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Abstract
Meta-analytic datasets can be large, especially when in primary studies multiple effect sizes are
reported. The visualization of meta-analytic data is therefore useful to summarize data and
understand information reported in primary studies. The gold standard figures in meta-analysis are
forest and funnel plots. However, none of these plots can yet account for the existence of multiple
effect sizes within primary studies. This manuscript describes extensions to the funnel plot, forest
plot and caterpillar plot to adapt them to three-level meta-analyses. For forest plots, we propose to
plot the study-specific effects and their precision, and to add additional confidence intervals that
reflect the sampling variance of individual effect sizes. For caterpillar plots and funnel plots, we
recommend to plot individual effect sizes and averaged study-effect sizes in two separate graphs.
For the funnel plot, plotting separate graphs might improve the detection of both publication bias
and/or selective outcome reporting bias.
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The visual representation of quantitative data is valuable for any scientific discipline. The
added value of using graphical displays is twofold. It can help researchers to understand
better the behavior of their data (Anzures‐Cabrera & Higgins, 2010) and even to detect
new associations or patterns among variables that were not immediately evident before
(Bulté & Onghena, 2012; Egger & Carpi, 2008; Manolov, Solanas, & Leiva, 2010). In
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addition, visualizing data facilitates for non-researchers (e.g., practitioners, politicians,
etc.) a better understanding of the conclusions of a study.

In the field of meta-analysis, defined as the statistical technique that combines evi‐
dence from different studies to reach more accurate conclusions (Glass, 1976), the graphi‐
cal representation of data is especially important due to the nature of the meta-analytic
datasets and analyses (Schild & Voracek, 2013). Meta-analytic datasets are often large, so
graphical displays can help to summarize the most relevant information of the studies
collected, to give a first impression of the variability among effect sizes (ESs), and to
detect possible outliers. In addition, in meta-analysis it is quite common to perform addi‐
tional analyses besides the main one (i.e., the derivation of an overall effect estimate and
its standard error), such as moderator and sensitivity analyses. Visualizing the results of
these additional analyses can further help researchers, and (especially) non-researchers,
to interpret the results and even to improve the accuracy of the conclusions (Schild &
Voracek, 2015).

There are two figures that are the gold standard in meta-analysis: forest plots and
funnel plots. Forest plots (Lewis & Clarke, 2001) include information about the effects of
the studies included in the meta-analysis and their uncertainty, as well as the combined
ES (over all studies, and sometimes also per category of studies) and its confidence
interval (CI). Forest plots are undoubtedly the most popular figures in meta-analysis:
they constitute more than 50% of the plots reported (Schild & Voracek, 2013), and several
guidelines for systematic reviews and meta-analyses explicitly recommend the inclusion
of this figure in the reports (e.g., Preferred Reporting Items for Systematic Reviews and
Meta-Analyses [PRISMA]; Moher, Liberati, Tetzlaff, & Altman, 2009). Caterpillar plots are
a special version of forest plots where ESs are sorted by their magnitude (possibly within
categories of studies) and plotted closer to each other. Another popular figure specific for
meta-analysis is the funnel plot (Light & Pillemer, 1984). The funnel plot is a diagnosis
plot that helps researchers to assess the variability among ESs and the possible presence
of publication bias through visual inspection.

The conventions for displaying forest plots and funnel plots are widely known for
the scenario where a unique ES is reported per study (see, for instance, Sterne, Becker,
& Egger, 2005, for funnel plots and Lewis & Clarke, 2001, for forest plots). Nowadays,
however, primary studies rarely include a single ES. For instance, it is quite common that
primary studies report ESs for multiple outcome variables, or that more than two groups
are compared with a single comparison group, leading to multiple ESs per study. But
how should these types of meta-analytic data be represented in a forest plot or in funnel
plot? Up to today, no adaptations to the forest and funnel plots have been proposed for
the case where multiple ESs are reported within studies. Given the known importance
of visual representation in meta-analysis, the aim of this study is to fill this gap by
suggesting graphical extensions to these figures in the specific context where multiple
ESs are available within primary studies.
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Before detailing these extensions, we first give an overview of the available statistical
models to perform meta-analyses, because some of the elements of the forest and funnel
plots depend on the model fitted. The traditional random-effects model assumes that ob‐
served differences between ESs are not only due to random sampling variation, but also
due to systematic differences across studies (e.g., each study uses its specific procedures,
protocols, etc.). Under this model, it is assumed that each study has its own population
value and that study-specific values are normally distributed around a ‘grand’ mean
population effect (γ). The traditional random-effects model can be expressed as follows:

dk = γ + ek + uk, (1)

where dk refers to the ES reported in study k, and ek and uk are normally distributed
residuals with variance σek

2  and σu2, respectively. The term σek
2  refers to the sampling

variance and σu2 refers to the systematic variability of ESs across studies. For commonly
used effect size measures, this sampling variance can easily be derived per study and
therefore is considered as known in the meta-analysis. If σu2 = 0, this model reduces to
a fixed-effect model, that assumes that there is a unique population effect and that the
observed heterogeneity among ESs is only due to sampling variation.

