used as the sensing device to collect
the reflections from the moving subject for the purpose of
activity recognition. Let us define an action primitive as a
certain human posture that could be detected within a certain
amount of time and using received echoes from a sensing
tool. To deal with the action classification problem, choosing
a proper sensing tool, defining a well-formed set of action
primitives, running well-defined measurement campaigns for
data collection, and selecting a good model for activity clas-
sification are four essential components. Here, the measure-
ment setup is first discussed and the set of action primitives
is presented afterwards. Signal processing and the machine
learning pipeline will be explained in Section IV.

A. SENSING TOOL
Measurements are collected using a single radar mounted in
a wall-position (1.5(m) distance from the floor). We use the
TI 60(GHz) FMCW mmwave radar with the device specifi-
cations being summarized in Table 1. The MIMO radar with
3 transmitters and 4 receivers provides 8 virtual azimuth bins
and 2 elevation bins. While the azimuth angles could support
the 2D tracking, the elevation data can be also leveraged
to form some informative features for some of the activity
classification tasks.

B. ACTION PRIMITIVES
Our scenario consists of a single human subject executing a
sequence of action primitives in a living-room indoor envi-

1This article deals with a single-target based activity recognition.
Cases with multiple targets require a dedicated research that will tackle
complex scenarios such as crossing or passing-by.

TABLE 1. System parameters for the 60(GHz) FMCW radar.

TABLE 2. List of action primitives and their variations for indoor activity
classification.

ronment with, potentially, different layouts. Table 2 lists the
action primitives along with their descriptions and possible
variations. Both SIT and STU primitives are executed in
rooms with different layout designs to study the generaliza-
tion of the proposed classification methodologies. A variable
room layout may usually cause two difficulties for the classi-
fication task:

• Furniture could be placed at different locations that will
create different aspect angles with respect to the radar
line-of-sight when the subjects intend to sit or stand.
In this way, when a subject executes SIT or STU activ-
ity, the radar-based classification may fail to label the
activity correctly given the poor aspect angle.

• Even in the case of a good aspect angle, subjects may
be occluded by the furniture such as tables. In this case,
some parts of the human body are usually masked by
the medium and the radar does not receive the echoes
from those parts of the human body that are involved in
SIT/STU activities.

Note that both the poor aspect angles and occlusions are very
common in a realistic scenario and a single-radar activity
classification enginewill suffer from the lack of data richness.
One of the major contributions of this paper is to study the
impact of the layout in the performance, especially, by ana-
lyzing the impact of individual features on the improvement
of the generalization. In the following we refer to these prim-
itives as activities.

III. GENERALIZATION ASSESSMENT
The main purpose of this paper is to study the generalization
of a proposed ML-based pipeline for the activity classifi-
cation in a general living-room indoor environment. For a
general activity classification problem, we define person-
generalization as the capability of the model in accurately
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classifying the actions for an unseen human subject. The term
layout-generalization describes the capability of the model
in making accurate classifications for unseen room layouts.
The generalization assessment is conducted by executing
data collection campaigns with different participating human
subjects and in three different layouts. The description for
each campaign is given in the following sub-sections.

A. LAYOUT-FREE ROOM (DB1)
We first begin with an average-sized living-room (shown
in Fig. 1) with a single chair being located in the middle of the
room for the subjects to execute SIT and STU activities. The
radar is located in the bottom-left corner of the room looking
towards the top-right corner, which enables the sensing tool to
capture the whole room given the 120o azimuth beamwidth.
Each subject is requested to start from any of the four corners
of the room and walk to the chair to include walking aspect
angles in the recorded measurements. To analyze the impact
of walking patterns in the performance, each subject is asked
to walk at different paces (slow/normal/fast), each case being
repeated for four times. To study the person-generalization,
we ask 15 subjects to execute the scenarios where people with
different genders, heights and walking patterns are selected to
enrich the dataset. As the room does not contain any furniture
and subjects always keep a good distance from the wall, this
campaign creates a layout-free recording dataset with partial
aspect angles being added while no occlusion is expected.

B. ROOMS WITH THE FURNITURE (DB3 AND DB5)
To study the layout-generalization, we organize two more
data campaigns in the presence of furniture. The first assess-
ment is conducted in the same room of Fig. 1 but with added
furniture (called DB3). As Fig. 2 shows, the radar is located at
the same bottom-left corner while subjects can enter/leave the
room from/to any two doors. The campaign is conducted by
five new subjects any of whom executes SIT/STU activities
at all the chairs and the sofa.

FIGURE 1. An empty room layout for running the first layout-free
data-campaign.

The third set of measurements (called DB5) is recorded
in a new room and in the presence of the furniture (shown
by Fig. 3). It can be observed that chairs are located at

FIGURE 2. A room similar to the empty-room case but with added
furniture for layout-generalization assessment.

FIGURE 3. A new room with the furniture for the second
layout-generalization assessment.

different sides of the room to have the aspect angles for SIT
and STU activities. In addition, the tables can model the
occlusion in both SIT/STU and walking activities, especially,
when a walking subject is masked by the table. This second
campaign is also scheduled with 21 distinct subjects any of
whom enters the room and executes SIT/STU at all the chairs,
and the sofa.
Remark 1: While all the experiments in this paper are

done with a fixed radar location, a change in the location
of the radar will affect the aspect angle of the subject to the
radar’s line-of-sight. In this case, by executing activities at
chairs placed at different angles with respect to the radar and
by studying the resulting performance, any possible impact
imposed by changing the location of the radar will have been
also analyzed.

