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Abstract: To the best knowledge of the authors, in former studies in the field of measuring volume
fraction of gas, oil, and water components in a three-phase flow using gamma radiation technique, the
existence of a scale layer has not been considered. The formed scale layer usually has a higher density
in comparison to the fluid flow inside the oil pipeline, which can lead to high photon attenuation
and, consequently, reduce the measuring precision of three-phase flow meter. The purpose of this
study is to present an intelligent gamma radiation-based, nondestructive technique with the ability
to measure volume fraction of gas, oil, and water components in the annular regime of a three-phase
flow independent of the scale layer. Since, in this problem, there are several unknown parameters,
such as gas, oil, and water components with different amounts and densities and scale layers with
different thicknesses, it is not possible to measure the volume fraction using a conventional gamma
radiation system. In this study, a system including a 241Am-133Ba dual energy source and two
transmission detectors was used. The first detector was located diametrically in front of the source.
For the second detector, at first, a sensitivity investigation was conducted in order to find the optimum
position. The four extracted signals in both detectors (counts under photo peaks of both detectors)
were used as inputs of neural network, and volume fractions of gas and oil components were utilized
as the outputs. Using the proposed intelligent technique, volume fraction of each component was
predicted independent of the barium sulfate scale layer, with a maximum MAE error of 3.66%.

Keywords: annular regime; scale layer-independent; petroleum pipeline; volume fraction; dual
energy technique

1. Introduction

Numerous applications for multiphase flow meters exist in the petrochemical and oil
industries. For instance, there is a need to monitor multiphase flow continuously at some
points. Some of these points include the gas–oil separator units and the wellhead collection
lines. Monitoring at these points is of great value. The three-phase flow’s volume fraction
can be determined through several methodologies. One of the best methodologies is the
gamma radiation-based technique, which is a nondestructive and reliable tool. Several
studies have covered this area. One of the earliest studies was conducted in 1980, when
Abouelwafa and Kendall introduced a method for metering three-phase flow. That is
the dual-energy gamma-ray attenuation-based method [1]. In their study, Dong-hui et al.
(2005) presented the dual-energy gamma-ray method. The method aimed to examine
the volume fraction of various components on the multiphase pipe flow cross-section of
gas–oil–water [2]. With the intent to measure the attenuation dose rate of the material,
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there was a need to design a data acquisition system and nuclear instruments. After
designing the data acquisition system and the nuclear instruments, static tests followed.
Oil–water–gas media has three phases. These phases were investigated to test the hy-
pothesis that they effectively simulate different distributions of media volumetric fraction.
The three phases were investigated when the oil–water–gas media was used in experi-
mental vessels. During this investigation, the measurements of attenuation intensities
were taken. There was also a study of the volumetric fraction’s equations and the linear
attenuation coefficients’ arithmetic. When the attenuation equations were investigated
for unexpected measurement error, the involvement of modified arithmetic was disclosed.
Besides, the experimental research revealed that the system’s accuracy was acceptable. In
their study, Salgado et al. (2009) measured a three-phase flow volume fraction using the
gamma radiation technique [3]. They used two radioactive sources whose energies were
different. They also used three Nal detectors. In their estimation of the gas–oil–water’s
volume fraction, the researchers were aided by the artificial neural network (ANN). They
considered several flow regimes in this process. The researchers replicated this method-
ology in 2010 to recognize the homogenous, stratified, and annular flow regime. They
then estimated the water–gas–oil multiphase systems’ volume fraction [4]. Hoffmann et al.
(2011) measured phase fractions using a traversable gamma radiation-based instrument [5].
There was a need to ensure that the noisy measurements yielded relevant data. Therefore,
the researchers had to be careful in their data analysis. In this regard, the researchers used
the two-phase and single-phase flow calibration data and tested the three-phase flow data
analysis technique against this data. The researchers found that the traversable gamma
instrument’s average density data was significantly related to the calibrated, stationary,
single-energy gamma instrument’s density measurements. However, more information
was obtained from the traversable densitometer than from the single energy instrument.
The rationale behind this is that it was possible to measure all the three phases’ transient
phase fraction over the pipeline’s cross-section. By using this information, the flow pattern
could be determined. Further studies in field of multiphase flow meters can be found in
references [6–25].

