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Abstract—This paper proposes novel Bloom filter algorithms
and FPGA architectures for high-speed searching applications.
A Bloom filter is a memory structure that is used to test whether
input search data are present in a table of stored data. Bloom fil-
ters are extensively used in network security solutions that apply
traffic flow monitoring or deep packet inspection. Improving the
speed of Bloom filters can therefore have a significant impact on
the speed of many network applications. The most important
components determining the speed of Bloom filters are hash
functions. While hash functions in Bloom filters do not require
strong cryptographic properties, they do need a minimized
computational delay. We take on the challenge of developing
ultra-high-speed Bloom filters on FPGAs by proposing a new non-
cryptographic hash function, called Xoodoo-NC, derived from the
cryptographic permutation Xoodoo. Xoodoo-NC is a reduced-
round, reduced-state version of Xoodoo, inheriting Xoodoo’s
desired avalanche properties and low logical depth, resulting
in an ultra-low-latency non-cryptographic hash function. We
evaluate the performance of Bloom filter architectures based on
Xoodoo-NC on a Xilinx UltraScale+ FPGA and we compare the
performance and resource occupation to existing Bloom filter im-
plementations. We additionally compare our results to memories
that use the built-in CAM cores in Xilinx UltraScale+ FPGAs.
Our proposed algorithmic and architectural advances lead to
Bloom filters that, to the best of our knowledge, outperform all
other FPGA-based solutions.

I. INTRODUCTION

Network applications require efficient lookup algorithms

for, e.g., packet forwarding, traffic flow monitoring and secu-

rity, and deep packet inspection. The most popular data struc-

tures for high-speed lookups are Content-addressable Memo-

ries (CAMs) and Bloom filters. Whereas a CAM searches for

a match between input data and stored data, and returns the

address of the matching data, a Bloom filter can only detect

a match without returning the address. Another difference is

that false positives are possible in a Bloom filter, while a

CAM has no false positives nor false negatives. Nevertheless,

CAMs perform worse than Bloom filters when it comes to chip

area, energy consumption and operating speed, as presented

by George Varghese in [1]. Since these are critical imple-

mentation properties for network routers [2], Bloom filters

are the preferred lookup mechanism when a match address

is not needed, and when (a limited number of) false positives

are acceptable. This is the case in various network (security)

applications, such as deep packet inspection [3], network

intrusion detection [4], distributed caching, resource routing,

and network measurement infrastructures [5], [6]. Addition-

ally, Bloom filters also provide the benefit of constant-time

queries, access refinement, and content anonymization [6].

Applications like flow measurement or traffic mapping [7]–

[9] check whether or not the identifier (ID) of a network flow

has been recorded earlier. The ID could, for example, be a

combination of the host and destination addresses and ports.

In order to adhere to the strong bandwidth and energy

requirements in Terabit networks (which are defined as net-

works with a bandwidth higher than 100 Gbps), hardware

implementation platforms, such as FPGAs, are increasingly

used in network applications [10]. This motivates our work

which studies the design and implementation of high-speed

Bloom filters on FPGA. Since the speed of a Bloom filter

heavily depends on the speed of the hash functions that

process the incoming data, we first concentrate on the design

and implementation of a high-speed, hardware-friendly hash

function. The desired properties of the non-cryptographic hash

functions in Bloom filters are more relaxed than the proper-

ties of cryptographic hash functions. Both cryptographic and

non-cryptographic hash functions map an input of arbitrary

length to an output of fixed length. Good hash functions,

cryptographic as well as non-cryptographic: 1) map the inputs

as uniformly as possible over the entire set of outputs, 2)

are easy to compute, and 3) exhibit the avalanche effect,

which says that many output bits change, even when there

is only a small change in the input. Cryptographic hash

functions additionally require preimage resistance, second-

preimage resistance and collision resistance [11]. We propose

to start from a cryptographic hash function that possesses

all the aforementioned properties, and to simplify it such

that the computational delay is minimized, while the non-

cryptographic properties are maintained. This leads to the

Xoodoo-NC (Xoodoo-non-cryptographic) algorithm, derived

from the cryptographic permutation Xoodoo [12]. We use

Xoodoo-NC in the Bloom-1 architecture, proposed by Qiao

et al. in [13]. We show that our Bloom filter implementation

is more efficient with respect to occupied FPGA resources and

computational delay in comparison to other Bloom filters and

CAM-based lookup architectures on FPGA.

