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Abstract—In this paper, we take a closer look at two novel
boundary integral equation methods that are ideally suitable
for modeling good but lossy conductors. The first method lever-
ages the Calderón identities to precondition the homogeneous
Poincaré-Steklov operator for high dielectric contrast materials.
The second technique constructs an alternative formulation of
the Poincaré-Steklov operator based on the eigenfunctions of
the volume that avoids the numerical integration of the Green’s
function in the conductive medium. Through numerical examples
and performance comparison, the applicability of both single-
source methods to model realistic conductors is demonstrated,
illustrating their capability in characterizing 3-D interconnects.

Index Terms—boundary integral equation (BIE), Calderón
preconditioner, 3-D surface admittance

I. INTRODUCTION

Boundary integral equations (BIEs) are a common choice

to electromagnetically model homogeneous materials in free

space and/or layered background media. This is mainly due to

the automatic inclusion of the Sommerfeld radiation condition

through the Green’s function and the reduced number of un-

knowns as only the boundary surface demands discretization,

making them ideal candidates for modeling (3-D) interconnect

structures. These advantages come at the cost of the dense

nature of the system matrix and the increased complexity in

the calculation of the matrix elements.

Widely-used BIE methods such as the electric field integral

equation (EFIE) and the Poggio-Miller-Chan-Harrington-Wu-

Tsai (PMCHWT) formulation for the modeling of perfect

electric conductors (PEC) and dielectric materials, respec-

tively, additionally suffer from low-frequency and dense-mesh

breakdown after discretization as they depend on the electric

field integral operator, T , an unbounded and ill-posed operator.

These conditioning problems can be mitigated through the

application of Calderón preconditioners [1], [2].

Unfortunately, when modeling materials exhibiting high

dielectric contrast (HDC) with respect to the background

medium, some (new) challenges arise. Firstly, the previously

alleviated conditioning problems of the preconditioned PM-

CHWT formulation are resurrected and need to be tackled

once more. Secondly, the calculation of the matrix elements

inside the medium becomes much more involved if the com-

plex permittivity has a strong imaginary dielectric component,

as is the case for good conductors [3].

The first method we explore is a Calderón preconditioned

single-source BIE that focuses on the first hurdle, i.e., the

conditioning problems. To achieve this, a Poincaré-Steklov

(PS) operator P that maps the tangential electric field onto

the tangential magnetic field on the boundary surface is intro-

duced. After proper discretization, the resulting ill-conditioned

matrix equations are regularized by exploiting the stabilizing

effect of the T operator on the PS operator [4].

The second technique we examine, focuses on the difficulty

of numerically integrating the Green’s function inside highly

conductive media. Instead of employing advanced but com-

putationally costly methods to compute these integrals with

tolerable accuracy, a differential surface admittance (DSA)

operator Y is introduced that avoids these computations al-

together. Instead, it exploits the eigenfunctions of a cavity

with the same shape as the conductive volume to construct Y ,

i.e., the difference between two PS operators, leading to an

alternative single-source BIE, suitable for lossy conductor

modeling [5].

II. A CALDERÓN PRECONDITIONER FOR HDC MEDIA

Consider a bounded volume V with boundary surface Γ
filled with a homogeneous materials with (complex) permit-

tivity and permeability ε and μ, respectively, embedded in a

homogeneous unbounded background medium V0, character-

ized by its permittivity and permeability ε0 and μ0. We now

replace the material inside V by the background medium and

impose a magnetic surface current density ms on Γ in such a

way that the field distribution outside V remains unchanged.

This leads to the following set of equations that fully describe

the fields inside V0:{(
K0 +

1
2

)
ms + n̂× e = n̂× ei

1
Z0

T0ms + P (n̂× e) = −n̂× hi,
(1)

with n̂ the outward pointing normal of V , Z0 =
√
μ0/ε0, ei

and hi the impinging fields and K0 the magnetic field integral

operator where the subscript 0 emphasizes that it is calculated

utilizing the material properties of the background medium.