According to the literature review, in the systems that used gamma radiation technique
to determine the oil, water, and gas volume fraction, the existence of the scale layer’s has
not been considered. The scale layer forms gradually as mineral salts are deposited on the
oil pipeline’s inner surface. An example of such a layer is shown in Figure 1.
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When the scale layer is compared to the fluid flow inside the oil pipeline, its density
tends to be higher. In this regard, the three-phase flow meter’s measuring precision can
be reduced over time due to high photon attenuation that can occur due to the scale layer
having a higher density. This study aims at presenting an intelligent gamma radiation-
based system that can measure the oil, gas, and water components’ volume fraction
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in a three-phase flow’s annular regime independent of the scale layer. The article is
structured as follows: Section 2 discusses the details of the proposed detection system
and the implementation of the neural network. Section 3 reports the results of the neural
network and calculates the accuracy of the designed neural networks. The last section
provides both the summary and the conclusion.

2. Materials and Methods
2.1. Radiation Based System

Monte Carlo N Particle code (MCNP) [27] was implemented in the present investiga-
tion in order to model the radiation-based system. As pointed out in the abstract section,
the aim of this investigation is to propose an intelligent, gamma radiation-based system
with the ability of measuring volume fraction of gas, oil, and water components in annular
regime of a three-phase flow independent of the scale layer. Since, in this problem, there
are several unknown parameters, it is not possible to measure the volume fraction using a
conventional gamma radiation system that includes one radiation source and one detector.
To obtain more information from the fluid inside the pipe, a system including a dual energy
source consisted of 241Am and 133Ba radioisotopes that emit photons with energies of 59
and 356 keV, respectively, and two NaI detectors for recording the transmitted photons,
were used.

A steel pipe with internal radius and thickness of 10 cm and 0.5 cm, respectively, was
considered in this study. In order to model the scale layer, a cylindrical shell of barium
sulfate (BaSO4) with density of 4.5 g·cm−3 and different thicknesses in the range of 0–3 cm,
with a step of 0.5 cm, was considered on the internal wall of the steel pipe.

Annular regime of a three-phase flow was modeled inside the pipe. Air, gas, oil, and
water with densities of 0.00125, 0.826, and 1 g·cm−3 were utilized as gas, oil, and water
phases, respectively. For each scale thickness, various volume fractions were simulated for
each component (seven different scale thickness×36 different volume fractions = totally
252 simulations were done).

As aforementioned, in this investigation, two 2.54 cm × 2.54 cm NaI detectors were
applied to record the transmitted photons. Tally F8 was utilized in order to record photon
spectra in both detectors. The first detector was positioned diametrically in front of the
radioactive source (see Figure 2). For the second detector, at first, a sensitivity investigation
was done in order to find the optimum position. In this regard, the center of the second
detector was positioned in different orientation in the range of 5◦–11◦, with a step of 1◦,
and transmitted photons were recorded. Orientation of 5◦ was the minimum possible
position for the second detector, because, at less than this orientation, the first and second
detectors would interfere with each other. The reason for choosing orientation of 11◦

as the maximum position was that, at more than this orientation, there would be no
more transmitted photons through the pipe that carries on useful information about the
three-phase flow to reach the detector. At each position, sensitivity of the second detector
relative to gas phase and oil phase volume fraction changes was investigated for both
registered counts of gamma radiations emitted from 241Am and 133Ba radioisotopes. For
instance, calculation of sensitivity of registered counts under 241Am photo peak in the
second detector relative to gas phase changes is indicated in Equation (1). It is worth
mentioning that the sensitivity was calculated using the registered counts for gas phase
fractions of 10% and 80%, which make the highest and lowest attenuation for photons.

