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O P T I C S

Nondestructive, high-resolution, chemically specific 3D 
nanostructure characterization using phase-sensitive 
EUV imaging reflectometry
Michael Tanksalvala1*, Christina L. Porter1, Yuka Esashi1*, Bin Wang1, Nicholas W. Jenkins1, 
Zhe Zhang1, Galen P. Miley2, Joshua L. Knobloch1, Brendan McBennett1, Naoto Horiguchi3, 
Sadegh Yazdi4, Jihan Zhou1,5, Matthew N. Jacobs1, Charles S. Bevis1, Robert M. Karl Jr.1, 
Peter Johnsen1, David Ren1,6, Laura Waller1,6, Daniel E. Adams1, Seth L. Cousin7, Chen-Ting Liao1, 
Jianwei Miao1,5, Michael Gerrity1, Henry C. Kapteyn1,7, Margaret M. Murnane1

Next-generation nano- and quantum devices have increasingly complex 3D structure. As the dimensions of these 
devices shrink to the nanoscale, their performance is often governed by interface quality or precise chemical or 
dopant composition. Here, we present the first phase-sensitive extreme ultraviolet imaging reflectometer. It com-
bines the excellent phase stability of coherent high-harmonic sources, the unique chemical sensitivity of extreme 
ultraviolet reflectometry, and state-of-the-art ptychography imaging algorithms. This tabletop microscope can 
nondestructively probe surface topography, layer thicknesses, and interface quality, as well as dopant concentra-
tions and profiles. High-fidelity imaging was achieved by implementing variable-angle ptychographic imaging, 
by using total variation regularization to mitigate noise and artifacts in the reconstructed image, and by using a 
high-brightness, high-harmonic source with excellent intensity and wavefront stability. We validate our measure-
ments through multiscale, multimodal imaging to show that this technique has unique advantages compared with 
other techniques based on electron and scanning probe microscopies.

INTRODUCTION
Although x-ray imaging has been explored for decades and visible-
wavelength microscopy for centuries, it is only recently that the 
spectral region in between―the extreme ultraviolet (EUV; with 
wavelengths spanning ~10 to 100 nm)―has been explored for im-
aging nanostructures and nanomaterials. This is because high–
numerical aperture (NA), high-quality optics have not been available 
in the EUV region of the spectrum. However, with the practical im-
plementation of coherent EUV light sources based on high-harmonic 
generation (HHG), combined with coherent diffraction imaging 
(CDI) (1), EUV imaging has been shown to be competitive in terms 
of resolution when compared with other light-based imaging tech-
niques (2–4). This is important because for synthesis and integra-
tion of a host of next-generation materials and nanostructures, new 
approaches are needed to nondestructively and routinely determine 
interfacial and layer structure as well as surface morphology, with 
sensitivity to dopant distributions and material composition. This is 
becoming more critical as films and devices shrink below 10 nm, 
where their properties are no longer well described by bulk macro-
scopic models and can become almost entirely geometry or interface 
dominated (5–9). Moreover, the functional properties of interfaces 
(i.e., charge, spin, and heat transport) that affect the switching energy 

of magnetic memory or the coherence time and operating tempera-
ture of quantum devices are very difficult to measure, especially in 
situ in working devices (10–12). As a result, there is a great need for 
nondestructive, noncontact imaging techniques that can be applied 
to general samples.

Imaging with EUV light has many unique advantages. It can 
penetrate materials that are opaque to visible light, making it possible 
to image buried structures and to extract depth-dependent compo-
sition (13). When incident at angles between grazing and ~45°, EUV 
light has a sufficiently high reflectivity to image most samples (14–19). 
Combined with the fact that the penetration depth of EUV light is 
sufficiently long to probe interesting structures in most materials, 
this makes EUV light well suited for general reflectometry applica-
tions. This is in contrast to soft/hard x-ray light at wavelengths <8 nm, 
which is best suited for transmission mode microscopy. Fortunately, 
high-brightness, coherent EUV beams can now routinely be generated 
via high-harmonic up-conversion of intense femtosecond lasers 
(20–22). The low driving laser pulse energies required for HHG―in 
the 10 J to ~mJ range―make it possible to operate at kilohertz-to-
megahertz repetition rates that are ideal for applications in imaging 
and spectroscopy.

When combined with ptychographic CDI (2, 23–28), EUV im-
aging can fill many current characterization gaps. In ptychography, 
a coherent beam of light is scanned across a sample, and the far-field 
diffracted intensity is collected from overlapping fields of view (FOV). 
An iterative phase retrieval algorithm is then used to extract quanti-
tative images of the sample’s complex transmittance or reflectance 
from the collected intensity images (29–31). Recent advances in CDI 
are yielding stunning, high-fidelity images and transforming short-
wavelength imaging capabilities (1, 26, 32–38). Moreover, by eliminating 
the need for an image-forming lens, CDI supports diffraction-limited 
resolution to enable high transverse resolution and axial precision 
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at short wavelengths (2, 4, 13, 26). Since ptychographic CDI recon-
structs a sample’s full complex reflectance, its use with EUV wave-
lengths is well suited for phase-sensitive imaging reflectometry 
applications. In particular, the complex reflectance of coherent EUV 
light, especially the phase, is exquisitely sensitive to chemical com-
position, making it possible to determine sample composition 
uniquely when the incidence angle and/or wavelength of the beam 
on the sample is scanned (see Fig. 1, E and F).