When studies report multiple ESs, it is important to apply a statistical model that
takes into account that ESs from the same study are related to each other, that is, that de‐
pendency among ESs exists. Ignoring this dependency can lead to biased estimates of the
standard error and of the variance components, and hence to flawed inferences (Becker,
2000). There are three popular approaches to model dependent ESs: the multivariate
approach (Raudenbush, Becker, & Kalaian, 1988), the Robust Variance Estimation meth‐
od (RVE; Hedges, Tipton, & Johnson, 2010), and the application of three-level models
(Cheung, 2014; Konstantopoulos, 2011; Van den Noortgate, López-López, Marín-Martínez,
& Sánchez-Meca, 2013, 2015). For a complete overview of under which circumstances is
better to use each of these methods, we refer to López-López, Page, Lipsey, and Higgins
(2018). For this study, we will focus on the three-level approach for two reasons: 1) Be‐
cause the use of three-level models for treating dependent ESs has substantially increased
in the last years (Fernández-Castilla et al., 2019), but researchers do not yet have options
to depict data that have this three-level structure, and 2) Because by applying three-level
models it is possible to get separate estimates of the variance of the observed ESs across
studies and within studies.

The three-level approach consists of extending the random-effects model of Equation
1 by adding an additional random residual to model the deviation of a population ES
within a study from the mean ES in that study (Cheung, 2014; Van den Noortgate et al.,
2013, 2015). This extension results in a three-level model that assumes that ESs not only
differ due to sampling variation and due to systematic differences between studies, but
also due to systematic differences across the outcomes measured. This three-level model
can be expressed as follows:
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djk = γ00 + ejk + v jk + u0k, (2)

where djk refers to the observed ES of outcome j within study k, and γ00 is the overall
population ES. Each type of residual, ejk, v jk, and u0k is assumed to be normally distributed
with mean 0 and variance σejk

2 , σv2, and σu2, respectively. The sampling variance, σejk
2 , is

estimated in advance and therefore assumed to be known in the meta-analysis, and the
terms σv2 and σu2 refer to the variability of ESs within studies and to the between-studies
variance respectively.

Each of the following sections begins with a description of traditional plots, and
continues with suggestions of extensions. In the Supplementary materials, the code for
constructing these augmented figures in R using package ggplot2 (Wickham, 2011) is
available.1

Forest Plots
Forest plots give information about the precision and the weight of each study. Each ES
is depicted with a dot (usually a square) on the horizontal axis, and each row in the
graph represents a different study. In a meta-analysis in which just one ES per study is
reported, the precision of each study is represented with the (typically) 95% CI depicted
along the sides of each ES (i.e., dots). This CI is built using the sampling variance, σek

2 :

dk ± Zα/2 · σek
2 (3)

where Zα/2 = 1.96 if α = .05. The size of the central dot is proportional to the weight
assigned to that study (Wk) . In the case of a traditional random-effects model (Equation
1), the weight of each study equals:

Wk = 1
σek
2 + σu

2
(4)

where σu
2 is the estimated between-studies variance. If σu

2 = 0, then the weights resulting
from a random-effects model equal the ones of a fixed-effect model.

At the bottom of the graph, a diamond representing the pooled ES is typically depic‐
ted, with its horizontal diagonal representing its 95% CI. Additionally, it is recommended
to plot a vertical line that indicates the value of the overall effect estimate, and also a ‘no
effect’ vertical line that serves as an indicator of whether ESs are negative and positive,
or whether studies report statistically significant ESs.