IV. DATA PROCESSING AND ACTIVITY CLASSIFICATION
The activity classification in this work is modeled as a multi-
class classification problem where a pipeline is designed to
receive the raw radar measurements and conduct a num-
ber of pre-processing steps to produce a collection of fea-
tures that will feed a machine-learning model aimed for
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FIGURE 4. The HAR pipeline for radar-based activity recognition.

the activity classification. The activity classification pipeline
is presented in Fig. 4 where the radar as the sensing tool
outputs the raw-data Yk at each kth radar-frame. After pre-
processing, detection, and signal transformation, dynamic
tracking is sought to predict the state of the target with
an automatic segmentation being performed to extract those
radar frames that correspond to the executed activities. The
feature-generation pipeline then consumes the transformed
signals and the tracker outputs to feed the machine-learning
model that predicts the executed activity. The pipeline is now
discussed in more details in the subsequent sub-sections.

A. DATA PRE-PROCESSING
Let us define the 4D Nc × NT × NR × Nf cube Yk as
the received complex echoes from the radar at the kth
radar-frame where Nc, NT , NR and Nf are the numbers of
chirps, fast-time samples, transmitters and receivers, respec-
tively. Fig. 5 shows the data-processing pipeline that oper-
ates on the received Yk data-cube and produces detection
point-clouds and micro-Doppler (MD) cubes. The processing
chain consists of the following blocks:

• Range-processing: the Fast Fourier Transform (FFT) is
performed alongwith the fast-time samples of Yk to form
a new 3D cubeRPk of sizeNc×Nv×Nr whereNv denotes
the number of virtual antennas (Nv = NR × NT ) and Nr
is the number of range bins.

• Virtual-mapping: every pair of TX/RX antennas can
be now projected into one of the elements in the 2D
virtual antenna array whose shape is given in Fig. 6. The
projected range-profile

←→
RPk will be now a Nc × NX ×

NY×Nr dimension withNX andNY being the number of
antennas in the 2D virtual array along the X and Y axes,
respectively.

• Doppler-processing: the 4D cube
←→
RPk is processed by

another FFT along the slow-times (Nc) to give a 4D cube
RDk of sizeNd×NX×NY×Nr withNd being the number
of doppler resolution bins. Here, the doppler resolution
can be also calculated by the following equation [32]:

vres =
λ

2NcPRI

where λ denotes the wavelength and PRI corresponds to
the pulse-repetition-interval.

• Beamforming: we perform a 2D conventional beam-
forming [33] on the range-profile

←→
RPk to form a 4D

cube RAk of size Nc ×Nelv ×Nazm ×Nr where Nelv and
Nazm denote the number of elevation and azimuth bins,
respectively. Note that Nelv and Nazm are the number of
points in the 2D FFT performed on

←→
RPk along with any

of X and Y directions.
• micro-Doppler processing: all the generated range-angle
cubes RAk are sent to a buffer that is consumed by a
Short-Time Fourier-Transform (STFT) block [34]. The
STFT performs a Fourier transform over consecutive
time-windows (aka slow-time) to compute the range-
doppler profiles in time. As shown by Fig. 5, the STFT
block receives the previous cubes over a certain window
of radar-frames (say 1k) to produce a 5D MD-cube of
size Nd × Nelv × Nazm × Nr × Ns where Ns denotes
the number of slow-time samples (time-bins) in the MD
signature. The MD image can be aggregated over the
angles and range-bins to form a 2D MD cube MDk of
size Nd×Ns where the nd th row of the matrix represents
the amplitude of the nd th doppler bin over time.

• Detection: we perform a 1D Constant False Alarm
Rate (CFAR) [35] detection over the range on the
range-doppler data-cube RDk to generate a collection
of Nv × 1 detection vectors γn = RDk [n∗d , :, n

∗
r ] with

(n∗d , n
∗
r )n, n = 1, . . . ,N being the set of CFAR-detected

range-doppler bins where N corresponds to the number
of detections.

• Point-cloud generation: every Nv × 1 complex vector
γn is now consumed by Multiple Signal Classifica-
tion (MUSIC) as a high-resolution angular estima-
tion algorithm with both forward-backward and spatial
smoothing [36] to estimate the azimuth angle φn and,
possibly, the elevation θn (the elevation estimation is
noisy given the 2 virtual antennas in the Y -axis). The
point-cloud is then formed as a set of detected bins with
the associated estimates of range, elevation, azimuth,

FIGURE 5. The data pre-processing and signal transformation pipeline for
the wall-mounted radar.
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FIGURE 6. The wall-mounted radar chip and antenna on the PCB, with the
resulting Rhombic virtual array.

and doppler-velocity, which is shown by the quadruple
(rn, θn, φn, vn).

B. TRAJECTORY TRACKING
One of the key elements of the activity classification pipeline
is the dynamical tracking part whose architecture is shown
in Fig. 7. Two main challenges in tracking a single subject in
an indoor environment are as follows:

• Each subject usually executes a sequence ofmove-stop-
move patterns when performing activities such as start
walking, sitting, standing, stop walking, etc. We use an
Interacting Multiple Model (IMM) filter designed for
targets with move-stop-move patterns to mitigate the
mentioned challenge [37].

• The moving subject generates multiple detection points
per-frame, which makes the subject to be considered
as an extended target in the radar measurements. This
means that each estimated track can be associated with
multiple received measurements that will complicate the
data association problem. To design a data association
solution for extended targets, the Generalized Nearest
Neighbor (GNN) technique [16] is used to associate
incoming measurements to the predicted state of the
target.

FIGURE 7. The dynamical tracking pipeline to perform single target
tracking for subjects with move-stop-move patterns.

