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Abstract

Privacy and data confidentiality are today at the heart of many discussions. But such data
protection should not be done at the detriment of other security aspects. In the context of
network traffic, intrusion detection system becomes totally blind when the traffic is
encrypted, making clients again vulnerable to known attacks. To reconcile security and
privacy, BlindBox and BlindIDS are proposed to perform Deep Packet Inspection over an
encrypted traffic, based on two different cryptographic techniques. But, on one side, evenif
BlindBox is quite efficient to detect an anomalous encrypted traffic, it necessitates a very
high setup time for clients and servers and does not protect the know-how of Security
Editors (SEs) working on detection rules. On the other side, BlindIDS does protect SE's
market and does not introduce any latency during setup time, but is definitely not enough
efficient for a practical use. Herein, it is shown that the design of a fully efficient and market-
compliant intrusion detection system over an encrypted traffic is possible. The system is
based on only symmetric cryptography, and permits to encrypt a packet of 1500 bytes in
about 6 ps and to test such packets with 3000 rules in less than 2 ps.
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1 | INTRODUCTION

Once restricted to the most sensitive web traffic, such as online
payment, encryption is now widely used. Each year, the share
of encrypted web sessions is growing, reaching 68 per cent of
overall sessions in 2017 [2]. The surge of encrypting traffic
gives cybercriminals an avenue to hide in plain sight.
Encryption turns malicious traffic indistinguishable from non-
harmful one, preventing, for example, intrusion detection
based on deep packet inspection (DPI). Since 2015, Dell se-
curity report [3] has warned companies and individuals alike on
the danger of non-inspected Internet traffic. In its 2016 report
[4], the number of affected users by under-the-radar attacks is
estimated to 900 million. The necessity of a responsible
encrypted traffic inspection is again stressed in the 2018 report
[5]. To alleviate the consequences of such attacks, security
editors propose to use proxies that establish a secure
connection with the web server on behalf of the client. The
proxy is then in a position of decrypting and inspecting the
whole traffic, thanks to a set of so-called ‘rules’ defined by

security editors, and which permits the proxy to differentiate
safe from unsafe traffics. However, this approach raises
problems of confidentiality, security and privacy.

1.1 | Main existing approaches

In this context, the use of encryption techniques that allow
a third party, the proxy, to inspect the encrypted traffic
without having to decrypt the contents, is an approach that
cannot be overlooked. BlindBox [6] is one of the first to
have taken this step towards reconciling privacy and security.
It relies on multi-party computations techniques, and in
particular, garbled circuits, to enable a middlebox appliance
to test security editors' rules by searching for malicious
patterns directly on the encrypted contents. As highlighted
in Ref. [7], this seminal paper suffers nevertheless from two
shortcomings.

First, the set of patterns to be searched has to be encrypted
for each pair of sendet/receiver, as the encryption key is
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derived from the session key. This induces a high setup time
for every Internet connection, incompatible with online
detection. Moreovert, such set of patterns has to be encrypted
under a different key for each parallel connection, which re-
sults in a huge memory consumption. Second, to perform the
patterns' encryption for each session, the inspecting proxy has
to access the patterns in clear. Those patterns are generated by
a security editor, and ate the core of its added value. Hence, in
a competitive market, it is unlikely that the editors will be
willing to disclose those patterns to all possible proxies.

The first one was the later treat in Ref. [8] with the
PrivDPI system. While Blindbox sends the messages of
garbled circuit per rule, PrivDPI only needs to send a few
group elements per rule. This is due to a new technique for
generating encrypted rules as well as the good idea of
reusing intermediate results generated in previous sessions
across subsequent sessions.

BlindBox shortcomings were also addressed with the
BlindIDS solution [7]. In this proposal, the authors leverage
decryptable searchable encryption (DSE), a cryptographic
primitive where decryption keys are independent from trap-
doors keys, used to perform search. This independence allows
security editors to encrypt their patterns once and for all.
These encrypted sessions can be used for every parallel session,
thus notably reducing both setup time and memory con-
sumption. However, the search operation uses pairings, whose
performances are not suitable for online inspection.

We prove here that this is feasible to obtain the best of
both solutions: efficient setup, low memory consumption,
rules' confidentiality against proxies and efficiency of the whole
protocol among a sender, a receiver and a proxy.

1.2 | Our contributions

Herein, we propose the first encrypted traffic inspection sys-
tem that permits to obtain all the desired properties. Our
system reaches the following interesting properties: (i) no
public key encryption is involved (except potentially for
deriving the session key); (ii) unauthorized actors cannot learn
any information about the traffic other than it is malicious or
safe (traffic indistinguishability); (iii) detection patterns are
encrypted by the security editor, as the set of rules, and never
accessible by other parties (rule indistinguishability); (iv)
encrypted patterns are valid for all connections and (v) pattern
matching is almost as simple as an equality test.

1.2.1 | Solution overview

Our first idea to obtain a truly efficient system is using sym-
metric encryption technigues. Then, all steps, from the
encryption/dectyption part to the rule generation and the
detection algorithm, are based on symmetric cryptography
methods.

Let T be a traffic divided into a set of ‘tokens’, each of
them being denoted ¢ The first step of our construction

consists in having a secret key s shared between the Security
Editor SE and the senders/receivers S/R. Such key is used
by SE, for each pattern 7; related to a rule,1 to compute the
corresponding blinded rules B; during the generation of the
rules procedure (called RuleGen). A sender also makes use
of this key to compute a blinded version p; of each token
of the traffic. Using a deterministic algorithm, the detection
procedure (named Detect) is then a simple match between
the Bjs and the pj's. It is obvious that the Service Provider
SP should not know the key s so as not to break the traffic
indistinguishability property. Moreover, as the receiver has a
prioti to come back from p; to the token, we can here use a
pseudorandom permutation (PRP) F. Finally, one problem
that may occur is that a sendet/receiver having access to the
set of blinded rules can perform alone (i.e. without
requesting the Service Provider) a brute force attack to
break the rule indistinguishability property. We can here
easily assume that SE can make use of a specific channel
providing confidentiality, authenticity and integrity to send
blinded rules to SP.

Action (actor) Inputs Actions
RuleGen(SE) Rules 7;, key s B;=Fs,7)
Send(S) Tokens t, key s pi=FGs, t)
Receive(R) Traffic p; key s tj= F'(s, )
Detect(SP) Rules B;, traffic p; B, =pp

The main problem with the above tentative is that the
matching between one B; and one p; is done by SP during the
Detect procedure, so that the latter needs to obtain both.
Regarding the traffic and the blinded token pj, it cannot be sent
as it is since it can be used by SE to break the traffic indis-
tinguishability property. We then make use of an encapsulation
technique where each p; is encrypted using a key K shared by
SP on one side, and both S and R on the other side. This time,
as we need decryption (at least by SP for efficiency reasons), we
use a pseudorandom function (PRF) G in counter mode.

Action (actor) Inputs Actions
RuleGen(SE) Rules 7; key s B; = F(s, r))
Send(S) Tokens , pi=Fis, 1)
Keys (s, K) q=GK,j) ®p
Receive(R) Traffic g;, ?2i=q;® GK, )
Keys (5, K) b=F'6p)
Detect(SP) Rules B, key K ?2i=GK,) &g
Traffic q; B; = pp

i
In the sequel, the notions of rules and patterns are considered equivalent. In fact, as
explained above, a rule corresponds to the detection of a pattern.
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With such system, there is still the problem that the
resulting encrypted traffic is deterministically computed, such
that the same token p; results in the same ciphertext g;. The
problem of using a true random value to compute the pj's
poses, is that matching will be possible only if both parties
(SE and S) use the same randomness. To perform that, we
introduce a counter which is used with the PRP F. Let C be
the maximum number of occurrences of distinct tokens
in the traffic. During RuleGen, SE generates C blinded
tokens for each rule 7;. During Send, the sender chooses at
random a counter ¢ € [0, C — 1] to compute the blinded
tokens (the first token uses ¢, which one is then incre-
mented each time a new blinded token is computed). In this
way, the frequencies of the tokens are hidden. Furthermore,
we add a true random salt to G such that the gjs are
indistinguishable from random values for any adversary
without access to K.