Here, we demonstrate the unique advantages of coherent EUV 
imaging in reflection mode as a general nanoimaging technique. Our 
previous work has shown that EUV phase-sensitive imaging has 
promise for measuring many sample parameters; however, in that 
work, actually determining the sample parameters was a difficult-to-
solve, underdetermined problem because it only used a single image 
of the sample (13). Here, we show that imaging at many angles of 
incidence enables us to nondestructively image nanostructures with-
out any special sample preparation or supporting measurements from 
other metrologies and with unique three-dimensional (3D) compo-
sitional specificity that has not heretofore been possible. This new 
technique combines the excellent phase stability of coherent high-
harmonic sources with the unique chemical and phase sensitivity 
of EUV reflectometry and state-of-the-art ptychography imaging 

algorithms. Several aspects were key to implementing high-fidelity 
phase and amplitude imaging: the ability to correct the glancing-
incidence distorted diffraction patterns with very high accuracy, the 
use of total variation (TV) regularization (39) to reduce noise and 
artifacts in the reconstruction, the accurate self-calibration of the 
reflectometer, and the use of a high-brightness, high-harmonic 
illumination beam that is very stable in intensity, wavelength, and 
wavefront.

The importance of this advance is that it enables nondestructive, 
large-area, quantitative, 3D imaging of nanostructures and their 
chemical makeup, layer thicknesses, interface quality, and dopant 
levels. Moreover, this technique does not require any special sample 
preparation. The sensitivity that we achieve for some of these pa-
rameters is comparable to, or exceeds that of, other techniques that 
are destructive or contact-based, or that need to average over large 
unpatterned areas to extract some sample parameters. These include 
scanning transmission electron microscopy (STEM), secondary ion 
mass spectrometry (SIMS), and atomic force microscopy (AFM), 
which were used for correlative imaging in this work. In the future, 
by harnessing the femtosecond time resolution of EUV HHG 
beams, the imaging reflectometer can be enhanced further to cap-
ture charge, spin and heat transport, and link structure to function. 

Fig. 1. Experiment overview and nanostructure imaging. (A) Schematic of the amplitude- and phase-sensitive imaging reflectometer, which produces large-area, 
spatially and depth-resolved maps nondestructively. The incidence angle of the illumination is scanned by rotating the sample and detector in a -2 configuration. The 
sample can also be scanned in 2D to perform ptychographic coherent diffractive imaging. Inset: Schematic representation of the imaged sample, which has SiO2 + Si3N4 
structures patterned on As-doped regions with higher (~1%) and lower (~0.1%) peak dopant concentration. Native oxide layers (SiO2) are also present. (B and C) Zoom-in 
of EUV ptychographic phase reconstructions of the sample, (B) before and (C) after precise implementation of 3D tilted-plane correction and total variation (TV) regular-
ization. (D) Entire, wide field-of-view amplitude reconstruction. Contours with corresponding labels on the right show the regions exposed to certain percentages of total 
photons that were incident on the sample during a single ptychography dataset. Small circles and corresponding labels on the left indicate the total number of photons 
that were incident on a pixel at that location over the duration of a single ptychography dataset (light incident at 30° from grazing). (E and F) Characteristic reflectivity 
versus angle curves for several bulk materials at 30-nm wavelength, showing the sensitivity of EUV light to material composition. The phase, measured by our reflectometer 
but not detected by others, can distinguish between materials even more sensitively than amplitude.
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The spatial resolution, sensitivity, and speed can also be enhanced 
further by using shorter-wavelength illumination, incidence angles 
farther from grazing, higher NA, faster detectors, and higher repeti-
tion rate drive lasers.

Experiment setup and procedure for phase-sensitive 
imaging reflectometry
To implement phase-sensitive imaging reflectometry, we first record 
a ptychographic dataset at each incidence angle (see Fig. 1). We used 
five angles in this initial work; however, with increased data handling 
capabilities, more angles could be used to solve for more parameters 
or to lower the uncertainty. Next, we reconstruct an image for each 
angle using ptychography, giving us quantitative images of the sample’s 
complex reflectance at each angle. These images look similar to one 
another, but the features change contrast depending on their com-
position, as well as the wavelength and incidence angle of the illu-
minating beam. We then segment these images to form reflectance 
curves for the different sample regions, and using these, we recon-
struct their depth-dependent compositions using a genetic algorithm. 
Last, we combine these into a representation of the sample’s topography 
and composition.

This phase-sensitive imaging reflectometer is illuminated by a 
coherent high-harmonic beam from a tabletop HHG source (mod-
ified prototype KMLabs XUUS4), at wavelengths that can range 
from 13 to 30 nm. A wavelength of 29.3 nm was used in this initial 
demonstration to use the relatively higher reflectivity of the sample 
at longer wavelengths: The S-polarized reflectivity of passivated Si 
with a native oxide layer at angles between 21° and 25° from grazing 
is 3 to 15%.

The test sample used in this work was custom fabricated by the 
Interuniversity Microelectronics Centre (Imec). The wafer is a stan-
dard 300-mm wafer that used a 65-nm node complementary metal-
oxide semiconductor mask set and was doped in different regions 
with two different doses of As to investigate sensitivity. It had four 
different types of regions, as shown in the inset of Fig. 1A. The sam-
ple is on a silicon substrate that has been selectively doped in some 
regions to ~1% (atomic %, corresponding to 5 × 1020 atoms/cm3) at 
an implantation dose of 1015 atoms/cm2 and then further uniformly 
doped with a lower dose of 1014 atoms/cm2. Subsequently, SiO2 and 
Si3N4 structures were patterned onto regions of the substrate both 
with higher and lower doping, while other regions of the substrate 
were left unpatterned. We will call these four regions higher- and 
lower-doped substrate and structures, respectively. Native oxide layers 
(SiO2) are also present on the surface. Further details of the fabrica-
tion process can be found in Materials and Methods.