Relative sensitivity (%) =

(
Cgv f 80 − Cgv f 10

Cgv f 80

)
× 100 (1)

where, Cgvf 80 and Cgvf 10 refer to registered counts under 241Am photo peak when the gas
volume fraction is 80% and 10%, respectively. The results of sensitivity investigations are
shown in Figure 3. For all four cases, by increasing orientation angle of the second detector,
sensitivity starts to increase until it reaches a maximum value at the angle of 7◦ and then
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it gradually decreases. Based on the acquired results, it could be deduced that 7◦ is the
optimal orientation angle for the second detector.
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It is worth mentioning that the simulated configuration in this work, especially the
performance of the detectors, has been validated in our previous study using some experi-
ments [28]. The corresponding experimental setup can be seen in Figure 4. A geometry
identical to the experimental setup was simulated using MCNP code, and then the regis-
tered counts in both detectors were compared with the experimental ones. Calibrations of
the gamma attenuation-based devices used for measuring the three-phase flow characteris-
tics are usually done for three different extreme cases when the pipe is completely filled
by gas, oil, and water. In the present study, a detection system the same as the validated
one in our previous work was modeled. However, in the present study, a gas–oil–water
three-phase flow was modeled instead of a two-phase flow.
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2.2. Artificial Intelligence

In recent years, it has been proved that artificial intelligence can be implemented
as a powerful tool for various engineering applications [29–65]. There are several kinds
of ANNs, in which multilayer perceptron (MLP) is the most well-known kind of them.
This kind of ANN has a good ability for regression and classification. This network is
constructed from at least three layers of neurons: The input layer, the hidden layer (or
hidden layers), and the output layer. There are different techniques to calculate the biases
and weights of this mathematical network, of which Levenberg Marquardt (LM) is most
well-known algorithm in this regard. In the present investigation, two different MLP–LM
networks with four inputs and one output were considered. Four features were extracted
from the recorded spectra in the detectors and were considered as MLP–LM inputs. The
procedure of obtaining gas, oil, and water volume fraction percentages independent of
scale layer thickness is indicated in Figure 5. The trained networks can estimate the
percentages of gas and oil volume fraction based on input signals independent of scale
layer thickness, correctly.
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A total of 252 different cases were simulated using MCNPX code; 177 cases were
implemented for training the network, and 75 cases were used for testing the efficiency
of presented MLP–LM. In order to obtain the optimum structure of proposed networks,
different structures with various number of layers, neurons in each layer, epochs, and
different activation functions were tested. For this purpose, different loops were defined,
and, with trial and error, the optimum architecture was found. The mentioned algorithm is:

(1) The data set, counters, and error are defined.
(2) The data set is normalized.
(3) The parameters initial values are set.
(4) Several loops are created.
(5) Different number of layers, neurons in each layer, epochs, and different activation

functions are tested.
(6) The efficiency of each network is checked.
(7) The best network with lowest error is saved.

The best structure of presented MLP–LM model for gas volume fraction measuring
has one hidden layer consists of 9 neurons. The number of epochs was 685. The best
structure of presented MLP–LM model for oil volume fraction measuring has one hidden
layer consists of 10 neurons. The number of epochs was 750. Architectures of the ANN
models were shown in Figure 6.
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The mathematical equations for the first MLP–LM model are as follows. The input to
the neuron m in the hidden layer is given by:

ηm =
4

∑
u=1

(XuWum) + bm m = 1, 2, . . . , 9 (2)

The output from mth neuron of the hidden layer is given by:

Um = f (
4

∑
u=1

(XuWum) + bm) m = 1, 2, . . . , 9 (3)

The output of the neuron in the output layer is given by:

O =
9

∑
u=1

(UuWu) + b (4)
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where X is the input vector, b is the bias term, W is the weighting factor, and f is the
activation function of the hidden layer.

