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Simple Summary: Analyzing equestrian show jumping and dressage training movements can be
greatly useful during training, but existing technologies fall short in terms of user convenience and
detection of major horse training activities. As a result, attaching sensors to the horse’s legs could
give a simple solution that is accessible to all riders. However, there is a scarcity of research on
automatic classification of horse jumping and dressage training movements. Thus, the goal of this
study was to use an advanced machine learning algorithm to categorize leg accelerometer data from
the majority of dressage and jumping training motions. This is the first study to show that jumping
and dressage training movements can be accurately identified and the velocity of different gaits and
paces can be estimated with a minimal error.

Abstract: Equine training activity detection will help to track and enhance the performance and fit-
ness level of riders and their horses. Currently, the equestrian world is eager for a simple solution that
goes beyond detecting basic gaits, yet current technologies fall short on the level of user friendliness
and detection of main horse training activities. To this end, we collected leg accelerometer data of
14 well-trained horses during jumping and dressage trainings. For the first time, 6 jumping training
and 25 advanced horse dressage activities are classified using specifically developed models based
on a neural network. A jumping training could be classified with a high accuracy of 100 %, while a
dressage training could be classified with an accuracy of 96.29%. Assigning the dressage movements
to 11, 6 or 4 superclasses results in higher accuracies of 98.87%, 99.10% and 100%, respectively.
Furthermore, during dressage training, the side of movement could be identified with an accuracy of
97.08%. In addition, a velocity estimation model was developed based on the measured velocities of
seven horses performing the collected, working, and extended gaits during a dressage training. For
the walk, trot, and canter paces, the velocities could be estimated accurately with a low root mean
square error of 0.07 m/s, 0.14 m/s, and 0.42 m/s, respectively.

Keywords: dressage; show jumping; activity recognition; accelerometer; CNN; neural network;
machine learning

1. Introduction

Horse riding has become increasingly popular, and there is ample evidence that riders
derive a lot of pleasure and enjoyment from engaging in various equestrian disciplines [1].
The most popular equestrian events are also Olympic-level disciplines, i.e., show jumping
and dressage [2]. During training and competition a jumping horse completes a course with
fences and a dressage horse performs different predefined gaits, patterns and movements.
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Detecting those movements during a riding session provides insights into training and is
needed to quantify the type and intensity of training sessions. The fitness level of a horse is
also an important determinant of injuries and therefore, monitoring of training sessions
may have important added value in the assessment of performance ability and potential
future injuries in a sport horse [3]. Analyzing locomotion data could not only provide
insights in horses’ fitness level but also define horse qualities. For example, dressage horses
that were higher placed in the Olympic Games had higher speeds in the extended canter
due to taking longer strides [4].

Currently, the assessment of training and competition is performed mainly by trainers
or riders analyzing their cellphone video recordings, as available technologies remain
limited [5]. However, this approach poses many challenges. Firstly, it requires someone to
film qualitatively; secondly, visual analysis requires time and experience; and thirdly, there
is a lack of quantification and consistent objective assessment which makes it difficult to
compare training sessions. To tackle these issues, a small accelerometer device attached to
the horse tendon boots can provide a more general solution, available to all riders.

The problem with existing technologies is that they only address gaits and/or often
rely on a daunting hardware setup [5]. As in this study, accelerometers are used previously
to detect the gaits of the horse or to quantify the physical activity [5,6]. For example, Ref. [7]
uses data of horses equipped with seven inertial measurement unit (IMU) sensors at high
sampling rates to classify eight different types of gaits. Another study [5] uses a simple
setup (e.g., smartwatch) but only detects walk, trot and canter movements of the horse
and the canter lead is not detected. Detecting canter lead is important to balance the time
spent on each canter hand and landing on the right canter after a jump helps both horse
and rider to remain in a calm, balanced and controlled rhythm while making the horse
quicker on turns and lead to a faster time. Moreover, it was found that horses approaching
a fence with the incorrect canter lead were 5.9 times more likely to score faults [8]. Also, in
the sport of dressage, detecting the hand on which a horse is conducting dressage exercises
is critical for balancing the amount of time spent on each side during a dressage training
session. However, the side of dressage movements has never been automatically identified
before. Also, during a dressage course a significant percentage of the total score at all levels
of competition is made up of different types of a gait (collected, working, medium and
extended) [9]. Those various types are distinguished both stylistically and by speed of
movement but there are no studies so far that have explored if those could be automatically
detected. Moreover, advanced dressage movements such as passage and piaffe account
for more than 25% of the overall score in both the Grand Prix and Grand Prix Special tests
but have never been before automatically classified [10]. To the authors’ knowledge, this is
the first study to show automatic detection, based on accelerometer data gathered by an
off-the-shelf device, of the majority of jumping and dressage training activities (i.e., walk,
trot, canter, jump, flying change, paces, piaffe, passage, shoulder-in, haunches-in, leg yield,
half pass and pirouette) based on accelerometer data.

