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Abstract: In this paper, the feasibility of using an X-ray tube instead of radioisotope sources for
measuring volume fractions of gas, oil, and water in two typical flow regimes of three-phase flows,
namely, annular and stratified, is evaluated. This study’s proposed detection system is composed of
an X-ray tube, a 1 inch × 1 inch NaI detector, and one Pyrex-glass pipe to model different volume
fractions for two flow regimes, annular and stratified. Group method of data handling (GMDH), a
powerful regression tool, was also implemented to analyze the obtained data. The obtained results in
this work indicate that a simple system based on an X-ray tube and just one NaI detector could be a
potential alternative to radioisotope-based systems for separate measurements of gas, oil, and water
volume fractions in annular and stratified flow regimes of a three-phase flow.

Keywords: volume fraction; X-ray tube; photon; annular regime; stratified regime; artificial intelligence

1. Introduction

Petroleum industries still demand appropriate measurements to evaluate their pro-
duction of oil, gas, and other related fluids. The primary measuring instruments previously
utilized a technique based on gravitational decanters in the component separation pro-
cess [1]. The mentioned devices had a large volume and a long delay in measuring response.
Since then, various techniques have been implemented to measure the quality or composi-
tion of a multiphase stream. Some of these have included capacitance, photon radiation
attenuation, neutron attenuation, and orifice or flow nozzle correlations. The mentioned
techniques are explained in detail in reference [2].

Many studies have been done on measuring gas, oil, and water volume fractions in
three-phase flows using gamma radiation techniques. In 2010, Salgado and his colleagues

Symmetry 2021, 13, 613. https://doi.org/10.3390/sym13040613 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0471-5172
https://orcid.org/0000-0001-5713-8519
https://orcid.org/0000-0001-8595-1478
https://orcid.org/0000-0001-9212-3646
https://orcid.org/0000-0001-5457-6943
https://orcid.org/0000-0003-1480-1450
https://doi.org/10.3390/sym13040613
https://doi.org/10.3390/sym13040613
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13040613
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13040613?type=check_update&version=3


Symmetry 2021, 13, 613 2 of 16

presented a dual-energy gamma emitter radioisotope-based system for identifying flow
regimes of a gas-oil, multiphase water flow [3]. In 2017, G.H. Roshani and his colleagues
investigated the capability of radial basis function (RBF) neural network and gamma
transmission technique to predict volume fractions of gas, oil, and water phases in an
annular regime of a three-phase flow [4]. Their proposed system consisted of a dual-
energy gamma source (europium-152 and cesium-137 radioisotopes) and one NaI detector.
They investigated three different RBF models. The first one was assigned to estimate the
water and oil volume fractions, another one was adopted to estimate the gas and water
volume fractions, and the third one was implemented to estimate the gas and oil volume
fractions. Comparing three proposed RBF models, they found that the first RBF model
could estimate the volume fractions in an annular regime of three-phase flows with better
precision. In 2017, Gholipour Peyvandi and his colleagues proposed a gamma backscatter
technique for measuring volume fractions in a stratified flow regime of a three-phase
flow [5]. They established an experimental setup that included one cesium-137 source with
an activity of 148 × 107 Bq and one 2 inch × 2 inch NaI detector. They positioned the NaI
detector under the vessel and next to the cesium-137 source to record the backscattered
gamma radiation’s energy spectrum. They trained a neural network model of multilayer
perceptron (MLP) with data obtained from experiments. Employing a combination of
a gamma backscatter technique and MLP neural network, they could estimate gas, oil,
and water volume fractions with an error of less than 6.47%. In 2018, Roshani and his
colleagues implemented a hybrid system of the Jaya optimization algorithm and the
adaptive neuro-fuzzy inference system (ANFIS) combined with a dual-energy gamma-ray
system to estimate the volume fractions of gas, oil, and water in a stratified regime of a
three-phase flow [6]. Their simulated detection system included a dual-energy gamma
source, including europium-152 and cesium-137 radioisotopes, and one NaI detector. They
indicated that the hybrid network that uses the oil and gas volume fractions as its outputs
is the best estimator model for estimating volume fractions of gas, oil, and water in a
stratified regime of a three-phase flow. Further research about multiphase flow meters
and the application of artificial intelligence in different engineering fields can be found in
references [7–23].

