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SUMMARY
Reward value is known to modulate learning speed in spatial memory tasks, but little is known about its in-
fluence on the dynamical changes in hippocampal spatial representations. Here, we monitored the trial-to-
trial changes in hippocampal place cell activity during the acquisition of place-reward associations with vary-
ing reward size. We show a faster reorganization and stabilization of the hippocampal placemapwhen a goal
location is associated with a large reward. The reorganization is driven by both rate changes and the appear-
ance and disappearance of place fields. The occurrence of hippocampal replay activity largely followed the
dynamics of changes in spatial representations. Replay patterns became more selectively tuned toward
behaviorally relevant experiences over the course of learning via the refined contributions of specific cell sub-
populations. These results suggest that high reward value enhances memory retention by accelerating the
formation and stabilization of the hippocampal cognitive map and selectively enhancing its reactivation
during learning.
INTRODUCTION

Our ability to remember an event depends in part on the

behavioral relevance or associated value of the event.1

Generally, the more rewarding an experience is, the better and

the longer it will be remembered.2–4 Rewarding feedback is

known to modulate multiple memory processes. In addition to

enhancing memory consolidation,2,3,5,6 reward has also been

shown to promote memory encoding and to accelerate learning

during experience.4,5,7

The activity of the hippocampus and its interactions with

cortical and subcortical brain regions are critical to both the

formation and the consolidation of episodic and spatial

memory traces.8 Brain-imaging studies in humans have

shown that hippocampal activity and its functional connectiv-

ity with other brain regions are modulated by reward magni-

tude during experience3,5,7 and are predictive of future mem-

ory recall.

In rodents, during active exploration, individual neurons in the

hippocampus are preferentially active when the animal crosses a

particular location, or place field, in the environment.9 Collec-

tively, the activity of place cells forms a map-like representation

of space. The formation of this cognitive map is experience

dependent,10,11 and it is sensitive to changes in a large range

of spatial and other stimuli, a process referred to as ‘‘remap-

ping.’’12–14 Notably, studies have reported a number of

reward-related changes in the firing properties of hippocampal
neurons: the accumulation of place fields near newly rewarded

locations;15–17 the modulation of place cell firing rate by reward

expectation;18,19 and the demonstration of a subpopulation of

hippocampal neurons that is consistently active at rewarded lo-

cations in different environments.20 These studies also reported

that place cells in the dorsal Cornu Ammonis area 1 (CA1) are

more sensitive to reward-related changes than place cells in

area CA3.15,19 In addition, reward magnitude modulates the re-

activation of experience-related hippocampal neural activity pat-

terns (‘‘replay’’) during experience.21,22

However, few studies have investigated the effect of reward

magnitude on the hippocampal place code, and none have

reported an effect,23,24 possibly because rewarded locations

were kept stationary. Moreover, the impact of reward on the

formation and updating of the hippocampal map remains poorly

understood. In this study, we take advantage of a recently devel-

oped paradigm25 to compare the dynamics of the hippocampal

code during repeated learning of two rewarded locations

associated with different reward size.

RESULTS

Rapid reorganization of spatial representations
Six rats were trained on a dual reward-place association

task,6,25 in which they learned across 5 instruction trials that

two locations were associated with small or large reward (Fig-

ure 1A). The run speed profile across the 5 instruction trials
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Figure 1. Fast learning of the reward-place

associations during training

(A) Schematic representation of the apparatus. Note

that the home platform and short piece of track from

home to the first bifurcation are shared between left

and right environments but are duplicated in the

drawing to highlight the separate trials. During

training, rats learn to associate a small reward (blue)

or a large reward (orange) with a specific arm in the

left and right environment. Both arms are visited

alternatingly in five trial blocks. Every day, the target

arm location, the reward-environment associations,

and visiting order were pseudo-randomly assigned.

(B) Average run speed over trial blocks separated

by reward conditions and for journeys toward

(outbound, left panel) or from (inbound, right panel)

the reward platform. Error bars indicate 95% boot-

strapped confidence interval. Text annotations: ar-

rows represent the trial-to-trial transitions annotated

with the results of statistical comparison (Wilcoxon

signed-rank test) separately for large (orange) and

small (blue) reward. Per-trial block comparison be-

tween reward conditions was performed with Wil-

coxon signed-rank test followed with Holm-Sidak

correction for multiple tests. ***p < 0.001; **p < 0.01;

*p < 0.05; ns, not significant.
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indicated that the rats quickly distinguished the small- and

large-reward destinations (Figure 1B). On outbound journeys

toward the large and small reward, the average run speed

steeply increased from trial block 1/2 (Figure 1B, left;

Wilcoxon signed-rank test for equal run speed in trial blocks 1

and 2; small: W = 29.00, p* = 4:6310�6; large: W = 18.00,

p* = 1:9310�6). However, although the average speed toward

the large reward remained stable, it progressively decreased

for the small-reward condition such that the average run speed

toward the large reward was significantly higher from trial block

3 onward (Wilcoxon signed-rank test for equal run speed in

small and large conditions: trial block 3: W = 140.00, p* =

0.0043; trial block 4: W = 40.00, p* = 1310�5; trial block 5:

W = 37.00, p* = 1310�5). The average run speed on inbound

journeys back from the rewarded locations to home mostly re-

mained stable across trial blocks andwas not different between

reward conditions (Figure 1B, right).

To characterize the dynamics of the hippocampal spatial rep-

resentation throughout the learning phase, we recorded cell ac-

tivity from hippocampal subregion CA1 (Figures 2A and 2B).

Across sessions, there was no difference between small- and

large-reward conditions in the number of place cells and place

fields (Figure 2C; Wilcoxon signed-rank test, place cells: Z =

275.50, p = 0.71; place fields: Z = 334.00, p = 0.79).

We first quantified the firing rate changes at the population

level across trial blocks. Given the changes in run speed across
2 Current Biology 31, 1–13, October 25, 2021
trial blocks and the positive relation

between speed and firing rate in hippo-

campal place cells,26 we corrected the

in-field firing rates to remove the contribu-

tion of speed (Figures S1A and S1B; see

STAR Methods). After correction, partial

correlation analysis confirmed that no
speed-rate association remained when accounting for reward

and trial block (Figure S1C).

For each trial block, we constructed a vector of in-field

(speed-corrected) firing rates from all place fields and

computed the Spearman correlation coefficient for each pair

of trial blocks (Figure 3A). We observed that the population ac-

tivity for trial blocks 2–5 is highly correlated (r in range 0.45–

0.72), whereas the activity in the first trial block has systemati-

cally lower correlation with the other trial blocks (r in range

0.14–0.33). We then focused on the population vector correla-

tions for consecutive trial block pairs (Figure 3B). Across trial

blocks, the correlation is lowest between trial blocks 1 and 2

(correlation coefficient r and 95% bootstrapped confidence in-

terval; r1/2 = 0.33 [0.22, 0.43]) and highest between trials

blocks 4 and 5 (r4/5 = 0.72 [0.68, 0.76]). The population activity

pattern is already highly similar between trial blocks 2 and 3

(r2/3 = 0.61 [0.56, 0.66]). We fitted the data with a sigmoid

growth curve and determined the total change Dr in correlation

across trials and the relative change relDr between r1/2 and

r2/3 as measures of the correlation dynamics (see Figure 3B).