Action(actor) Inputs Actions
RuleGen(SE) Rules 7;, key s Bip=F(s, rilcp)
Send(S) Tokens ;, e ="TLS(k, {1;}1),
Keys s, K, &), p;=Fis, 4o,
Counter c, q;= G salt + ) @ p;
Random salt
Receive(R) Traffic e, {5}, =TLS '(k, ),
Keys (s, K, #), p;= Fs, 5llo),
Counter ¢, hj=7(p)?
Salt, hash b,
Detect(SP) Rules B;, pi= G, salt + ) @ g,
key K, B; = p3,
Traffic ¢, hi= 7/(17])
Salt

There is still one important drawback in the current

Action (actor) Inputs Actions
RuleGen(SE) Rules 7;, key s Bir = Fs, rillce)
Send(S) Tokens t, pi = Es, tillo)
Keys (s, K), g = G(K, salt + )) @ p;
Counter c,
Random salt
Receive(R) Traffic g;, pi=¢q ® G salt + )
Keys (s, K, tlic = F'(s, )
Counter c, salt
Detect(SP) Rules B; key K, pi= G, salt + )) @ g;

version of the protocol: the Security Editor has to compute a
number of encrypted rules which is proportional to the
number of couples S/R times the constant C. Our idea to
remove the proportionality to the number of couples S/R is to
make use of a broadcast encryption scheme BE (see Sec-
tion 3.1) for the group of all senders and receivers (such group
is denoted I in the sequel). Then, SE knows the master sectet
key mk to manage the group, and each sender (respectively
receiver) owns a membership key denoted sk, (resp. sk-)
which permits him to retrieve the key s using some header Hdr
output by SE during (broadcast) encryption. This way, SE can

Traffic gj, salt B =p?

One problem with the above desctiption is that F being a
PRP, a fraudulent sender or receiver can inverse the B;z's to
break the rule indistinguishability property. The solution is to
replace F by a non-reversible pseudorandom function. But
the receiver is no more able to decrypt the received traffic, so
that we need to send the traffic twice: one time using the
technique given above (replacing the PRP by a PRE, and used
to detect unsafe traffic) and the other one using a classical
TLS channel and a shared key k (used by the receiver to
decrypt the traffic). If the traffic is safe, this moreover pet-
mits the receiver to go faster by just decrypting the TLS part.
But this also permits the sender to send two different things:
one safe fake traffic that is tested by SP and one true cor-
rupted one that will be executed by the receiver. Without any
additional trick, this can be detected by the receiver that has
all the material to check the difference. But this is done at the
detriment of the efficiency. Our idea is to ask SP to hash the
encrypted tokens p; it has obtained duting the Detect phase
and a similar hash is also computed by the receiver,
permitting him to detect such fraud by the sender by a simple
equality test.

generate the same encrypted rules for several distinct users.

Action(actor) Inputs Actions

RuleGen(SE) Rules 7;, (s, Hdr) = BE.Enc(mk, 1)
Master key mk B = Fs, rilcy)

Send(S) Tokens t, s = BE.Dec(sk,, Hdr)
Keys s, K, k), e=TLS(k, {t;}),
Counter ¢, pj=Fs, tillo),
Random salt q;= G, salt +)) @ p;

Receive(R) Traffic e, s = BE.Dec(sk,, Hdr),
Keys (sk-~, K, k), {t/}]: TLS!(k,e),
Counter ¢, pi= FG, tillo),
Salt, hash b; hi=7(p,?

Detect(SP) Rules B;, pi= GK, salt + ) @ g5
key K, B;=py,
Traffic g; hi=7(p)
Salt
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1.2.2 | Implementation

We implemented our system and provide a thorough evalua-
tion over popular web pages, comparing performances with
BlindBox and BlindIDS, showing that our work is a significant
step for a real-life deployment of privacy-preserving intrusion
detection systems. More precisely, the encryption of a packet of
1500 bytes is done in about 6 us (compare to 90 ps for
BlindBox and 27 ms for BlindIDS). The detection phase for
3000 rules and one packet necessitates less than 2 ps (compare
to 33 ps for BlindBox and 74 s for BlindIDS).

1.23 | Otganization

Herein, in the next section, we first recall and modify a little the
security model proposed in [7] for an ideal intrusion detection
system over an encrypted traffic. We then give the details of
our new protocol in Section 3 and describe our implementa-
tion and experimental results in Section 5. The related work is
detailed in Section 6, before the conclusion.

2 | SYSTEM ARCHITECTURE AND
SECURITY

2.1 | Actors and Architecture

We consider the following actors in the DPI system (following

[6, 7]):

® the Security Editor, denoted SE, who is responsible for
generating and maintaining a list of malwares' signatures;

o the Service Provider, denoted SP, who searches intrusions in
the traffic, using the rules provided by the SE;

® a sender, denoted S, who sends messages over the Internet.
The set of all senders is denoted .7

® 2 receiver, denoted R, who receives the messages. The set of
all receivers is denoted .%.

The SE role is performed by organisations such as
McAfee, Symantec and Kaspersky. The detection signatures
are the main assets for the SE. The SP, namely, the mid-
dlebox in Ref. [6], provides both physical and cloud-based
services such as proxies. In most deployments, the SE or
the middlebox can read the plain traffic between S and R.
Herein, it is aimed to propose IDS using DPI over
encrypted traffic which is as good as that over the plain
traffic.

2.2 | Main procedures

We here just give some minor modification of the initial model
proposed in Ref. [7]. An intrusion detection system over an
encrypted traffic, denoted A is composed of the following
procedures. The main difference is that we more clearly define

the different actors' cryptographic keys, and put them, by
default, in the corresponding procedures.

Let T be a traffic. We consider that T is divided into tokens
of fixed size, denoted ;. Moreover, as already said, we consider
that a rule corresponds to a pattern to be detected in the
traffic, and we then independently talk about either a rule or a
pattern in the sequel. The set of rule is then denoted .# and
corresponds to a set of patterns to be searched, using equality
tests.

® Sctup, on input the security parameter A, generates the
public parameters param of the system, and the keys of the
different actors, that is skgp for Security Editot, skgp for
Service Provider, skg for Sender, and sky for Receiver.

® RuleGen, on input the parameters param, the SE secret key
skgp; and a set .# of rules to detect a malicious traffic,
outputs a set % of blinded rules that are then sent to SP.

® Send takes as input the public parameters param, the secret
key skg of the sender, and a traffic T = {t]}]-, where each ¢ is
a token of fixed size. It outputs an enctypted traffic £ for a
receiver R.

® Detect, on input param, the Service Provider private key
sksp, an encrypted traffic £ and the set . of blinded rules
from SE, outputs a bit b € {0, 1}, stating that the underlying
traffic 7 is malicious (b = 0) or safe (b = 1). It may also
return some auxiliary information aux, such as, for example,
the blinded rule that matched or some additional informa-
tion for the receiver. If something goes wrong, it outputs an
error message L.

® Receive is executed by taking on input the parameters
param, the receiver's secret key skg, an encrypted traffic £
and optionally some additional auxiliary information aux
coming from SP. It outputs a plain traffic 7, or an error
message L.

2.2.1 | Correctness

Let param be the output of the Setup procedure. Let & be a
set of blinded rules, as % = RuleGen(param, sksg,.#) where
M s a set of rules, and let £ = Send(param, sks, 7) where 7T is
a traffic. An intrusion detection system over an encrypted
traffic is said correct iff

T = Receive(param, skg, E, aux), and
Detect(T,.#) = Detect(param, sksp, E, &) (incl.aux).

2.3 | Security requirements

We now define the expected security for such system. Infor-
mally speaking, we consider that the Service Provider is
honest-but-curious since it applies the DPI honestly but can
try to obtain information about either the users' traffic or the
SE's rules. We also use the honest-but-curious paradigm for

so[one $s200y uad() 10§ 3deoxs ‘papruuiad jou AOLYS ST UOHNALYSIP pue asn-3Y *[1202/11/0€] U0 -DHINT A "WwodA3[1m AIeIqI[SUI[Uuo YoIeasandl//:sdiyy woiy papeo[umo( ‘ST ‘1207 ‘L1LSTSLI



CANARD anp LI

| 235

the Security Editor as all the rules ate considered as true and
authentic malicious patterns. But similarly to the SP, the SE
may try to acquire information about the clear-text content of
the traffic. We, however, do not consider the case where the SP
and the SE collude, as they can in this case easily mount a
dictionary attack. Finally, we also do not consider a coalition
between a sender and a receiver since, as in a non-encrypted
traffic, they can easily agree on any shared secret key and any
encryption algorithm to add an overlayer of encryption so that
the detection becomes infeasible. We now go into more formal
details.