In recent years, some researchers have also used X-ray radiation for imaging multi-
phase flows. In 2008, Theodore et al. utilized a facility including digital X-ray radiography
and stereography imaging to determine different flow characteristics in large vertical sys-
tems with internal diameters of up to 32 cm and as tall as 4 m [24]. In 2018, Song et al.
presented a compact X-ray densitometry system including a 50 kV, 1 mA X-ray tube, and
some linear detector arrays for determining characteristics of a two-phase flow [25]. A com-
prehensive review study about the application of X-ray imaging techniques in multiphase
flows has been done by Heindel [26].

As discussed in the literature review, the X-ray tubes have been usually used for
imaging of multiphase flows and have been rarely implemented in radiation-based flow
meters. In other words, in most previous studies regarding radiation-based three-phase
flow meters, a single or dual-energy gamma source, including one or more radioisotopes,
was usually employed.

In a recent study [17], an X-ray tube was used for simultaneously determining flow
regime and volume fraction; two detectors were implemented in the system. In this paper,
a simple system including just one detector and one X-ray tube is presented for measuring
volume fractions of gas, oil, and water separately in two typical flow regimes of three-
phase flows (annular and stratified). Decreasing the number of detectors in a photon-based
system helps to reduce the economic costs as well as make the system simpler. Hence, every
attempt aimed at reducing the number of detectors in a photon attenuation-based system
with the condition that the system’s performance is not decreased is of great importance.
Besides, in the present work, the gas and water volume fraction measurement precision has
been improved by more than two times compared to the system in the previous study [17].
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It should be noted that X-ray tubes have some advantages over radioisotope sources [27].
For example, X-ray tubes have tunable photon energy, more photon intensity (compared to
an average commercial source), the ability to be easily turned on and off, fixed photon flux
over time, and other features that highlight the importance of the current investigation.

2. Materials and Methods
2.1. Simulation Procedure

In the current investigation, Monte Carlo N-Particle code version X (MCNP-X) [28]
was applied to model the proposed system. The system presented in this work included
an X-ray tube, one 1 inch × 1 inch NaI detector, and one Pyrex-glass pipe for modeling
different flow regimes and volume fractions. Figure 1 shows a schematic view of the
simulated system and its performance.

Figure 1. A schematic view of the simulated system and its performance: (1) photon source, (2) X-ray tube shield, (3) output
window, (4) Pyrex-glass pipe, (5) modeled stratified regime, (6) NaI detector, (7) 200 keV filtered X-ray energy spectrum,
and (8) recorded spectrum in the detector.

2.1.1. Photon Source Modeling

We modeled an industrial-type X-ray tube in the current investigation. Industrial
X-ray tubes include 3 main parts: (1) cathode, an electron emitter (2) anode or target,
usually made of tungsten, and (3) shield, which includes an exit window that often has
a foil of metal placed in front for use as a filter. Since it takes less computational time
to track the photons in MCNPX code than electrons, a photon source was considered
a replacement for the cathode and anode set in the current investigation. We used the
TASMIC free package provided by Hernandez et al. [29] to model the photon source. It is
worth noting that Hernandez et al. implemented the MCNPX code for generating X-ray
spectra. In the present investigation, a surface with a length and width of 1 cm and 0.1 cm,
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respectively, and oriented in direction of 12◦, similar to the actual focal spot reported in [29],
was considered the photon source. To model the photon source’s energy spectrum, an X-ray
energy spectrum with a maximum tube voltage of 200-kilovolt peak (kVp), which was
filtered with a 1 mm aluminum sheet, was utilized. The obtained X-ray energy spectrum
from TASMIC was plugged into the MCNPX input.

2.1.2. Detector Modeling

A 1 inch × 1 inch cylinder was considered as the NaI detector. To record the energy
spectrum of incident photons in the detector, Pulse Height Tally F8 was utilized. To consider
the photon spectrum broadening in MCNPX code, we implemented the Gaussian energy
broadening “FT8 GEB” option in the MCNPX code [30]. The “FT8 GEB” card contains three
parameters: a, b, and c [30], which should be determined experimentally for a specific de-
tector. In our former study [6], we calculated the required parameters for a 1 inch × 1 inch
NaI crystal detector using some experimental laboratory work. Parameters a, b, and c
were determined to be −1.09 × 10−2 MeV, 6.96 × 10−2 MeV0.5, and 2.26 ×1 0−2 MeV−1,
respectively. In the present work, the three determined constant parameters were inserted
into the “FT8 GEB” card.