This paper is organized as follows: Sect. II consists of back-

ground information on lookup algorithms and architectures in

network applications and explains the Bloom-1 architecture
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that we use. Sect. III gives an overview of related work.

Sect. IV presents our novel algorithms and architectures as

well as the CAM architectures that we compare with. The

hardware architectures of the implemented Bloom filters are

presented in Sect. V. The results are discussed in Sect. VI.

Finally, conclusions are drawn in Sect. VII.

II. LOOKUP ALGORITHMS AND ARCHITECTURES

A. Content-addressable Memory

Content-addressable memory (CAM) compares input data

with data that are stored in the memory. If the same data

are present in the memory, the CAM returns the address

of the matching data. In a conventional memory, such as

a Random-Access Memory (RAM), the address is used as

an input and the data that are stored at that address are

returned by the RAM. CAMs are, for example, used in network

switches, which do a lookup of the destination MAC address

of incoming network traffic to determine the port on which the

traffic needs to be sent out. A CAM stores each bit explicitly in

a memory cell, just like a RAM does. CAMs contain additional

hardware circuits that facilitate the look-up. In recent FPGAs,

IP cores are available to build fast and resource-efficient CAM

structures based on the embedded RAM in the FPGA [14].

B. Bloom filters

In 1970, Howard Bloom presented space/time trade-offs for

lookup algorithms in data structures based on hash coding

with allowable errors [2]. The author’s name has been linked

to the presented algorithms ever since. The Bloom filter is a

data structure that is used to assist in determining whether

an element is in a set of elements. The filter has two possible

outcomes: 1) the element might be in the set, or 2) the element

is not in the set. Although the first option can trigger false

positives, the second option rules out false negatives.

A standard Bloom filter (SBF) that looks for an input x
in a set S, consists of a bit vector of length m, which is a

compacted representation of the elements that are present in

S, and k hash functions, which are used to map inputs to the

bit vector. An example is shown in Fig. 1, where m is 14

and k is 3. Before the SBF can be used, the bit vector is first

loaded with zeroes. Then, all k hash functions are applied to

each element s in the set S, i.e. Hki(s) is calculated, with

i ∈ 1, . . . , k. For each hash function, the resulting hash value

is used as an index in the bit vector and the corresponding bit

is set to 1. This process is repeated for each hash function, and

subsequently for each possible s ∈ S. In Fig. 1, this means

that 3 bits out of 14 are set to 1 for each loaded element s.

In the figure, this process is illustrated for two elements s1
and s2 After these steps, the set S has been been successfully

loaded into the Bloom filter.

To query the SBF using input x, all hash digests Hki
(x)

on x are calculated. Analogous to the initialisation phase, the

hash values are used as indices in the bit vector. If all the

corresponding bits in the bit vector are set to 1, the SBF

returns x ∈ S. Otherwise, x /∈ S is returned. As stated above,

a membership query can have a false positive result. This

happens when, during the initialization of the Bloom filter,

the hash values of different elements in the set lead to a 1
being written to the same position in the bit vector.

Fig. 1. Standard Bloom filter (SBF) representation

Unlike CAMs, Bloom filters do not explicitly store each

element in a memory cell, but rather store the bit vector that

represents all elements that are present in the data structure.

This leads to more economical memory resource utilisation.

C. Bloom-1 architecture

When the SBF structure in Fig. 1 is used, k locations in

the bit vector need to be read out. In order to reduce the

number of read-outs, a more efficient structure was proposed

by Qiao et al. [13]. They propose Bloom-1, a fast Bloom filter

architecture that only requires one read-out for each query.

Bloom-1 uses hash functions to map an input element s to

log2(l)+k× log2(w) bits. The first log2(l) bits are the output

of the hash function Hl(s) and are used as an address in a data

structure that has l memory locations, as shown in Fig. 2. We

call each word in the data structure a membership word. The

next k values (which are log2(w) bits each) are the outputs

of the hash functions Hki(s), with i ∈ 1, . . . , k. They are

used as addresses that point to bit locations in the membership

word. The size of a membership word is w and a 1 is written

at the bit locations that correspond to the addresses Hki
(s).