Let us now define {xk−1|k−1,Pk−1|k−1} as the estimated state
of the target at the (k − 1)th radar-frame with xk−1|k−1 and
Pk−1|k−1 being the estimated mean and covariance, respec-
tively. Also, we assume {(rnk , φnk , vnk )}, nk ∈ {1, . . . ,Nk} as
the set of detected point clouds with Nk being the number of
detected points at the kth scan. The following steps can be
carried out to implement the tracking pipeline:

• Track management: to initiate a track or terminate an
existing track, we use anm/n logic where a hypothesized
track changes from a tentative state to active if the
formed track is assigned to the received measurements
in at least m out of n previous radar-frames. In the
following, we assume that a track has been initiated by
a proper m/n track management technique.

• Dynamical target tracking: the GNN-based group
tracking is used to perform the data association and
estimate the state of the target at each kth radar scan.
The algorithm receives the raw data at each frame and
detected measurements are associated with the initiated
track using GNN. Note that, to discard false measure-
ments, every measurement is assigned to a false track if
its assignment cost falls below a threshold pfa.

• Mode update: the mode of each target (MODE) is
assumed to be chosen from the set {STOP,MOVE}with
a binary indicator µk ∈ {0, 1} quantifying the state of
the target at the kth radar-frame. The predicted radial
velocity from each detection cluster is then used to
update the target’s state and make the mode detection.
We also use the history of the binary mode indicator µk
to determine the motion mode of the target. That is the
mode of the target is STOP if at least δ scans of the last
1k radar frames attain µk = 0. If the target is assigned
to the stationary (STOP) mode, the mean and covariance
are both set to xsk|k and Psk|k , respectively. If the target
changes the mode from MOVE to STOP, the stationary
mean is formed as

xsk|k =
[
xk|k−1 yk|k−1 0 0

]T
with xk|k−1 being the predicted mean at the last MOVE
step where {x, y} correspond to the location estimates.
The covariance for the stationary mode (Psk|k ) is also
set to a known P0 matrix whose entries are chosen
sufficiently large. This makes a larger gate for the pre-
dicted measurement at the stationary level and enables
the tracking algorithm to capture the detections once the
target makes a movement and, therefore, the mode is to
be updated to MOVE.

Using the above-mentioned procedures, the dynamical tra-
jectory tracking provides an estimate of the target state and
associated covariance at each kth radar frame.

C. AUTOMATIC SEGMENTATION
The performance of the activity classification closely relies
on the capability of the designed model to detect those radar
frames that correspond to an executed activity (primitive).
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Let us define Nk as the number of detections obtained at the
kth radar frame. We also define N̂k as the smoothed number
of received detections that can be written as follows:

N̂k = (1− α)N̂k−1 + Nk

where 0 ≤ α ≤ 1. We also define 1kl and 1kf as two new
parameters that determine the number of previous and future
radar scans being reserved for start and end point detection,
respectively. We, respectively, define the lagged and future
number of buffered detection L̂k and F̂k as

L̂k = N̂k−1kl+1:k , F̂k = N̂k:k+1kf−1

The logic for the change-point detection requires to buffer
the last 1kl frames as well as the next 1kf radar frames to
determine the status of the current radar-frame. Each frame
can be then assigned to one of noAction, start, onGoing,
and end modes.

Given the data at the kth radar-frame, we specify the seg-
ment modes by analyzing the data at the (k−1kf +1)th frame
as the radar-frames should be buffered within the next 1kf
frames to extract the required change-point statistics. The
generated data for the frames with noAction status are used
to estimate the background noise profile using the following
equation:

ε̂k+1 =
nk ε̂k + N̂k
nk + 1

with ε̂k being the estimate of the noise at the kth frame and
nk as the effective number of noise samples up to the current
frame.

The change-point detection for the automatic segmentation
is now presented in Alg. 1. The function in Alg. 1 receives
two buffers (L̂k , F̂k ), an estimate of the noise profile (ε̂k ) and
the latest state of the segments as the input and reports the
current state of the frame. Upon the receipt of a start mode,

Algorithm 1 Real-Time Change-Point Detection for
Identifying Segments in Radar-Based Human Activity
Recognition.
Parameters: ρmin, ρmax and τmin
Function: change-point-detector(L̂k ,F̂k ,ε̂k ,s)

1) Apply linear Least-Square (LS) fit to L̂k and F̂l , derive
the linear curve parameters and calculate the averages
µLk and µFk , respectively.

2) Calculate the ratio ρk =
max(τmin,µLk−ε̂k )
max(τmin,µFk −ε̂k )

with τmin being
a given minimum bound.

3) If s is noAction
a) If ρk ≥ ρmin, return(start); Else, return(s)

4) Else If s is start or on-going
a) If ρk ≤ ρ1max , return (end); Else, return (on-

going)
5) Else if s is end

a) return(noAction)

a new segment is created and the segment may be terminated
when an end signal is received by the algorithm.

V. A MACHINE-LEARNING PIPELINE FOR ACTIVITY
CLASSIFICATION
As shown in Fig. 4, the human activity recognition is
formulated as a multi-class classification problem with a
feature-generation block forming hand-crafted features for
the machine learning model. Here we, first, present the list of
features and, then, discuss the machine learning architecture
for the activity classification in Section V-B.

A. FEATURE EXTRACTION
As the input to feature-extraction layer, we use both the
transformed signals (list of range-doppler map, range and
doppler profiles) and the tracking results. All features are
generated over a window of W radar-frames where all the
radar-frameswithin the interval kf ∈ [k−W+1, k] are used to
form the features. Fivemain categories of features are defined
in the feature-extraction pipeline. In the following, we detail
the proposed features:

• Tracking features (TRACK):

– Input: list of estimated states xkf |kf and predicted
measurements (rkf |kf−1, φkf |kf−1, vkf |kf−1) for all
kf ∈ [k −W + 1, k].