In this study, we use leg accelerometers to extend our previous algorithmic approach [11]
to classify horse activity, to investigate if we could detect gaits, the canter lead, jumps,
and flying changes during a jumping training. We also examined into whether we could
classify gaits, paces, gait variations, and dressage movements during a dressage training.
Finally, the elaboration of a velocity estimation model obtained from experimental velocity
measurements enables us to complement important training metrics such as velocity, stride
length and step frequency.

2. Related Work

In recent decades, a wide range of approaches have emerged for monitoring horse
training. Electromyography, for example, is a technique used in electrodiagnostic medicine
for evaluating and recording the electrical activity produced by muscles. It can be used to
determine muscle recruitment and fatigue in horses [12]. Infrared thermography, the tech-
nique of acquiring and analyzing heat data from non-contact thermal imaging equipment,
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has been used to aid in diagnosing lameness [13]. There has already been research into
distinguishing the movements of various horses using various ways. Existing research
mostly focuses on gaits, lameness, or differentiating between activities based on thresholds.
There is no in-depth study that the authors are aware of that especially focuses on a user-
friendly technique for robustly monitoring dressage and jumping training. Table 1 gives a
brief overview of related previous studies. There are three main categories: accelerometer
and gyroscope solutions, video imaging solutions, and strain gauge solutions.

Table 1. Title, goal of related work, number of horses in the dataset, sensors and methods proposed in this paper
with related work. What makes our research unique is the accurate detection of a the high number of relevant jump-
ing and dressage training activities by automatically extracting features with a CNN using accelerometer data of two
legs. NN = Neural Network, DT = Decision Trees, k-NN = k-Nearest Neighbors, NB = Naive Bayes, CNN = Convolu-
tional Neural Network, LDA = linear discriminant analysis, QDA = quadratic discriminant analysis, RF = Random Forest,
SVM = Support Vector Machine, LSTM = Long short-term memory, BT = Boosted Trees, GPR = Gaussian Progress Regression.

Paper Goal Number
of Horses Sensors Classification Approach

[5] Detection of walk, trot and canter 2 Accelerometer NN, DT, k-NN and NB
[6] Standing, grazing and ambulating 6 Accelerometer Threshold based

[11,14] Detection of stand, walk, trot, canter, 6 Accelerometer CNNroll, paw, flank-watching
[15] Detection of stand, walk, trot and canter 20 Accelerometer Threshold based

[7] Walk, trot, left canter, right canter, tölt, 120 Accelerometer LDA, QDA, DT, RF,
pace, trocha and paso fino + gyroscope SVM, NN and LSTM

[16] Estimation of speed in canter 58 Accelerometer SVM+ gyroscope

[17] Estimation of speed in walk, 40 Accelerometer SVM, DT, RF, BT, GPR
trot, tölt, pace and canter + gyroscope

[18] Presence/absence and degree of lameness 175 Camera NN

[4,9,19] Detection of collected, working, 6 Camera Threshold basedmedium and extended pace
[10] Detection of trot, piaffe and passage 10 Camera DA
[20] Gait analysis 35 Strain gauge NN

[21] Hoof wall deformation to determine 1 Strain gauge NNground reaction forces
[22] Prediction of load in long bone 9 Strain gauge NN
[23] Load-displacement in long bone 13 Strain gauge NN

This paper 6 jumping and 25 dressage training activities 14 Accelerometer Hybrid CNN