To query an input x, a similar procedure is followed to read

out k bits (of which the locations are determined by Hki(x),
with i ∈ 1, . . . , k) from the membership word at the address

determined by Hl(x). If all k bits are 1, the Bloom-1 filter

returns x ∈ S. Otherwise, x /∈ S is returned.

Fig. 2. Bloom-1 representation

Typically, w corresponds to the data bus width in a computer

system, i.e., w = 32 or 64. The size of the entire Bloom-1 filter

is denoted as m = l×w. The advantage of Bloom-1 is that the

number of required hash bits is significantly lower when k is
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large, compared to other Bloom filters [13]. The total number

of hash bits for Bloom-1 is log2(l) + k × log2(w), compared

to k × log2(m) for SBF. Additionally, the w-bit membership

word can be read out at once, while the k 1-bit values in SBF

require k read-outs. This significantly increases the speed of

Bloom-1 compared to SBF.

Qiao et al. gave an approximation of the false positive rate

(fpr) for Bloom-1 in [13]. A comment published by Reviriego

et al. in [15] refined the approximation, resulting in Eq. 1.

Besides the Bloom-1 parameters, l, w and k, the number of

entries, n, has an influence on the false positive rate.

fpr =
∑n

x=0

((
n
k

)
.
(

1
l

)x
.
(
1− 1

l

)n−x

.

(
w!

wk(x+1)

∑w
i=1

∑i
j=1(−1)i−j jkxik

(w−i)!j!(i−j)!

))
(1)

III. RELATED WORK

A wide range of related work is available, elaborating on the

design and optimization of Bloom filters for different appli-

cations. Various aspects are to be considered when designing

hardware architectures of Bloom filters, such as the lookup

delay, the false positive rate and the operating frequency.

One of the main factors affecting the lookup delay of a

Bloom filter is the execution delay of the hash functions. A

number of fast non-cryptographic hash functions with good

avalanche properties have been proposed, such as Murmur 3

and FNV-1a. Murmur3 is the result of a general study of non-

cryptographic hash functions by Estebanez et al. [16]. FNV-

1a was taken from an idea sent as reviewer comments to the

IEEE POSIX P1003.2 committee by Fowler and Vo and later

improved by Landon Curt Noll [17]. It is considered to have

the smallest computational delay. In this work, we propose

Xoodoo-NC, a fast hardware-oriented non-cryptographic hash

function with good avalanche properties, which outperforms

all other solutions in terms of execution delay in hardware.

Xoodoo-NC is derived from the cryptographic permutation

Xoodoo [12]. It uses a reduced number of rounds and a

reduced size of the internal state, which leads to a lower logical

depth than cryptographic hash functions based on Xoodoo,

while maintaining the desired avalanche properties.

Besides optimizing the hash functions, there are other

methods that contribute to the fast generation of the lookup ad-

dresses in Bloom filters. Examples are the one-hashing Bloom

filter (OHBF) [18], the less hashing Bloom filter (LHBF) [19],

and the ultra-fast Bloom filter (UFBF) [20]. OHBF and UHBF

follow similar techniques, where a single base hash function

is used, and k modulo operations are performed to obtain

k addresses. LHBF employs two base hash functions, and

a linear equation to generate additional addresses from the

base hash functions. Although these techniques can reduce the

generation delay of the lookup addresses, the overall delay of

a query will still be dominated by the delay of the memory

accesses when a standard Bloom filter (SBF) array [2] is used

as depicted in Fig. 1. This is because each read/write operation

will require one clock cycle when the embedded RAM in an

FPGA is used for the storage of the Bloom filter. Hence, it

is important to not only reduce the delay for the generation

of the lookup addresses, but to also consider Bloom filter

architectures that reduce the number of memory accesses.