– Process: we first use 8 core tracking features by col-
lecting estimates of, (1) locations (x, y), (2) veloci-
ties (ẋ, ẏ), (3) range, radial velocity and acceleration
(r, ṙ, r̈), and (4) azimuth (φ). Let us define T xkf
as the extracted core feature per radar-frame with
x being one of the 8 core features. The tracking
features can be now defined by applying differ-
ent operators over the core features. We define
seven operations: average (avg), median (med),
maximum (max), minimum (min), standard
deviation (std), linear least-square fit (lsf), and
deviation from the linear fit (dev). Tracking fea-
tures can be now derived as follows:

T x
k =gT (T x[k]), T ∈{avg,med,max,min,std,lsf,dev}

with T x[k] = T xk−W+1:k and gT (.) being the com-
puting function for the operation.

• micro-Doppler features (MD):

– Input: an Nd ×NsW MD cubeMDk over a window
ofW successive radar frames with Nd and Ns being
the number of doppler and time bins, respectively.

– Process: denoising is first performed over each
received MD cube by subtracting MDkf from
an estimated background noise over time. Two
sub-categories of MD features are now computed
from the raw MD data-cube as follows:

∗ MD_RAW:A subsampled N r
d ×N

r
s matrixMDrk

is first formed by performing an average pooling
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over the MD cube as follows:

MDrk [nd , ns] =
1

wdws

×

(nd+1)wd−1∑
i=ndwd

(ns+1)ws−1∑
j=nsws

MDk [i, j]

where w{d,s} =
⌊
N{d,s}
N r
{d,s}

⌋
, and nd ∈ {0, . . . ,N r

d −

1} and ns ∈ {0, . . . ,N r
s − 1} correspond to the

doppler and time bins in the subsampled image,
respectively. The subsampled matrix is flattened
and an N r

dN
r
s vector of MD raw features MR

k is
generated.

∗ MD_ENV: micro-Doppler envelopes are also
extracted from the rawMD cubes by, first, calcu-
lating the average doppler-bin per time and, then,
fitting the resulting time-series against different
functions such as polynomial, exponential, lin-
ear and sinusoid. The coefficients of the curved
graphs are used as the envelope features.

• Range-Doppler region-of-interest features
(RD_ROI):
– Input: after taking the absolute value of each RDk

entry and aggregation over the virtual antennas,
a 3D matrix RD∗k of size Nd × Nr × Nf (with Nf =
W ) is formed by concatenating all RDkf terms and
for kf ∈ {k −W + 1, k}.

– Process: denoising is first performed over each
cube by subtracting RDkf from an estimated back-
ground noise that is calculated by thresholding
the range-doppler imager at each radar-frame and
obtaining those bins falling below the threshold.
A subsampled N r

d ×N
r
r ×N

r
f matrix is first formed

by performing an average pooling over the range-
Doppler cube as follows [17]:

RDrk [nd , nr , nf ]

=
1

wdwrwf

×

(nd+1)wd−1∑
i=ndwd

(nr+1)wr−1∑
j=nrwr

(nf+1)wf−1∑
l=nf wf

RD∗k [i, j, l]

where w{d,s,f } =
⌊
N{d,s,f }
N r
{d,s,f }

⌋
, and nd ∈ {0, . . . ,N r

d −

1}, ns ∈ {0, . . . ,N r
s − 1} and nf ∈ {0, . . . ,N r

f − 1}
correspond to the doppler, range and time bins in
the subsampled image, respectively. The subsam-
pled matrix is flattened and an N r

dN
r
r N

r
f vector of

range-doppler raw features RRk is generated.
• PointCloud features (POINT):

– Input: set of detections for range prkf , azimuth pφkf ,
elevation pθkf , and doppler pvkf over W successive
radar-frames with kf ∈ [k−W +1, k] and pxkf being
the set of detections for x ∈ {r, φ, θ, v} at a given
kf radar-frame.

– Process: let us define hxkf as the histogram of the
detected points at each radar-frame with hxkf being a
B×1 vector of normalized weights where B denotes
the number of bins andhxkf [bn] will be the number of
detections falling in the bnth bin. By concatenating
all the hisograms over theW frames, we form aW×
B matrix H x

k . For any of four entities listed above,
we compute the bin average (avg), mode (mod)
and standard deviation (std) per radar-frame as
follows:

Sxkf = fS (hxkf ),S ∈ {avg,mod,std} (1)

with fS being a function that applies the operator S
over the given input. Features are then derived by
applying five operations on (1) as

Fx
k = gF (Sx[k]),F ∈ {avg,med,max,min,std}

where gF is a function that applies the operator
Fover the set of Sx[k] = Sxk−W+1:k . We then catego-
rize features as RNG,AZM, ELV and DOPP with
each term being defined as follows:

{RNG,AZM,ELV,DOPP} =F {r,φ,θ,v}k (Sxk−W+1:x)
(2)

• Meta features (META):
– Input: taking the absolute value of RDk entries and

aggregating over the virtual antennas, a 3D matrix
RD∗k of size Nd×Nr×Nf (with Nf = W ) is formed
by concatenating all RDkf terms and for kf ∈ {k −
W + 1, k}.

– Process: we extract three main core meta fea-
tures as centroid velocity (VCENT), dispersion
in the velocity (VDISS), and range instantaneous
energy (RENG) from the range-doppler images (for
more details see [17]). Let us define mx

kf as the
derived core meta feature per radar-frame with x
being one of the represented core features. Themeta
features are now computed by applying operations
over the core features as follows:

Mx
k = gM(mx

[k]),

M ∈ {avg,med,max,min,std,lsf,dev}

with m[k] = mk−W+1:k .