The total change Dr (mean and 95% confidence interval 0.39

[0.29, 0.52]) was significantly higher than the chance distribu-

tion, computed by shuffling for each field the in-field firing rates

across trial blocks (Figure 3B, right; Monte-Carlo p = 0.002).

Most of the increase in correlation was already attained at

r2/3 (relDr = 0.71 [0.57, 0.83]).



Figure 2. Spatial rate maps

(A) Schematic representing the different maze segments.

(B) Spatial rate maps for all place cells in all recording sessions that are active during locomotion. Cells are ordered by the location (from home to reward platform)

of the peak firing rate and separated for outbound (left) and inbound (right) runs in the small-reward environment (top row) and large-reward environment (bottom

row).

(C) The number of place cells (left) and place fields (right) for all animals and sessions separated by reward condition. Black points represent the group means.

Error bars represent the 95% confidence interval.
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These results indicate that the hippocampal spatial representa-

tion quickly reorganizes after animals visited the target arm and

experienced the associated reward size for the first time.

We next looked at the trial-to-trial population-level activity

changes separately for small- and large-reward trials (Figure 3C).

The correlation between the first two trials is low for both small and

large reward conditions (correlation coefficient and 95% boot-

strapped confidence interval; small: r1/2 = 0.36 [0.23, 0.47], large:

r1/2 = 0.28 [0.14, 0.47]). However, we observed a difference in the

dynamics of the correlations across trials for the two reward

conditions. Whereas, for small reward, the trial-to-trial correlation

gradually increased toward the end of the instruction phase, for

large reward, we found a step change between r1/2 and r2/3

and little further increase in later trials. Partial regression analysis

confirmed that the population vector correlation changes across

trialswere not related to variations in run speed that differ between

reward conditions (Figures S1D and S1E).

We fitted the data with a sigmoid growth curve and compared

Dr and relDr between reward conditions. For both small and

large reward, the total change in correlation Dr was significantly

higher than chance (Figure 3D; Monte-Carlo p value; small: p =

0.002, large: p = 0.002), and there was no difference between

the reward conditions. The relative change in correlation be-

tween the first two trial block pairs was, however, significantly
higher for large than small reward (Figure 3D; bootstrapped

distribution of relDlarge
r � relDsmall

r ; 95% confidence interval:

[0.16, 0.52]; probability that distribution is different from zero:

p = 0.008).

These results indicate that, although spatial representations

reorganize and stabilize for both small- and large-reward condi-

tions, this process occurs faster when the reward is large.

We performed the same analysis separately for place fields on

the outbound and inbound trajectories (Figure 3E). For both small

and large reward, we find a significant increase in correlation

over the trial pairs for both outbound and inbound trajectories

(Monte-Carlo p value for Dr different from chance; outbound

small: p = 0.002; outbound large: p = 0.002; inbound small: p =

0.002; inbound large: p = 0.002). There is no difference between

outbound and inbound trajectories in how quickly the correlation

increases between the first two trial block pairs.

These data suggest that place field activity reorganizes on

both inbound and outbound trajectories.

Reorganization is accompanied by predominantly
positive rate changes
To identify how the activity in individual place fields evolves, we

looked at the in-field rate changes across trial blocks. At the

population level, there is a general rate increase toward later trial
Current Biology 31, 1–13, October 25, 2021 3



Figure 3. Trial-to-trial correlations show fast stabilization of the spatial code

(A) Pairwise correlations of the in-field firing rate vectors for all place fields and for all trial-block combinations. Note that pairwise correlations between trial blocks

2–5 are higher than correlations involving trial block 1.

(B) (Left) Correlations of the in-field firing rate vectors for sequential trial block pairs (highlighted by black outlines in A). Error bars represent 95% bootstrapped

confidence interval. Black line represents fit of growth curve. Note that the correlation between trial blocks 1 and 2 is low, and the correlation in subsequent trial

block pairs is high. A one-way repeated-measures analysis of variance by ranks (Friedman test) showed significant differences between trial-block pairs

(statistic = 37.60; p = 3:4310�8). Annotations at the top of the plot indicate the change between adjacent trial pairs and p value of significant pairwise differences

(Conover post hoc test with Holm-Sidak p value correction). Coefficients and 95%confidence interval of the fitted growth curve are as follows: b1 =�0.06 [�0.30,

0.13]; b2 = 0.79 [0.58, 1.04]; and l = 1.76 [1.23, 2.39]. Light gray region represents the 95% confidence interval of the population vector correlations after random

per-field shuffling of the in-field firing rates across trial blocks (500 permutations). (Right) Mean and bootstrapped 95% confidence interval of two parameters of

the fitted curve, total change Dr (top), and relative change relDr (bottom) are shown. Gray line and light gray region represent the mean and 95% confidence

interval of the chance distribution after random permutations of the in-field firing rates across trial blocks. Annotation at the bottom indicates the number of

sessions that meet the minimum requirement of 8 place fields.

(C) Correlations of the in-field firing rate vectors separately for small- (left) and large (right)-reward conditions. For both reward conditions, Friedman test indicated

significant differences between trial-block pairs (small: statistic = 23.74, p = 2:8310�5; large: statistic = 20.78, p = 0.00012). Annotations at the top of the plots

indicate the change between adjacent trial pairs and p value for significant pairwise differences (Conover post hoc test with Holm-Sidak p value correction).

Coefficients and 95%confidence interval of the fitted growth curve are as follows: small: b1 =�0.04 [�0.27, 0.17], b2 = 0.83 [0.61, 1.07], l= 0.80 [0.54, 1.15]; large:

b1 = �0.14 [�0.46, 0.16], b2 = 0.84 [0.53, 1.19], l = 2.58 [1.44, 3.70].

(D) Mean and bootstrapped 95% confidence interval of two parameters of the fitted curve, total changeDr (top), and relative change relDr (bottom), separated for

small and large reward. Gray lines and light gray regions represent the mean and 95%confidence interval of the chance distribution after random permutations of

the in-field firing rates across trial blocks. Annotation at the bottom indicates the number of sessions that meet the minimum requirement of 8 place fields.

(E) Similar to (D) with comparison of outbound and inbound trajectories for both reward sizes.

See also Figures S1 and S2.
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blocks for both large- and small-reward conditions (Figure 4A).

Because we corrected the in-field rates for running speed, the

increased rates are not due to the animals running faster in later

trial blocks, which we confirmed with partial regression analysis

(Figure S1C).
4 Current Biology 31, 1–13, October 25, 2021
Pairwise comparison of in-field firing rate between consecu-

tive trials showed a significant step increase between trial block

1 and 2 in the large-reward condition. For the small reward, the

in-field rate appears to increase toward trial block 5 but without

significant pairwise differences.



Figure 4. Trial-to-trial changes of in-field firing rate

(A) Average per-session in-field firing rate across trial blocks for small and large reward. Error bars indicate 95% bootstrapped confidence interval. For both

reward conditions, Friedman test indicated significant differences between trial-block pairs (small: statistic = 6.67, p = 0.083; large: statistic = 10.30, p = 0.016).

Annotations at the top of the plots indicate the change between adjacent trials and p value for significant pairwise differences (Conover post hoc test with Holm-

Sidak p value correction).