2.1.3. Flow Regime and Volume Fraction Modeling

To model various flow patterns and volume fractions, we first defined a pipe made
of Pyrex glass with wall thickness and outer diameter of 0.25 cm and 10 cm, respectively,
as the main tube. The following step was to add water, oil, and gas phases with different
amounts in the main pipe. Ordinary water, gasoil, and air with respective densities of
1000 kg/m3, 826 kg/m3, and 1.25 kg/m3 were used for the three mentioned phases. In this
paper, annular and stratified flow regimes, two main flow regimes of three-phase flows,
were simulated. We describe the related calculations for modeling these flow regimes in
the following sections.

Annular Regime

In the annular regime of three-phase flows, fluid with the highest density (water)
covers the channel wall in an annular shape and fluid with lower density (oil) locates on
the water phase while the fluid with the lowest density (gas) remains in the core of the
pipe. From the point of view of radiation measurement, the annular regime is symmetric
with respect to the pipe axis. Figure 2 shows the annular regime schematically.

Figure 2. Schematic view of the introduced parameters in modeling the annular regime equations in
three-phase flow.

Various volume fractions for the gas phase and oil phase in the annular regime can be
modeled using Equations (1) and (2), respectively:

Vgas =
πr1

2

πR2 =
r1

2

R2 (1)
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Voil =
πr2

2

πR2 − πr1
2

πR2 =
r2

2 − r1
2

R2 (2)

where R, r1, r2, Vgas, and Voil are the main pipe’s internal radius, the gas phase’s radius, the
oil phase’s radius, the volume fraction of the gas phase, and the volume fraction of the oil
phase, respectively. In the mentioned equations, the main pipe’s internal radius is a fixed
parameter in all the calculations, so different gas and oil volume fractions can be easily
determined by changing gas and oil phases.

Using Equations (1) and (2), we modeled various volume fractions. Table 1 shows the
simulated volume fraction sets.

Table 1. The simulated volume fraction sets for the annular regime.

Gas
Fraction

(%)

Water
Fraction

(%)

Oil
Fraction

(%)

Gas
Fraction

(%)

Water
Fraction

(%)

Oil
Fraction

(%)

Gas
Fraction

(%)

Water
Fraction

(%)

Oil
Fraction

(%)

10 10 80 20 50 30 40 40 20

10 20 70 20 60 20 40 50 10

10 30 60 20 70 10 50 10 40

10 40 50 30 10 60 50 20 30

10 50 40 30 20 50 50 30 20

10 60 30 30 30 40 50 40 10

10 70 20 30 40 30 60 10 30

10 80 10 30 50 20 60 20 20

20 10 70 30 60 10 60 30 10

20 20 60 40 10 50 70 10 20

20 30 50 40 20 40 70 20 10

20 40 40 40 30 30 80 10 10

Stratified Regime

In the stratified regime of three-phase flows, the phase with lower density is always
located above the fluid with higher density. In other words, for a three-phase flow that
moves in a horizontal pipe, water is positioned at the bottom, oil is positioned above
the water, and gas is positioned at the top of the pipe. In contrast to the annular regime,
the stratified regime is not symmetric with respect to the longitudinal pipe axis, which
means that the volume fraction measurement is dependent on the disposition of the
radiation source and the detector. In this regard, three configurations can be identified:
(1) top-bottom, when the source is positioned directly above the gas phase side, and the
detector is positioned directly below the water phase side, (2) bottom–top, when the source
is positioned directly below the water phase side, and the detector is positioned above
the gas phase side, and (3) side-by-side, obtained by turning either of the two previous
configurations ±90◦.

In this work, a bottom-top configuration was considered for simulating the stratified
regime. Figure 3 illustrates the bottom-top configuration of the stratified regime.

Figure 3. Schematic view of the parameters for modeling the stratified regime equations in three-
phase flow.