As shown in Ref. [7], there are mainly three security
properties that should be verified by such a system: detection,
traffic indistinguishability and rule indistinguishability. We here
modify a little of these properties, so as they better suit real
needs. We think that these modifications can lead to better
secure schemes in the future. The modification has already
been sketched in the introduction, and will be detailed for each
security property below. All security experiments are given in
Figure 1. We consider, for each of them, that the Setup has
already been executed as:

(param, sksg, sksp, sks, skg) « Setup(lﬂ).

2.3.1 | Detection

The detection property informally states that any malicious
traffic must be detected by the Service Provider. This is
close to the above correctness property, but considering
that either the sender or the receiver tries to cheat. The
related security experiment is given in Figure 1. On input
the parametets, .%/ outputs an encrypted traffic £ such that
it is stated as safe (ie. Detect(param,sksp,E, %) =1)
while the decrypted version 7 is malicious (i.e.

Detect(7,.#) = 0).

Definition 1 (Detection) An intrusion detection sys-
tem over encrypted traffic A is said detectable if for any
probabilistic polynomial-time .7, there exists a negli-
gible function v(4) such that:

Succi‘f_ﬁ/ 1) = Pr[ExpietV— } <uv(d).

As explained in Ref. [7], we do not consider the case where
sender and receiver are both dishonest and collude. No TLS
inspection system can treat this case as the sender and the
receiver may agree on some secret coding or encryption to
hide malicious traffic, in an undetectable way.

2.3.2 | Traffic indistinguishability

The traffic indistinguishability property informally states that it
is not feasible for non-authorised actors to learn any infor-
mation about the traffic, other than it is malicious or safe.
Particularly, the SP is assumed to not learn any information of
the traffic other than the match of traffic and rules.

In fact, compare to Ref. [7], we consider that the Service
Provider SP manages its own private key skgp such that its role
necessitates some knowledge that are not available to other
actors. We thus consider two different traffic indistinguish-
ability experiments, depending on the knowledge of the ad-
versary: the secret key skgp of the Security Editor or the one
sksp of the Service Provider. It is obvious that having access to
both keys easily break the traffic indistinguishability property.

In both cases, we deal with the problem that the adversary
may choose, in the indistinguishability experiment, one mali-
cious traffic and one safe traffic so that it will be easy for him
to distinguish which one is used by the challenger, using the
Detect algorithm or some auxiliary information. We then reuse
the notion of type [7]: two traffics Ty and T} are of the same
type, denoted type(To, T) = 1, iff

Expup tr irld(Aj
bes{0,1};

Ty, 17, aux —
EllS?end 1F\iuIeG e/r‘i gsk

Expr{s? (A)

B < RuleGen(param, skgg, M};
E « A(param, skg, skg);
if Detect(param, skgp, E, B) = 1, return 0;

. param); ASendRuleGen g = param);
if type(Ty, T1) = 0 return 0;

T + Receive(param,skg, E); E

; i 3 ] L« Send(param, T}); Lg,-t— Send(param, T});

lriti):r‘:elclt{fuﬂwj 0, return 0; [ ‘ASend%ule(!nkr‘b:aUXA); b ‘AScnd(RuIchn Lb: aux,q};
return (b = &), return (b = b').

Expg&:ﬁtﬂ'—nld(AJ

bes{0,1};
(Tp, T1, aux4)

if type(Ty, T1) = 0, return 0;

(Mo, M1) < Ay (param, sksp, sks, skg); | &5 5 {0: 1)

By, « RuleGen(param, skgp, My );
b Ag(By);

_ o/
return (b = b). return (b = &').

Expgr:: tul imi(;\] Expg}:‘r'ul—md(;\)
bs{0,1}; '

(Mo, My, aux ) « A% (param, skgp);
By, + RuleGen(param, skgg, My ):
B o A58y auxy);

FIGURE 1 Seccurity experiments
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Detect(param, T,.#') = Detect(param, Ty ,.#)

including the auxiliary information aux, and where .# is a set
of rules.

More formally, we give in Figure 1 two different experi-
ments, ExpSp TM(2) and Expx.,~ md(ﬂ), for an adversary .o/
having access to both a Send oracle (given a plain traffic T of its
choice, .7 obtains the related encrypted traffic E) and the
RuleGen oracle (given a set of rules .# of its choice, the ad-
versary gets back % < RuleGen(param,sksg,.#)). To
emphasis the adversary's power, it is denoted as .o/ >"dRuleGen iy
the two experiments. The adversary first chooses two traffics T
and 7} and, if they have the same type, one of them, T} is
encrypted and given to .%7. Eventually, .27 has to guess the bit .

We moreover have more restrictions on the adversary .9 in
Ex 2797 ind (4). We assume that ./ does not quety the Send
oracle with traffic containing tokens in T or T7; otherwise, the
traffic indistinguishability is trivially broken since the Send
encrypts traffics deterministically up to a counter which is not
exponentially large. Also, .27 does not chooses tokens in T} or
T, as rules to query RuleGen; otherwise, the detection func-
tionality allows .27 to trivially distinguish the 7, and 77 by the
pattern of matching. This is a common restriction for
searchable encryption security definitions (e.g., see the MBSE
security in [6]).

Definition 2  (Traffic indistinguishability) An
intrusion detection system over encrypted traffic A is
considered traffic-indistinguishable if for any probabi-
listic polynomial-time .97, there exists a negligible
function v(4) such that

AGE (1) = |2 Pe{ Bl 1] 1] <0(0),

and

Advs7 7 (2) = |2 Pr] Exp s =1] = 1] <0(2).

2.3.3 | Rule indistinguishability

The rule indistinguishability property states that it is not
feasible to learn any information about the rules. In fact,
contrary to [7], we consider two different kinds of rule
indistinguishability.

High-min entropy rule indistinguishability

We remark that if the adversary is a Sender or a Receiver, then
it can create any valid traffic of its choice, and make use of the
encrypted rules to test them and learn some information. In
this case, we make use of the high min-entropy property,
stating that [9] a probabilistic adversary .&/ = (.%/f,.%,) has
min-entropy w if

vieN Vre/%:Pr[ru—,ﬁa/f(li,b) cr'=r] < ),

o/ is said to have high min-entropy if it has min-entropy p
with u(d) € w(logl).

This restriction may limit the number of rules we can
manage since for some of them, part of the information can be
publicly known, as for example, ‘bad’ domain names for URL
blacklists (see also Section 5.2).

Service provider rule indistinguishability
If the adversary has no access to such secrets (i.e. sks, skg),
then it may want to obtain some information about the
underlying rules, but has no more restrictions on the en-
tropy. We argue that such an adversary may be comple-
mentary to the previous one, and that an intrusion detection
system over the encrypted traffic should be resistant to both
kinds of attacks.

Both experiments are given in Figure 1, for (i) an adversary
o = (A f,.4) being able to create any traffic and with high
min-entropy (see e.g. [9] for details) for Expy”s= (2), and
(ii) a standard adversary ./ for EXpSP rul=in (/1) that has access
to a Send oracle, denoted by .o/ e , giving on output an
encrypted traffic from a plain payload. The adversary %7 ()
chooses two sets of rules .# |, and .#, and one of them is used
in the RuleGen procedute. The output .7, is then given to &7
(), that eventually outputs the bit (b).

Notice that the relation between Send and RuleGen is
symmetric if we compare Expl —rul=ind (1) to Ex pZ7 M md(/l).
Thus, similar to the ExpSAp ;_m ( ), we assume that the ad-
versary in Expz7 Q;ul ind (4) does not query RuleGen with any
rules in .# ot .4 and not query Send with traffic containing
rules in .#, or M 1.

Definition 3 (Rule indistinguishability) An intru-
sion detection system over encrypted traffic A is said
rule-indistinguishable if for any probabilistic poly-
nomial-time .9/ = (%7 ,.%,) having high min-
entropy, there exists a negligible function v(4) such
that both

Advy = () = |2 pr[Expgffi;-W—ind = 1] -1 <)
and

AdvE () = |2 P Bxpf T =1 — 1] <0(a).

3 | DETAILS OF OUR PROTOCOL

In this section, we first give the main cryptographic building
blocks we need for our construction, before giving the details
of the latter.
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3.1 | Cryptographic building blocks

At first, we present the main cryptographic building blocks we
will need. We also give the related security requirements that
will be useful in our security proofs. Let 4 be a security
parameter.