(B)Mean and bootstrapped 95%confidence interval of two parameters of the fitted curve, total changeDrate (top), and relative change relDrate (bottom), separated

for small and large reward. Gray lines and light gray regions represent themean and 95%confidence interval of the chance distribution after random permutations

of the in-field firing rates across trial blocks. Annotation at the bottom indicates the number of sessions that meet the minimum requirement of 4 place fields.

(legend continued on next page)
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The total change in rate across trialsDrate determined by fitting

a sigmoid growth curve was similar for both reward sizes and

significantly higher than expected by chance (Figure 4B;

Monte-Carlo p value; small: p = 0.002; large: p = 0.002).

However, the maximum rate was reached faster for large reward

than small reward, as was clear from a comparison of relDrate

(Figure 4B; bootstrapped distribution of relDlarge
rate � relDsmall

rate ;

95%confidence interval: [0.04, 0.52]; probability that distribution

is different from zero: p = 0.028).

For both reward groups, there was no difference between

outbound and inbound trajectories in the total firing rate change,

although D
small;inbound
rate was not significantly different from the

chance distribution. For the large reward condition, we further

found a tendency for the total rate change to be larger in the

inbound direction than the outbound direction (Figure 4C).

These results indicate an overall increase in in-field firing rate

across trials at the population level, but we noticed a high vari-

ability that could indicate a larger heterogeneity of rate dynamics

at the single-cell level. For this reason, we analyzed separately

the magnitude of the rate changes jDratej and the fraction of

fields with rate increase or decrease across trial blocks.

Consistent with the population vector analysis, the largest per-

session absolute rate changes are observed from trial block 1 to

2 for small- and large-reward conditions (Figure 4D). Partial

regression analysis confirmed that the absolute rate changes

across trials were not related to variations in run speed that differ

between reward conditions (Figures S1D and S1F).

For subsequent trial block pairs, the absolute rate changes

progressively declined but at different extents for small and large

reward. We fitted the data with a sigmoid growth curve and

compared the total and relative changes between reward condi-

tions. The total decrease in absolute rate change across trial

block pairs, DjDratej, was more pronounced for large than small

reward (Figure 4E), which was mainly driven by the absence of

a reduction in absolute rate change for small reward in the in-

bound direction (Figure 4F).

We next looked at whether the absolute rate changes reflect

both increases and decreases of in-field firing rate. For this, we

computed the per-session fractions of place fields with rate in-

crease or decrease (Figure 4G). For large reward, but not small
(C) Similar to (B) with comparison of outbound and inbound trajectories for both

from the chance distribution.

(D) Average per-session magnitude of in-field rate changes for pairs of trial block

conditions, Friedman test indicated significant differences between trial-block pa

Annotations at the top of the plots indicate the change between adjacent trial pa

Holm-Sidak p value correction). Coefficients and 95%confidence interval of the fit

�1.40], l = 1.53 [0.42, 2.83]; large: b1 = 9.04 [7.62, 10.34], b2 = �4.85 [�6.40, �
(E) Mean and bootstrapped 95% confidence interval of two parameters of the fi

separated for small and large reward. Gray lines and light gray regions represent

permutations of the in-field firing rates across trial blocks. Annotation at the bott

place fields.

(F) Similar to (E) with comparison of outbound and inbound trajectories for both rew

the chance distribution.

(G) Average fraction of fields with increasing (dark color) or decreasing (light colo

Text annotations: top row, fraction difference between fields with increasing and

Wilcoxon signed-rank test between increasing and decreasing rate fractions.

(H) Net fraction of fields with increasing versus decreasing in-field firing rate acros

bars indicate 95% bootstrapped confidence interval. Text annotation at the bo

between increasing and decreasing rate fractions.

See also Figures S1 and S3.
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reward, we found a significant bias toward rate increases from

trial block 1/2 (Wilcoxon signed-rank test between increasing

and decreasing rate fractions; small: W= 220.50, p* = 0.57; large:

W = 80.00, p* = 0.0023). For other trial block pairs, we observed

an equal proportion of rate increase and rate decrease. The bias

for rate increases was present for both outbound and inbound

directions in the larger reward condition although reached signif-

icance only for inbound (Figure 4H).

A subset of place fields emerges or vanishes after initial
trials
Wenoted that a subset of place fields was not active (i.e., zero in-

field rate) during one or more trials. We found a clear overrepre-

sentation of place fields that were not active in the first 1–3 trials

but became active afterward (emerging fields) and place fields

that were initially active but then disappeared after trials 1–3

(vanishing fields; Figure 5A).

For both small- and large-reward condition, there was a signif-

icantly larger fraction of emerging place fields than vanishing

place fields (Figure 5B; Wilcoxon test for equal fractions of

emerging and vanishing fields; small: W = 77.00, p = 0.012; large:

W = 98.00, p = 0.029).

For small reward size, the larger fraction of emerging fields

was only present for the outbound trajectory. For large reward

size, there was a trend for more emerging fields on both

outbound and inbound trajectories, although it only reached sig-

nificance for the inbound direction (Figure 5C).

We next looked at when place fields emerged or vanished.

Emerging fields did not appear uniformly on trial blocks 2–4

(chi-square test for null hypothesis of uniform distribution; small:

statistic = 28.07, p = 8310�7; large: statistic = 52.22, p =

4:6310�12), but rather most emerging fields appeared after the

first trial block (Figure 5D). This pattern of field emergence was

the same for small and large reward. For vanishing fields in the

large-reward condition, a similar bias toward disappearing after

the first trial was observed (Figure 5E; chi-square test; statistic =

17.29; p = 0.00018). For small reward, however, the distribution

is not statistically different from uniform (chi-square test; statis-

tic = 2.36; p = 0.31), and the highest percentage of vanishing

place fields disappears in trial block 3.
reward sizes. An open circle indicates that the parameter value is not different

s. Error bars indicate 95% bootstrapped confidence interval. For both reward

irs (small: statistic = 17.85, p = 0.00047; large: statistic = 25.05, p = 1:53 10�5).

irs and p value for significant pairwise differences (Conover post hoc test with

ted growth curve are as follows: small: b1 = 7.26 [6.17, 8.57], b2 =�2.54 [�3.83,

3.26], l = 2.12 [1.39, 3.25].

tted curve, total change DjDratej (top), and relative change relDjDratej (bottom),

the mean and 95% confidence interval of the chance distribution after random

om indicates the number of sessions that meet the minimum requirement of 4

ard sizes. An open circle indicates that the parameter value is not different from

r) in-field firing rate. Error bars indicate 95% bootstrapped confidence interval.

decreasing in-field firing rate; bottom row, Holm-Sidak corrected p value for

s trial pairs for small or large reward and outbound or inbound trajectories. Error

ttom indicates Holm-Sidak corrected p value for Wilcoxon signed-rank test



Figure 5. A subset of place fields emerges

or vanishes after the initial three trial blocks

(A) The number of place fields with a string of n

zero-rate trials starting at trial block t was ex-

pressed relative to the expected number place

fields with n zero-rate trial blocks (assuming a

uniform distribution of zero-rate occurrences

across the 5 trial blocks). For example, the value of

2.5 at (1,1) indicates that it is more likely than

expected that a single zero-rate trial occurs in the

first trial block. For each cell in the matrix, the inset

depicts the pattern of zero-rate trial blocks (black

and gray squares represent zero-rate and non-

zero-rate trial blocks, respectively).