In an SBF, the number of memory accesses is directly

proportional to the number of hash values (k). In order to

reduce the false positive rate, the number of hash functions and

the size of the data structure (m) must be increased, but this

has a negative effect on the execution speed. Parallel Bloom

filters, as proposed by Dharmapurikar et al. [3], are a classical

solution to overcome this issue. There are other approaches

like multi-partitioning counting Bloom filters (MPCBF) [21],

OMASS [22] and One-memory-access Bloom filters (Bloom-

1) [13], where it takes only one memory access per query.

MPCBF, OMASS and Bloom-1 employ similar approaches

based on the partitioning of memory blocks to limit the number

of memory accesses to one, as explained for Bloom-1 in

Sect. II. In this work, we do not focus on counting Bloom

filters which store a count value for each memory cell in order

to enable the deletion of elements. That is why MPCBF is not

considered for our implementation. In OMASS, each element

is represented in multiple sets with different hash mappings,

which decreases the false positive rate. In this work, we

concentrate on Bloom-1 [13], because it requires less memory

storage than OMASS. For applications in which the false

positive rate of Bloom-1 is not sufficiently low, the possibility

of moving to an OMASS architecture can be considered.

A number of works are available on the implementation of

Bloom filters in hardware. Dharmapurikar et al. [4] present an

implementation of parallel Bloom filters on FPGA for string

matching. The implementation is fast in terms of number

of memory accesses with acceptable resource utilization, but

has a very low operating frequency of 73.5 MHz, which is

not suitable for high speed networks. In [23], a rolling hash

function based Bloom filter is presented and implemented on

a high-end FPGA for fast streaming data. However, the archi-

tecture assumes a byte-based interface which is only suitable

for Gigabit Ethernet networks. When moving towards Terabit

Ethernet, the incoming data need to be processed in larger

parallel blocks. The work of Kaya et al. [24] and of Lyons et

al. [25] focus mainly on the power reduction of Bloom filter

implementations. A counting Bloom filter implementation pro-

posed by [26] for network intrusion detection seems to provide

operating frequencies above 200 MHz for an input data size up

to 8 bytes. Although all these publications present very good

implementations, an even higher parallelization level and/or

operating frequency is needed in Terabit Ethernet networks.

In this work, we propose to use the Bloom-1 architecture,

which requires only one memory access per query. We also

propose Xoodoo-NC, an extremely fast hash function that out-

puts a hash value large enough to be split into chunks that can

directly be used in the Bloom-1 architecture. We implement

a speed-optimized hardware architecture that outperforms all

other FPGA-based Bloom filter implementations as well as

architectures based on the CAM IP cores in Xilinx FPGAs.
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IV. NOVEL ALGORITHMS AND ARCHITECTURES

A. Experimental setting and basis of comparison

We concentrate on Terabit Ethernet (defined as Ethernet

with speeds above 100 Gbps). An example of an FPGA

platform that supports Terabit Ethernet is the 200Gbps NFB-

200G2QL board [27], which operates at a clock frequency

of 200 MHz and processes network packets at a line rate

of 1024 bits per clock cycle. It is clear that implementing

network security applications on Terabit Ethernet FPGA plat-

forms requires the processing of many data bits in parallel.

Parallelization is also suggested by the authors of the large

flow detection algorithm EARDET [7]. An example of a

network encryption implementation that adheres to the strong

operating frequency and parallel processing requirements of

Terabit FPGA platforms is given in [28].

Typically in network applications flow identifiers need to be

queried in a data structure. Examples of such applications are

given in Sect. I. The considered flow ID in this work contains

the source IP address, destination IP address, and both the

source and the destination ports. The size of this flow ID is

96 bits, which is the case in an IPv4 network. To adhere to

the requirements of Terabit Ethernet FPGA platforms, these 96

bits need to be processed in parallel at an operating frequency

of at least 200 MHz. We compare four different lookup data

structures in terms of cycle count, clock frequency, occupied

FPGA resources and false positive rate:

1) CAM block generated by the design tools of Xilinx,

2) speed-optimized custom CAM consisting of manually

combined smaller CAM blocks,

3) Bloom filter based on the Bloom-1 architecture and the

FNV-1a hash function,

4) Bloom filter based on the Bloom-1 architecture and the

newly proposed Xoodoo-NC hash function.

All four architectures store 1024 data words of 96 bits each.