As shown in Fig. 1A, in our reflectometer, both the sample and 
the EUV charge-coupled device (CCD) camera can be rotated about 
the focused illumination beam to image the sample at incidence 
angles ranging from ~10° to 60° from grazing. In this experiment, 
we recorded a series of five high dynamic range (HDR) ptycho-
graphic images of the sample, one at each incidence angle from 21° 
to 25° (measured from the sample surface), in 1° increments. In 
addition, a later scan was recorded with a slightly different FOV 
(shifted by ~20 m) and angle (30°) for improved visualization.

The phase images from variable-angle ptychographic imaging 
were first coregistered and then segmented to measure phase steps 
within the FOV as a function of the incidence angle: the step between 
the higher-doped structures and the lower-doped substrate and the 
phase step between the higher- and lower-doped substrate. Pixels 

within each region were averaged to improve the signal-to-noise ratio 
(SNR) of the calculated phase steps. Then, to solve for the depth-
resolved composition reconstruction, we modeled the sample with 
the parameters of interest varied about their nominal values (e.g., 
layer thicknesses, composition, etc.). We then used the Parratt 
formalism (40) to calculate the complex reflectance of our candidate 
stacks and iteratively refined parameter estimates with a genetic 
algorithm that attempted to match the calculated phase steps from 
the candidate stacks to the measured phase steps. This allowed us 
to solve for the depth-resolved chemical composition of the sam-
ple and experimental self-calibration parameters. More information 
about the genetic algorithm implementation can be found in the 
Supplementary Materials.

RESULTS
3D nanostructure mapping using phase-sensitive  
imaging reflectometry
The first step in the image processing pipeline was to reconstruct a 
series of ptychographic images of the sample, one at each incidence 
angle. It is important for these reconstructions to be accurate, since 
the composition reconstruction is based on the complex reflectances 
obtained in this step. Figure 1 (B to D) shows the result after sev-
eral new data preprocessing and image reconstruction procedures 
were used to increase the fidelity of the images. First, as our micro-
scope is in reflection mode, the diffraction patterns collected at 
near-grazing angles were interpolated onto a linear spatial frequency 
grid through a process we call tilted-plane correction (41, 42). We 
have found that careful implementation of this process (accommo-
dating all three rotation angles of the sample) with accurate param-
eters is critical for good image fidelity, especially when imaging at a 
near-grazing angle. Second, we have incorporated TV regularization 
(39) in the reconstruction algorithm to help remove noise and arti-
facts by favoring solutions with sparse gradients, which is a good 
assumption for our sample types. Figure 1 (B and C) shows recon-
structions of the same dataset, with and without these improved pro-
cedures, respectively. Note that the image after improvements has 
sharper structure edges and higher fidelity and no longer has the 
skew seen in Fig. 1B. Figure 1D shows the full reconstruction after 
the improvements. High-fidelity features are reconstructed far be-
yond the positions of the center of the scanned EUV beam, which 
roughly corresponds to the FOV shown in Fig. 1C, and even beyond 
the region encompassing 99% of the photons accumulated over the 
full scan.

Once we had a series of images of the sample’s complex reflec-
tance, we segmented the images to calculate the phase steps between 
different regions of the sample as a function of incidence angle, and 
using these, we solved for the depth-dependent material composi-
tion of the sample. Figure 2 highlights the capability of the phase-
sensitive imaging reflectometer to nondestructively map, in three 
dimensions, the chemical composition of general samples. Our 
reconstructions of the composition versus depth of different nano
patterned regions (the higher-doped structure and higher- and 
lower-doped substrate) are shown in Fig. 2 (A to C). Further param-
eters that we reconstructed, as well as the calculated sensitivity to 
those parameters, are listed in Table 1. These can be categorized as 
parameters related to layer thickness, interface quality, and dopant 
concentration (as well as experiment self-calibration parameters, 
shown in the Supplementary Materials).
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Figure 2D shows the topographic and material map produced by 
the reflectometer. The different colors in Fig. 2 correspond to mate-
rials treated differently in the genetic algorithm. For example, there are 
four colors that each represent a different region of SiO2 (patterned 
SiO2 under the Si3N4, passivated SiO2 on top of the Si3N4, and pas-
sivated SiO2 on the higher- and lower-doped substrate). To produce 
this figure, the complex reconstruction whose phase is shown in Fig. 1C 
was segmented into the four regions of different compositions using 
k-means clustering, and each segmented region was rendered with 
the topography and composition solved for by the genetic algorithm 
(Figs. 3E and 2, A to C, respectively). Slight, per-pixel deviations 
from the resulting height of each region were calculated from the 
small deviations in the phase from the average phase within the 
corresponding region.