(B) Percentage of emerging and vanishing place

fields for small- and large-reward conditions. Note

that there are significantly more emerging place

fields than vanishing place fields for both reward

conditions, but there is no difference between

small and large reward.

(C) Percentage of emerging and vanishing place

fields separately for outbound and inbound tra-

jectories for small (left) and large (right) reward

sizes.

(D and E) Distribution of trial blocks at which place

fields emerge (D) or vanish (E). For both small- and

large-reward conditions, place fields emerge

predominantly in trial block 2. For the large-reward

condition, place fields predominantly disappear in

trial block 2. For the small-reward condition, the

distribution is not statistically different from uni-

form, and the highest percentage of place fields

disappear in trial block 3.

See also Figures S2 and S3.
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Overall, these results indicate that the appearance of place

fields occurs rapidly after the first trial. Furthermore, the slower

dynamics of place-field disappearance in the small-reward con-

dition could contribute to the overall slower stabilization of the

small-reward spatial representation.

To test whether the spatial representation changes are

explained by the emerging and vanishing fields, we repeated

the population vector correlation and rate-change analysis but

now excluding emerging and vanishing fields (Figures S2 and

S3). Overall, the trial-to-trial dynamics of the population vector

correlations and rate changes persist and are thus not solely

explained by the emergence or disappearance of place fields.

Place-cell activity in SWRs is modulated by experience,
directionality, and reward size
Periods of consummatory behavior are characterized by the

reactivation of hippocampal place cell assemblies (replay).27

Hippocampal replay is modulated by both experience and

reward.22,28 In the following analyses, we ask how replay activity

is modulated by experience at the trial level during learning of the

reward-place associations and whether replay could be a driving

factor for the changes in the spatial representations as shown

above.

First, we examined the occurrence of sharp-wave ripples

(SWRs), electrophysiological markers of putative replay. The

large majority of SWRs occurred while the animal was

consuming the large reward, and only very few occurred when
consuming the small reward or at other locations (Figure 6A;

Table S1; mean ± SEM [percentage ± SEM] number of SWRs

per session: large-reward platform, 78.6 ± 5.1 [88.0% ± 1.4%];

small-reward platform, 2.1 ± 0.7 [2.1% ± 0.6%]). The higher inci-

dence of SWRs at the large-reward site can be explained by the

fact that the animals spent more time at this location than at the

small-reward site (mean [99%confidence interval]; large: 49.75 s

[48.10, 51.50]; small: 6.44 s [5.92, 6.99]).

Across trials, the number of SWRs trended higher for later trial

blocks (Figure 6B; linear regression; slope = 0.89 events per trial

block; R = 0.15; p = 0.065) without increase in total time spent

immobile (Figure S4A). Pairwise comparison of consecutive trial

blocks did not reveal significant trial-to-trial changes in the num-

ber of SWRs.

We next asked how individual place cells change their activity

within SWRs over trial blocks. We computed the proportion (p) of

SWRs in which a place cell fired at least one spike. Only

contextual place cells with place fields on the path to either large

or small reward (psmall and plarge) were considered, and cells with

fields on both paths or with fields in the common home were

excluded. Overall, cells with fields on the path to the large reward

were active in a higher proportion of SWRs than cells with fields

on path to small reward (Figure 6C), consistent with a replay bias

for the large reward environment. However, plarge decreased

across trials (linear regression; slope = �0.01 per trial block;

R = �0.10; p = 0.0028), such that plarge and psmall significantly

differed in all trial blocks except the last.
Current Biology 31, 1–13, October 25, 2021 7



Figure 6. Place-cell activity during SWRs

changes over trial blocks

(A) Average number of SWRs per session as a

function of location in the large-reward and small-

reward environments. Note that the large majority

of SWRs occur when rats visit the large-reward

platform.

(B) The number of SWRs per trial block. Arrows

represent the trial-to-trial transition annotated with

the significance level. None of the trial-to-trial

changes were significant (Wilcoxon signed-rank

test, trial block 1/2: statistic = 160.00, p* = 0.51;

trial block 2/3: statistic = 134.50, p* = 0.26; trial

block 3/4: statistic = 217.50, p* = 1; trial block

4/5: statistic = 216.00, p* = 1).

(C) The fraction of SWRs during which place cells

are active, separated for cells with fields in the

small- and large-reward environments. Text an-

notations at the bottom indicate the corrected p

value for Mann-Whitney U tests between large-

and small-reward conditions. Error bars indicate

95% bootstrapped confidence intervals. Lines

represent least-squares linear fit.

(D) Same as (C) for place cells with fields in the

outbound direction (left), in the inbound direction

(middle), or in both directions (right).

See also Figure S4 and Table S1.
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We next looked at the activity in SWRs separately for unidirec-

tional and bidirectional place cells. For unidirectional place cells,

plarge is significantly higher than psmall across all trial blocks only

for cells that are active in the outbound run (i.e., toward the reward),

but not for cells activeonly in the inbound run (Figure6D). Therewas

a negative trend in plarge across trial blocks for the outbound direc-

tion,but thiswasnotsignificant (linear regression;slope=�0.01per

trial block;R=�0.07; p=0.18). For place cells active in the inbound

direction in the small-reward environment, psmall modestly but

significantlydecreasedacrosstrialblocks(linear regression;slope=

�0.01per trial block;R=�0.11; p=0.049). Interestingly, the largest

changes across trial blocks were seen for bidirectional cells with

place fields in both outbound and inbound directions (Figure 6D).

We found an increase of psmall and decrease of plarge across trial

blocks (linear regression, plarge: slope = �0.03 per trial block, R =

�0.22, p = 0.00053; psmall: slope = 0.02 per trial block, R = 0.16,

p = 0.026), with a significant difference between psmall and plarge in

the first three, but not the last two, trial blocks.

Thechangesobserved in thecontributionofbidirectional cells to

SWR activity was not directly linked to their activity during run, as

virtually none of the place cells active on both running directions

had emerging or vanishing fields throughout learning (Figure S4B).

Overall, these results are consistent with a bias toward reverse

replay (i.e., activationofcellswithfieldson theoutbound trajectory)

in the large-reward condition and point to a refinement of SWRcell

activation that increases spatial and directional specificity.

Replay activity is modulated by experience and reward
size
To quantify replay events during periods of immobility, we used

Bayesian neural decoding to detect spatial representations
8 Current Biology 31, 1–13, October 25, 2021
during SWR bursts. Previously, we used an encoding model

that incorporates hippocampal activity from all trials (trial-

average model).6 That analysis showed a strong bias for reverse

replay of the outbound trajectory toward the large reward. Here,

we investigated how the expression of replay changes across

trial blocks.

The trial-average model assumes that the spatial tuning of

hippocampal place cells is constant and reduces error in the

model due to variations in spiking. Because we showed that

place-field activity systematically changes across trial blocks

with different dynamics for small- and large-reward conditions,

the trial-average model may not be the best model to analyze

replay events on individual trial blocks. For this reason, we per-

formed analysis of replay with per-trial block encoding models

(single-trial model; Figures 7, S5, and S6).