B. ACTIVITY CLASSIFICATION
The human activity recognition problem in this paper is
cast as a multi-class classification problem with the action
primitives being the output classes. We use a Random For-
est (RF) model [18] to undertake the activity classification.
Two classification models are devised in this paper for the
activity classification as follows:
• Single-stage classification: the feature-extraction is
triggered once a new segment of W successive
radar-frames is detected (see Section IV-C) and, then,
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TABLE 3. Activity classification for the same-room performance evaluation with different types of classification results being reported in the table.

FIGURE 8. Two-stage classification for the activity classification problem.

the feature vector is sent to the RF model to classify the
activity into one of {SIT,STU,WAW,WTW} classes.

• Two-stage classification: Fig. 8 shows the pro-
posed architecture for the two-stage classification.
The first stage takes as input the generated feature
and uses RF to classify the activity into one the 3
{WAW,WTW,SIT_STU} classes where SIT_STU is a
new composite label formed by merging SIT and STU
activities. All the instances with amaximum score below
a design parameter τ are projected to an Unknown label.
If the predicted label is SIT_STU, a second RF model
is used to classify the instance SIT vs. STU. The sec-
ond classifier receives the assigned labels over the last
L feature-frames and decodes SIT_STU based on the
history of the executed activities. The two-stage classi-
fier provides much more robust results in challenging
environments and under the existence of occlusions and
different aspect-angles where the performance of the
single-stage classification for both SIT and STU labels
is dramatically affected.

VI. EXPERIMENTAL RESULTS
We have created a data-base of features and labels by pro-
cessing the recordings for all the campaigns explained in
Section III. Each data sequence is created by processing W
contiguous radar-frames with W = 12 is chosen for the
living-room scenarios formed in Section III. The optimal
value of W has been empirically chosen with details been
omitted here for the sake of brevity and space limitation.

The activity classification is performed by the procedure
given in Section V-B. The performance of the model is
evaluated by the k-fold validation. As of the performance
metric, the F1-score is used as the harmonic average of the
precision (pr) and recall (rc) [18]. Given the existence of
multiple labels, we adopt three scores, i.e. weighted, macro
and micro averages of F1-scores to summarize the over-
all performance obtained by the machine learning model.
As the measurements were collected in different rooms
and layouts, we perform the evaluation per-room as well
as cross-rooms to assess the generalization of the trained
models.

A. SAME ROOM-LAYOUT EVALUATION
In this section, the performance of the model is evaluated for
cases where the model is trained/tested on the same room
and under the same layout. The single-stage RF classifier of
Section V-B is trained using the records collected from the
three data-bases (DB1,3,5). The performance of the model is
evaluated by a 5-fold validation where participating subjects
are divided into 5 equally-sized folds.

We perform the evaluation for each database separately.
As DB3 contains only 5 subjects, the same-layout analy-
sis is performed for DB1 and DB5 with a high number of
participating subjects. The obtained F1-scores are presented
in Table 3 with three types of classification strategies being
evaluated, (1) single-stage classifier with no SIT_STU label
(SS_noSITSTU), (2) single-stage classifier with SIT_STU
composite label (SS_withSITSTU), and (3) two-stage classi-
fier (TwoStage). When using the single-stage activity classi-
fication with no composite SIT_STU label, it is observed that
the RF model has provided about 95% weighted F1-score for
DB1 while the value has lowered by 20% in case of DB5 as
the experimental data-base. The performance gap widens
when SIT and STU labels are considered with DB1 proving
25% more accurate in recognizing SIT and STU activities in
comparison to DB5. Note that the complex layout of DB5 as
opposed to the simple empty layout designated toDB1 has led
to some performance drop, especially, when subjects execute
SIT and STU actions near tables and under different chair
side-angles.

The impact of occlusion and side-angles is now ana-
lyzed by evaluating the performance of the model over any
certain group of chairs in the layout of Fig. 3. We now
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TABLE 4. The performance of single-stage activity classification for DB5 with the metrics being calculated per chair-type.

define 4 classes of chairs as (1): Free_Chairs (F_C)
being chairs 1-4 and the sofa in Fig. 3, (2) Side_Chairs
(S_C) being chairs 5,7,9,11 in the layout of Fig. 3, (3)
Face_Backward_Chairs (FW_C) being chairs 6 and 10
in Fig. 3, and (4) Face_Forward_Chairs (FB_C) being
chairs 8 and 12 of Fig. 3.

The F1-scores are calculated for any of the above cate-
gories, and results are shown in Table 4. It is observed that the
model has performed well in labeling SIT and STU activities
for free chairs where nothing is occluding the subject against
the radar line-of-sight. The performance degrades by around
15%when those chairs facing back to the radar are considered
with the radar reporting the worst results when chairs are
facing the radar.While the subjects are not occluded in case of
side-chairs, the classifier suffers from the poor aspect-angle
where the performance falls down to 67% when subjects sit
or stand at side-chairs.

As a further test, we combine SIT and STU labels and
create a new composite SIT_STU label that replaces all the
previously created SIT and STU instances. The classifier is
now trained with the new labels and the results are shown
in Table 3 under SS_with SITSTU label. It can be seen that
the classifier has been able to classify SIT_STU activity with
more than 90% accuracy that also indicates the capability
of the model to distinguish stationary activities (SIT_STU)
from thewalking primitives.Motivated by the reported results
of the single-stage classifier with SIT_STU label, we now
train a two-stage classifier whose architecture was given
by Fig. 8. To train the second classifier in Fig. 8, we also
buffer L = 6 of previous detections reported by the first RF
classifier. The results for the two-stage classification can be
now observed in Table 3 and under the name TwoStage. The
obtained classification results outperform those reported by
the single-stage activity classification where the F1-score for
both SIT and STU activities show 10% improvement over
those obtained by the single-stage classifier. Indeed, while
the existence of the furniture has made the classification task
much cumbersome for the single-stage RF model, the model
still shows desirable generalization when detecting SIT_STU
against walking actions. The two-stage classifier then exploits
the aforementioned fact to build a classification strategy that
shows a reasonable degree of robustness to the room lay-
out and resulting challenges such as poor aspect-angles and
occlusions.