Correlative imaging of the nanostructure
We generated a height map (Fig. 3E) in the same way as the material 
map (Fig. 2D) to compare with the topography from the AFM mea-
surement. We estimate that the resolution in this image is comparable 
to the pixel size defined by the detector NA, which is 64 × 172 nm 
(vertical × horizontal). We have two independent observations sup-
porting this resolution. First, the presence of substantial diffraction 
intensity extending to the vertical and horizontal edges of the detector 
suggests spatial frequency content that fills that bandwidth. Second, 
evaluating this resolution from the reconstruction itself, we note that 
the dopant-related etching seen immediately around the structures 
in Fig. 3 (E and F) is ~120 nm wide (as measured by AFM). Since 
this etching has a complex-valued reflectance that is not between 

the reflectance values of the neighboring regions on either side, this 
reconstructed feature is not a blurring artifact and serves the pur-
pose of acting as a resolution-test target. The fact that we see the 
etching in both directions with enough visibility for the generic 
k-means clustering algorithm to properly segment the image indi-
cates that we have a resolution approaching or surpassing 120 nm in 
each direction. However, while this is supported by the detector NA 
in the vertical direction, it is unexpected that we see these features 
even in the horizontal direction, where the etch width is slightly 
smaller than a single pixel; we expect that this is accompanied by a 
reduction in visibility of the etching gap. Therefore, from the above 
two considerations, we conclude that the resolution is comparable 
to the pixel size defined by the detector NA. The anisotropy in reso-
lution comes from conical diffraction, which stretches the diffraction 
pattern in the direction of incidence, improving sampling and FOV 
but reducing the resolution (43).

Because no other single technique could verify all the parameters 
that we solved for with phase-sensitive imaging reflectometry, we 
used several correlative imaging techniques on identical copies of the 
sample to validate our extracted sample parameters. These techniques 
included SIMS on an unpatterned sister wafer As-doped to ~1% 
(Fig. 3D), both high-angle annular dark-field STEM (HAADF-STEM) 
and energy-dispersive x-ray spectroscopy (EDS) (Fig. 3, A to C) on 
a small cross section of the sample and AFM (Fig. 3F). Note that the 
first three techniques are destructive, requiring focused ion beam 
(FIB) milling of the sample, and HAADF-STEM and EDS require 
special sample preparation. The results of these techniques and 
phase-sensitive imaging reflectometry are compared in Table 1. 

Fig. 2. Spatially resolved, composition-sensitive, 3D nanostructure characterization. Composition versus depth reconstruction in the (A) higher-doped structures, 
(B) lower-doped substrate, and (C) higher-doped substrate. The phase-sensitive imaging reflectometer has sensitivity to most parameters within this model (including 
layer thicknesses and the dopant concentration). Some parameters were determined by correlative imaging (such as surface roughness and interface diffusion). 
(D) Zoom-out and zoom-in (inset) of fully reconstructed sample. This combines the segmented high-fidelity ptychography reconstruction with the material reconstruction 
from the genetic algorithm, thus showing spatially and depth-resolved maps of material composition, doping, and topography. Different colors correspond to different 
materials. Notably, different regions of SiO2 are colored uniquely: patterned SiO2 under the structures, passivated SiO2 on higher- and lower-doped substrate, and passivated 
SiO2 on top of the structures. Also note that we reconstruct the etching adjacent to wide grating lines, shown in magenta in the inset. D
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Table 1. Sensitivity of the phase-sensitive imaging reflectometer. This table compares the reconstructed values of different sample parameters by multiple 
metrology techniques. The “nominal value” column contains the design parameters. For phase-sensitive imaging reflectometry, the “Simultaneous” column 
shows the values simultaneously solved for using the genetic algorithm with the experimental data; only some of the sample parameters were solved for 
because of the limited number of data points. Were images at more angles available, we expect that we could simultaneously solve accurately for more of these 
parameters. The “single-parameter” column shows the sensitivity to these parameters in a single dimension, measured by how much the fit to the data worsens if 
an individual parameter is varied around the found solution. This column is a rough estimate of how low the confidence intervals could get with this dataset if 
we were solving for fewer parameters and were able to fix the rest using other metrology techniques. The error bars in the phase-sensitive imaging 
reflectometry columns are given at 1 SD, while the ranges reported for other techniques, when given, are more loosely defined reasonable ranges given to each 
measurement. For single-parameter confidence interval calculation, the dopant concentration versus depth was parameterized as the concatenation of an 
exponential spike at the surface and a Gaussian extending into the bulk (see the Supplementary Materials for complete table). 

Feature Nominal value

Phase-sensitive imaging 
reflectometry

SIMS* AFM EDS/HAADF
Simultaneous

Single-
parameter 
confidence 

interval

Layer thickness 
[nm]

SiO2 on Si3N4 structure 0–4 (Set to 3) ± 0.3 – – 3.0–5.0†

Si3N4 in structure 50 (Set to 50) Lower bound: 30 – – 41–45

Patterned SiO2 
under structure 5 (Set to 5)

No sensitivity at 
30-nm 

wavelength
– – 6.5–7.5

Structure height – 48.2 ± 0.2 ± 0.02 – 45.0–45.8 48–51

SiO2 on higher-
doped substrate 0–4 2.7 ± 0.3 ± <0.05 – – 2.0–4.0†

SiO2 on lower-doped 
substrate 0–4 2.0 ± 0.3 ± <0.05 – – 2.0–4.0†

Dopant-related etch 
depth – 6.09 ± 0.07 ± 0.02 – 7.8–8.0 5.5–7.5

Interface quality 
[nm]