3.1.1 | Pseudorandom function

A function F: {0,1}* x{0,1}¥ - {0,1}" is a pseudorandom
function (PRF) if

* given a key K €{0,1}" and an input M €{0,1}*, one can
efficiently compute F(K, M);

* in a nutshell, an adversary against a PRF should not be
able to distinguish the output of F from the uniform
distribution 7. More formally, for any probabilistic
polynomial-time .27, there exists a negligible function v(4)
such that

Ad";?[v(/l) =12- Pf[EXFf}?; = } - 1] <v().

prf

where Exp .y is given in Figure 2, in which 7 is the uniform
distribution, and where .9 is given access to an oracle which
on input a message M, outputs F(K, M).

Note that F can be implemented as a keyed hash function
such as SHA-256.

In our construction, we need another property for the used
PRE More precisely, in the rule indistinguishability experiment,
the adversary knows the key K, which does not permit us to
rely on the above pseudorandomness, for obvious reasons. We
then consider the case of a fixed-key PRF and we require the
one-wayness of the resulting function, against an adversary

Expl (A) Expp 77T (A)
b+s{0,1}; K+ {0,1}";
K« {0,1}"; M« {0,1}%;
Fori=1,2,--- ,gdo R+ F(K, M},
(M, aux ) + A(1™); M« A(K, R);

if b= 0, then R, + U(1™);
ifb =1, then R, = F(K, My):
b« A(Ry, -, Rg,auxy);
return (b = &),

return (M = A‘LI)

be—ind
A (V)

Exp

bs{0,1};

(param, msk) + Setup(l)‘}:

(7, aux q) + A{param);

if b =0, then K + K:

ifb =1, then

(Hdr, K) = Enc(param, msk, Z);
b A(K,aux4);

return (b = b').

FIGURE 2 Building blocks secutity experiments

having access to the key K. Mote formally, for any probabilistic
polynomial-time .7, there exists a negligible function v/(1) such
that

Advi 7 () = Pr [Exp = 1] <u(d).

where Exp%;p 7 i given in Figure 2.

It is commonly believed that the keyed SHA-256 vetifies
such property (see e.g. [10] for some comments on that point).
Moreover, as a hash function, SHA-256 can also be treated as a
random oracle. Using both the one-wayness of the keyed SHA-
256 and the random oracle model, we will be able to prove that
our scheme provides rule indistinguishability against fraudulent
senders and receivers (in the high min-entropy setting, see
Section 2.3.3).

3.1.2 | Hash function

We also need a cryptographically secure hash function /7, that
is collision resistant, resistant to pre-image and resistant to
second pre-image.

3.1.3 | Broadcast encryption

As shown in Refs. [11, 12], Broadcast Encryption (BE)
schemes [13] can be used to enforce some access control in the
multi-user setting. Most of the time, and this will be the case
here, a classical symmetric key encryption scheme should be
added to such broadcast encryption scheme. A broadcast
encryption BE can be described by the following procedures.

* Setup, on input the secutity parameter 4, it generates the
public parameters param of the system, a master secret key
msk.

* Extract, on input the parameters param, the key msk and
a user's index 7 outputs the key sk; of user 7.

* Enc takes as input the public parameters param, the
mastet key msk and a set of indices .”. It outputs a header
Hdr and a key K € 7.

* Dec, on input param, a header Hdr and a secret key sk
for 1 € .7, such procedute outputs the key K.

Regarding security, a specific form of indistinguishability
should be defined on the key K [14]. The corresponding
expetiment Expﬁfgizd is given in Figure 2, where .%/ has ac-
cess to an Enc oracle on input ./ (getting on output (Hdr,
K)) and to a Dec oracle on input (Hdr, ) (having access to
the output key K). We say that a broadcast encryption
scheme BE is indistinguishable if for any probabilistic
polynomial-time .27, there exists a negligible function v(4)
such that

Advi 2 () = |2 Pe [ Bxpl 2= 1] = 1] <w(2).
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3.2 | Description

Let F, G be secure PRFs, both with parameters s and £. Let /7
be a cryptographically secure hash function. Finally, let BE be a
secure broadcast encryption. All details are given in Sec-
tion 3.1. Let .7 (resp. %) be the set of senders (respective
receivers) and let [ be a set of indices related to .7 U .Z.

We now give the details of each step of our intrusion
detection system over an encrypted traffic.

® Setup

© SE first executes mk <—$BE.Setup(1’1). It then computes
sk, < BE.Extract(mk, 7) for each element of .7 U. %
and sends the result (in a secure way) to the corre-
sponding actor. After that, it computes (Hdr, s) «<BE.
Enc(mk, /). We assume that s € {0,1}". Finally, SE defines
the integer C as the maximum number of occurrences of
distinct tokens in the traffic.

During a particular session between a sender S (with index
n € I') and a receiver R (with index 7 € I), a few more things
are executed by the actors.
o A key K «{0,1}* for the PRF G is generated and secretly
shared by SP, S and R.
© A key k for a TLS protocol is also generated and secretly
shared by S and R.

At the end, we have

param = (C, Hdr), sk sg = (mk), sksp = (K),
sks = skg = (sk,, K, k)
® RuleGen
© For each rule 7; € .4, and for each ¢ € [0, C — 1], the
Security Editor SE computes B;z < F(s, 7il|cp. Then SE
sends the set . % = {B;},, to SP.
® Send ’
© On input Hdr and a packet payload 7, S first computes s
«—BE.Dec(Hdrt, sky).
© S then chooses ¢ < and salt <—${O,l}f. Next, the packet
payload is parsed into a set of unique tokens {¢;};. For
each z; S computes

pj:F(Satj”C) (1)
g, = G(K;salt + ) @ p,, (2)

where distinct token has a counter ¢, and it is incremented by
one modulo C when the token repeats.
© Finally, S encrypts the whole packet payload with TLS key
k, and obtain e. It then sends E = ({g;},,e, ¢, salt) to SP.
® Detect
© Receiving the encrypted traffic E = ({qj} 766 salt) from
S, SP computes p; = G(K, salt + ;) @ g; for each received
g;. If there is a match between one p;and one B}, € %,
then the encrypted token is marked as malicious and SP
generates an alert. Otherwise, the token is marked as
legitimate. If all tokens in the packet are legitimate, SP

redirects to R the TLS encrypted packet payload and the
values ¢ and salt. SP additionally hashes the set {p} to
obtain the value A, and gives such auxiliary 1nformat10n
aux to R.
® Receive

© On input e, ¢, salt and its secret key skg, the receiver R
decrypts the traffic e using the TLS protocol and the key
k. After that, it generates the p's in the same way as S
using sk -, ¢ and salt.

o R computes the hash value b of the obtained pj's for
verification. If it matches with A, R accepts the traffic.
Otherwise, S is considered as malicious and R outputs L.

3.3 | Security analysis

We show that the proposed scheme has the detection property
and traffic and rule indistinguishablility properties.

33.1 | Detection

We first prove the detection property of the proposed scheme.

Theorem 1 Our scheme is detectable if 7 is collision-
resistant.

Proof. As explained in Section 2.3, we do not consider the
case where S and R collude to break the detection property.
The case where the sender is honest is obviously achieved, so
that we here only consider the case of a dishonest sender.

We then consider a successful adversary .7 against the
detection property. According to the detection experiment
Expi, in Figure 1, the adversary %  sends

= ({q].}j, e, ¢, salt) to SP such that:

1. eis the ciphertext of a malicious traffic 7’ under TLS key &,
which means that there exists t’- €T and ¢y such that
P{ F(SJJ ||C0) € P,

2. The Recelve procedure does not output L, which means
that the honest receiver R can first retrieve the set {¢7};
using e and k, then compute, for all j, p = F(s, t]lc), and
finally //(p) Z(G(K,salt +/) & q) in hash verifica-
tion (other\mse the traffic is rejected, see Section 3.2); and

3. The detection procedure Detect, on input ¢ outputs
one for all j, which means in particular that

G(K,salt+/) & q & 5.

As # and s are considered as upright, the first and second
points show that p € .Z. This together with the second point
implies that p # G(K, salt +J,) ®q,. 1t follows from the
second point that ./ has obtained a colhslon of 7, which
happens with negligible probability provided that /% is colli-
sion-resistant.

We briefly estimate the probability of false positive. If a
false positive happens, then we have F(s, 7,||c) = F(s, l)llcj) for
some 7; # ;. That is, we have a collision of F(s). Howevet, the
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probability of obtaining a collision of F(s, -) is negligible since
the F is implemented as the hash function SHA-256. This
implies that the probability of false positive is negligible.