B. UNSEEN ROOM-LAYOUT EVALUATION
In this section, we study how the trained model in a certain
room-layout can generalize to a new environment with an
unseen layout. The analysis is now performed in two cases
with (1) the same room but with train//test being executed

over different layouts and (2) two separate rooms with dif-
ferent layouts. Here the same-room part is first studied and,
then, the metrics are extracted for a more challenging task of
training on a certain room and testing on a new room with an
unseen layout.

1) SAME-ROOM ANALYSIS
To study the generalization of the activity classification
model to a the layout change within the same room, the next
experiment studies how the trained model on DB1 per-
forms on the unseen layout of DB3. For a more system-
atic evaluation, we define 5 categories for the furniture
in Fig. 2 where new labels SIT_X and STU_X are created
with X∈ {C1,C2,C3,C4,Sofa}. Here C{i} denotes Chair{i}
in Fig. 2 and, therefore, label {SIT/STU}_C{i} refers to a
SIT or STU activity executed at the corresponding chair.

In order to better understand the impact of layout on the
model’s performance, we now depict bothmicro-Doppler and
range-Doppler images over the full course of both sitting and
standing activities in Fig. 9. Graphs clearly show discrepan-
cies in the micro-Doppler signatures normally used as the
main set of features for the machine learning model. when
a subject sits/stands, the radar echoes from the lower part of
the subject’s body show a possible range-deviation, which
results in the micro-Doppler images with higher energies at
positive/negative Doppler regions that helps the model label
the action properly. While this signature is well captured in
case of a Sofa, the occlusions caused by the tables and a
change in the aspect-angle of each chair make the signatures
less instructive for the machine learning model. In this case,
the performance for both sit/stand activities will be dramati-
cally affected.

As DB3 is created by 5 distinct subjects and to evaluate the
generalization of the trained model, we incrementally add the
subjects from DB3 to DB1 to form an extended training data-
set. The single-stage classifier is then trained on the extended
data and tested on the remaining subjects in DB3. The results
are now shown in Table 5 for different portions of the data
extension.

In case of no-extension (nTrainInTest= 0), the results
in Table 5 show a dramatic performance drop of around
25% for both walking and stationary activities when com-
pared toDB1 metrics listed in Table 3. Diving deeper into
the metrics of Table 5, it can be observed that the trained
model is still able to capture the activities executed at the Sofa
with a reasonable accuracy while the results for the chairs
significantly drop. It can be also observed that the model
providesmuch better prediction results for Chair 2 as the chair
is located almost in front of the radar and, therefore, is not
occluded by the table. Both Chairs 1 and 4 that are masked
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FIGURE 9. Variation of micro-Doppler and range-Doppler signatures for SIT and STU activities over the
whole period of each action when each activity is executed at a sofa and chairs in different aspect
angles. For each case, the middle graph denotes the micro-Doppler signature while the bottom one
corresponds to the range-Doppler over radar-frames.

by the table show the lowest performance while Chair 3 is
also hard for the model to capture given its poor aspect-angle,
which makes the subject invisible to the radar. The model
achieves the highest performance for Chair 2 with around
70% accuracy for both SIT and STU primitives. Note that
as Chair 2 is fully visible by the radar and not masked by the
table, the model is able to detect both SIT and STU activities
with a reasonable accuracy although the metric is still lower
than that of the Sofa since the subject’s body is partially
masked by the chair.

When data extension is taken (nTrainInTest> 0), it can be
observed in Table 5 that extending DB1 data with a single
object from DB3 can enhance the metrics by around 20% in
average. While the metrics keep improving by adding more
subjects from DB3, the gap tightens when the number of
subjects from DB3 in the training set goes from 3 to 4. It can
be also concluded that the model provides a satisfactory per-
formance for the Sofa and Chair 2 by adding a single subject
from DB3 while other cases still need to see more records
from the new layout to adapt themselves to the changes in the
environment. Note that this proceduremay be used as an extra
phase to calibrate the pre-trained model to the new layout in a
roomwhile adding some limitedmeasurements to the existing
model can improve the robustness and the generalization of
the activity classification.

TABLE 5. Cross-layout generalization results for the model trained on the
extended data from DB1 and DB3 and tested on the remaining
DB3 subjects.

2) CROSS-ROOM ANALYSIS
In this section, we study how the trained model in a certain
room can generalize itself to a new room with the furniture
layout being different from the training campaign. For a rig-
orous generalization study, 6 different test cases are designed
as follows:
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• Train_DB{X}_Test_DB{Y}: the records collected by
DB{X} are used as the training-set while DB{Y}
will be held to evaluate the model’s performance
({X,Y}∈ {1/3,5}).

– SS_noSITSTU: the single-stage classifier with no
composite-label is trained on DB{X} data and the
performance is evaluated on DB{Y}.

– SS_withSITSTU: the single-stage classifier is
trained on DB{X} data using the newly defined
label SIT_STU. DB{Y} data will be then used for
performance evaluation.

– TwoStage: we finally use the two-stage classifier
and train the model on DB{X} data and, then, test
on DB{Y}.