Average surface/
interface roughness – (Set to 0.5) Upper bound: 0.8 – – 0.5–1.0

Surface roughness 
on structures – (Set to 0.5) ± 0.2 – 0.4–0.5 –†

Surface roughness on 
lower-doped substrate – (Set to 0.5) ± 0.1 – 0.4–0.5 –†

Surface roughness 
on higher-doped 

substrate
– (Set to 0.5) ± 0.3 – 0.4–0.5 –†

Dopant

Depth-integrated 
dose [atoms/cm2] 1.10 × 1015 0.75 × 1015 Upper 

bound: 5.6 × 1015
Upper bound:  

2.1 × 1015 1.05 × 1015 – 1.30 × 1015

Peak concentration 
[atomic %] – (Shape set by 

SIMS) Upper bound: 9.3 3.8 – 3.1–4.1

Gaussian height 
[atomic %] – (Shape set by 

SIMS) Upper bound: 3.2 1.1 – 0.8–1.8

Technique 
summary

Topography Model-based – Direct Direct

Composition information Model-based Spectroscopic – Spectroscopic

Depth information Model-based Direct – Direct

Transverse spatial resolution Nano-scale (10–100 nm) TOF/nano-SIMS: 
≥ 100 nm

Nano-scale 
(10–100 nm)

Atomic scale 
(1–100 Å)

FOV Meso-to-micro (10–1000 m) – Meso (10 nm 
-100 m)

Atomic-to-nano 
(1–1000  nm)

Sample preparation Minimal Minimal Minimal Versatile 
challenging

Destructive Non-destructive Destructive Contract-based Destructive

* The dopant measurements by SIMS were taken on an unpatterned sister wafer. The technique could have made similar measurements on layer thicknesses if 
there were wafers with the same fabrication steps as this sample, but with much bigger feature sizes (size depends on instrument).     † Variation in the SiO2 
thicknesses between phase-sensitive imaging reflectometry (i.e., with phase and amplitude sensitivity) and EDS/HAADF is expected, because the sample had 
sufficient time to oxidize further between the two measurements. The sample was not prepared to perform surface roughness measurements.

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 25, 2022



Tanksalvala et al., Sci. Adv. 2021; 7 : eabd9667     27 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 11

The two columns related to phase-sensitive imaging reflectometry 
outline the promising results of this technique, both when solving 
for many parameters simultaneously and when solving only for a 
single parameter (i.e., if the other parameters are known a priori or 
measured by other techniques). To avoid overfitting, we restricted 
the composition reconstruction to solve only for as many unknowns as 
we had measured phase steps, so the fixed values in the “simultaneous” 
column result from the limited number of angles in this initial series 
of measurements. The values shown in the single-parameter column 
are intended to give an idea of the order-of-magnitude sensitivity of 
30-nm light to each sample parameter. These numbers should not 
be taken as estimates of the best error bars achievable when solving 
for a certain parameter: For datasets with more measurements or 
better-selected wavelength, the error bars could be much better than 
those shown, and averaging a greater number of pixels in the seg-
mentation step can also improve these values. In general, we find that 
phase-sensitive imaging reflectometry has good agreement with other 
techniques and is sensitive to many sample parameters that are crucial 
for nanomaterials.

DISCUSSION
The phase-sensitive imaging reflectometry approach introduced and 
demonstrated here is extremely versatile and general. It is sensitive 
to almost all the sample parameters shown in Table 1 and has the 
capability to reconstruct all these in a highly spatially and depth-
resolved manner, nondestructively, without contact, and without 
special sample preparation.

In general, the sensitivity of this technique primarily depends on 
how many photons can reach and scatter off of the feature of interest. 
For instance, 29.3-nm light has a penetration depth of approximately 

30 nm in Si3N4 (14), so solving for layer thicknesses of 1 to 10 nm 
works extremely well. However, features that lie beneath the 50-nm 
structures in this sample were more difficult to extract, since at 25° 
and in reflection, the EUV photons need to pass through 2 × 50/
sin(25°) ≈ 250 nm of material. Using either shorter wavelength ~13-nm 
light that is more penetrating or incidence angles farther from graz-
ing would substantially enhance the ability to detect deeper buried 
features. Moreover, the sensitivity to interface roughness is propor-
tional to (/)2n, where  is the surface roughness,  is the illumi-
nation wavelength, and n is the difference in the index of refraction 
of the two layers (see the theory section in the Supplementary 
Materials). Since the surface roughness in this sample is much smaller 
than 30 nm, the interfaces in this sample represent a challenge to 
probe using 30-nm light. In the future, by using 13-nm illumination, 
the sensitivity to interfaces will improve by making (/)2 more 
favorable, while Si3N4 is ~4× more transparent to 13-nm light 
(penetration depth of 125 nm) (14), so that more photons can reach 
buried interfaces.

In this demonstration, it was shown that this technique can solve 
for layer thicknesses, dopant levels, and experiment self-calibration 
(see the Supplementary Materials). Layer thicknesses, dopant level, 
and interface quality (to which the single-parameter column in 
Table 1 shows promising sensitivity) are crucial for proper function 
of many modern semiconductor, quantum, and magnetic devices. 
With our technique, we were able to set an upper bound on the 
dopant concentration. We used SIMS to set the shape of the dopant 
profile and used our data to solve for the dopant concentration. 
Promisingly, the single-parameter sweep column of Table 1 shows 
that, even with this preliminary dataset, we have sensitivity to the 
shape of this curve. Thus, we expect that either with measurements 
at more incidence angles or by using 13-nm light, this technique 