3.3.2 | Traffic indistinguishability

We now prove that our scheme is traffic indistinguishable: it
verifies both traffic indistinguishability against a malicious
service provider (sp — tr — ind) and against a malicious security
editor (se — tr — ind). We thus prove the two following the-
orems. We assume in the sequel that the TLS protocol is secure
and do not consider the value e in our proof. One can simply
add the advantage of breaking TLS, which can obviously be
considered as negligible.

Theorem 2 Our scheme is traffic-indistinguishable
against malicious service provider with

AV () < 2(Advi ™ (2) + AdET, (2)).

Proof. Assume that the adversary ./ knows SP's secret key
skgp = K and has access to Send and RuleGen oracles. The
adversary ./ outputs two plain traffics T and 77. According to
a bit b, an encrypted traffic is generated, as £;,= Send(param,
Tp), where T) = {t }]

Game 0. ThJS is the original attack game, where the
encr;fpted traffic Ej is composed of (1) the set
{q G(K,salt + ) EBp } where eachp F(s ,If(»b> Ilcj)

] ] ] )
and s = BE.Dec(Hdr, sk,,), (11) the used random counter cyand
salt, and (iii) the TLS ciphertext e (not considered). The ad-
versary .o/ eventually outputs a bit &', Since KZ/ knows K, it can
obtain the p; ®)>s as p =G(K,salt+)) & q

Let S, be the event that the b = /. Then we have

Advz)/—tr—ind( )_ |2Pr[Exp sp—tr— md(/l) _ 1] _1 |
— |2piS] - 1].

Game 1. We modify Game O by replacing the broadcast
key s, output in s = BE.Dec(Hdyt, sk, ), by a random value in
. Let S, be the event that the b = & in Game 1. We can
describe a distinguisher between Game 0 and Game 1, which
exactly corresponds to the broadcast encryption indistin-
guishability experiment given in Figure 2 (as .27 has no access
to mk, nor s). Then

|Pe[S)] = Pe[S] | = Advi7, (). (4)

Game 2. Recall that .7 is not allowed to query Send with
an)y traffic which contains any t}b) or query the RuleGen with
Furthermore, the p.”’s are distinct due to the varying
counter ¢j for the identical t](b), as in Equation (1). This enables

us to transform Game 1 to Game 2 in which we replace the

p;b) ’s with truly random values in #/(1%). Let S, be the event

that the & = &' in Game 2. We can again describe a dis-
tinguisher between Game 1 and Game 2, which exactly cor-
responds to the pseudorandomness of a PRE, as described in
Figure 2. Then

|Pe[S)] = Pe[S,] | = AdV7, (2). )

Here, the counter ¢ does not change anything since, in the
PRF secutity experiment, the input M is known to the adver-
sary, as ¢ (and the plain traffic) in our game.

At the end of this game, the trafﬁc is then composed of (i)
the set of random values {p } and (i) the used random
counter ¢y and salt. That is, .9/ can only get ' by random guess.
Obviously, PtS, = 1/2.

Using additionally the results given in Equations (3) and
(4), we finally have

Adv? 77 (2) < 2(AdvEE(2) + AdvET (2)),

BE,/
which concludes the proof.

Theotem 3 Our scheme is traffic-indistinguishable
against any adversary without the knowledge of sksp
with

AdVE (1) =2 AdY (4).

Proof. We prove the result on adversaries who know SE's
secret key skgy = mk and has access to Send and RuleGen
oracles. It outputs two plain traffics Ty and 7. According to a
bit b, an encrypted traffic is generated, as E, = Send(param,
T;,), where T, = {t b)}]

Game 0. Thls is the original attack game, where the
encr)ypted traffic  E, is composed of (1) theb set
{q G(K,salt + ) EBp } where eachp F(s ,t](. )||cj)
and s = BE.Dec(Hdr, sk,), (11) the used random counter ¢ and
salt, and (iii) the TLS ciphertext e (not considered). The ad-
versary .o/ eventually outputs a bit &'. Since Q/ knows rnk it
knows the value s. Hence, ./ can compute p ) and p

Let S, be the event that the b = ¥/. Then we have

Advf;—tf—ind (ﬂ) — |2Pr[Expse—tr—md(/1) _ 1] -1 |
=|2Pt[S] —1].

Game 1. We modify Game 0 by replacing the G(K,
salt + 7) with by the output f;(salt + ;) for given salt, where the
function f; chosen uniformly at random in the set of all
functions mapping [-bit strings to 7-bit strings. Let S; be the
event that the b = ¥/ in Game 1. Since K is unknown to .% and
salt is randomly chosen for any new query, one can describe a
distinguisher between Game 0 and Game 1, which exactly
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cotresponds to the pseudorandomness of the PRF G, as
described in Figure 2. Then

| Pe[S,] — Pr[S,]| = AdviZ(2).

At the end of this game, the traffic is then (removing the
TLS ciphertext e) composed of (i) the set
{q] =f,(salt +) 69]7] } given as above, and (11) the used
random counter ¢, and %alt. That is, the traffic is encrypted
with a one-time pad. Obviously, PtS; = 1/2, and then

Advem(2) = 2 A0 (2),

which concludes the proof.

3.3.3 | Rule indistinguishability

We now prove that our scheme is rule indistinguishable: it
verifies both rule indistinguishability in the basic setting
sp — rul — ind) and in the high min-entropy one
(bme — rul — ind). We thus prove the two following theorems.

Theorem 4 Our scheme is rule-indistinguishable in
the basic setting with

AT (2) < 2(AdvE (2) + AdvET (7).

Proof. Assume that the adversary .7 knows SP's secret
key skgp = K and has access to the RuleGen and Send oracle. It
outputs two sets of rules .# and .#. According to a bit b, a
set Ay, of blinded rules is generated, as %', = RuleGen
(param, sksg,.#}).

Game 0. This is the original attack game, Where the blin-
ded rules are given by the set )= {B i }lk with

®) (&) >
B =F(s,""llq) with " €.} and ¢ € [0, C = 1]. The
adversaty AQ/ eventually outputs a bit &. Let S, be the event
that the b = &', Then we have

Advr{;—rul—ind( ) |2Pr[ psp rul— md(ﬁ) _ 1] -1 |
= [2Pt[$] — 1].

As the adversary has chosen .#; and .# 4, and since it has
access to the Send oracle giving on input a known payload
T={y} j it simply has to generate a payload permitting to
learn some information about the rules that are truly related
to ., b-

In fact, as for Theorem 2, we can first define Game 1 in
which we replace the broadcast key s, output in s = BE.Dec
(Hd, sk,,), by a random value in .7

Notice that .%/ does not quer; RuleGen or Send oracle
with the r< )’s. Moteover, the B ;s are distinct due to the
vatying counter cg. Then, we can transforrn Game 1 to Game 2

in which we replace the B ’s with truly random values in
7/ (1*). As the blinded rules are no more related to input rules
in .4y, this is obvious that Pt§, = 1/2.

We then have

AV () < 2(AVE () + AV (),
which concludes the proof.

Theotem 5 [ the random oracle model, our scheme is
rule-indistinguishable in the high min-entropy setting
with

Advemomd () < AV (3) 20

Proof. Assume that the adversary .7 knows sender and
receiver's secret keys sks = skg = (sk,,, K, k). Hence, .%/ knows
the key s to the PRF F. It outputs two sets of rules .# and
M. According to a bit b, a set .}, of blinded rules is
generated, as %, = RuleGen(param, sksg,.# ).

Game 0. This is the original attack game, where the blin-
ded rules are given bz the set %), = {B }z/e with
B<b F(s,7 ||c/€) with 7, e//b and ¢, € [0, C — 1]. The
adversary E/ eventually outputs a bit Y. Let Sy be the event
that the b = &'. Then we have

Advhmesrul=ind(3) — | 2Py [Exphme—rul=ind (7) = 1] — 1|
= | 2Pt[Sy] — 1].

In this case, the adversary .&/ = (.%/7,.%,) can create any
traffic of its choice, since it has access to the sendet's key. But,
as we fall into the high min-entropy setting, .%/y and .7,
cannot communicate with each other, and ./, ¢ has no chance
to obtain one element in .#}, ‘by chance’.