For the first two architectures, which are CAM-based, this

means that exactly 1024 x 96 memory cells are occupied. For

the last two architectures, which are based on Bloom filters,

we explore different options for the size of the Bloom filter and

the number and output size of the hash functions. The number

of stored entries in the Bloom filters is equal to 1024 to make

a fair comparison with the CAM-based implementations.

The first CAM architecture is directly generated by the

design tools of Xilinx, resulting in the utilization of embedded

RAM (Block RAM or BRAM) with size 1024 x 96 bits, in

combination with a limited amount of logic in the form of

FPGA LUTs (lookup tables) and FFs (flip-flops). A lookup in

the directly generated CAM takes 2 clock cycles. The second

CAM architecture consists of 128 CAM blocks of size 24 x

32 bits. These smaller CAM blocks are again generated by

the Xilinx design tools, and the LUTs and FFs for combining

and addressing these blocks are added manually. This leads to

an architecture with a higher operating frequency, but with a

larger resource occupation compared to the directly generated

CAM architecture. A lookup in the manually modified CAM

takes 3 clock cycles. The third and fourth architecture that

we evaluate are Bloom filters, which differ in the utilized

hash function. We compare FNV-1a, the fastest hash function

in hardware according to our knowledge, to Xoodoo-NC, the

proposed hash function in this paper.
For all experiments, the Vivado 2017.4 design tool of Xilinx

is used and the UltraScale+ XCVU7P-FLVC2104-1-E FPGA

is targeted. Only for the generation of the CAM blocks, the ISE

14.7 design tool of Xilinx is used, because CAM generation is

no longer supported in Vivado. The resulting code is imported

in Vivado to be used in the UltraScale+ FPGA (which is

not supported in ISE 14.7). The operating frequency and

resource utilization of the CAM-based architectures that are

implemented as a reference for comparison, are given in Fig. 3.

Fig. 3. Operating frequency and resource utilization of the CAM directly
implemented with the Xilinx tools (referred to as Xilinx CAM IP) and the
speed-optimized CAM architecture (Custom Modified CAM IP)

B. Design of a high-speed non-cryptographic hash function
The optimization goals in the design of a non-cryptographic

hash function for Bloom filters are low logical depth or

critical path (i.e., high operating frequency), low cycle count,

high avalanche score and acceptable resource utilization.

FNV-1a [17] and Murmur3 [16] are non-cryptographic hash

functions with excellent avalanche properties. They both use

multiplication operations in which the width of the multiplier

is proportional to the output hash size. FNV-1a and Murmur3

process 8 bits and 32 bits per cycle, respectively, which means

the execution time is proportional to the number of 8-bit

or 32-bit input blocks. That is why FNV-1a and Murmur3

perform very well on an 8-bit or 32-bit microprocessor.

When implemented in hardware, however, the high number

of flip-flops to store the intermediate values and the large

multipliers have a negative effect on the resource utilization,

the operating frequency and the execution delay, especially

when the required output hash size is large.
In our effort to find a non-cryptographic hash function that

has a low logical depth and a low resource utilization in

hardware, we start from the hardware-friendly cryptographic

permutation Xoodoo, presented by Daemen et al. in [12]. A

Xoodoo round employs only shift, AND and XOR operations,

and does not need flip-flops inside the round. While Xoodoo

uses a 384-bit state, Xoodoo-NC operates on a 96-bit state,

which perfectly fits our needs to process incoming network

flow IDs of 96 bits. Output values can be taken as multiples

of 96-bits. A more detailed explanation of Xoodoo-NC is given

in the following paragraphs.
The original Xoodoo permutation is parameterized by the

number of rounds nr, and it iteratively applies the round
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function Ri to the state A. The state A is depicted in Fig. 4 and

has a size of 48 bytes, divided into three 2-dimensional planes,

which are indexed by y. Each plane has four 1-dimensional

lanes which are indexed by x. Each lane consists of 32 bits

in size, indexed by z. A collection of three parallel stacked

lanes in A is called a sheet, and any three parallel stacked bits

in A are called a column. Each byte in the state can thus be

referred to with the coordinates (x, y, z).