Fig. 3. Correlative imaging with TEM and AFM. (A) High-angle annular dark-field (HAADF)–STEM image of one of the Si3N4 structures prepared by focused ion beam 
(FIB), with (B) a zoom-in showing the interfaces between Si, SiO2, and Si3N4. (C) An EDS image showing a different Si3N4 structure that is doped to ~1% on the right half 
and to ~0.1% on the left half. (D) EDS dopant-versus-depth profile that compares well to the curve obtained using SIMS measured on an unpatterned wafer. To increase 
the SNR, the energy-dispersive x-ray spectroscopy (EDS) profile was integrated over the area marked by the gray dotted box in (C). (E) Topography map obtained by 
combining the ptychographic phase image with the results of the genetic algorithm. The pixel size is 64 nm × 172 nm (vertical × horizontal), and the axial precision is 2 Å. 
(F) AFM image of the same region. Zoom-in on a region and averaged lineouts of that region are shown on the right.
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should have sufficient element sensitivity to resolve this curve’s 
shape natively.

The self-calibration capability allows for more accurate measure-
ment of quantities that are difficult to precisely determine (such as 
the absolute incidence angle of the illumination on the sample, arising 
from imperfect sample mounting). By solving for these parameters 
in the same step that performs the composition reconstruction, we 
jointly optimize the sample parameters and microscope calibration 
and become robust to errors in the system alignment. Furthermore, 
this system does not suffer as much as other 3D techniques (e.g., 
tomography) from stringent requirements on physical system align-
ment that are required to have exactly registered FOVs, since the 
images are reconstructed independently and can be registered 
(manually or automatically) after the fact.

We note that the ability to measure dopants in nanodevices is 
mostly limited to destructive techniques. Auger electron spectros-
copy and SIMS are able to measure dopant levels but are destructive 
and typically restricted to unpatterned samples [with a few notable 
exceptions (44, 45)]. On the other hand, TEM-based techniques such 
as off-axis electron holography, EDS, and electron energy-loss spectros-
copy can measure dopant concentrations in nanostructures with 
high spatial resolution, but again are destructive, have challenging 
sample preparation, and are inherently localized techniques with 
limited FOV (46–48).

Model-based scatterometry techniques share some similarities 
with phase-sensitive imaging reflectometry (49), but our technique 
has unique advantages. Scatterometry-based techniques start from 
an informed, 3D model of the sample and solve for sample parameters. 

While the last step is similar, we can reconstruct the sample without 
a detailed knowledge of its transverse structure and require only a 
1D model in depth, which requires minimal knowledge of the fabri-
cation steps. In the case that there are uninteresting regions of the 
sample that are unknown or difficult to model (specs of dust, etc.), 
our model-free 2D reconstruction can reveal them, and we can avoid 
them easily by simply omitting those pixels from the depth recon-
struction. In contrast, such a feature would often negatively influence 
the data and the outcome of most scatterometry-based techniques 
without the user knowing, and even if the user notices the presence 
of the unexpected feature, then they would need to turn to an imag-
ing technique for further information.

Last, we note that a unique advantage of this new technique is its 
ability to tune the error bars, after the data are already taken, to the 
sensitivity required to detect a given feature. By selecting larger re-
gions of interest in the image segmentation, the reconstructed com-
position versus depth can be improved at the cost of transverse spatial 
resolution. Of course, there is a limit to the SNR achievable once a 
dataset is taken, but this ability to tune, almost continuously, the 
balance of SNR and spatial information to detect a desired feature of 
interest is remarkable. In high-quality datasets, this could allow one 
to reconstruct a depth profile for every pixel or structure in the FOV, 
forming a rich 3D map of the sample’s composition, topography, 
and interfaces.

We have developed a unique and versatile phase-sensitive imaging 
reflectometry technique that can nondestructively map the depth-
dependent composition of materials, as well as nanostructure layer 
thicknesses and interface quality, all in a highly spatially resolved 

Fig. 4. Correlation coefficients between the nine sample parameters in the composition-versus-depth reconstruction. 

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 25, 2022



Tanksalvala et al., Sci. Adv. 2021; 7 : eabd9667     27 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 11

manner. Our results demonstrate that EUV phase-sensitive imaging 
has exquisite profile sensitivity. By combining the unique strengths 
of tabletop, coherent, EUV high-harmonic sources with excellent 
phase stability and CDI, we can address imaging science challenges 
associated with the synthesis and integration of next-generation 
quantum, semiconductor, and spintronic devices and heterostruc-
tures, independent of architecture. In the future, it will be possible 
to enhance the chemical/topographic contrast and the spatial reso-
lution (to <10-nm transverse resolution and <1-Å axial precision) 
by using shorter- or multiwavelength illumination and by imaging 
the sample at multiple in-plane rotational orientations and/or higher 
NA. Moreover, by harnessing the femtosecond time resolution of 
EUV HHG beams, the imaging reflectometer can be enhanced further 
to capture charge and spin and heat transport in the next-generation 
devices and link structure to function. Thus, this work represents a 
fundamentally new and useful approach for imaging nanostructures 
and nanomaterials that has unique advantages compared to com-
plementary techniques such as electron, atomic force, and other 
scanning probe microscopies.