1) Part of the code for building forest plots has been taken from the R code supplied by Schild and Voracek
(2015), that is now part of the package metaviz (Kossmeier, Tran, & Voracek, 2019b).
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In meta-analysis, there is a direct relationship between the precision of a study and
the extent to which that study contributes to the final estimation of the combined ES.
This relationship is visually evident in forest plots: The width of the CI of a study (i.e.,
its precision) is related to the area of the dot of that study (i.e., its weight), that is,
less precise studies contribute to a minor extent to the estimation of the pooled ES.
It is important to mention that the study-weights depend on the model fitted. When
a fixed-effect model is fitted, the weight equals the inverse of the sampling variance,
whereas when a random-effects model is fitted (Equation 1), the weight assigned to a
specific study also depends on the between-studies variance estimate (see Equation 4). As
a consequence, small studies will get a smaller weight than large studies, especially when
using a fixed-effect model.

The weight of a primary study that reports multiple ESs depends on more parameters
than solely the sampling variance and the between-studies variance. This can be clearly
understood by looking at the variance of the mean ES estimate obtained when we apply
a random-effects model to each study k separately:

var d · k = 1

j
W jk

= 1

j
1

σejk
2 + σv

2

(5)

The precision (or inverse variance) of the effect estimate for a study k that includes j
ESs is equal to the sum of the precisions of the individual ESs (∑jW jk), and therefore
is determined by the 1) sampling variances (which depends strongly on sample size), 2)
number of ESs reported, and 3) the variability among these outcomes. If the sampling
variances of ESs in study k are small, the denominator of Equation 5 will be large and
hence the final var d · k  will be smaller, indicating a higher precision of d · k. Second, the
more ESs reported in study k, the larger the sum of precisions, and hence the smaller the
estimated variance of d · k. Third and last, if the ESs do not vary substantially within study
k, that is, if σv

2 is small, the denominator of Equation 5 (i.e., ∑j 1/ σejk
2 + σv

2 ) will be
large, which in turn will lead to a smaller value of the var d · k  compared to other studies
where the within-ESs variance is larger.

Moving on to the weights, let us remember that in a traditional forest plot of a
random-effects model, the weight of each study depends on both the sampling variance
and the between-studies variance (Equation 4). Likewise, in a three-level meta-analysis,
the weight of each study depends on the precision of that study (which in turn depends
on the sampling variances, the number of outcomes and the between-outcome variance2)
and on the between-studies variance. For obtaining the actual weight of study k in the
context of multiple ESs per study, first it is necessary to calculate the total variance of

2) When performing a three-level meta-analysis, this between-outcome variance is typically assumed to be the
same for all studies, and therefore is estimated across all studies.
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that study, Var d · k *, around the overall effect across studies. This variance (in contrast
to the variance calculated using Equation 5) also incorporates the between-studies var‐
iance estimate.

Var d · k * = XTVk
−1X −1 (6)

The matrix Vk
−1 equals the inverse of the variance-covariance matrix of the J ESs reported

in study k. This matrix , Vk
−1,  contains information about the between-outcomes and

between-studies variance estimates (that is the same for all studies). The element X refers
to a 1 x Jk matrix of 1. The weight of study k is therefore:

W · k = 1
Var d · k *

(7)

More information about how to obtain Vk
−1  can be found in Konstantopoulos (2011), and

the R code necessary to obtain the variance of a specific study (Equation 6) is inserted in
the code for building the graphs, that is available in the Supplementary materials.

In order to appropriately visualize the different factors that affect the precision of
individual ESs and studies, we propose to draw a modified version of the ‘summary
forest plots’ (Anzures‐Cabrera & Higgins, 2010). In these plots, separate meta-analyses
are depicted based on categories of moderator variables. Our proposal, however, is to
perform separate meta-analyses for each study, so that a line in the plot represents the
results of a meta-analysis of one study instead of individual ESs. To illustrate this, we will
use the data of the meta-analysis of Geeraert, Van den Noortgate, Grietens, and Onghena
(2004), that evaluates the effectiveness of early prevention programs on children at risk
of suffering abuse. To make the forest plot not too large, we will use only a subset of 10
studies (with 208 ESs). This subset of studies is available in the Supplementary materials.

The summary forest plot shown in Figure 1A resembles a traditional forest plot,
but there is one crucial difference: Each black line does not longer represent individual
ESs, but the results of meta-analyses of outcomes within each study. Before drawing
the forest plot, a separate meta-analysis has been carried out on each study (using a
random-effects model), and afterwards a dot representing the meta-analytic study mean
has been depicted in each line along with its 95% CI in bold black:

d . k ± 1.96 ⋅ V ar d · k (8)

where d . k designates the meta-analytic mean of observed ESs from study k, and
Var d · k  is the standard error of this estimated overall study effect, defined in Equation

5. The reason for using Equation 5 rather than Equation 6, is that we want to express
how precise we can estimate the study-mean effect size, using the data from that study
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only (in the same way as in a traditional forest plot, the CIs around effect sizes are
calculated independently for each study).