Fig. 4. Graphical representation of the Xoodoo terminology

The round function Ri of Xoodoo consists of 5 sequential

steps: a mixing step θ, a plane shifting step ρwest, a step for

the addition of round constants ι, a non-linear layer χ, and a

second plane shifting step ρeast. For more in-depth details on

these steps, we refer to [12].

In this work, we need a hash function with an input size of

96 bits or 12 bytes. Therefore, we reduce the state A of the

Xoodoo permutation to 12 bytes, corresponding to one sheet.

This fixes the x coordinate and allows the y coordinate to vary

from 0 to 2 and the z coordinate from 0 to 31. The original

definitions of lanes and columns still hold. Because of the

reduction of the size of the state, the Xoodoo round function

is slightly adapted. The cyclic shift operations involving the

x and z coordinates are replaced by operations involving only

z. The other operations and the round constant Ci remain the

same as in the original algorithm. The resulting Xoodoo-NC

permutation is specified in Alg. 1.

Algorithm 1: Xoodoo-NC[nr]
Parameters: Number of rounds nr

for Round index i from 1 − nr to 0 do
A = Ri(A)

end
Round Ri:

θ:
P ← A0

⊕
A1

⊕
A2, E ← P ≪ 5

⊕
P ≪ 14

Ay ← Ay

⊕
E for y ∈ {0, 1, 2}

ρwest:
A2 ← A2 ≪ 11

ι:
A0 ← A0

⊕
Ci

χ:
B0 ← A1.A2, B1 ← A2.A0, B2 ← A0.A1

Ay ← Ay

⊕
By for y ∈ {0, 1, 2}

ρeast:
A1 ← A1 ≪ 1, A2 ← A2 ≪ 8

For the Xoodoo permutation, Table 8 in [12] summarizes

the avalanche properties. The avalanche metrics mentioned in

[12] are used here also to determine the avalanche behaviour

of Xoodoo-Nc. The metrics, namely avalanche dependence

(Dav), avalanche weight (wav), and avalanche entropy (Hav),

are calculated as in [12] for single-bit differences at the

input. Only the worst-case values are reported, which are the

minimum values taken over all individual input differences of

a given type. The results are presented in Table I. Xoodoo-NC

provides full bit-dependence and quasi-strict avalanche weight

after 2.5 rounds, and ≈ 90% dependence after round 2. We

assume that it is sufficient for our intended application and

generate a 96-bit Xoodoo-NC hash output after 2 rounds. To

obtain an output of 192 bits, one additional round is executed

and the output of round 2 is concatenated with the output of

round 3. In a similar way, an output size of any multiple of

96 bits can be obtained by increasing the number of rounds

and concatenating the results.

Rounds Dav wav Hav

2 84 35.408 80.332
2.5 96 47.324 95.864
3 96 47.309 95.867

3.5 96 47.922 95.996
TABLE I

Avalanche Scores

V. HARDWARE IMPLEMENTATION

We discuss the hardware implementation of the Bloom-1

architectures that are evaluated in this work. We employ a

single non-cryptographic hash function of which the output

is split into k + 1 parts, i.e., one part of size log2(l) and k
parts of size log2(w), as explained in Sect. II-C. Two non-

cryptographic hash functions with an input size of 96 bits are

evaluated, namely FNV-1a and Xoodoo-NC. In the following

paragraphs, we elaborate on the FNV-1a implementation, the

Xoodoo-NC implementation and the Bloom-1 implementation

that uses one of these hash functions.

A. Hash functions

1) FNV-1a: FNV-1a can provide output hash sizes ranging

from 32 to 1024 bits. It uses only two parameters - a non-

zero FNV Offset basis, and an FNV Prime. Both parameters

depend on the hash output size. FNV-1a processes one byte at a

time, and the algorithm consists of iterations of two sequential

operations - XOR and multiplication.

The input can be of any size, but only 8 bits are processed

per cycle. The received input is stored in an octet shift register,

which shifts a single byte per cycle and has a total size equal

to the size of the incoming message, namely q bytes. In this

work, the size of the flow ID is 96 bits, which corresponds to

q = 12. Every clock cycle, a byte is passed to the processing

element (PE), which performs the XOR operation with the

intermediate hash value, or with the FNV Offset basis for the

first byte. Subsequently, a multiplication with the FNV Prime

is calculated. The hash temp register stores the intermediate

hash value. The output is obtained after processing the final

byte of the input. Before the hash value is valid, zeroes are

sent to the output.