MATERIALS AND METHODS
Experimental design
To generate the 29.3-nm HHG beam used to illuminate the reflec-
tometer, we focused a femtosecond Ti:sapphire laser (2.1 W, 0.7 mJ, 
35 fs, 3 kHz, 0.79 m) into an argon-filled hollow-core waveguide 
(150-m inner diameter, 30-torr Ar). The resulting flux in the 29.3-nm 
harmonic was ~1012 photons/s at the source, with <1% root mean 
square (RMS) power stability. This corresponds to 3 × 109 photons/s 
at the sample, for the nonoptimized beamline used for this initial 
demonstration experiment. Although ptychographic imaging is robust 
to noise in the recorded data, it does require that the illumination 
beam be very stable in intensity, wavelength, and wavefront over the 
course of the scan (50, 51). Thus, in our HHG setup, we ensure that 
we have a very good driving laser stability in both pointing and in-
tensity (0.85% RMS), as well as optimal phase matching conditions.

The residual driving laser light was filtered out using two Si re-
jector mirrors oriented near Brewster’s angle for infrared, followed 
by two 200-nm-thick Al filters. A single HHG order was then selected 
using a pair of SiC/Mg multilayer mirrors. This beam was focused 
onto the sample using a grazing-incidence ellipsoid, to a spot size of 
10 m × 10 m at normal incidence for the high-fidelity image and 
21 m × 21 m for the imaging reflectometry datasets used for com-
position reconstruction. Note that a 10-m-diameter focus elongates 
to as wide as 28 m at the grazing angles of incidence used in this 
work. A wavelength of 29.3 nm was used in this initial demonstration 
to take advantage of the relatively higher reflectivity of the sample at 
longer wavelengths: The S-polarized reflectivity of passivated Si at 
angles between 21° and 25° from grazing is 3 to 15%.

We recorded a series of ptychographic datasets using a 29.3-nm 
HHG beam as the illumination, with 4 × 107 photons/s incident on 
the sample. We collected five ptychographic scans on the sample at 
incidence angles between 21° and 25° (measured from the sample 
surface), in 1° increments. Each ptychographic scan in the imaging 
reflectometry dataset contained 301 positions in a Fermat spiral 
configuration (52). Two exposures were collected at each beam 
position on the sample for HDR. The lower exposure time at each 
angle was set 10% shorter than that required to saturate the brightest 
pixels at that angle, and the longer time was twice of that. Before 

and after data collection at each angle, 150 frames were recorded 
with the HHG beam pointing directly on the camera (by moving the 
sample out from the beam and rotating the camera such that the 
beam is normally incident on the sensor), and background images 
(with the beam blocked from the system) were recorded for scan 
and beam data with 0.75-s exposure times. We used the resulting 
ptychography reconstructions to perform the material reconstruc-
tion. These images are shown in the Supplementary Materials, as is 
information about additional scans not discussed here.

In addition, a later ptychographic dataset was recorded with a 
slightly different FOV (shifted by ~20 m) and angle (30°) for im-
proved visualization. This dataset had slightly different parameters. 
An iris was introduced before the harmonic selecting multilayer 
mirrors to add structure to the out-of-focus EUV beam. The scan 
pattern was a rectangular grid instead of a Fermat spiral and con-
sisted of 424 scan positions (non-HDR), each with an exposure time 
of 0.1 s. Background data were also recorded with 0.1-s exposure 
times. We also took beam data before and after the main ptychography 
scan. These frames were used for the implementation of the modulus 
enforced probe constraint (4) on the ptychographic reconstruction 
of the beam. The resulting image of the sample was not incorporated 
into the material reconstruction because it was taken with a different 
system alignment than the imaging reflectometry scan, and would 
introduce almost as many uncertainties (exact incidence angle and 
wavelength) as it helped solve for. All the data were collected with 
1 × 1 binning and a 1-MHz readout rate on a Princeton Instruments 
MTE2 CCD (2048 × 2048, 13.5-m pixels).

Sample fabrication
The fabrication process of the sample studied in this work is illus-
trated in fig. S11. First, select regions of the Si wafer were doped with 
As (5-keV ion implantation) with dose of 1015 atoms/cm2. Then, the 
photoresist masking the other regions was stripped off, and the entire 
sample was doped with As with dose of 1014 atoms/cm2. This created 
patterns of higher- versus lower-doped regions on the Si substrate. 
When the photoresist was stripped, however, it also caused the surface 
of the unprotected higher-doped regions to be partially removed, 
creating an unintended dishing of the higher-doped substrate with 
respect to the lower-doped substrate. The substrate was spike 
annealed at 1035°C. Then, nominal 5 nm of SiO2 and then 50 nm of 
Si3N4 were deposited everywhere on the surface of the sample. Photo-
resist was then patterned on top of these layers, and the unprotected 
regions were etched away, creating protruding surface structures. 
This process resulted in thicker deposited SiO2 underneath the struc-
tures, compared to the passivated SiO2 on top of the substrate. There 
is also passivated SiO2 on top of the Si3N4 structures.

Topography and composition rendering
The process of creating the composition-sensitive 3D rendering shown 
in Fig. 2D involved several processes that ultimately incorporate both 
the ptychographic reconstruction of the sample and the composition 
and topography parameters that were solved for in the composition 
reconstruction.

In general, the phase in ptychographic reconstructions is influ-
enced by both the chemical composition and the surface topography. 
Within each of the four different regions on our sample (higher- and 
lower-doped substrate and structures), the mean phase was assumed 
to come from the average height and the chemical composition, while 
the variation from the mean was assumed to come from small local 
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topographic variations. Therefore, the ptychographic reconstruction 
had to be first segmented into the four regions. To do so, first, the 
phase reconstruction was unwrapped to remove any remaining linear 
phase ramps in the image so that the phases may be physically inter-
preted. Then, to accurately render the composition-coded color map 
for all surfaces (including sidewalls of structures), both the phase and 
amplitude reconstructions were upsampled by a factor of two using 
modified Akima interpolation (53). To produce a map identifying 
and labeling the four distinct regions of the reconstruction, this 
complex image was segmented with a k-means algorithm using the 
amplitude and phase images as the only two channels. To improve 
robustness of the segmentation, the region containing the fine grating 
was segmented independently of the remaining part of the sample.