We analyzed how the number of replay events varied across

trial blocks. Overall, the number of replaylarge events is higher

than the number of replaysmall for every trial block (Figure 7B;

Table S1). Because the largemajority of SWRs and replay events

occurred at the large-reward platform (Table S1), by definition,

most replaysmall are remote and replaylarge are predominantly

local.29,30 We find a gradual and significant increase in the num-

ber of replay events that express trajectories in the small- and

large-reward environments (linear regression, replaylarge: slope =

0.30 events per trial block, R = 0.20, p = 0.0076; replaysmall:

slope = 0.18 events per trial block, R = 0.19, p = 0.013). In addi-

tion, we observed a small significant jump in replaylarge events

from trial block 1/2 (Wilcoxon signed-rank test: W = 128.00,

p* = 0.014; Figure 7B).

We further explored the dynamics across trials of reverse and

forward replay (characterized as having a decoded direction



(legend on next page)
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opposite or similar to that of the trajectory fit, respectively; Fig-

ure 7C). We found that the number of replayreverselarge events, but

not replayreversesmall events, significantly increased across trial blocks

(linear regression, replayreverselarge : slope = 0.226 events per trial

block, R = 0.21, p = 0.0053; replayreversesmall : slope = 0.03 events

per trial block, R = 0.07, p = 0.37) without sudden trial-block-

to-trial-block changes. The average occurrence of replayreverselarge

events was consistently higher than replayreversesmall across all trial

blocks (Wilcoxon ranked-test, trial block 1: W = 105.00, p* =

0.00013; trial block 2: W = 119.00, p* = 0.00022; trial block 3:

W = 183.00, p* = 0.0021; trial block 4: W = 117.50, p* =

0.00022; trial block 5: W = 77.50, p* = 3:6310�5).

The number of forward replay events increased for both

reward conditions throughout the trial blocks (linear regression,

replayforward
large : slope = 0.13 events per trial block, R = 0.19, p =

0.014; replayforward
small : slope = 0.14 events per trial block, R =

0.25, p = 0.0011). The average occurrence of replayforward
small did

not show large changes on a trial-block-to-trial-block basis. In

contrast, the average number of replayforward
large events strongly

increased from trial block 1/2 (Wilcoxon signed-rank test; trial

block 1 / 2: W = 130.50; p* = 0.015). As a result, the difference

between the number of replayforward
large and replayforward

small events was

significant on trial block 2 (Wilcoxon signed-rank test: W =

155.50; p* = 0.0028).

Reverse replay of the large environment is dominated by in-

bound trajectories (i.e., from reward platform toward home)

and reactivation of cells with outbound place fields (Figure S6,

left). The gradual increase across trials was only observed for

the reverse inbound replay trajectories and not the few reverse

outbound replay trajectories. Forward replay of the large envi-

ronment is also dominated by inbound trajectories that corre-

spond to reactivation of cellswith inboundplace fields (FigureS6,

right). The step-like increase between trial blocks 1 and 2 was

only present for forward inbound trajectories and not forward

outbound trajectories.

The bias for inbound replay trajectories was less pronounced

for the small-reward environment but still present for forward

replay (Figure S6).

The dynamics of replay occurrence reported above for the sin-

gle-trial model were similar to those observed with the trial-

average encoding model, except that, for the latter, there was

no significant increase of replayreverselarge events across trial blocks

(Figure S7). To shed more light on this difference, we quantified

how the number of replay events depended on the trial that was

used to build the single-trial encoding model (Figures 7C and

S5A–S5C). For the large-reward condition, we noted that the

number of detected replay events on a given trial was highest
Figure 7. Changes in replay over training and between reward conditio

(A) Examples of identified replay events in one session.

(B) Number of replaylarge and replaysmall events across trial blocks. There is a signi

rank test: trial block 1: W = 138.00, p* = 0.014; trial block 2: W = 87.00, p* = 6:531

trial block 5: W = 92.00, p* = 0.0025). Arrows represent the trial-to-trial transition

(C) Similar as (B) for the number of reverse (left) and forward (right) replay events

(D) Number of replayforward
large and replayforward

small events across trial blocks as a function

trial block of replay occurrence.

(E) Similar as (D) for reverse (left) and forward (right) replay.

For (B)–(E), error bars indicate 95% bootstrapped confidence interval. Lines repre

the difference between the two reward groups is indicated above the data poin

followed by Holm-Sidak correction for multiple tests. ***p < 0.001; **p < 0.01; *p
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when the place-cell activity on the same trial was used to build

the model. The number of detected replay events gradually

declined when more distant trials in the trial sequence were

used to build the model (linear regression; slope = �0.25 events

per trial block; R =�0.26; p = 0.0018). In contrast, the number of

detected replaysmall events remained stable (linear regression;

slope = �0.01 events per trial block; R = �0.01; p = 0.89).

The observed decrease in number of detected events as a

function of trial distance between decoding model and replay

occurrence of the large environment was specific to

replayreverselarge (linear regression, replayreverselarge slope = �0.17 events

per trial block, R = �0.27, p = 0.00089; replayforward
large slope =

�0.05 events per trial block, R = �0.11, p = 0.19). These results

suggest that reverse replay events may bemore tightly related to

single experiences than forward replay events.

The changes in contribution of single units to SWRs across tri-

als did not directly relate to changes in the overall characteristics

of hippocampal replays. On average, event duration, replay

trajectory span, and trajectory fit scores remained stable

throughout trial blocks for all conditions, apart from a significant

increase of the fit scores for replays of the small-reward

environment (Figures S5D–S5F).

Taken together, these results suggest that subsets of

hippocampal replay events are differently modulated by reward

and experience. Reverse replay activity was strongly modulated

by reward size, and forward replay activity increased with

experience, with a distinct reward effect in the second trial block

following the large changes in the place-field activity that we

showed above.

DISCUSSION

In this study, we explored the influence of reward value during

learning on hippocampal representations in a paradigm where

rats repeatedly learn reward-place associations in a familiar

setting. We demonstrated quick reorganization of hippocampal

place-cell activity over the course of a few trials, which was

accompanied by both place field turnover and rate changes. A

novel finding in our study is that the updating of the spatial rep-

resentation was accelerated if animals received a large reward,

which may be a neural correlate of the known enhancement of

learning speed by reward value.4,5,7 Hippocampal replay during

reward consumption was dominated by a gradually increasing

number of reverse replays of the path to the large reward and

may have contributed to the faster reorganization of the place

code. Detailed analysis of the trial dynamics of reverse and

forward replay events indicated, however, that multiple factors
ns

ficantly higher number of replaylarge events for all trial blocks (Wilcoxon signed-

0�5; trial block 3: W = 117.50, p* = 0.0034; trial block 4: W = 126.00, p* = 0.014;

s annotated with the significance level separately for the two reward groups.

across trial blocks.

of the distance between trial block used to create the encoding model and the

sents the least squares regression fit. For each trial block, significance level for

ts. All pairwise comparisons were performed with Wilcoxon signed-rank test

< 0.05. See also Figures S5–S7 and Table S1.
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govern the expression of awake replay and that subsets of replay

events may follow the spatial map dynamics rather than actively

contribute to the reorganization.