The drawback of a straightforward FNV-1a architecture is

that it processes only one byte per clock cycle. The input

needs to be buffered until the processing is completed. This is

a major concern for high-speed networks like Terabit Ethernet

networks, in which multiple bytes need to be processed in each
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clock cycle. For the applications that we consider in this paper,

12 bytes need to be processed every clock cycle, but the FNV-

1a architecture requires 12 clock cycles to process 12 bytes.

Another concern regarding the hardware implementation is

that one of the core operations in the PE is a multiplication.

If we want to increase the input size and the output hash

size, the multiplier width also needs to be increased, which

further increases the hardware complexity and the critical

path. Pipelining somewhat helps to mitigate this issue and to

improve the overall throughput (after an initial delay equal

to q clock cycles. The hardware architecture of the pipelined

version is shown in Fig. 5.

Fig. 5. FNV-1a - Pipelined architecture

The core of the design is a free-running FSM, which

processes the n-byte inputs every clock cycle based on the

data valid (DV ) signal. The input buffers store the incoming

q-byte inputs. In total, q input buffers are implemented that

each store an q-bit input word. In each clock cycle, the bytes

from the input buffers are shifted to the octet register of size

n bytes. For every input, the first byte is stored in the 0th

register, the second byte in the 1st register and so on. Each

8-bit register in the octet register is connected to the input

of a PE. Each PE takes one byte from the octet register and

the output from the previous PE (except for PE0), as inputs.

PE0 takes the FNV Offset basis as the second input. All PEs

operate simultaneously. Once the processing is complete, the

inputs are removed from the input buffers. The output of each

PE is connected to an output buffer that stores the intermediate

hash value and is connected to the input of the next PE in

the sequence. The validity of the output is determined by the

Out valid signal. The pipelined version of FNV-1a can deal

with a new 96-bit input every clock cycle and starts outputting

the 8-bit hash values of the 96-bit inputs after an initial delay

of 12 clock cycles.

2) Xoodoo-NC: The heart of the Xoodoo permutation is the

round function, which consists of the 5 steps shown in Alg. 1:

θ, ρwest, ι, χ, and ρeast. The round is executed twice when

a 96-bit hash output is needed and once more to generate a

second 96-bit output, to be concatenated with the first output

when a 192-bit hash output is needed. This way, the output of

Xoodoo-NC can be any multiple of 96 bits, but we stick to

two different output sizes in our evaluation: 96 and 192 bits.

The rounds are implemented in a fully unrolled architecture

without registers in between the rounds, i.e., the 2 or 3 rounds

of Xoodoo-NC are completely implemented in combinational

logic. The detailed hardware block diagram of the round

function is shown in Fig. 6. The 96-bit input A consists of

3 lanes of size 32 bits, namely A0, A1, and A2 (cfr. Alg. 1.

The round constant Ci used in ι is a single 32-bit lane, indexed

from 1− nr to 0. The 3-lane output of the round goes to the

input of the next round.

Fig. 6. Xoodoo-NC Round, which is implemented 2 or 3 times in combina-
tional logic only for a 96-bit or 192-bit hash output, respectively.

B. Bloom-1

The hardware architecture of the Bloom-1 filter follows the

concept shown in Fig. 2. The memory inside the Bloom-1

filter is implemented using BRAM. The hash bits are generated

with a single hash function, of which the output is split into

k + 1 parts. The first part, Hl, is used as an address for the

BRAM. The k remaining parts are used to address the bits

inside the memory words. Depending on the query/configure

instruction, the memory is read/written. An FSM controls

all the operations. The execution delay is determined by the

BRAM read-write delay, which is 2 clock cycles, and the

delay of the hash generation. Xoodoo-NC is executed in one

clock cycle, while the non-pipelined and pipelined versions of

FNV-1a take 14 and 2 clock cycles, respectively.