Symmetry 2021, 13, 613 6 of 16

Various volume fractions in the bottom-top configuration for the gas phase and oil
phase can be modeled using Equations (3) and (4), respectively:

Vgas = 1 − 1
π

[
arccos(

R − L1

R
)− 1

2
sin(2arccos(

R − L1

R
))

]
(3)

Voil = 1 − 1
π

[
arccos(

R − L2

R
)− 1

2
sin(2arccos(

R − L2

R
))

]
− Vgas (4)

where R, L1, L2, Vgas, and Voil are the main pipe’s internal radius, the water phase’s level
inside the main pipe, the oil phase’s level inside the main pipe, the volume fraction of the
gas phase, and the volume fraction of the oil phase, respectively. It is worthy of mention
that the water volume fraction can be easily modeled inside the pipe after defining the gas
and oil volume fractions. For the stratified regime, volume fraction ratios from 10% to 80%
were also modeled.

It was previously mentioned that all of the required data for presenting the appropriate
models were obtained from the Monte-Carlo simulation. The MCNP simulation was
validated using several experiments [31]. In experiments of [31], annular and stratified flow
regimes were generated, and the correctness of particle (photon) transport in the simulated
structure was confirmed. According to this benchmark, the data obtained from photon
transport simulation in annular and stratified regimes were valid. All of the simulations
were performed with very low error using the STOP card [28]. We defined the maximum
relative error as 0.01 in this card, so the obtained outputs were negligible. It should be
noted that there was no noise effect in the simulation.

2.2. Group Method of Data Handling (GMDH)

In recent years, artificial intelligence has been widely used in radiation-based mea-
suring instruments [32–39]. In 1971, M.G. Ivakhnenko presented the Group Method of
Data Handling (GMDH) [40] as a robust regression neural network. This kind of neural
network is applicable in different areas such as prediction, knowledge discovery, deep
learning, data mining, optimization, and pattern recognition. Self-organization is one of the
advantages of this kind of network. In fact, the layer’s number, neuron’s number, effective
inputs, and the network structure are obtained in a self-organized mode. In this method,
the Kolmogorov-Gabor polynomial is used in order to obtain the relation between input
and output, as follows:

y = a0 + ∑m
i=1 aixi + ∑m

i=1 ∑m
j=1 aijxixj + ∑m

i=1 ∑m
j=1 ∑m

k=1 aijkxixjxk + . . . (5)

In Equation (5), x (x1, x2, . . . , xm), a (a1, a2, . . . , am), and y are the input vector,
coefficient vector, and output, respectively.

In this kind of neural network, new variables are produced from old variables. In
the current investigation, the detector’s extracted spectrum was split into 100 sections
(count1, count 2 . . . and count 100), and these sections were applied to the GMDH neural
network as 100 independent variables. Every two independent variables were used as a
combination to model the system using Equation (6).

V = c1 + c2xi + c3xj + c4xi
2 + c5xj

2 + c6xixj (6)

For all input variables, the error (differences between desired output and predicted
output) is minimized by applying the regression techniques for computing the coefficients
ci in (6). The combinations with high error rates are deleted, and the other combination
outputs with a low error are considered new independent variables. This algorithm is
followed until the final output with a minimum error rate is achieved. The GMDH approach
has many benefits over other conventional regression tools. Using a GMDH approach
adequate to the noise level of considered data, the model structure’s optimal complexity is
obtained. Additionally, the model structure is determined in a self-organized manner and
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automatically. The most accurate model will be obtained with this approach, and practical
input variables are selected automatically. Moreover, using this approach, a precise and
straightforward formula from the model is determined. The testing data were used for
testing the performance of neural networks. In this paper, 25 samples (approximately
70%) and 11 samples (approximately 30%) of data were implemented to train and test each
neural network, respectively.

GMDH was used to determine the gas fraction and water fraction of three-phase
flows in annular and stratified regimes. It is clear that the oil fraction could be obtained
simply by using the gas and water fractions. One hundred features were extracted from
the registered spectrum in the transmitting sodium iodide crystal detector. The spectrum
was divided into 100 sections, from 0 to 200 keV with the two keV steps. These features
were named count 1 to count 100. The extracted features were applied as the inputs of the
GMDH neural network. For both annular and stratified regimes, two different networks
with gas fraction output and water fraction output were designed. Figure 4 indicates the
structures of the four presented GMDH neural networks.