Game 1. We modify Game 0 to Game 1 by adding an
abort when the adversary makes use of a rule included in .#,.
Let §; be the event that the b = ¥ in Game 1. Obviously, the
difference between Sy and & is given by the high min-entropy
(see Section 2.3), and thus we have

| Pe[S] — Pe[S)] | < 27,

where u(l) € w(logl) according to the high min-entropy
property of the rule set.

After Game 1, consideting keyed SHA-256 for the PRF
F, the aim of the adversary .o/ is to distinguish, among the
unknown sets .#, and .#;, which of the two has been used
to compute %= {SHA-256(s, r ”Ck)};k Applying the
high min-entropy, %/ has no way to find one of the 7, by
chance. Using the technique introduced by Bellare and
Rogaway [5], we can prove by contradiction and in the
random oracle model, that we can used such distinguisher

£/ to btreak the one-wayness of the keyed SHA-256
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(see Section 3.1). For this purpose, we construct a machine
that is given a key K and a value R = SHA-256(K, M) for
an unknown input M. We set s as the key K, and embed the
challenge R in the set %), that is sent back to .. Our
machine then watches for random oracle queties that .&/
makes related to SHA-256. If there is one such query (K, M)
for which R = SHA-256(K, M), then the machine output M.
As in [5], we argue that ./ has no advantage in dis-
tinguishing .#y and .#; in case that .2/ does not ask for the
such image. So our machine wins with non-negligible
probability, which permits us to conclude that

|2Pe[S, ] = 1] = AVl (2) = Advi T (4),

and also conclude our proof.

4 | EXTENSIONS OF PROPOSED
PROTOCOL

Our primary scheme in Section 3.2 performs a single keyword
match over encrypted traffic. This section presents some ex-
tensions to support more sophisticated rules which enable
limited IDS and then discusses the support of regular
expressions.

41 | Supporting limited IDS
41.1 | Detecting rules with attributes

IDS's rules typically contain some attributes of suspicious
keywords. They can be categorised as a packet field or a range
of positions in the packet payload. For these rules, single
keyword matching can no longer work. A direct solution is to
reveal the attributes to Service Provider SP as illustrated in
BlindBox [6]. However, even revealing the inspection positions
indicated in the rule can threaten the privacy of endpoints since
the SP could deduce which applications or protocols the
endpoint runs [12].

Construction (Sketch)

To ensure strong protection on the rules and traffic, we adapt
the rule and token generation methods, where the rule attri-
butes are concatenated to the keywords. Note that the attribute
and the keywords together are sent to PRFs, it is protected
while the detection can still function correctly. To be more
specific, the rules and tokens are generated by

F(s,7;listrllc,) and F(s, ¢;llstr||c)

in RuleGen and Send respectively, where str represents any
attribute of rule 7, for example, ‘http_header’. Another
example is the offset information of keywords in the payload.
In this case, all possible positions in a certain range should be

given the value of str. Consequently, the SP can detect traffic
which matches rules with attributes.

4.1.2 | Detecting rules with multiple conditions

Many malicious behaviours can only be identified under mul-
tiple conditions. Hence, some detection rules check multiple
tokens simultaneously to reduce false positives [15]. The trivial
approach of attaching the rule id to its action would leak too
much information on the traffic and rule. Instead, secret
sharing-based encryption can be employed. The reader is
referred to [12] for more details.

4.2 | Support of regular expressions

In general, our scheme cannot support more sophisticated
rules, that is, regular expressions. BlindBox proposed a work-
around, where the decryption key is accessible in case of a
match on the patterns [6]. The Service Provider SP then de-
crypts the content and evaluates the regular expression on
clear-text. This does not reduce the false negative rate, that
poses the higher threat, but only the false positive rate, and at
the cost of the privacy.

In [12], an alternative approach is proposed in the use case
where the admin server plays the role of a Security Editor SE
and the SP is semi-honest. The idea is that SP sends the
warning and the suspicious packets to SE for the security
consideration, who will enforce the endpoints to hand over the
TLS key for decryption, or it will stop the connection. In this
way, the decryption is performed by the trusted admin server
(SE) instead of the untrusted SP.

As a result, general-purpose IDS over encrypted data
mostly focus on pattern matching. Moreover, experiments in
[12] show that only a very small portion of packets are matched
which require the support of sophisticated rules, for example,
less than 1% in instruction detection traffic dumps with over
30 million packets.

5 | IMPLEMENTATION AND
VALIDATION

In this section, we focus on the implementation and validation of
our approach. We evaluate the performances of our protocol and
compare the obtained results with the classical HT'TPS and the
two main existing results: BlindBox and BlindIDS.

5.1 | Implementation details
5.1.1 | Implementation environment
We implemented our protocol given in Section 3.2 on an Intel

(R) Xeon(R) with a E5-2637 processor with four cores running
at 3.70 GHz, in C language running in a 64-bit Linux OS.
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5.1.2 | Cryptographic choices

To implement our protocol, we have chosen the keyed hash
function HMAC-SHA-256 as a pseudorandom function and
SHA-256 again as a hash function. This gives us the output size
of 256 bits for Fand G respectively (which corresponds to the
size of the pjs and the g/'s). The size of the keys s and K is
moreover defined as 128 bits, as prescribed by most of gov-
ernment agencies. For all these functions, we have used the
LibTomCrypt library.

Regarding the broadcast encryption, we have chosen to use
the basic LSD scheme [16], which is an improvement of the
SD scheme [17] in terms of key manipulation. We have
considered a group of 2% users (corresponding to 4.3 billions,
which seems to be enough in practice). Following [16], the
decryption procedure necessitates 31 executions of a pseudo-
random function and each user has to memorise about 180
keys (128-bit length).

In our benchmarks, we only consider the decryption phase.
In fact, the key generation, extraction and encryption ones are
done by the Security Editor during an off-line phase, and are
then of less importance to compare our solution with related
work. Assuming that the group of users may have evolved
since the last connection of a user, we moreover take into
account the time needed to execute this decryption procedure
at each Send procedure.

5.2 | Functional tests

We consider the same framework as BlindBox and BlindIDS
regarding rules and traffic. At first, the traffic we use comes
from the ICTF dataset (https://ictf.cs.ucsb.edu/) which con-
tains network traces collected during an ‘International Capture
The Flag’ event.

Regarding the rules, we also refer to the same public
datasets for detection functionalities related to (i) malwares
[18, 19], (ii) parental control [20] and (iii) general rules [15]. For
all these rules' datasets, our solution can be applied using
comparison and perfect matches with either the URL header
field [18, 20] or hexadecimal strings or text keywords contained
in the entire packet [15, 19].

In all cases, the rules we can manage are based on some
static contents, and we are obviously not capable to manage
general regular expression. In the first case, we support most of
the proposed entries. Contrary to [0, 7], we, however, consider
that 100% is not really possible since there are some rules
containing some URL blacklists that can be easily obtained.
For example, if the adversary is both the sender and the
receiver, this can be used to break the rule indistinguishability
property and obviously does not fall into the ‘high-min en-
tropy’ setting, In the second case, as we cannot manage regular
expressions, we can only manage three-fourths of the pro-
posed entries (see bib24[6, 7] for details).

Regarding the ability of out solution to detect attacks, as
the structure of our solution is exactly the same as in the
BlindBox one [7], as we use the same tokenisation strategy

applied to the same dataset, it is obvious that we can achieve
the same accuracy as in BlindBox and BlindIDS (again, see
Refs. [6, 7] for details). More precisely, there are two tokeni-
sation algorithms. At first, window-based tokenisation pro-
duces fixed-length tokens: for every offset in the traffic, the
sender creates a token of a fixed length. Then, delimiter-based
tokenisation gives variable length tokens: each token starts and
ends before or after a specific delimiter such as a punctuation,
a spacing, or a special symbol.

Using this framework, we compare our solution with
standard HTTPS and with the two main existing solutions,
namely BlindBox [6] and BlindIDS [7]. This comparison is
done based on the setup and enctyption time on sendet/re-
ceiver's side, key size for sendet/receivert, detection time on the
Service Provider's one and RAM usage for the Service Pro-
vider. We provide several results based on the size of the
considered traffic and the number of rules that have been
edited by the Security Editor.

5.3 | Petformance comparison

We can now evaluate the performance of our solution. The
result is given in Table 1, together with our comparison with
related work. Note that the source codes of [6, 7] are not
publicly available, so we only compare our results with the one
reported in their article. Our implementation environment is
equivalent to the one used in BlindIDS, and quite close to the
one in BlindBox. Our purpose is not to give an exact com-
parison but to compare the orders of magnitude.