3. Results and Discussions

After finding optimum positions for the detectors, orientation angle of 0◦ for the
first detector and 7◦ for the second detector, counts under photo peaks of 241Am and
133Ba radioisotopes were recorded in both detectors for different scale layer thicknesses
and volume fractions. Ternary contour plots of the recorded counts in both detectors for
different volume fractions when the scale thickness is 0 and 3 cm, are shown in Figures 7–10.
Comparing Figures 7 and 8 that correspond to the recorded counts in the first detector for
241Am and 133Ba radioisotopes, respectively, it can be said that dynamic range of registered
counts relative to changes of gas volume fraction, or, better to say, sensitivity, for 133Ba is
more than 241Am. A same response is also observed for the second detector. Comparing
Figure 7a,b, it could be observed that, when scale layer is 0, sensitivity of detector relative
to changes of gas, oil, and water components is much more than when the scale thickness
is 3. In other words, by increasing thickness of scale layer, somehow information about
the flow of inside the pipe starts fading. This manner can be also seen for both detectors
and radioisotopes. Comparing Figures 7a and 9a, it can be observed that sensitivity of
the second detector relative to changes of volume fractions is a little bit more than the
first detector.

Regression diagrams of actual data and predicted data using presented MLP–LM
models are shown in Figures 11 and 12. In Table 1, data number, scale layer thickness,
actual outputs, and measured outputs for test data set are tabulated.
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Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of presented meter-
ing system were calculated using Equations (5) and (6).

MAE =
1
N

Z

∑
i=1
|Xi(Actual)− Xi(Measured)| (5)

RMSE =

[
∑N

i=1((Xi(Actual)− Xi(Measured))2

N

]0.5

(6)
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where N, Xi (Actual), and Xi (Measured) are the data number, real values, and estimated
values, respectively. Performance criteria of the developed models were tabulated in
Table 2 using Equations (5) and (6).
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It can be found from the obtained errors that the presented gauging system is reliable.
This novel meter could be used in different industries for metering volume fraction of each
phase independent of scale layer thickness. Radioisotope sources, detectors type, detectors
position, extracted features from output signals, used data analysis algorithms and ANN
architectures were selected appropriately in order to achieve the optimum performance for
the proposed system.
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Figure 12. Regression diagrams of second model results (oil volume fraction) for (a) train data (b) test data.
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Table 1. The test data with predicted values.