High reward value accelerates reorganization and
stabilization of the spatial map
For the environment that was associated with large reward, we

observed a faster reorganization and stabilization of the spatial

map. Notably, changes in hippocampal spatial representation

resulted from the appearance and disappearance of place fields

and the modulation of firing rate. The largest change occurred

between the first two trials in the large reward environment,

with an overall increase in within-field firing rate associated

with a higher turnover of active fields. In contrast, the spatial

representation of the small-reward environment changed more

gradually throughout learning.

Our observations are consistent with reports in the literature

showing that environmental changes,31,32 exposure to

another environment,12,13,33 and spatial learning15,34,35 induce

a fast partial remapping of the spatial representation in the

hippocampus,32 with the modulation of within-field firing rate

(rate remapping) and the formation of new fields and disappear-

ance of existing ones (global remapping) for different subgroups

of neurons.12–14 Consistent with the accumulation of place-field

activity at novel or changed goal locations,15,16,36 the ratio of

emerging to vanishing fields was highest at the home and reward

locations. However, we did not observe a difference in the final

representations of the environments associated with large and

small rewards, similar to what has been reported previously.24

This suggests that salient goal locations are overrepresented in

the dorsal CA1 place code during learning, regardless of their

associated reward value.

Dynamics of reverse and forward replay events
Accompanying the rapid spatial map dynamics in the large-

reward environment, we observed a consistent bias of reverse

replay. The number of reverse replay events progressively

increased throughout training, suggesting a combined effect of

reward and experience on reverse replay activity. The bias arises

in part because of the reward size22 but also because animals

spent much longer at the large-reward platform and awake

replay is strongly linked to the current location of the animal.29

Therefore, most replay events occurred while the animals were

consuming the large reward and represented trajectories to or

from the large-reward platform, although a smaller fraction of

these replay events represented remote replays30 of the small-

reward environment. Replay of place-cell sequences has been

linked to enhanced synaptic plasticity and long-term storage of

the sequential structure in the network, and thus the higher inci-

dence of reverse replay of the large-reward environment would

be consistent with a contribution to the faster updating and

stabilization of the spatial representations.

When considering the dynamics of reverse replay of the

outbound and inbound maps separately, a more nuanced pic-

ture emerges. Reverse replay almost exclusively involves the

outbound place fields, even though no difference was found be-

tween the dynamics of the place fields in outbound and inbound

directions. This discrepancy suggests that the updating of the

spatial representations does not require reverse replay, although
we cannot exclude that different mechanisms are at play for in-

bound and outbound map changes.

Forward replay events predominantly used the inbound map,

and the trial-to-trial dynamics followed the spatial map changes

for both reward sizes. Forward replay of the large-reward

environment showed a step-like increase from trial 1 to 2, and

forward replay of the small-reward environment showed a

gradual increase across trials. These results are consistent

with the fact that replay activity is dependent on experience28,37

and do not support a model in which awake replay activity

directly influences hippocampal representations during learning.

The different dynamics of reverse and forward replay occur-

rence indicate that likely different mechanisms contribute to their

generation and support the hypothesis that subsets of hippocam-

pal replay play separate roles in memory processes.38–42 Our re-

sultsareconsistentwith amodel inwhich reverse replayenhances

reward-related learningby retroactively strengtheningcell assem-

blies activeprior toobtaininga larger reward.22 Indeed, reverse re-

plays more closely relate to single-trial maps rather than more

‘‘matured’’ representations, as illustratedby their occurrenceafter

a unique lap43 and uniquelymodulatedby reward.22 These obser-

vations also suggest that reverse replays aremore strongly driven

by external inputs, such as from cortical areas44,45 or reward-

responsive neurons present in the ventral tegmental area

(VTA).46 Forward replay may contribute to several memory pro-

cesses, such as memory consolidation and evaluation of future

options,37,40,47 both of which require prior encoding of a memory

trace.Our observation that forward replay ismore strongly related

to the experience-dependent formation and modification of hip-

pocampal spatial representations is consistent with this view.

Further investigation is needed to decipher the roles of subsets

of hippocampal replay to memory, for example, via their specific

online manipulation during behavior.48,49

Changes in cellular contribution to replay events
Surprisingly, the increase in replay activity over trial blocks was

accompanied by a progressive decrease in single-cell contribu-

tions to sharp-wave ripple events (i.e., putative replay events).

This effect was mostly observed for bi-directional place cells

that were active on both outbound and inbound trajectories.

The contribution of cells that were active on journeys toward

the large reward was elevated more strongly than the contribu-

tion of cells that were active in the small-reward environment,

which could not be explained by changes in replay properties.

Rather, we reason that bidirectional place cells, which may be

active at different locations in the two running directions, lower

the ability to accurately decode both run direction and position.

Thus, a lower participation of bidirectional place cells together

with a stable contribution of unidirectional place cells would

result in the better estimation of position and direction and,

consequently, in the improved detection of replay content.

Reverse replay relates more strongly to the most recent
experience
To decode replay activity, we used a single-trial encoding model

to control for the trial-to-trial changes in spatial representations

instead of a trial-average model that is generally used. The en-

coding model we selected for decoding had an impact on the

occurrence of reverse replay of events from the large-reward
Current Biology 31, 1–13, October 25, 2021 11
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environment. We found a higher number of identified events

when using the run activity that occurred close to the time of

the events occurrence, which suggests that reverse replay cor-

responds to the reactivation of CA1 activity patterns that relate

to a single experience, more so than forward replay events.

Taken together, our results suggest that the reward-related

enhancement of awake hippocampal replay activity is finely

tuned toward behaviorally relevant experiences, in this case,

the journeys leading to the large reward. The bias within replay

events for representations of trajectories leading to the large

reward is learning dependent and engages a selective refine-

ment of the contribution of cell subpopulations.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Fabian Kloosterman

(fabian.kloosterman@nerf.be).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The data and analysis routines used in this study are available via theOpen Science Framework: https://osf.io/smzby. This will enable

the recreation of all main and supplemental figures. Additional code is also available at http://bitbucket.org/kloostermannerflab.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 6 male Long-Evans rats were used for this study. All experiments were carried out following protocols approved by the

KU Leuven animal ethics committee (P119/2015) in accordance with the European Council Directive (2016/63/EU). Animals with

implanted electrodes were housed separately in individually ventilated cages (IVC) with ad libitum access to water and

controlled intake of food pellets. Body weight and general health status were checked daily by the researchers and animal

care personnel. The results presented here derive from the analysis of a subset of data collected for a previously published

study.6

METHOD DETAILS

Behavioral procedure
All rats were trained in a dual reward-place association task.25 Rats performed the task on an elevated maze that was split into two

environments located at the right and left side of the experimental room. The two environments were separated by a divider and con-

nected to a common home platform via 30 cm long tracks. Each environment consisted of a choice platform with connections for up
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to 6 radially emanating arms. Each arm ended in a reward platform. The goal in the dual reward-place task is for the animal to learn

and remember which of the 6 locations in each environment is associated with either large (9 pellets) or small (1 pellet) reward.