Figure 1

Summary Forest Plots

Note. In 1A, the thickness of the grey confidence intervals is the same for all studies, and
in 1B, the thickness of the grey confidence intervals is proportional to the number of
effect sizes reported within studies.

As shown before, the total precision of the studies included in Figure 1A depends on
the number of outcomes measured within a study, the sample size on which they are
based on, and the variability among them. However, it is not possible to disentangle the
influence that these three parameters have on the total study precision by looking only
at the black CIs. In order to account for this information, we propose to add two more
elements.

The first element is an additional grey CI, that is based on the sampling variance of
individual observed ESs of the study. The formula for obtaining the upper and lower limit
for these grey CIs is the following:

d . k ± 1.96 ⋅ median SEjk , (9)

where median SEjk  represents the median standard error of the observed effects for
the j outcomes included in study k. The median is preferred over the mean due to the
known skewed distribution of standard errors. With the inclusion of these grey CIs it
is possible to know the contribution that the study sample size alone has on the total
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study precision (black CI), because neither the number of outcomes nor their variance
are included in Equation 9. In other words, these grey CIs reflect the median precision of
one ES within that study. For instance, Study 3 and 8 show somewhat narrow grey CIs
compared to other studies, meaning that the sample sizes in these studies is large, which
is likely to be the reason why the precision of those studies is quite high (i.e., narrow
black CI). Opposite examples can be found in Studies 1 and 4, where the grey CIs are
quite long, meaning that the sample sizes are small and hence do not contribute much
to the total precision of these studies, that is indeed quite low (wide black CIs). Another
scenario is illustrated by Study 2 and Study 5: Although the sampling variance is rather
large (i.e., wide grey CI), the black CI is narrow, which means that the total precision of
those studies is quite high despite their low sample size. Therefore, the high precision
exhibited by these studies has to be due to other reasons, as for instance a large number
of outcomes reported in those studies and/or a low variability between them. In order to
know this information, the second element we propose to incorporate is the number of
outcomes reported in each study. We have depicted this information on the right side of
Figure 1A. We can indeed see that a large number (55 and 61, respectively) of outcomes
were reported in Study 2 and 5, which explains the high overall precision. In Study 7,
only one outcome was reported (J = 1), and consequently the grey and black CIs coincide.
It could be also the case that in a given study, the black CI was wider than the grey CI,
that is, that the total precision of a study was smaller than the precision given by the
sample size. This can happen when few outcomes are reported and when the variability
among them is large. Although in that case the grey interval will be hidden by the bold
one, the markers of the grey interval will still be visible. Another option to visually
represent the number of outcomes within studies is shown in Figure 1B. In this figure,
the size of the grey CIs is proportional to the number of effect sizes reported within
studies. This feature is inspired by the thick forest plots proposed by Schild and Voracek
(2015), where the size of the lines is proportional to the weight assigned to each study.

The weight assigned to each study is represented by the area of the central dot, and
in a three-level meta-analysis the study weight can be calculated with Equation 6. The
weights of a traditional random-effects model are normally more similar (compared to
the ones from fixed-effect model) because the between-studies variance estimate is the
same for all studies. In a three-level meta-analysis, this effect is even more pronounced
because all studies have in common the between-studies variance and the between-out‐
comes variance estimates.

The final conclusion of the forest plot in Figure 1 is that Study 7 is the one that
contributes more to the estimation of the pooled effect, apparently due to the large
sample size of this study. Study 2, 5 and 8 also get a relatively high weight, reflecting
their high precision because of the large number of outcomes reported. On the other
hand, the precision of Study 1 and Study 4 is quite low, possibly due to their small sample
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sizes (i.e., wide grey CIs). Therefore, these studies are the ones contributing the least to
the summary pooled effect and to its precision.

Caterpillar Plots
Caterpillar plots are nothing but rotated forest plots. The main differences are that ESs
are sorted and plotted by their magnitude (from negative to positive) and that ESs are
depicted closer to each other, making it possible to get a general view of the distribution
of all ESs. An advantage of plotting ESs closer to each other is that many of them can be
plotted at the same time, whereas including too many ESs in the forest plot would make
it difficult to interpret.