Data Number Scale Layer
Thickness

Actual
Percentage of
Gas Volume

Fraction

Predicted
Percentage of
Gas Volume

Fraction

Actual
Percentage of
Oil Volume

Fraction

Predicted
Percentage of
Oil Volume

Fraction

Data Number Scale Layer
Thickness

Actual
Percentage of
Gas Volume

Fraction

Predicted
Percentage of
Gas Volume

Fraction

Actual
Percentage of
Oil Volume

Fraction

Predicted
Percentage of
Oil Volume

Fraction

1 0 10 10.192 30 33.188 39 1.5 30 31.776 20 15.131
2 0 10 9.1929 70 72.778 40 1.5 30 33.395 50 42.774
3 0 20 18.589 20 23.656 41 1.5 40 38.145 20 24.954
4 0 20 22.769 50 45.377 42 1.5 50 44.139 10 19.463
5 0 30 27.957 20 21.208 43 1.5 60 61.639 10 10.063
6 0 30 27.197 50 44.794 44 1.5 70 69.562 10 17.143
7 0 40 40.997 20 26.426 45 2 10 9.568 10 13.678
8 0 40 46.476 50 46.974 46 2 10 9.3796 50 52.381
9 0 50 54.003 40 40.954 47 2 10 11.105 80 80.937
10 0 60 60.570 30 30.223 48 2 20 22.548 30 26.564
11 0 80 78.644 10 17.264 49 2 20 25.880 60 53.048
12 0.5 10 14.223 30 35.266 50 2 30 37.023 20 26.569
13 0.5 10 14.259 60 63.838 51 2 30 33.899 50 45.598
14 0.5 20 16.300 20 25.508 52 2 40 45.734 30 27.702
15 0.5 20 18.683 60 62.395 53 2 50 55.656 20 19.188
16 0.5 30 29.442 30 29.886 54 2 60 67.743 10 10.936
17 0.5 30 30.865 60 59.076 55 2 70 67.136 10 6.609
18 0.5 40 46.686 30 26.175 56 2.5 10 10.469 20 22.249
19 0.5 50 51.928 10 19.454 57 2.5 10 8.542 60 66.662
20 0.5 50 46.869 40 34.376 58 2.5 20 16.971 10 15.272
21 0.5 70 69.221 10 12.063 59 2.5 20 19.480 40 42.727
22 1 10 10.599 10 15.606 60 2.5 30 37.115 10 13.023
23 1 10 9.643 40 39.935 61 2.5 30 33.332 40 42.970
24 1 10 11.224 80 76.384 62 2.5 40 43.650 20 18.483
25 1 20 16.727 30 27.304 63 2.5 50 50.924 10 6.802
26 1 20 17.615 60 56.777 64 2.5 60 61.051 10 17.548
27 1 30 31.423 20 25.014 65 2.5 70 61.640 10 12.625
28 1 30 28.196 50 50.101 66 3 10 8.257 20 24.801
29 1 40 35.962 20 24.818 67 3 10 8.638 50 55.815
30 1 40 37.449 50 48.968 68 3 10 10.566 80 75.169
31 1 50 48.608 30 31.725 69 3 20 21.072 40 36.381
32 1 60 56.010 20 20.542 70 3 20 22.616 70 70.018
33 1 80 73.836 10 5.888 71 3 30 31.506 40 35.196
34 1.5 10 10.833 20 20.221 72 3 40 36.545 20 27.044
35 1.5 10 7.667 50 52.823 73 3 50 51.333 10 7.174
36 1.5 10 8.459 80 75.090 74 3 50 48.273 40 36.407
37 1.5 20 18.903 30 28.645 75 3 70 63.588 10 7.416
38 1.5 20 20.442 60 52.318
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Table 2. Performance criteria of the developed model.

Output
RMSE MAE

Train Test Train Test

Gas Volume Fraction Percentage 3.0956 3.3362 2.3266 2.6198

Oil Volume Fraction Percentage 3.5757 4.3268 2.7662 3.6579

4. Conclusions

In the present investigation, a novel and optimized radiation-based gauge, including
two detectors and a dual energy source, was presented to measure volume fraction of gas,
oil, and water components in annular regime of a three-phase flow independent of the scale
layer. Position of the second detector was optimized. The percentages of gas, oil, and water
volume fractions were measured independent of the barium sulfate scale layer. In fact,
the presented measuring system can be used in different pipes with different thicknesses
of scale layer. All the required data for modeling the presented system was achieved
using MCNPX code. In order to model the metering system using MATLAB software,
two different ANNs with four inputs and one output were considered. Recorded counts
under photo peaks of 241Am and 133Ba were applied to both ANN models, as 252 × 4 input
matrix and gas and oil volume fraction percentages were considered as the first and second
ANN model outputs, respectively. The architectures of both ANNs were optimized using
a presented algorithm. The dataset was divided to train set and test set. The accuracy of
models was confirmed by good agreement of actual data and measured data in both sets.
Finally, the volume fraction percentages were predicted with the RMSE of less than 4.33
and independent of scale layer.
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23. Golijanek-Jędrzejczyk, A.; Mrowiec, A.; Hanus, R.; Zych, M.; Świsulski, D. Uncertainty of mass flow measurement using centric
and eccentric orifice for Reynolds number in the range 10,000 ≤ Re ≤ 20,000. Measurement 2020, 160, 107851. [CrossRef]

24. Zhang, F.; Chen, K.; Zhu, L.; Appiah, D.; Hu, B.; Yuan, S. Gas–Liquid Two-Phase Flow Investigation of Side Channel Pump: An
Application of MUSIG Model. Mathematics 2020, 8, 624. [CrossRef]

25. Roshani, G.H.; Hanus, R.; Khazaei, A.; Zych, M.; Nazemi, E.; Mosorov, V. Density and velocity determination for single-phase
flow based on radiotracer technique and neural networks. Flow Meas. Instrum. 2018, 61, 9–14. [CrossRef]

26. Chemical Cleaning. Available online: https://www.fourquest.com/services/chemical-cleaning (accessed on 15 February 2020).
27. Pelowitz, D.B. MCNP-X TM User’s Manual, Version 2.5.0. LA-CP-05e0369; Los Alamos National Laboratory: New Mexico, NM,