In Table 1, we use the figures in Ref. [6] for HTTPS and
BlindBox and take the figures in [7] for BlindIDS. We do not
give the figures for detection overhead of HTTPS (n.a. in
Table 1) since the standard HTTPS cannot perform intrusion
detection over encrypted traffic.

These figures definitely show that our solution is very
performing and better than related works in all aspects.

5.3.1 | Connection setup

As for BlindIDS, our solution does not impact the setup time
for a connection, while the BlindBox one depends on the
number of rules to be tested, to generate the garbled circuits.

5.3.2 | Sender/receiver cost

Regatding the sender/teceiver side, we should study at first the
enctyption/dectyption time. As shown in Table 1, our
approach reduces by three orders of magnitude the time to
encrypt/decrypt the traffic, compare to BlindIDS solution.
This is due to the fact that we only manipulate symmetric
cryptographic techniques. In comparison with BlindBox, one
can see that the bigger the traffic size, the better will be our
solution. Even if the broadcast decryption phase is expensive,
it is done only once, whatever the size of the traffic. Finally, it is
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TABLE 1 Performance and comparison

of our solution with the standard HTTPS Description HTTPS BlindBox BlindIDS Our solution
technique, the BlindBox, and the BlindIDS Connection time  Setup (1 keyword) 73 ms 595 ms 73 ms 73 ms
solutions (Sender/Receiver)
Setup (3K rules) 73 ms 183 s 73 ms 73 ms
Encrypt/Decrypt (128 bits) 13 ns 9.6 ps 729 us 240 ns
Encrypt/Decrypt (1500 bytes) 3 ps 960 us 27 ms 6.5 ps
Detection time 1 rule, 1 token na. 20 ns 691 us 10 ns
(Service provider)
1 rule, 1 packet n.a. 7.9 ps 41.3 ms 980 ns
3K rules, 1 token n.a. 137 ns 700 ms 16 ns
3K rules, 1 packet n.a. 30 us 74 s 1.5 us
RAM usage 1 rule, 1 connection n.a. 16.72 MB 0.2 KB 0.1 KB
(Service provider) )
3K rules, 1 connection na. 50.16 GB  0.58 MB 0.3 MB
1 rule, 100 connections n.a. 175 MB 0.2 KB 0.1 KB
3K rules, 100 connections n.a. 512 GB 0.58 MB 0.3 MB

obvious that we cannot compare to the HTTPS but we
demonstrate here that we are not so far coming near the same
order of magnitude.

Secondly, we should consider bandwidth cost and
throughput, which correspond to key figures related to client
performance. To measure how competitive our solution is, we
compare the load time of it with the ones of BlindBox and
BlindIDS, for some popular websites. In fact, in our case, we
only have to consider that the traffic is sent approximately
twice: first being encrypted using TLS, and second being
encrypted (using PRFs) in the gfs. Then, as shown in [7], it
necessitates about 97s to enctypt/decrypt a Twitter page of
284 KB using BlindBox, while BlindIDS can do that in about
5s. A CNN webpage (131 KB) necessitates 2.3s using Blind-
IDS and again 97s using BlindBox. A Facebook page (74 KB)
is loaded in about 1s using BlindIDS and 97s using BlindBox.
Using our solution, the resulting time for all these websites is
less than 100 ms, which is very close to the result of the current
standard HT'TPS protocol!

5.3.3 | Detection

We also evaluate and compare the overhead for the Service
Provider during detection. We then measure the memory space
and the time required to perform detection, according to the
number of detection rules (from 1 rule to 3K rules) and the
size of the network connections (from 1 token of 128 bits to 1
packet of 1500 bytes). Again, our performances regarding the
time needed to test all the rules is quite similar to the one of
BlindBox. Even if it seems that our figures are a little bit better,
both implementations have not been done in an optimised
manner, and as the one from BlindBox has been done in 2015,
several optimizations are certainly available today. However,
compared to BlindIDS, we are widely more performing, up to
seven orders of magnitude for 3K rules and a packet of 1500
bytes! Again, symmetric cryptography is definitely better than

pairing based asymmetric cryptography in terms of
performance.

On RAM usage, we are much better than BlindBox and we
are close to BlindIDS. This is due to the fact that we have
similatly replaced the garbled circuits of BlindBox by some
trapdoors that are derived from the malicious keywords in the
detection rules: for each rule, there is one single version of its
blinded version. As for BlindIDS, the difference is due to the
fact that we are using symmetric cryptography techniques,
compared to the bilinear pairing setting of BlindIDS.

5.4 | Real-life deployment

Similar to related works, it remains a lot of work from our
‘practical’ results to a real-life deployment. In this section, we
give some potential solutions to several concrete problems
related to such potential deployment of our solution.

5.4.1 | Management of parameter C

The parameter C determines how many times the same rule
will be encrypted and how many times the Service Provider
will check for the same rule. Therefore it directly ties to the
cost of detection, even though being limited, as shown in
Table 2. It has also an important impact on the RAM usage
since it turns out to be linearly dependent.

If Cis latge, there will be a lot of blinded rules and the
detection procedure will be costly, both being in 7(C|.# |). If
Cis short, detection time will be short but the risk is that several
users encrypt the same token ¢; in the payload with the same
value ¢ € Z¢. The Service Provider will then obtain the infor-
mation that the same token has been encrypted in two different
payloads, then breaking the traffic indistinguishability property.
We have a trade-off to manage, which strongly depends on the
real-life setting in which such solution is deployed, depending on
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the number of rules, the number of users and the amount of
traffic to be managed by the Service Provider.

Except increasing the parameter C, one solution to
decrease the risk of breaking the traffic indistinguishability is
for the Security Editor to regularly edit a new set of blinded
rules (from the same set.# of rules). This obviously cannot be
done by changing the value C. One option is to teplace the set
[0, C — 1] by a randomly chosen subset of size C in a much
larger set (e.g., Z, for a very large integer g). Another option
(that can be used together with the previous one) is for the
Security Editor to execute again the broadcast encryption
procedure BE.Enc(mk, /) to get a fresh couple (Hdr, s). The
header is broadcast to all users and the secret s is used to
produce a new set of blinded rules.

5.4.2 | Key management

One main difference of our system compare to existing ones is
the fact that we are using symmetric key cryptography. As we
have seen, the advantage is that our performances are
remarkably better than those of BlindBox and BlindIDS. The
main downside regarding this choice is that a real-world
deployment should have to pay more attention on the way keys
should be managed. More precisely, the same key needs to be
shared among a lot of people: the key s among SE, senders and
receivers, and the key K among SP, senders and receivers. The
compromising of such keys may lead to the deterioration of the
security properties. In short, our security is more sensitive to
coalitions between the different actors.

5.4.3 | Intranet versus internet deployment

In practice, there are two ways to deploy such kind of solution.

On one hand, one single entity can manage both the client
and the server. For example, in case of an intranet, a company can
explicitly instal to its employees' PCs a dedicated plugin or
extension permitting the latter to make use of the encryption
scheme described herein. As the company also manages the
servers for the intranet services (related to vacations, travels,
declaration of worked hours, etc.), it can also implement this
encryption algorithm on those dedicated servers. The company
can finally manage a proxy to perform the detection procedure,
as described in the previous sections. If one of the two parties
(PC or intranet servers) does not make use of the right encryp-
tion algorithm (because it has been corrupted by an external

TABLE 2 DPerformance of detection for different values of the C
parameter

Parameter C 100 1000 10,000 100,000

Detection time 1 rule, 1 token 10ns 10 ns 10 ns  10.2 ns
3K rules, 1 packet 14 ps 15us 23 ps 7.5 us
RAM usage 1 rule, 1 token 10 B 0.1 KB 1KB 10 KB

3K rules, 1 packet 30 KB 03 MB 3MB 30 MB

attacker), the other will detectit, and refuse the connection, so as
to remain safe. If both parties apply our encryption mechanism,
then the proxy will necessarily detect an intrusion.

On the other hand, if one single entity cannot manage both
parties of a communication (client and server), we need to first
standardise the whole encryption and detection mechanism
(potentially at both ISO and IETF sides) and then provide the
relevant implementation (modifying the cipher suites in e.g
TLS/SSL for both clients and setvers) so that it can largely be
deployed. Then, a server can for example refuse any traffic not
implementing this traffic encryption solution, and the client
can also refuse to connect to any server not accepting those
algorithms, so that the detection is always performed, keeping
the whole system safe.