VI. RESULTS

In this section, we present the results of the experiments

conducted on a Xilinx Virtex Ultrascale+ FPGA (XCVU7P-

FLVC2104-1-E) using the Vivado 2017.4 design tool. For the

Bloom filter implementations, we employ FNV-1a with 64-

bit and 128-bit hash outputs, and Xoodoo-NC with 96-bit and

192-bit hash outputs. The input size is always 96 bits. For

FNV-1a, both the non-pipelined and the pipelined architectures

are evaluated. The Bloom-1 parameters l, w, and m = l ∗m
are taken as 4096, 64 and 262144, respectively. The size of

the CAMs that we compare with is 1024 x 96.
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The usage of FPGA logic and DSP units in the Bloom-

1 architectures is depicted in Fig. 7. The Xoodoo-NC based

Bloom filters outperform the FNV-1a based implementations,

especially for larger values of k. The FNV-1a implementations

make use of the multipliers inside the DSP units. No DSP units

are used in Xoodoo-NC. The pipelined version of FNV-1a has

a much higher consumption of logic resources and DSP units

in comparison to the serial FNV-1a and the Xoodoo-NC based

Bloom filters. The operating frequency and execution delay of

the Bloom-1 architectures are shown in Fig. 8. The Xoodoo-

NC based architectures clearly feature a much higher operating

frequency and a much lower execution delay than the FNV-1a

based architectures.

The results are listed in Table II. Additionally, these are

shown in Fig. 7 and 8. The table also contains the compar-

ison with the CAM based lookup architectures. The CAM

block generated by the Xilinx design tools has an operating

frequency of 112.75 MHz, which is not even sufficient for

1-Gbps link speeds. The custom modified CAM architecture

operates at a frequency of 225 MHz, but consumes more

FPGA resources. Although it takes 1 cycle longer to query

the custom modified CAM, the total query time is lower

compared to the directly generated CAM. The lookup delay

of the Xoodoo-NC based architectures is significantly lower

than the lookup delay of all other implemented architectures.

This is mainly thanks to the high operating frequency, but also

thanks to the cycle count of only 3 cycles. Two versions of

the Bloom-1 architectures are considered in the table: those

with k = 2 and k = 12. In order to calculate the false positive

rate (fpr) following Eq. 1, the number of entries in the Bloom

filter is assumed to be 1024, such that a fair comparison can be

made with the CAMs, whose depth is 1024. Going from k = 2
to k = 12, leads to a resource occupation that is more than

doubled for the Xoodoo-NC based implementation, but also

drastically decreases the false positive rate. Nevertheless, the

resource occupation of the Xoodoo-NC based Bloom filter is

much lower than all other considered architectures, even when

k = 12.

A quantitative comparison with related work is shown in

shown in Table III for n=1024. It is clear that our Xoodoo-

NC based Bloom-1 architecture with a 96-bit input and

m = 4096 ∗ 64 significantly outperforms previously proposed

FPGA architectures that have a smaller input size, a smaller

m and a larger false positive rate. Our design drastically

improves the resource occupation and the speed. Although the

total lookup delay is not reported for the considered related

architectures, the table shows that the delay of the memory

accesses only is longer than the delay of one query in our

Xoodoo-NC based implementation. Note, however, that the

considered related work uses older FPGAs with 4-input LUTs,

while our FPGA has 6-input LUTs. Nevertheless, our reported

number of LUTs is only around half of the LUTs reported

in related work and the number of FFs is roughly one fifth

to one tenth of the the FFs reported in related work. The

difference in operating frequency can partially be attributed

to the difference in silicon technology nodes between older

and newer FPGAs. Nevertheless, the frequency of 462 MHz is

extremely high thanks to the low logical depth of the Xoodoo-

NC hash function.

VII. CONCLUSION

In this work, we targeted novel algorithms and architec-

tures for high-speed Bloom filters on FPGA, used for fast

lookups in network (security) applications. We proposed a new

high-speed hardware-oriented non-cryptographic hash function

called Xoodoo-NC. The hash function was integrated into a

Bloom-1 architecture and evaluated on a Virtex UltraScale+

FPGA of Xilinx. The resulting resource occupation, operating

frequency, lookup delay and false positive rate were compared

to previously reported Bloom filter architectures and Content-

addressable Memories on FPGA. To our knowledge, our

work significantly outperforms all other solutions on all these

comparison criteria.
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