Figure 4. The designed GMDH neural network’s structure for (a) annular regime and gas fraction
output (AGF), (b) annular regime and water fraction output (AWF), (c) stratified regime and gas
fraction output (SGF), and (d) stratified regime and water fraction output (SWF).
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According to the GMDH tool ability, each regime’s obtained formulas and each output
have been tabulated in Table 2.

Table 2. The obtained formulas for each regime and each output.

Regime Output Obtained Formula

Annular Gas Fraction

AGF (Annular Gas Fraction) = 0.1065 + 0.6299Y1 + 0.3578Y2 + 0.0131 (Y1)2 + 0.0016 (Y2)2 −
0.0147Y1 × Y2

Y1 = −23.2373 − 2588729.9560 Count6 + 6108121.5088 Count83 − 98604621043.5337 (Count6)2 −
646317594778.770 (Count83)2 + 559590375769.721 Count6 × Count83

Y2 = 18.9831 + 534567.5620 Count15 − 728265.4137 Count33 + 5563023189.1905 (Count15)2 +
6197122569.6787(Count33)2 − 10335907306.5612Count15 × Count33

Annular Water Fraction

AWF (Annular Water Fraction) = 0.0634 + 0.1968Y1 + 0.7851Y2 + 0.0224 (Y1)2 + 0.0151 (Y2)2 −
0.0372Y1 × Y2

Y1 = −64.0274 − 5332130.0639 Count15 + 7831232.8529 Count40 − 19323662787.6527 (Count15)2

− 70655643553.4150 (Count40)2 + 77895388968.2904Count15 × Count40
Y2 = 38.5623 − 3810210.0071Count16 + 1969802.2064 Count28 − 3184557757.5583 (Count16)2 −

4133655084.9143 (Count28)2 + 10196267194.7447Count16 × Count28

Stratified Gas Fraction

SGF (Stratified Gas Fraction) = −0.3260 + 0.7927Y1 + 0.2175Y2 + 0.0098(Y1)2 + 0.0064 (Y2)2 −
0.0163Y1 × Y2

Y1= −132.4847 − 320032.5870Count21 + 2881002.1315Count43 − 3776733668.2311 (Count21)2 −
13830795453.3680 (Count43)2 + 11265920274.4972Count21 × Count43

Y2 = −75.4546 + 870792.6629 Count21 + 2107893.1360 Count93 − 31974289450.5452 (Count21)2 −
13623525745533.6 (Count93)2 + 1305755788438.76Count21 × Count93

Stratified Water Fraction

SWF (Stratified Water Fraction) = 0.2794 + 1.7624Y1 − 0.7492Y2 − 0.0053(Y1)2 + 0.0123(Y2)2 −
0.0074Y1 × Y2

Y1 = −35.5540 − 4719676.8017Count15 + 8667666.3274Count52 + 18379435343.0679 (Count15)2 −
36941702608.4495 (Count52)2 − 10438629829.3565Count15 × Count52

Y2 = 417.8013 − 41319029.8558Count8 + 12151320.0537Count52 + 815488926491.5330 (Count8)2 +
27263210414.1598 (Count52)2 − 373712731581.2180Count8 × Count52

3. Results and Discussion

Figures 5–8 show the fitting diagrams and regression diagrams for training and testing
data sets. The figures illustrate the implemented networks’ performance for gas fraction
output in the annular regime, water fraction output in the annular regime, gas fraction
output in stratified regime, and water fraction output in the stratified regime, respectively.
The error of presented models for every test sample has been tabulated in Table 3. Root
mean square error (RMSE) and mean relative error percentage (MRE%) were obtained
using Equations (7) and (8) below to evaluate the proposed networks. Table 4 indicates
RMSE and MRE% results.

RMSE =

[
∑N

j=1 (Xj(actual)− Xj(predicted))2

N

]0.5

(7)

MRE% = 100 × 1
N

N

∑
i=1

∣∣∣∣Xi(actual)− Xi(Predicted)
Xi(actual)

∣∣∣∣ (8)
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Figure 5. GMDH neural network performance for annular regime and gas fraction output: (a) training, (b) testing.
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Figure 6. GMDH neural network performance for annular regime and water fraction output: (a) training, (b) testing.
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Figure 7. GMDH neural network performance for stratified regime and gas fraction output: (a) training, (b) testing.
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Figure 8. GMDH neural network performance for stratified regime and water fraction output: (a) training, (b) testing.
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Table 3. The error of presented models for every test sample.