The research cited, however, do not necessarily dig deeper into a wide range of move-
ments. Speed of various gaits is estimated in [16,17], coarse activities (standing, grazing
and amublating) are identified in [6], while just various gaits (walk, trot and canter) are
explored in [5,15]. Reference [7] recognizes eight different gaits, but the sensor placement
and number are less user-friendly, and greater sampling rates (200–500 Hz) are employed,
which is inefficient in terms of energy use. For classification, Refs. [6,15] use threshold-
based approaches based on accelerometer data which allowed the determination of gaits
by definition of distinct acceleration value ranges for stand, walk, trot and canter or differ-
entiation between standing, grazing and ambulating in horses, respectively. In [4,9,10,19]
temporal variables such as stride duration, suspension, and stance duration are extracted
from video data and then used to determine which variables are sufficient to distinguish
various paces (collected, working, and extended) or gait variations (piaffe and passage).
As a result, no signal patterns are learned, making this approach less resilient against data
from unknown breeds, as seen in [15], where several thresholds are required to detect
gaits for different breeds of horses, ponies, and Icelandic horses. Therefore, deep learning
algorithms are more accurate because they can recognize patterns and handle noisy or
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missing data. For example, Ref. [5] employs a neural network to classify walk, trot and
canter based on features extracted from accelerometer data such as average peak-to-peak
amplitude, variance and the time interval between consecutive crossings of the horizontal
axis and [18] uses a neural network to classify lameness by using the Fourier-transformed
head motion extracted from video data. While using features as input can aid in classifica-
tion speed and reduce computing complexity, the drawback is that information contained
in the raw data is lost. Additionally, some studies classify hoof strain gauge data for gait
analysis using neural networks. For example, Ref. [21] explores the relationship between
hoof wall deformation and ground reaction forces using a neural network. The technology
for analyzing movement patterns and the forces associated with them has made substantial
advances in the understanding of locomotion. Ref. [20] classifies strain gauge data in order
to determine whether an animal is shoed, the speed at which it moves, and whether it is
walking with a healthy gait. Refs. [22,23] study the usage of an artificial neural network to
predict bone loading using strain and displacement measurements. To achieve our goal, we
used a convolutional neural network, which has the advantage of automatically extracting
features from raw accelerometer data using powerful computing capabilities.

3. Materials and Methods
3.1. Animals and Activities

Between July 2020 and January 2021, data were collected at various Belgian equestrian
sport stables from 14 adult warmblooded sporthorses at different dressage or jumping
levels. All the details about the subjects can be found in Table 2. This variety of horses is
appropriate for our research as the variation in levels will contribute to the generalization
of the machine learning model, as accelerometer data patterns will be different for different
disciplines and levels. The horses’ dressage levels are preliminary, medium, advanced
medium, intermediate, and grand prix, in order of rising difficulty. The horses’ jumping
levels range from 1.10 m to 1.50 m, which represents the height of the fence during a
jumping course. The exercising during data recording is carried out by the owners or
familiar riders at their local training arena with a track surface of sand mixed with GEOPAT
polyflakes [24].

Table 2. Participating horses and their height at withers, gender, age, equestrian discipline and level.

Subject Number Height at Withers (m) Gender Age Equestrian Discipline Level

1 1.71 Gelding 8 Dressage Intermediair
2 1.68 Mare 9 Dressage Intermediair
3 1.68 Mare 7 Dressage Advanced Medium
4 1.73 Gelding 7 Dressage Advanced Medium
5 1.73 Mare 9 Dressage Intermediair
6 1.80 Gelding 14 Dressage Grand Prix
7 1.82 Gelding 11 Dressage Grand prix
8 1.66 Mare 7 Dressage Preliminary
9 1.46 Mare 9 Dressage Medium

10 1.32 Gelding 9 Dressage Medium
11 1.66 Gelding 11 Dressage Grand prix
12 1.76 Gelding 8 Jumping 1.30 m
13 1.71 Gelding 11 Jumping 1.50 m
14 1.75 Gelding 7 Jumping 1.10 m

Interesting activities performed for this research are gaits (walk, trot and canter),
specific dressage and jumping training movements as described in the next sections.