The dual reward-place association task is a repeated acquisition task in which rats need to learn and remember different associ-

ations every day. Each daily session is subdivided in an instruction phase and a test phase that were separated by a 2h delay. During

the instruction phase, only the rewarded target arm is physically present in each environment. Across 5 trial blocks, rats were allowed

to sequentially visit the target arm in the two environments to collect and consume reward. The rats were next placed in an enclosure

located in the experimental room for the 2h delay. Following the delay, the rats were tested for their memory of the daily reward-loca-

tion association separately for both environments in the presence of three additional distractor arms. In each session, task param-

eters were varied pseudo-randomly, i.e., the location of the target and distractor arms, the large/small reward assignment to left/right

environment and the order in which environments were presented to the animal during instruction and test phase.

Electrophysiological recordings
A custom-designed 3D-printedmicro-drive array,58,59 carrying up to 24 tetrodes and 3 stimulation electrodeswas surgically attached

to the rat skull. During surgery, the array was positioned above the cortical surface through craniotomies located above the dorsal

hippocampus for the recording electrodes (center coordinates: 4 mm posterior to Bregma, 2.5 mm right from the midline) and above

the ventral hippocampal commissure for the stimulation electrodes (center coordinates: 1.3 mm posterior to Bregma, 0.9 mm right

from the midline). Note that the stimulation electrodes were not used as part of this study. Following 1 week of post-operative

recovery, the electrodes were lowered toward the pyramidal cell layer of hippocampal area CA1 over the course of 2-3 weeks.

During experiment, electrophysiological recordings were performed using a 128-channel data acquisition system (Digilynx SX,

HS-36 analog headstage and Cheetah software; Neuralynx, Bozeman, MO). Wide-band (0.1-6000 Hz) signals and waveform

snippets of online detected spikes in the band-pass filtered signal (600-6000 Hz) were sampled at 32 kHz. The position of the rats

in the maze was tracked and captured at 50 Hz using an overhead video camera and colored LEDs mounted on the headstage.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Analysis
Analysis of neural and behavioral data was performed using Python and its scientific extension modules,50 augmented with custom

Python and C++ toolboxes. In particular, we used numpy51 for numerical computations, scipy,52 pandas,53 statsmodels, scikit-learn

and scikit-posthocs for statistical analyses, matplotlib54 and seaborn for visualization, and Jupyter/IPython55 for interactive analyses.

Behavior
The position of the rats was tracked using an overhead video camera. Running speed was computed as the magnitude of the

Gaussian (bandwidth 0.5 s) smoothed gradient vector of position. In the instruction trials, the average running speed to (from) the

reward platforms was computed over the full journey between leaving home (reward platform) and arriving at the reward platform

(home).

Detection of sharp-wave ripple (SWR) events
The local field potentials from 1-3 tetrodes were downsampled from 32 kHz to 4 kHz and filtered in the ripple frequency band

(140-225 Hz). The ripple envelope was computed as the absolute value of the Hilbert-transformed filtered ripple signal, averaged

across the selected tetrodes and smoothed with a Gaussian kernel (bandwidth 15 ms). Slow trends in the ripple envelope were

removed using a moving median filter (window length 3 s). Finally, start and end times of ripple events were detected when the de-

trended ripple envelope exceeded a low threshold of m+ 0:53s and the maximum envelope exceeded a high threshold of m+ 83 s.

Here, m and s represent themean and standard deviation of the detrended ripple envelope. Ripple events that were separated by less

than 20 ms were merged into a single event, and events with a duration shorter than 40 ms were excluded.

Place cell analysis
Spike waveforms were automatically clustered into putative single units using Kilosort2 (https://github.com/MouseLand/Kilosort)

and manually curated (using software package Phy, https://github.com/cortex-lab/phy) to identify well-isolated and stable single

unit activity clusters. Units with a waveform peak-to-trough duration less than 0.5 ms or more than 1% contamination in a 2 ms

refractory period were excluded from analysis.

For each unit, we computed the spatial tuning curve as the average firing rate in 1 cm bins along the trajectories from home to

reward platform (outbound) and back (inbound). Only time windows in which the run speed exceeded 5 cm/s and no ripple events

occurred were included to compute the tuning curves. Separate tuning curves were computed for the trajectories to/from the left and

right environments. All tuning curves were smoothed with a Gaussian kernel (bandwidth 10 cm).

Based on the spatial tuning curves, place fields were defined as contiguous locations where the firing rate exceeded a low

threshold of 0.1 Hz and the peak firing rate exceeded a threshold of 1 Hz. We used this relatively low threshold of 1 Hz to make

sure to include fields that appear or disappear over the five instruction trials. The above procedure leads also to the inclusion of fields
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with weakly modulated firing rates across all trials. Therefore, to exclude such fields, we set a minimum in-field firing rate of 5 Hz in at

least one of the five trials. Finally, narrow place fields (less than 10 cm distance between the outer most spikes in the field) were

excluded from the analysis.

In a total of 37 separate sessions (median 7.0 sessions/animal, range 2-8 sessions/animal), we recorded from 758 place cells

(median 18.0 cells/session, range 6-49 cells/session). Place cells had amedian of 2.0 place fields (percentage of clusters with 1 field:

45.8%, 2 fields: 28.2%, 3 ormore fields: 26.0%). Since the home location in themaze overlapped between run trajectories to/from the

reward locations, we excluded place fields in home from further analyses.

Speed-corrected in-field firing rates
To remove the relation between run speed and place cell firing rates, we computed a speed-corrected in-field firing rate per

instruction trial. First, we model the rate-speed relation by performing kernel regression on all fields across all animals and sessions.

Kernel regression is a non-parametric method that tries to discover a non-linear relation between two variables. We used a Gaussian

kernel and automatic bandwidth selection based on least-squares cross-validation. In the model, we only included trials and fields

with non-zero rates. Next, we computed the corrected in-field firing rate as:

rij = rij 3
rbr ij

where rij is the rate for field i in trial j, r
�
is the mean rate across all fields and trials and br ij is the speed-predicted rate for field i and trial

j. We used a multiplicative correction to make sure that the corrected rates remained positive. After correction, no relation between

speed and in-field firing rate remained (Figure S1).

Population vector correlation
For each instruction trial, a vector of speed-corrected in-field firing rates was constructed for all place fields or subset of place fields.

Trial-to-trial similarity of the population activity was calculated as the Spearman correlation coefficient between the corresponding in-

field rate vectors. The population vector correlation was computed at a per-session level and subsequently averaged across

sessions.

Emerging and vanishing place fields
Emerging and vanishing place fields were defined as those fields with zero in-field firing rate in the first or last trial(s). To test if a

sequence of zero-rate trials occurred by chance (assuming the occurrence of zero-rate trials is randomly distributed across all trials),

the fractions of fields with n zero-rate trials on the trials ½t;.; t + n�1�was computed for n˛½1;.;4� and t˛½1;.;5�with t + n� 1% 5.

The fractions were expressed relative to the expected fraction of fields with n zero-rate trials computed as the probability of drawing n

trials out of 5. A value above 1 indicates that it is more likely than chance that a sequence of n zero-rate trials occur from trial t.

Bayesian neural decoding
Per recording session, an encodingmodel that relates hippocampal spiking activity to the animal’s position was constructed from the

data acquired in the instruction phase of the task. Only spikes emitted during run epochs (run speed > 10 cm/s) with aminimum spike

amplitude of 60 mV were incorporated into the model. Tetrodes with a mean spiking rate during run epoch below 0.1 Hz were

excluded.