The PS operator P can be computed as:

P =
1

Z
T −1

(
K +

1

2

)
, (2)

where Z, T and K are now computed based on the material

parameters ε and μ. Discretizing (1) in its current form leads to

an ill-conditioned matrix. Multiplying the second equation in

(1) on the left by −ZT , alleviates this conditioning problem.
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It can be shown [4] that the accumulation points of the

eigenvalues of the system matrix are 1/2 ± j/2
√
ε0/ε and

1/2±j/2
√

μ/μ0. Consequently, the formulation is well-posed

and bounded for lossy conductors and other HDC materials

and low-frequency and dense-mesh breakdown are averted. A

dual formulation that exhibits the same advantageous prop-

erties for high magnetic contrast materials has also been

developed [6].

III. A 3-D DIFFERENTIAL SURFACE ADMITTANCE

OPERATOR

Assume the same configuration as before (with the added

constraint of no magnetic contrast) but this time we impose an

electric surface current density js instead of ms when applying

the equivalence principle. The PS operator for the original

situation remains unchanged but now we define an additional

PS operator in the equivalent case: n̂ × h0 = P0 (n̂× e0)
where the subscript emphasizes the replacement of the material

inside by the background medium. By comparing the boundary

conditions in both scenarios, one easily shows that

js = n̂× (h− h0) = (P − P0) (n̂× e) = Y (n̂× e) . (3)

Instead of computing Y by means of the two PS operators

separately through (2), it can be shown [5] that the differential

surface admittance operator can be constructed directly by

utilizing the magnetic eigenmodes hν of a PEC cavity with

the same shape as V :

js = Y (n̂× e) = τ
∑
ν

Kν

N2
ν

[∫
Γ

(n̂× e) · hν

]
(n̂× hν) ,

(4)

with the contrast parameter τ =
(
k2 − k20

)
/jωμ0, kν and Nν

the wavenumber and normalization constant of hν , respec-

tively, and Kν = k2ν/
[
(k20 − k2ν)(k

2 − k2ν)
]
.

In order to fully solve the field equations, the Y operator

is combined with the EFIE. For the sake of avoiding its

corresponding conditioning problems, the operator is substi-

tuted in the augmented EFIE formulation, which improves

the conditioning through separation of the vector and scalar

potential in the T operator by introducing an additional set of

unknowns and constructing a sparse preconditioner [7].

IV. CHARACTERISTICS OF BOTH METHODS

In this section, we briefly discuss the overall similarities

and differences between both methods, which are reflected

in the numerical results of Section V. Their main common

point is that they are both single-source BIE formulations that

employ the Poincaré-Steklov operator. This implies, among

other things, that both methods exhibit internal resonances.

The main difference between both methods is their gen-

erality. The first method can be applied to arbitrary shapes,

given that it functions optimally for smooth objects, while

the second method, due to its reliance on eigenfunctions, is

only efficiently applicable to canonical shapes, whose eigen-

functions are known analytically. An advantage of the second

method is that the average mesh element size does not scale

0 π/4 π/2 3π/4 π
−8

−6

−4

−2

0

2

Section II
Section III

σ = 1S/m
σ = 108 S/m

θ [rad]

R
C

S
[d

B
]

Fig. 1. Radar cross sections (RCSs) in the xz-plane of a cube with a
side of 0.5m for a plane wave propagating along the positive z-axis and
linearly polarized along the x-axis at 200MHz. The method from Section II
is compared to the method described in Section III for two different values
of the conductivity σ.

with the wavelength inside the material as no field quantities

on the inside are computed directly; this is in contrast to the

first method. However, the higher the dielectric contrast, the

more eigenmodes need to be considered for accurate results.

As the number of eigenmodes can be regulated independently

from the mesh size, this does not impact the computation time

for the EFIE system matrix.

V. NUMERICAL EXAMPLES

In the first numerical example, we examine the performance

of both methods in computing the radar cross section (RCS)

for a conductive cube with a side length of 0.5m when

illuminated by a plane wave propagating along the positive

z-axis and polarized in the x-direction at a frequency of

200MHz. Both methods employ a surface mesh such that the

sides of the cube are divided into 6 edges, which results in a

total of 936 and 432 edges, respectively, as the first method

uses a procedurally generated triangular mesh whereas the

second method imposes a structured rectangular grid [8]. The

RCS in the xz-plane is visualized in Figure 1 for a low and

high conductivity of 1S/m and 108 S/m. The results agree very

well for all angles save for the highly conductive case, which

can be attributed to the influence of the relative coarseness of

the mesh for the Calderón preconditioned HDC method. The

total computation time (matrix calculation, iterative solution

and post-processing time) for this method amounts to around

5 minutes while the DSA based method computes the RCS

within a minute.