3.1.1. Dressage

The most important dressage activities during a training session or competition and
classified in this study are divided into four categories: gaits, paces, variations on gaits, and
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movements, all of which are described according to the rules of the Fédération Equestre
Internationale (FEI), the governing body for the equestrian sports as listed below [25,26].

• Halt: a stop of all movement with all four feet equally balanced underneath the horse.
• Gaits

Walk: a four-beat gait with footfalls following one another.
Trot: a two-beat diagonal gait where diagonal pairs of legs move forward simul-
taneously with a moment of suspension between each beat.
Canter: a three-way gait that begins with the inner hind leg, goes to the front
with the outer fore leg, then the inner foreleg, also known as the lead leg, and
ends with a moment of suspension.

• Paces

Collected: a gait in which the horse’s neck is raised and arched, and the hocks
are well engaged but with shorter steps than the other paces.
Working: a gait between the collected and extended trots.
Extended: a gait where the horse lengthens the steps to their maximum length
due to strong impulsion from the hindquarters.

• Variations on the Gaits

Passage: a very collected trot characterized by high knee lifts and hock movement.
Piaffe: a passage done on the spot.
Flying change: a change of canter lead in one stride with front and hind legs
changing simultaneously at every fourth, third, second or every stride.

• Movements. Figure 1 shows the different movements.

Shoulder-in: a three-track movement in collected trot where the horse bends
around the inside leg of the rider, away from the movement direction. The inside
front leg crosses over in front of the outside front leg, while the inside hind leg
stays on the same track as the outside front leg.
Haunches-in: a four-track movement in collected trot or canter where the horse
bends around the inside leg of the rider, towards the movement direction. The
front legs and shoulders remain on the original track.
Leg yield: a lateral movement in working trot which a horse moves forward and
sideways at the same time, with the inside legs crossing in front of the outside
legs. The horse’s body is relatively straight or with a slight flexion of the poll
away from the travel direction.
Half pass: a leg-yield like movement but the horse is bent towards the direction
of travel. The half pass is performed in collected trot or canter.
Pirouette: a movement which is usually performed at the collected walk or canter
where the horse’s forehand circles around the hind limbs while slightly bent in
the direction of travel.

The riders all competed at Prix St-George level or higher. Horses performed one of
the following or all main dressage movements according to their level after a thorough
warm up. We also want to classify various gaits each with their own speed and style and in
order of increasing speed, the following investigated are collected, working, and extended
gaits. Therefore, recordings were made of the ponies and horses moving back and forth on
a part of the long side of the arena, making collected, working and extended movements
of each gait type in a random order. The camera was set up with its axis perpendicular
to the horses’ line of motion. This line of motion had a length of 10 m and poles in the
ground indicated the beginning, middle and endpoint of this line so that the velocity could
be detected based on the video data.
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(a) Shoulder-in (b) Haunches-in (c) Leg yield

(d) Half pass (e) Pirouette

Figure 1. Classified dressage movements.

3.1.2. Jumping

The most important jumping activities during a training session or competition,
classified in this study are walk, trot, left -and right canter, jump and flying change. Figure
2 illustrates the course that the horses used for this study completed after warming up
for 15 minutes individually. The warm-up consisted of 10 minutes walking, trotting and
cantering, followed by five 0.40 m high vertical jumps. All animals jumped several times a
course of 5 total efforts in a random manner after the warm-up (2 verticals, 2 parallel oxers,
and 1 double combination). At first the obstacle height was 0.90 m. Afterwards, this was
increased for two out of three horses to 1.10 m. A flying change was performed if the horse
landed in the wrong canter after the jump.

Figure 1. Classified dressage movements.

3.1.2. Jumping

The most important jumping activities during a training session or competition,
classified in this study are walk, trot, left -and right canter, jump and flying change. Figure 2
illustrates the course that the horses used for this study completed after warming up for
15 min individually. The warm-up consisted of 10 min walking, trotting and cantering,
followed by five 0.40 m high vertical jumps. All animals jumped several times a course
of 5 total efforts in a random manner after the warm-up (2 verticals, 2 parallel oxers, and
1 double combination). At first the obstacle height was 0.90 m. Afterwards, this was
increased for two out of three horses to 1.10 m. A flying change was performed if the horse
landed in the wrong canter after the jump.