The map of labels produced by the segmentation was then refined 
through two filtering steps, each performed on separate sections of 
the reconstruction. The square structures located in the lower right 
of the image were processed with a binary filter, and the narrow 
grating located in the lower left was processed with a median filter. 
In addition, a very small cluster of clearly mislabeled pixels (likely 
due to ringing artifact) was manually relabeled. In all, these filtering 
steps only affected less than 0.7% of the pixels in the image and re-
sulted in label maps that more closely resembled the regions one 
would identify by eye in the phase and amplitude maps. The remainder 
of the image did not require any filtering or additional processing.

After the ptychographic reconstruction was segmented into four 
regions, the average phase of each region was subtracted from the 
phase map to find the variation from average for every point. This 
relative phase map was converted to a relative height map by an 
incidence angle–dependent factor [h = /2 k sin(), where h is the 
height,  is the phase in radians, k is the wave vector, and  is the 
angles from grazing]. The relative height map was then combined 
with the step heights solved in the composition reconstruction to 
determine the absolute height of each point in the rendering. After 
the surface topography was fully determined, independently for each 
region, composition color coding was performed using the layer 
thicknesses solved in the composition reconstruction.

Sensitivity analysis
To calculate the confidence interval on each of the fitted parameters, 
we follow a method that uses the covariance matrix, as described by 
Press et al. (54). To characterize the curvature of the error metric 
landscape around the found solution, a matrix of double derivatives 
at that point can be calculated. To an approximation, the elements 
of this matrix  (referred to as the curvature matrix, or one-half of 
the Hessian matrix) can be expressed using single derivatives

	​​ ​​ kl​​  = ​​  ​ 
i=1

​​​​ 
N

 ​ ​ 1 ─ 
​​i​ 

2 ​
 ​​[ ​​ ​ dφ(​​ i​​∣a)  ─ ​da​ k ​​ ​ ​  dφ(​​ i​​∣a) ─ ​da​ l ​​

 ​​ ]​​​​	 (1)

where φ are the measured phase steps, φ(i|a) are the calculated 
phase steps for the corresponding data point with incidence angle i 
and vector of solved-for parameters a, and i is the standard error 
of the mean (SEM) for that data point.

The single derivatives can be approximated numerically using the 
equation below (higher-order methods can be used, but it was found 
that the discrepancy is negligible)

	​​  dφ(​​ i​​∣a)  ─  ​da​ k​​  ​ = ​  φ(​​ i​​∣+  ​a​ k​​ ) − φ(​​ i​​∣−  ​a​ k​​)   ─────────────────  2 ​a​ k​​  ​​	 (2)

where φ(i| + ak) is the phase step calculated at the found solution 
but with the kth parameter displaced by step +ak.

Once the curvature matrix has been numerically calculated, its 
inverse known as the covariance matrix C is obtained, and the con-
fidence interval ak on the kth solved parameter is found using its 
diagonal elements

	​ C  = ​ ​​ −1​​	 (3)

	​  ​a​ k​​  =  ± ​√ 
_

  ​​​ 2​ ​ ​√ 
_

 ​C​ kk​​ ​​	

where 2 for the desired confidence level can be looked up from 
a reference table (54). The confidence intervals reported in the 
“Phase-sensitive imaging reflectometry, simultaneous” columns in 
Table 1 and table S1 were calculated using this method, for 1-SD 
confidence interval.

In addition to the confidence intervals calculated for when 
parameters were solved simultaneously using a genetic algorithm, 
we also report the “single-parameter” confidence intervals in a 
single dimension, measured by how much a parameter can be varied, 
while the other parameters are fixed, before the error increases by 
2 = 1 (54). This column is a rough estimate of how low the confi-
dence intervals could get with this dataset if we were solving for 
fewer parameters and were able to fix the rest using other metrology 
techniques.

Using the off-diagonal elements of the covariance matrix and the 
confidence intervals on the parameters, the correlation coefficient r 
between the kth and the lth solved-for parameters can also be calcu-
lated, using the equation below (54)

	​​ r​ kl​​  = ​   ​C​ kl​​ ─ 
 ​a​ k​​  ​a​ l​​

 ​​	 (4)

Figure 4 shows the correlation coefficient between all the nine 
parameters solved for using the genetic algorithm. High magnitude 
of correlation coefficient means that increase in error due to change 
in one parameter can be well compensated by change in the other 
parameter, so it is favorable for correlation coefficients to have low 
magnitude. In the plot, there are only three parameter pairs that 
have correlation coefficient >0.85. Given the strong correlation 
between the wavelength and the incidence angle offsets, it may have 
been preferable to fix one of them to the nominal value of zero 
and only solve for the other, or solve for some factor that combines 
the two. It is unclear why there is high correlation between SiO2 
thickness on higher- and lower-doped substrate and the carbon 
deposition rate on wide gratings FOV and the SiO2 thickness on 
lower-doped substrate; it is possible that this experiment was more 
sensitive to the difference, or the ratio, of the thicknesses of the 
layers concerned.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/5/eabd9667/DC1
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