The number of iterations required in the iterative solution

of the two systems with the generalized minimal residual

method within a tolerance of 10−10 is reported in Figure 2

for an increasing value of σ. Both methods obtain the results

within a similar limited number of iterations and converge

to a steady value for highly conductive materials instead of

growing boundlessly. Despite the larger system matrix size

for the method from Section II, it achieves a comparable

convergence speed due to its more advanced preconditioner.

The second example constitutes the same scattering set-up

as for the conductive cube but now the illuminated object is an
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Fig. 2. Number of iterations until convergence of the two methods in
computing the radar cross section of Figure 1 for increasing values of σ.
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Fig. 3. Number of iterations until convergence of the Calderón preconditioned
HDC method as a function of frequency for two different dielectric contrasts.
The same scattering configuration as in Figure 1 is employed with the
illuminated object being an ellipsoid with principal semi-axes of 0.6m, 0.4m
and 0.2m.

ellipsoid with principal semi-axes of 0.6m, 0.4m and 0.2m,

respectively. For two different dielectric contrasts, i.e., εr = 4
and εr = 100, the number of iterations until convergence

(tolerance of 10−10) for a wide range of frequencies are

displayed in Figure 3 for the Calderón preconditioned HDC

method. The number of iterations is limited and stable over

several decades, thus demonstrating the lack of low-frequency

breakdown regardless of the dielectric contrast. Only toward

the highest frequency of 100MHz does the number of it-

erations for the high contrast material increase due to the

proximity of internal resonances.
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Fig. 4. Yagi-Uda antenna with one reflector and four directors intended for
operation in the ISM band centered around 434MHz. All dimensions are
given in mm. The radius r of all elements is 2mm.
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Fig. 5. Gain of the Yagi-Uda antenna depicted in Figure 4 for increasing
conductivity. The PEC reference result is obtained through 4nec2 [9].

In the third example, we study the influence of the conduc-

tivity on the gain pattern of the Yagi-Uda antenna shown in

Figure 4 by means of the DSA operator. It is designed for

operation at 434MHz, the center frequency of an industrial,

scientific and medical (ISM) band. The radius of the various

elements constituting the antenna is 2mm and the other

dimensions are annotated on the figure. Figure 5 shows the

gain of this antenna for four different conductivity values,

expressed as the ratio between the skin depth and the radius.

For the lowest value, the gain pattern resembles that of a

very ineffective dipole, i.e., the reflector and directors appear

transparent due to their poor conductivity. Once the skin effect

starts to kick in, the overall gain increases and the difference

between the forward and backward gain grows as all the

elements in the antenna start to exert their influence. For

the highest conductivity, the result simulated by the DSA

operator coincides with the 4nec2 reference result [9] for

most angles, except for the backward gain, where the thin-

wire approximation of the reference result overestimates the

backside lobe.

VI. CONCLUSION

Two different, novel boundary equation formulations that

are particularly equipped for the inclusion of lossy conductor

media are presented and discussed in this paper. The first

method is a single-source BIE formulation that through the

use of the Calderón identities, regularizes the Poincaré-Steklov

operator, resulting in favorable spectral properties for high

dielectric contrast media. The second single-source method,

which relies on the differential surface admittance operator,

exhibits better accuracy and speed on the presented examples

but is in its most efficient form limited to geometries of canon-

ical shapes. Nevertheless, both methods are demonstrated to

be aptly capable of accurate modeling for various applications

over a wide variety of materials and frequencies.
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Future research is still required for the presented methods

to be widely deployable in interconnect modeling. Scalability

and inclusion of layered media are examples of such vital

requirements for both techniques. Another promising avenue

that warrants pursuing is the combination of both methods

by applying the Calderón-based preconditioning to the second

method or by applying a domain decomposition that assigns

parts of interconnects to either technique, leveraging the

strength of the two methods to their full potential.
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