5.4.4 | Additional meta-data treatment

As a complement, there are some existing methods to perform
intrusion detections by making use of the meta-data, that are
most of the time not encrypted. In fact, both approaches are
compatible, and complementary. In a real-life deployment, the
proxy can act in two steps: (i) perform an intrusion detection
using the non-encrypted meta-data, and (ii) perform a second
intrusion detection in the encrypted data, using our method.

6 | RELATED WORK

This section reviews some related work on intrusion detection
over encrypted traffic. We focus on works most relevant to us:
multi-party computation-based BlindBox, public key searchable
encryption-based BlindIDS, pattern matching on encrypted
streams, searchable symmerric encryption schemes and finally
hardware-based solution EVE. To compare with the two closest
works, BlindBox and BlindIDS, we also give at the end of this
section a comparison in terms of security and functionality.

6.1 | Main papers
6.1.1 | BlindBox, Embark and PrivDPI

The BlindBox paper [6] proposes three distinct detection
protocols supporting DPI over encrypted traffic. They all
support equality tests between the encrypted traffic and the
rules defined by the Security Editor. In the third solution, the
Service Provider can also retrieve the decryption key
embedded into the trapdoor used for equality test, permitting a
full decryption of the traffic, and then the possibility for SP to
operate a full IDS (but with no more confidentiality).

Those solutions are all based on garbled circuits and obliv-
ious transfers. The idea is to execute a garbled circuit evaluation
for each TLS connection, and for each detection rule to be
tested. The secret key used to encrypt the traffic is secretly
embedded into the garbled circuit by the sender and the SP
deterministically encrypts each pattern to be tested using that key
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(but without knowing it, using oblivious transfer techniques).
Then, the garbled circuit is executed in a 2-Party protocol, and
finally outputs the decision on the safeness of the traffic.

As shown in the previous section and in Ref. [7], this
process should be done at each TLS connection, and then
drastically increases the setup time (97 s according to Ref. [6]).
Moreover, the memory space needed is proportional to the
number of (z) unique receivers to be protected, (%) unique TLS
connections, and (777) unique detection rules. Thus, even if the
BlindBox authors show that such garbled circuits and oblivious
transfer techniques can be very efficiently implemented, this is
definitely not enough efficient for a practical privacy-friendly
IDS over an encrypted traffic. BlindBox is not scalable, and has
serious limitation compare to the matket ecosystem for
network security solutions.

The Embark system [21], defined by the authors as an
extension of BlindBox, does not treat these limitations. It only
provides a solution to securely outsource network middleboxes
to the cloud.

Very recently, the PrivDPI system [8] has been proposed to
improve BlindBox. It provides a more practical variant of the
encrypted rule generation, while keeping the same level of
security and privacy.

6.1.2 | BlindIDS

BlindIDS [7] takes a different approach. It offers to encrypt the
patterns only once for all the TLS connections, using public
key cryptography, and more specifically decryptable searchable
encryption [22] (DSE). The idea is for the sender to encrypt
the traffic using the DSE, to determine which traffic can be
decrypted by the receiver. In parallel, the Security Editor
provides to the Service Provider one trapdoor for each pattern
to be tested on the encrypted traffic, using the testing pro-
cedure of the DSE scheme.

Then, BlindIDS improves the BlindBox scheme in two as-
pects. At first, the connection setup time is constant since all
trapdoors are computed only once for all TLS traffic. Similarly,
the memory space required to perform DPI only depends on the
number of detection rules, and no longer on the number of re-
ceivers nor the number of concurrent TLS connections. Another
positive consequence is that the Service Provider no longer
knows the detection patterns it is searching in the encrypted
traffic, due to the properties of the DSE. However, the use of a
public-key cryptography, and especially pairings, comes with an
increasing decryption overhead on the receiver side. Then, the
BlindIDS is still not enough for a real-world use.

6.1.3 | Pattern matching on encrypted streams

Recently, Desmoulins et al. [23] have proposed a pattern
matching system over encrypted streams. They introduce a
new kind of searchable encryption that manages so-called
’shiftable trapdoors’. While BlindBox and BlindIDS only per-
mits to detect patterns that perfectly match one substrings, this

solution permits to detect a pattern even if it straddles two
substrings. This solution then permits to manage many more
rules than related work, but the detection procedure is about
10 times less efficient than the one of BlindIDS.

6.1.4 | Searchable symmetric encryption

Searchable symmetric encryption (SSE) enables a user to
encrypt data in such a way that it can later generate search
tokens to send as queries to the storage server [11]. An im-
mediate application of SSE is to the design of searchable
cryptographic cloud storage systems. Considering the effi-
ciency of underlying symmetric key primitives, SSE seems a
promising alternative to public key searchable encryption
schemes used in BlindIDS [7] and in Ref. [23]. However,
directly employing the existing SSE protocol [11, 24] cannot
meet all our design requirements. To be specific, SP needs to
match the encrypted traffic from S and encrypted rules from
SE. To this end, S and SE should respectively encrypt data and
generate search trapdoors for the given keywords. In either
single-uset or multi-user SSE schemes, for example, SSE-1 and
MSSE in [11], the two actors S and SE share exactly the same
secret keys for data encryption and trapdoor generation. Hence
the SE can break the traffic indistinguishability trivially.
Therefore, the existing SSE scheme cannot be directly used in
our case.

6.1.5 | EVE

Very recently, a new proposal was suggested in [25]. The pro-
posed framework and the implemented EVE platform have
been built to manage a secure and practical middlebox that
handles encrypted traffic. For this purpose, the authors make use
ofa combination of hardware-based trusted execution (using the
Intel-SGX component) and software security technology. The
main idea is to give a copy of the traffic to such hardware that can
decrypt it, execute the rules on the plain traffic, and give the
result. The authors newt improve the performances by applying
several software based tricks. Indeed, the result does not rely on
cryptographic security but rather on the fact that it is not feasible
to break the security of a hardware (embedded keys are secure,
and the execution environment is safe), which may be seen as
quite questionnable (see e.g; this recent paper [20]).

6.2 | Functionality and security comparison

Regarding the above ‘categories’ of solutions, our construction
can be seen as an improvement of the BlindIDS concept, that
is making use of decryptable searchable encryption, but in the
symmetric key setting, using techniques from searchable sym-
metric encryption.

If we now focus on the functionalities and security re-
quirements, there are some differences between BlindBox,
BlindIDS and our solution that we now detail.
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® Privacy-friendly means that no access is possible to the
plaintext related to encrypted traffic: this property is simi-
larly verified by the three solutions, except with the third
protocol proposed in BlindBox, for which the service pro-
vider is allowed to decrypt the whole traffic when it detects
suspicious tokens when executing the two first protocols.

o Security-aware means that the solution supports DPI over
encrypted traffic. This property is satisfied by the three
solutions. Furthermore, extensions of our original protocol
presented in Section 4 can achieve at least the same func-
tionalities as Protocols II in BlindBox. Discussions on the
support of full IDS functionality have been given in
Section 4.2.

o Market-compliant means that each party (Security Editor
and Service Provider) preserves its own know-how without
revealing it to the other parties. This property is not verified
in BlindBox as the Service Provider is required to have a
direct plain access to the SE rules”, which is definitely not
market-compliant, since the SE will be very reluctant to
share their detection rules with SPs. In contrast, both
BlindIDS and our solution succeed in verifying this prop-
erty. Our solution naturally necessitates the Service Provider
to manage a secret key, while this is not the case for
BlindIDS, but this can be added quite easily by managing an
additional encryption layer with a Service Provider key.

o Security level: all the three solutions reach the same level of
security. The only exception is that the BlindBox does not
achieve the rule indistinguishability against the Service
Provider property, as explained above.

7 | CONCLUSION

We have provided a new approach to intrusion detection over
an encrypted traffic. While our general framework is close to
BlindIDS, the fact that we make use of the symmetric cryp-
tography makes things far more efficient, and comparable to
the state-of-the-art BlindBox in terms of encryption and
detection time. It is today possible to obtain the best of all
existing solutions in one system: efficient setup, low memory
consumption, rules' confidentiality against service providers
and efficiency of the whole protocol. The current drawback of
our solution is that we need to manage the counter ¢ < C,
which asks the Secutity Editor to provide C ‘trapdoors’ for
each rule. The way to prevent the use of such trick can be very
good in the future.
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