Because caterpillar plots allow the inclusion of many ESs, we have used the complete
dataset of Geeraert et al. (2004) for plotting Figure 2 (38 studies and 583 ESs). In Figure
2A we have plotted each ES and its 95% CI, ordered by their magnitude, and in Figure
2B we have plotted the study effects, using the same two black and grey CIs as in the
forest plots of Figure 1. At the end of both graphs, the overall effect and its CI have been
plotted. Our recommendation is to include both plots together, so it is possible to see the
amount of (negative or positive) ESs that are statistically different from zero, and at the
same time it is possible to know which studies report (positive or negative) significant
pooled study-effects.

Figure 2

(A) Caterpillar Plot With All Effect Sizes and Their Confidence Intervals and (B) Study-Caterpillar Plot
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Funnel Plots
This figure is commonly used in meta-analysis to investigate the presence of selection
bias. The funnel plot is a scatter plot in which ESs (horizontal axis) are plotted against a
measure of their precision (vertical axis). This measure of precision can be the sampling
variance, the standard error, or their inverses. In this paper, we will use the standard
error for the vertical axis, as recommended by Anzures‐Cabrera and Higgins (2010). The
scale of this vertical axis is inverted, so ESs with small standard errors are drawn at the
top of the graph. Ninety-five percent pseudo-CIs are depicted around the pooled effect
to mark the region where 95% of the ESs are expected in the absence of between-studies
heterogeneity. If selection bias does not exist, we would expect studies based on large
samples to be closer to the pooled effect in comparison to more imprecise studies, that
are expected to be more widely spread along both sides of the overall effect at the base
of the graph, leading to a symmetrical inverted funnel shape. If a part of the funnel
is empty (normally in the lower part), publication bias could exist. However, funnel
plots can be asymmetrical for other reasons, such as for instance the existence of large
between-studies heterogeneity (Terrin, Schmid, Lau, & Olkin, 2003).

Besides publication bias, other types of bias might also be present, as for instance
selective outcome reporting bias (Ioannidis, Munafo, Fusar-Poli, Nosek, & David, 2014).
Authors might measure a construct using several measurements, and then only report
the outcome(s) in which they found significant results. Selective outcome reporting bias
can at the same time propitiate publication bias, because studies with (many) positive
outcomes are more likely to be published than studies with negative or non-significant
outcomes.

In a three-level meta-analysis, we recommend to first plot all ESs in the funnel plot to
check for both selective outcome reporting bias and publication bias. In Figure 3A, there
are three ESs at the lower-right part of the graph, whereas there are no study results
with a similar imprecision around the mean ES or at the negative side of the plot. This
could be an indication of selective outcome reporting bias or publication bias; studies
might have reported only the more salient outcomes and/or small studies with small or
unexpected study effects might have been censored.
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Figure 3

(A) Funnel Plot of All Effect Sizes and (B) Study-Funnel Plot that Includes the Number of Outcomes Reported in
Each Study

Note. In addition, the size of the dots is proportional to the number of effect sizes
included in those studies. Notice that the y- an x-axis of 3A differ in their dimensions
from the ones of 3B.

In order to further clarify which of these kinds of bias took place, we propose to
additionally plot study effects against their meta-analytic standard errors in another
study-funnel plot (Figure 3B). These study effects have been estimated by performing
separate random-effects meta-analyses to each study. It is important to remember that
now the precision of each study (reflected in the vertical axis) not only depends on
the sample size, but also on the number of outcomes reported and on their variability
(Equation 5). Therefore, ESs of studies with a small sample size, reporting few outcomes,
and/or with a large between-outcomes variance will be plotted at the bottom of the
graph, while studies with large sample sizes, reporting many outcomes, and with a small
within-study variability will be plotted at the top of the graph, because they are expected
to vary less around the pooled effect. In Figure 3B we can see that the distribution
of study-specific effects is actually quite symmetrical, so there is no indication of the
existence of publication bias, although ESs in Figure 3A were not that symmetrically
distributed around the mean ES. However, it should be kept in mind that we cannot
discard the possibility that the asymmetry of any funnel plot is due to some other
reasons, as mentioned before. Moreover, the number of studies in our example is proba‐
bly too small to assess asymmetry across studies. There are some strategies, such as
plotting enhanced-contour funnel plots (Peters, Sutton, Jones, Abrams, & Rushton, 2008)
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or comparing real-data funnel plots with null-hypothesis funnel plots (Kossmeier, Tran,
& Voracek, 2019a) that can help identifying whether publication bias actually exists.