The results for all the test-cases can be found in Table 6.
With DB1/3 being held as the training-set, the model shows a
relatively poor generalization performance with the weighted
metric being below 70% for all three test-cases. It is also
observed that the two-stage classifier fails to boost the perfor-
mance, especially, for SIT/STU activities as the single-stage
classifier with the composite label shows inaccurate in distin-
guishing SIT_STU labels from walking activities. Note that
as the two-stage classifier receives the history of assigned
labels as the input, miss-classifications in SIT_STU activities
are usually translated to a large miss-classification error in
the two-stage classification results as many of SIT (STU)
activities may be wrongly labeled as STU (SIT). Results
in Table 6 also show poor F1-metrics for walking activities
when compared to those of Table 3. Indeed, the existence
of two tables and more variation in the aspect-angles of the
walking subjects arising in the dataset of DB5 has made the
poor generalization from a simpler DB1/3 scenario to the
more complex DB5 layout.

Table 6 also verifies the enhanced generalization of the
model when trained on DB5 and tested on DB1/3. In case of
a single-stage classifier with no composite label, the trained
model achieves a 15% improvement over the scenario with
DB1/3 being used as the training-set. Results also show a
significant improvement on the capability of the model in
identifying both SIT and STU activities where the model
tested on DB1/3 outperforms the one trained on DB1/3 and
tested on DB5 by around 10% in both SIT and STU activities.
When the single-stagemodel with the composite label is used,
all the F1-scores are enhanced and the results show 86%
accuracy for the new SIT_STU label. Such an improvement
can be also observed in the metrics reported by the two-stage
classifier where the model has classified SIT and STU activi-
ties by 78% and 86% F1-score, respectively, that outperforms
the single-stage classification results by around 20%.

Reported metrics in Table 6 reveal a number of important
observations. First, once the model is trained on a room
that introduces a representative layout, the generalization is
greatly enhanced when tested in a new room with an unseen
layout. In other words, training the model on DB5 showed
a desirable degree of generalization when the metrics are

calculated using the data in DB3 that has a different layout
than DB5. Also, we see the two-stage classification does not
help in case of the model being trained on DB1/3 as the
model does not show a high accuracy in classifying the new
SIT_STU label.

As another experiment, we now study the impact of data
extension in the classification performance and the general-
ization capability of the cross-room experiments. The regular
single-stage model with no composite label is now used as the
baseline and the macro-average is taken as the representative
metric. The model is trained on the data from DB1/3 and
tested by DB5 with the data being proportionally extended
from DB5 to DB1/3. Fig. 10 shows the macro-average of
F1-scores vs different extension ratios. With no-extension,
all the cases show poor performance results as the trained
model on DB1/3 does not generalize well to the unseen layout
of DB5. The performance shows a significant improvement
once a 10% data-extension is performed with the single-stage
classifier trained on the sole DB1 proving a 40% enhance-
ment with a small extension from DB5.

C. SUMMARY
Several experiments were conducted in this section to study
the performance of different classification perspectives in
identifying human activities in an indoor environment. The
main observations can be summarized as follows:

• Compared to prior work in [30], [31], we have evaluated
the generalization of the radar-based human activity
recognition in a systematic way where the role of occlu-
sion and aspect-angles has been deeply investigated in
the capability of the model for detecting SIT and STU
activities, something that has not been carefully dis-
cussed in the state-of-the-art.

• Our results indicate that the trained models show desir-
able classification accuracy once tested on the same
training layout. Metrics in Table 3 verify the reasonable
accuracy and generalization to the unseen subjects when
the trained model is tested on the same layout.

• The accuracy of the activity classification is dramati-
cally affected by the change in the room layout, espe-
cially, for SIT and STU labels. The existence of tables
as the main source of occlusion and scenarios where
subjects execute SIT/STU actions against chairs located
at a poor aspect-angle to the radar’s line-of-sight cause
a significant drop in the classification accuracy.

• Our research offers two ways to enhance the general-
ization across different rooms and with unseen layouts.
First, by training on a more representative room (DB5)
and, then, using a two-stage classification, we showed
in Table 6 that the metrics for the activity classification
can be enhanced by 10% in average for all cases when
trained on a certain layout and tested on an unseen
layout.

• Beside the two-stage classification proposal, it was
shown by both Table 5 and Fig. 10 that data-extension
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TABLE 6. Cross-room generalization results for the different classification models when the model is trained on a room and tested on a different one.

FIGURE 10. The macro-average results of the single-stage classification
with different levels of the data-extension.

plays a vital role in boosting the model’s performance
where adding some limited data from an unseen layout
to the existing model can significantly enhance the capa-
bility of the model in classifying the activities executed
in an unseen layout.

The next section deals with a deep feature exploration where
we will attain some improvement in the generalization of the
model by choosing an optimal subset of features.

VII. FEATURE EXPLORATION
We evaluate the importance of features in the model per-
formance by formulating an optimization objective over a
pre-defined taxonomy of features. Fig. 11 shows the defined
taxonomy in this paper with all the leaves corresponding to
each certain feature category. Let us define x = [xi], i =
1, . . . , I as a vector of binary variables xi ∈ 0, 1 that quan-
tifies the existence of the ith feature category in the pool of
features. We also definefi as the feature vector corresponding
to the ith category. Assuming xn as a certain vector created
by a permutation of xi values and C(xn) as the associated
performance metric generated by the RF model, the objective
for feature optimization is defined as follows:

x∗ = argmax C(x)

Solving the above problem requires to consider all possible
subsets of feature categories (2I different cases). Here we pur-
sue a sub-optimal way to find the most contributing features

Algorithm 2 A Sub-Optimal Feature-Selection Procedure
to Rank the Importance of Features Consumed by the RF
Classifier
Init: Number of feature categories I , list of selected features
X∗ = [] and corresponding metrics C∗ D [], and full set of
features F = fi, i = 1, . . . , I
While F is non-empty
• Set C = [] as a temporary vector of metrics.
For fi in F
1) Create a new set of features Xi by appending fi to X∗.
2) Train the RFmodel using Xi, calculate the metric Ci and

add the metric to C.
Choose the category i∗ = argmaxiCi, add fi∗ to X∗, Ci to

C∗, and remove fi∗ from F .
Report X∗ and C∗as the ranked set of features and corre-
sponding cumulative RF metric, respectively.

with details being given by Alg. 2. The ranked list of features
X∗ and the corresponding metric C∗ can be now used to plot
the feature importance curve where for each ith entry of X∗,
C∗i denotes the metric obtained by training the RF model
using all the features X∗1:i. In the following, the importance
curves are derived for each single scenario.