USA, 2005.
28. Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for iden-tifying the

flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy 2016, 41,
7438–7444. [CrossRef]

29. Versaci, M.; Morabito, F.C. Image edge detection: A new approach based on fuzzy entropy and fuzzy divergence. Int. J. Fuzzy
Syst. 2021, 1–19. [CrossRef]

30. Burrascano, P.; Ciuffetti, M. Early Detection of Defects through the Identification of Distortion Characteristics in Ultrasonic
Responses. Mathematics 2021, 9, 850. [CrossRef]

31. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH
neural network as a nondestructive and potential technique for measuring characteristics of gas–oil–water three phase flows.
Measurement 2021, 168, 108427. [CrossRef]

32. Versaci, M.; Angiulli, G.; di Barba, P.; Morabito, F.C. Joint use of eddy current imaging and fuzzy similarities to assess the integrity
of steel plates. Open Phys. 2020, 18, 230–240. [CrossRef]

33. Pourjabar, S.; Choi, G.S. A High-Throughput Multi-Mode LDPC Decoder for 5G NR. arXiv 2021, arXiv:2102.13228.
34. Karami, A.; Yousefi, T.; Harsini, I.; Maleki, E.; Mahmoudinezhad, S. Neuro-Fuzzy Modeling of the Free Convection Heat Transfer

from a Wavy Surface. Heat Transf. Eng. 2015, 36, 847–855. [CrossRef]
35. Darbandi, M.; Ramtin, A.R.; Sharafi, O.K. Tasks mapping in the network on a chip using an improved optimization algorithm.

Int. J. Pervasive Comput. Commun. 2020, 16, 165–182. [CrossRef]

http://doi.org/10.1016/j.aej.2020.11.043
http://doi.org/10.1016/j.flowmeasinst.2015.09.002
http://doi.org/10.1016/j.net.2015.09.005
http://doi.org/10.2478/johh-2018-0039
http://doi.org/10.1007/s00521-016-2784-8
http://doi.org/10.1016/j.nima.2013.09.047
http://doi.org/10.1016/j.measurement.2018.07.026
http://doi.org/10.3390/s21062189
http://doi.org/10.2478/johh-2019-0023
http://doi.org/10.1016/j.powtec.2017.06.019
http://doi.org/10.1016/j.flowmeasinst.2020.101804
http://doi.org/10.3390/s20010306
http://doi.org/10.1016/j.net.2020.09.015
http://doi.org/10.1016/j.measurement.2020.107851
http://doi.org/10.3390/math8040624
http://doi.org/10.1016/j.flowmeasinst.2018.03.006
https://www.fourquest.com/services/chemical-cleaning
http://doi.org/10.1016/j.ijhydene.2015.12.098
http://doi.org/10.1007/s40815-020-01030-5
http://doi.org/10.3390/math9080850
http://doi.org/10.1016/j.measurement.2020.108427
http://doi.org/10.1515/phys-2020-0159
http://doi.org/10.1080/01457632.2015.963444
http://doi.org/10.1108/IJPCC-07-2019-0053


Mathematics 2021, 9, 1460 13 of 14

36. Moradi, M.J.; Roshani, M.M.; Shabani, A.; Kioumarsi, M. Prediction of the load-bearing behavior of spsw with rectangular
opening by RBF net-work. Appl. Sci. 2020, 10, 1185. [CrossRef]

37. Abolhasani, M.; Karami, A.; Rahimi, M. Numerical Modeling and Optimization of the Enhancement of the Cooling Rate in
Concentric Tubes Under Ultrasound Field. Numer. Heat Transf. Part A Appl. 2015, 67, 1282–1309. [CrossRef]

38. Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.;
Dehghani, M.; et al. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access
2020, 8, 109581–109595. [CrossRef]

39. Xue, H.; Yu, P.; Zhang, M.; Zhang, H.; Wang, E.; Wu, G.; Li, Y.; Zheng, X. A Wet Gas Metering System Based on the Extended-Throat
Venturi Tube. Sensors 2021, 21, 2120. [CrossRef]