GMDH Model Test Sample
Number

Actual Volume
Fraction (%)

Predicted Volume
Fraction (%)

Absolute Error between
Actual and Predicted
Volume Fraction (%)

Relative Error × 100
(%)

Annular Regime and
Gas Fraction Output

(AGF)

1 20 20.947 0.947 4.736

2 50 49.592 0.407 0.814

3 20 20.266 0.266 1.334

4 50 47.349 2.650 5.300

5 70 72.423 2.423 3.462

6 20 20.051 0.051 0.258

7 10 10.279 0.279 2.791

8 10 10.132 0.132 1.326

9 10 9.695 0.304 3.041

10 20 19.972 0.027 0.135

11 40 40.465 0.465 1.164

Annular Regime and
Water Fraction
Output (AWF)

1 50 49.734 0.265 0.531

2 10 10.543 0.543 5.439

3 50 53.255 3.255 6.511

4 30 29.661 0.338 1.129

5 20 19.448 0.551 2.757

6 40 40.054 0.054 0.135

7 30 27.781 2.218 7.395

8 20 20.787 0.787 3.937

9 20 19.004 0.995 4.976

10 40 39.235 0.764 1.910

11 60 61.515 1.515 2.526

Stratified Regime and
Gas Fraction Output

(SGF)

1 10 9.992 0.007 0.078

2 20 18.759 1.240 6.200

3 50 45.014 4.985 9.971

4 50 44.496 5.503 11.006

5 80 82.316 2.316 2.895

6 10 10.125 0.125 1.250

7 50 47.028 2.971 5.943

8 70 71.105 1.105 1.579

9 60 58.554 1.445 2.409

10 30 29.491 0.508 1.695

11 20 19.553 0.446 2.233

Stratified Regime and
Water Fraction
Output (SWF)

1 10 10.125 0.125 1.255

2 20 21.283 1.283 6.419

3 70 70.934 0.934 1.335

4 20 18.181 1.818 9.093

5 40 40.303 0.303 0.759

6 20 20.545 0.545 2.729

7 10 11.988 1.988 19.880

8 50 57.911 7.911 15.823

9 20 21.098 1.098 5.493

10 30 32.159 2.159 7.198

11 70 67.466 2.533 3.619
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Table 4. Obtained errors of GMDH networks.

Regime Output RMSE Train RMSE Test MRE Train (%) MRE Test (%)

Annular Gas Fraction 0.61 1.14 1.40 2.21

Annular Water
Fraction 1.16 1.37 4.89 3.38

Stratified Gas Fraction 1.22 2.60 4.46 4.11

Stratified Water
Fraction 2.18 2.78 6.41 6.69

The outputs of MCNP simulations were considered as the input data for presented
GMDH models. The models were trained by 70% of the data and were tested by the rest of
the data. Accordingly, the obtained results from Figures 5–8 show the presented models’
accuracy and precision.

The low errors of the presented networks demonstrated the ability of an X-ray source
and GMDH neural network as a powerful metering system for the oil, chemical, and
petrochemical industries.

4. Conclusions

In this study, the combination of an X-ray tube and GMDH neural network was
implemented to determine each phase’s volume fractions in three-phase annular and
stratified regimes. One hundred features were extracted from the registered spectrum in
the transmitting sodium iodide crystal detector and applied to the networks as independent
variables. Four different networks for both annular and stratified regimes and gas and water
output were defined. Simple formulas for each regime and each output were obtained. The
utilization of an X-ray source instead of different radioisotopes in three-phase flow meters
has several benefits that support the present work’s relevance. The relatively low errors
of the proposed networks demonstrated the ability of an X-ray source and GMDH neural
network as a promising metering system in three-phase flows. The obtained results indicate
that the obtained measurement precision for the gas and water volume fractions in the
present work were improved by more than two times compared to the previous study [17].

Although the applicability of the proposed technique has been investigated in this
study for two main flow regimes (annular and stratified) of gas-oil-water three-phase flow,
the same technique can be easily applied for actual experimental conditions and more
types of flow regimes.
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