A. SAME/cross-ROOM FEATURE ANALYSIS
We calculate the feature importance for both DB5 and
DB1/3 data and rank the features according to the proce-
dures given by Alg. 2. Results for every experiment are now
shown in Fig. 12 where the y-axis in both graphs shows the
macroAverage as the representative metric. It can be observed
that tracking-related features (positional and velocity) are all
ranked quite high in both cases. The experiment running on
DB1/3 shows features from range-Doppler ranked on the top
while these features have the model’s performance degraded
in case of DB5 data and ranked pretty low. MD_RAW fea-
tures are also shown as the least important features for both
DB1/3 and DB5 cases.

For the next experiment, we perform the feature selection
on the same room but with different train/test layouts. To do
this and for the case of DB5, we collect the captures in
three distinct sets per subject where each set consists of
action primitives executed at a certain set of chairs with the
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FIGURE 11. Taxonomy of features for exploration and performance optimization.

FIGURE 12. Feature importance analysis for the experiment running on the same-room, (a) train/test on DB1/3 and (b) train/test on
DB5. X-axis shows the categories of features as denoted by the taxonomy of Fig. 11 where all feature classes are ranked according to
the procedure of Alg. 2.

FIGURE 13. Feature importance analysis for the experiment running on the same room, but tested on different layouts, (a) train on
DB5 with a different test layout, and (b) train on DB1 and test on DB3. X-axis shows the categories of features as denoted by the
taxonomy of Fig. 11 where all feature classes are ranked according to the procedure of Alg. 2.

sets forming disjoint subset of chairs. The model is then
trained on two sets and tested on the unseen set. In a separate
experiment, we also train the model on DB1 and test on
DB3 to evaluate the contribution of features when the model
is exposed to a new layout. The results for feature selec-
tion are now depicted in Fig. 13. Unlike the graphs shown
in Fig. 12, MD_RAW features are now ranked high by the
model bringing around 2% improvement in macroAverage
when MD_RAW features are appended to the list of existing
features. The positional features still prove useful although
their importance has downgraded when compared to Fig. 12.

As the last experiment, the features are examined in
a more challenging task where the model is trained on

DB5 and tested on a new room/layout (DB1/3). The results
for feature-selection are now depicted in Fig. 14. It can be
observed that a mixture of MD_RAW and positional features
gives the best generalization capability with the best outcome
being achieved when the MD_RAW features are combined
with the elevation information and the position of the target
obtained from the tracker.

B. SUMMARY
The feature exploration results presented in Section VII-A
revealed important conclusions about the importance of the
feature categories in the generalization capability of the
trained activity classification models:
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FIGURE 14. Feature important analysis for the cross-room experiment
with the model being trained on DB5 and tested on DB1/3. X-axis shows
the categories of features as denoted by the taxonomy of Fig. 11 where
all feature classes are ranked according to the procedure of Alg. 2.

• First, positional features dominate other features for the
case of same-room experiments. As Fig. 12 shows, the
model gives a high weight to the positional features that
decode the location of the furniture, which indicates an
early sign of overtraining to the layout.

• When the model is trained on a certain room, but tested
on a different layout, micro-Doppler features are ele-
vated in the ranked list of features while velocity features
that are more robust to the layout change go higher in
the ranking. It can be also observed in Fig. 13 that the
positional features are now ranked lower than the case
of same-room analysis, especially, for DB5 experiment
where adding the features dramatically degrade the met-
ric.

• Finally, an analysis on the cross-room training/testing
verifies the significant importance of micro-Doppler
features in the generalization capability of the model.
Results in Fig. 14 imply that a combination of
micro-Doppler features along with those types of infor-
mation that cannot be captured in MD such as the
position and elevation has provided the best perfor-
mance metric. Adding other features in Fig. 14 then
degrades the metrics where the model trained with the
full feature-set shows 5% performance drop compared
to the best feature combination.

VIII. CONCLUSION
This paper proposed a systematic methodology to assess the
generalization capability of a machine-learning based solu-
tion for activity classification in indoor environments. Using
a well-defined tracking algorithm, a novel signal processing
and feature extraction pipeline was devised to feed a ded-
icated two-stage classifier that detects well-defined human
activities such as walking, sitting and standing. By run-
ning several measurement campaigns in rooms with dif-
ferent layouts, the performance of the machine learning
model was evaluated under different layout variations such as

aspect-angles and occlusions. After presenting an extensive
feature exploration, the results in this paper concluded a
mixture of micro-Doppler and tracking features provides the
best generalization capability, especially when the trained
model is employed to predict human activities in a new room
with an unseen layout.

In a general setting, a single-radar module can still suffer
from the insufficient generalization given poor aspect angles
of subjects or variant room layouts. In this case and as a future
work, a multi-radar solution is being investigated where the
placement of multiple radars can potentially mitigate both
occlusions and poor aspect angles. In addition, including
more sophisticated human activities such as falling, cooking,
opening or closing doors in the pipeline will be considered in
the next extensions of this work.
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