40. Moradi, M.; Daneshvar, K.; Ghazi-Nader, D.; Hajiloo, H. The prediction of fire performance of concrete-filled steel tubes (CFST)
using artificial neural network. Thin Walled Struct. 2021, 161, 107499. [CrossRef]

41. Aghakhani, M.; Ghaderi, M.R.; Karami, A.; Derakhshan, A.A. Combined effect of TiO2 nanoparticles and input welding
parameters on the weld bead penetration in submerged arc welding process using fuzzy logic. Int. J. Adv. Manuf. Technol. 2014,
70, 63–72. [CrossRef]

42. Jamshidi, M.B.; Roshani, S.; Talla, J.; Roshani, S.; Peroutka, Z. Size reduction and performance improvement of a microstrip
Wilkinson power divider using a hybrid design technique. Sci. Rep. 2021, 11, 1–15. [CrossRef]

43. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase
flows based on gamma ray attenuation. Measurement 2015, 62, 25–32. [CrossRef]

44. Arabi, M.; Dehshiri, A.M.; Shokrgozar, M. Modeling transportation supply and demand forecasting using artificial intelligence
parameters (Bayesian model). J. Appl. Eng. Sci. 2018, 16, 43–49. [CrossRef]

45. Salimi, J.; Ramezanianpour, A.M.; Moradi, M.J. Studying the effect of low reactivity metakaolin on free and restrained shrinkage
of high performance concrete. J. Build. Eng. 2020, 28, 101053. [CrossRef]

46. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H. Investigation of using 60Co source and one detector for determining the flow regime
and void fraction in gas–liquid two-phase flows. Flow Meas. Instrum. 2016, 50, 73–79. [CrossRef]

47. Lotfi, S.; Roshani, S.; Roshani, S. Design of a miniaturized planar microstrip Wilkinson power divider with harmonic cancellation.
Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 3126–3136. [CrossRef]

48. Karami, A.; Veysi, F.; Mohebbi, S.; Ghashghaei, D. Optimization of Laminar Free Convection in a Horizontal Cavity Consisting of
Flow Diverters Using ICA. Arab. J. Sci. Eng. 2014, 39, 2295–2306. [CrossRef]

49. Khaleghi, M.; Salimi, J.; Farhangi, V.; Moradi, M.J.; Karakouzian, M. Application of Artificial Neural Network to Predict Load
Bearing Capacity and Stiffness of Perfo-rated Masonry Walls. CivilEng 2021, 2, 48–67. [CrossRef]

50. Roshani, G.H.; Nazemi, E.; Roshani, M.M. Usage of two transmitted detectors with optimized orientation in order to three phase
flow metering. Measurement 2017, 100, 122–130. [CrossRef]

51. Pirasteh, A.; Roshani, S.; Roshani, S. Compact microstrip lowpass filter with ultrasharp response using a square-loaded modified
T-shaped resonator. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1736–1746. [CrossRef]

52. Arief, H.A.; Wiktorski, T.; Thomas, P.J. A Survey on Distributed Fibre Optic Sensor Data Modelling Techniques and Machine
Learning Algorithms for Multiphase Fluid Flow Estimation. Sensors 2021, 21, 2801. [CrossRef]

53. Roshani, S.; Roshani, S. Two-Section Impedance Transformer Design and Modeling for Power Amplifier Applications. Appl.
Comput. Electromagn. Soc. J. 2017, 32, 1042–1047.