We used a decoding approach that directly relates spike amplitude features to position without prior spike sorting.56 Under the

assumption that all spikes on a tetrode occur conditionally independent of past spikes and that the firing rate is determined by

position in the maze, the hippocampal activity on a single tetrode can be modeled as a marked temporal Poisson process that is fully

characterized by the rate function lða;xÞ, where a represents the vector of spike amplitudes and x represent position in themaze. The

likelihood of observing a set of spikes with an amplitude of a1:n in time interval D for a given position is then expressed as:56

Pða1:njxÞ = Dn

"Yn
i = 1

lðai; xÞ
#
eDlðxÞ (Equation 1)

And the joint likelihood across K tetrodes is obtained by product of the single tetrode likelihoods:

P
�
a1:K

��x�= YK
k = 1

P
�
a1:nk

��x�
.

We used a compressed kernel density estimator to evaluate the rate function lða; xÞ and the marginal rate function lðxÞ from their

component spike count and position occupancy probability distributions.57 The bandwidth of the Gaussian kernel was set to 30 mV

for spike amplitude and 5 cm for position. Mahalanobis distance threshold for compression was set to 1.0 for an acceptable trade-off

between decoding accuracy and computation time.

We used two different encoding models to decode spatial information in hippocampal replay events. The trial-average encoding

model is a single model that incorporates the place field activity from all instruction trials. The single-trial model is composed of a
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separate model for each of the trial blocks which incorporates only the place field activity within that trial block. For each candi-

date replay event in a trial block, decoding of the spatial information is performed using the corresponding trial block encoding

model.

To perform neural decoding for the spiking activity recorded on K tetrodes in time window D and estimate the posterior probability

distribution over position (sampled at a regular grid with 4 cm spacing) from the likelihood we resort to Bayes’ rule:

P
�
x
��a1:K� =

Pða1:K jxÞPðxÞ
Pða1:KÞ (Equation 2)

where a uniform prior PðxÞ is used.

To evaluate the performance of the decoder, we used a five-fold cross-validation procedure in which four out of five instruction trial

blockswere used to build the encodingmodel and the remaining instruction trial blockwas used for decoding the animal’s position on

the maze in D = 100 ms time bins. The decoding error was defined as the distance along the track between the estimated and real

position. For each session, we evaluated the decoding error distribution separately for left and right environments, as well as for the

complete maze. Cross-validation was only performed with the trial-average encoding model. Only sessions with a good decoding

performance during the instruction phase (75 percentile of decoding error distribution is below 30 cm) were selected for subsequent

analysis of hippocampal replay (29 sessions from 6 animals).

Replay analysis
A smoothed multi-unit activity (mua) rate histogram (5 ms bin size, Gaussian kernel with 15 ms bandwidth) was computed from all

unsorted spikes recorded from the hippocampus with a peak amplitude larger than 60 mA. The rate was detrended using a moving

median filter (window length 3 s). Transient bursts in the detrended mua were defined using a double threshold procedure, where the

upper threshold m+ 43s determines if a burst occurred and the lower threshold m+ 0:53s determines burst start and end time. Bursts

that were separated by less than 20msweremerged, and bursts with a duration shorter than 80mswere excluded. Candidate replay

events were defined as mua bursts that overlapped with a ripple event and which occurred while the animal was immobile

(run speed < 5 cm/s).

Candidate replay events were split intoD = 10ms time bins and spiking activity (amplitude > 60 mV) in each bin was used to perform

decoding as described above. Next, separately for left and right target arms, weighted isotonic regression was performed on the

maximum-a-posteriori (MAP) position estimates with posterior probabilities as weights.6 A goodness-of-fit score was defined that

combined both the posterior probabilities and the R2 of the regression: score = 1
T

PT
t =1

PMAP;t3R2, where T is the number of time

bins in the event, and PMAP;t is the posterior probability associated with theMAP estimate in time bin t. The regression was performed

twice to fit both a monotonically increasing and a monotonically decreasing trajectory to the MAP estimates, and only the best fitting

trajectory with the highest score was retained.

For each event, the goodness-of-fit score is compared to the distribution of scores constructed from 500 pseudo-random events in

which each posterior was randomly drawn from the complete set of candidate replay events.29 Only candidate replay events with a

Monte-Carlo p value < 0.05 were considered to contain significant trajectory replay.

For each significant replay trajectory, the run direction was decoded using the same Bayesian neural decoding approach as used

for position. For each replay event, a direction bias was computed separately for the small and large reward environment as themean

difference in posterior probability between the inbound and outbound run directions across time bins. For each event, the direction

bias was compared to the distributions of biases computed from 500 pseudo-random events obtained by randomly assigning each

posterior probability of that same event to either the large or small reward environment. Only candidate replay events with a

Monte-Carlo p value < 0.05 were considered to be significantly biased for one run direction. Replay events were classified as either

‘forward’ or ‘reverse’, depending on whether the decoded direction matched the direction of the replay trajectory.

Statistics
To compare the distributions of trial-to-trial firing rate changes, we used the two-sample Kolmogorov-Smirnov test for equal

distributions with Holm-Sidak p value correction.

To compare per-session correlation coefficients between trial blocks, we first used the Friedman chi-square omnibus test,

followed by a Conover posthoc test of all pairwise combinations that uses Holm-Sidak p value correction method.

To compare the number of replay events between successive pairs of trial blocks and between reward conditions, we used the

Wilcoxon signed-rank test with Holm-Sidak p value correction to account for the multiple tests.

To compare the contribution of place cells to SWRs and replay events between pairs of successive trials blocks and between

rewards conditions, we used the Mann-Whitney U test followed by a Holm-Sidak p value correction to account for the multiple tests.

To test the distribution of trial blocks at which individual place fields appear or disappear, we performed a chi-square test for the

null hypothesis of a uniform distribution.

We use p* to indicate p values that were corrected for multiple tests.
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Curve fitting
The relation between trial-to-trial correlation, rate or jDratej and the sequence number of the trial blocks (or trial block pairs) was fitted

with a sigmoid growth function:

yðkÞ = b1 +
b2

1+ e�lk

where, b1, b2 and l are the parameters to be fitted, and k˛½0; 1; :::; n�1� is the sequence number for the trial blocks or trial block pairs

(i.e., k = 0 for r1/2, k = 1 for r2/3, etc.). Fitting was performed using themean squared error and L2 regularization as the cost function.

We performed global minimization of the cost function using the stochastic differential evolution approach. Ten-fold cross-validation

was used to estimate the hyperparameter for the L2 regularization. The 95% confidence intervals of the fitted parameters were

computed by bootstrapping (500 samples).

The curve fit was summarized by two derived parameters that express the total change from the first to the last trial block or

trial block pairs ðD = yðn � 1Þ � yð0ÞÞ, and the relative change between the first two trial blocks or trial block pairs

relD= y 1ð Þ�y 0ð Þ
y 2ð Þ�y 0ð Þ=

1
sech lð Þ+ 1

� �
.

To compare the derived parameters between small and large reward conditions, we computed the bootstrap distribution of

differences and calculated the two-sided p value for this distribution to be different from zero.
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