An additional suggestion for the study-funnel plot is to depict the number of out‐
comes reported in each study next to the dots representing the study effects and/or to
plot the size of the study-effect proportionally to the number of effects included in that
study (as in Figure 3B)3. The shape of the study-funnel plot might be symmetric, but
it could be the case that studies with large positive effects reported fewer outcomes in
comparison with studies that reported on average smaller or even negative effects, which
would again be an indication of reporting bias (Van den Noortgate et al., 2013).

Another special characteristic of the funnel plots in Figure 3 are the 95% confidence
bands. In a traditional, two-level - random-effects model, it is expected that highly pre‐
cise studies also vary around the overall mean (i.e., black vertical line) due to systematic
differences between studies. Therefore, under a traditional random-effects model 95%
pseudo-CIs should leave some space on the sides of the overall effect at the top of the
graph, so the between-studies variability among highly precise ESs is taken into account.
The formula for obtaining these 95% pseudo-CIs for a traditional random-effects model is
the following:

  d · · ± 1.96 · σejk
2 + σu

2 (10)

where σejk
2  corresponds to each of the standard error values in the y-axis of the plot,

and  d · ·  represents the estimate of the overall ES. When several ESs are reported within
studies, it is necessary to adapt this formula by adding the between-outcomes variance
estimate (σv

2) in the equation. Hence, the formula used for the contours depicted in Figure
3A is the following:

d · · ± 1.96 · σejk
2 + σu

2 + σv
2 (11)

In Figure 3B, study means are plotted instead of individual ESs. The x-axis refers to the
estimated study effects, and the y-axis represents the standard error of these estimated
study effects. Therefore, the formula for the contours should be adapted by substituting
the between-outcomes variance for the mean between-outcomes variance:

d · · ± 1.96 ·
σe · k
2 + σv

2

median(Jk) + σu
2

(12)

3) In the functions included in the R code in the Supplementary material, the user can select whether or not
to plot the number of effect sizes within studies next to each dot, or whether or not to plot the size of the dots
proportional to the number of effect sizes within studies.
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In Equation 12, each of the meta-analytic standard error values of the y-axis has less
influence in the calculation of the upper and lower bound of the 95% CIs because this
value is always divided by a constant value [median(Jk)]. As a consequence, the contours
or bands will look more vertical than in a standard funnel plot.

Discussion
Visualization of data is very important to understand, interpret, and summarize results,
regardless of the research area of interest (Egger & Carpi, 2008). In meta-analysis, two
types of plots are commonly reported: the forest plot (or its ordered variant, the caterpil‐
lar plot) and the funnel plot (Schild & Voracek, 2013). In this study, we have suggested
adaptations to these graphs to the scenario in which multiple ESs are reported within
primary studies. These extensions can help researchers to summarize more precisely
the information obtained when a three-level meta-analysis is performed, to understand
better the information reported in primary studies, and to make more accurate visual
inferences about the possible existence of selection bias, selective outcome reporting bias,
or both.

An advantage of the proposed forest plot is that a lot of information is included in
just one image: the study-effects and their uncertainty, the uncertainty due to sampling
variation, the number of outcomes reported in each study, the importance of each study
in the estimation of the pooled ES, the extent to which each study contributes to the
between-outcomes variance estimate, the value of the overall effect, and its precision.
Regarding caterpillar plots, by plotting separate caterpillar plots for the observed ESs and
for the study-effects, it is possible to get information of the pattern of the effects at the
lowest level and at the upper-study level. Other existing graphs, such as Galbraith plots
(Galbraith, 1994), L’Abbé plots (L’Abbé, Detsky, & O’Rourke, 1987) or rainforest plots
(Zhang, Kossmeier, Tran, Voracek, & Zhang, 2017) can be adapted in similar ways. In
the same way, by plotting separate funnel plots for individual ESs and for study-effects
it is possible to check for indications of the presence of selective outcome reporting
bias, publication bias, or both, keeping in mind that asymmetry of the funnel plot does
not necessarily indicate the presence of any bias. Finally, we have also proposed some
modifications in the formula for constructing the 95% pseudo-CI so that they account for
the between-outcomes variability.

In sum, we believe that the incorporation of these extensions to forest plots and
funnel plots in three-level meta-analysis can greatly help to accurately summarize and
understand these (often large) datasets, as well as to improve initial inferences about the
presence of selection bias.
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