54. Roshani, G.H.; Nazemi, E.; Roshani, M.M. Intelligent recognition of gas–oil–water three-phase flow regime and determination of
volume fraction using radial basis function. Flow Meas. Instrum. 2017, 54, 39–45. [CrossRef]

55. Jahanshahi, A.; Sabzi, H.Z.; Lau, C.; Wong, D. GPU-NEST: Characterizing Energy Efficiency of Multi-GPU Inference Servers.
IEEE Comput. Archit. Lett. 2020, 19, 139–142. [CrossRef]

56. Roshani, G.H.; Nazemi, E.; Roshani, M.M. Identification of flow regime and estimation of volume fraction independent of liquid
phase density in gas-liquid two-phase flow. Prog. Nucl. Energy 2017, 98, 29–37. [CrossRef]

57. Moradi, M.J.; Hariri-Ardebili, M.A. Developing a library of shear walls database and the neural network based predictive
meta-model. Appl. Sci. 2019, 9, 2562. [CrossRef]

58. Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and Modeling of a Compact Power Divider with Squared Resonators
Using Artificial Intelligence. Wirel. Pers. Commun. 2020. [CrossRef]

59. Jahanshahi, A.; Taram, M.K.; Eskandari, N. Blokus Duo game on FPGA. In Proceedings of the 17th CSI International Symposium
on Computer Architecture & Digital Systems (CADS 2013), Tehran, Iran, 30–31 October 2013; pp. 149–152.

60. Bavandpour, S.K.; Roshani, S.; Pirasteh, A.; Roshani, S.; Seyedi, H. A compact lowpass-dual bandpass diplexer with high output
ports isolation. AEU Int. J. Electron. Commun. 2021, 135, 153748. [CrossRef]

61. Roshani, G.H.; Nazemi, E. Intelligent densitometry of petroleum products in stratified regime of two phase flows using gamma
ray and neural network. Flow Meas. Instrum. 2017, 58, 6–11. [CrossRef]

62. Jahanshahi, A. TinyCNN: A Tiny Modular CNN Accelerator for Embedded FPGA. arXiv 2019, arXiv:1911.06777.
63. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial

intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef]

http://doi.org/10.3390/app10031185
http://doi.org/10.1080/10407782.2014.955371
http://doi.org/10.1109/ACCESS.2020.3001973
http://doi.org/10.3390/s21062120
http://doi.org/10.1016/j.tws.2021.107499
http://doi.org/10.1007/s00170-013-5180-x
http://doi.org/10.1038/s41598-021-87477-4
http://doi.org/10.1016/j.measurement.2014.11.006
http://doi.org/10.5937/jaes16-12829
http://doi.org/10.1016/j.jobe.2019.101053
http://doi.org/10.1016/j.flowmeasinst.2016.06.013
http://doi.org/10.3906/elk-1911-104
http://doi.org/10.1007/s13369-013-0741-8
http://doi.org/10.3390/civileng2010004
http://doi.org/10.1016/j.measurement.2016.12.055
http://doi.org/10.3906/elk-1801-127
http://doi.org/10.3390/s21082801
http://doi.org/10.1016/j.flowmeasinst.2016.10.001
http://doi.org/10.1109/LCA.2020.3023723
http://doi.org/10.1016/j.pnucene.2017.02.004
http://doi.org/10.3390/app9122562
http://doi.org/10.1007/s11277-020-07960-5
http://doi.org/10.1016/j.aeue.2021.153748
http://doi.org/10.1016/j.flowmeasinst.2017.09.007
http://doi.org/10.1016/j.measurement.2020.108474


Mathematics 2021, 9, 1460 14 of 14

64. Nabavi, M.; Elveny, M.; Danshina, S.D.; Behroyan, I.; Babanezhad, M. Velocity prediction of Cu/water nanofluid convective flow
in a circular tube: Learning CFD data by differential evolution algorithm based fuzzy inference system (DEFIS). Int. Commun.
Heat Mass Transf. 2021, 126, 105373. [CrossRef]

65. Karami, A.; Roshani, G.H.; Nazemi, E.; Roshani, S. Enhancing the performance of a dual-energy gamma ray based three-phase
flow meter with the help of grey wolf optimization algorithm. Flow Meas. Instrum. 2018, 64, 164–172. [CrossRef]

http://doi.org/10.1016/j.icheatmasstransfer.2021.105373
http://doi.org/10.1016/j.flowmeasinst.2018.10.015

	Introduction 
	Materials and Methods 
	Radiation Based System 
	Artificial Intelligence 

	Results and Discussions 
	Conclusions 
	References