Figure 2. Jumping course with 5 efforts (2 verticals, 2 parallel oxers, and 1 double combination) with
an obstacle height of at first 0.90 m and afterwards 1.10 m.
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3.2. Data Collection

The device used in this work is the Axivity AX6 6-Axis Logging Device [27]. As illustrated
in Figure 3, the device with dimensions 23 × 32.5 × 8.9 mm and a weight of 11 g is fitted to
the lateral side of the tendon boots using VELCRO stick-on circles and tape. The devices
were attached to the front tendon boots for all of the subjects. In addition, for horse 4,
accelerometers were also connected to the hind tendon boots. An attachment convention
for device orientation aids in the collection of consistent and comparable datasets. Positive
x, y, and z-direction point towards the ground, forward along the horse, and inwards the
horse’s leg, respectively, when the horse stands still.

1 
 

 

Figure 3. Position and orientation (X, Y, and Z axes) of the accelerometers.

3.3. Data Processing

This work uses a semi-automatic approach to alleviate the burden of manual anno-
tation. Observations on the horses’ behaviors were made with video recordings when
collecting data from the sensors. Part of the data is labeled using ELAN video recordings,
where annotations can be made by choosing the duration of the segment where the action
is performed and typing the annotation [28–30]. The model is trained on this data subset
and new data prediction labels are generated, which are then manually corrected in ELAN.
The ground truth is obtained by keeping the training samples while removing moments
when the horse was out of the field of view of the camera or showing undesirable behaviors
like spooking, protest, and so on. Because the raw signals from accelerometers are collected
continuously, segmentation is performed on these raw signals, which are divided into
windows of 0.5 s to 2.4 s depending on the optimal settings at each stage of the classification.
In some stages of the classification, a Fixed-size Overlapping Sliding Window approach is
used, which is known to produce superior results [31].

3.4. Datasets

A total of 13 datasets (3 jumping and 10 dressage trainings) with a sampling frequency
of 50 Hz were collected from 14 different horses. There are a total of 372,339 samples.
Of these samples, 58% are from a dressage training and 42% are from a jumping training.
After 12 min of training, horse 1’s right sensor was replaced by a leg contact, and therefore
the dataset could only be used partially. The right leg sensor file for horse 6 was corrupted,
making this dataset useless. Table 3 lists the considered activities in this study with the
proportion and absolute number of samples measured and the subjects performing the
activity for the dressage and jumping measurements. The FEI limits dressage movements
to only several gaits, but because they are useful for training purposes, we tested some of
them in other gaits as well, indicated with an asterisk in the table.



Animals 2021, 11, 2904 8 of 28

Table 3. Observed activities with the proportion and absolute number of samples and the subjects performing the activity. The asterisk (*) denotes movements that are performed in a
different gait than the Fédération Equestre Internationale’s (FEI) definition [25].

Equestrian Discipline Activities Horses Proportion (%) Samples

Dressage

Halt 1, 2, 3, 4, 5, 11 7.56% 16,175

Walk

Walk paces Walk paces

Collected walk 2, 3, 4, 5, 7, 8, 9, 10, 11 3.70% 7912

Working walk 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 22.70% 48,565

Extended walk 2, 3, 4, 7, 8, 9, 10, 11 4.69% 10,035

Walk movements
Lateral walk movements

Shoulder-in walk * 5 0.63% 1343

Haunches-in walk * 3, 5 0.29% 623

Half pass walk * 3, 5 0.75% 1606

Pirouette walk Pirouette walk 2, 3, 4, 5, 11 1.24% 2652

Trot

Trot paces Trot paces

Collected trot 2, 3, 4, 5, 7, 8, 9, 10, 11 2.78% 5947

Working trot 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 15.56% 33,281

Extended trot 2, 3, 4, 5, 7, 8, 9, 10, 11 1.43% 3059

Trot movements and variations

Variations on the trot gait
Passage 2, 11 2.30% 4927

Piaffe 11 0.56% 1197

Lateral trot movements

Shoulder-in trot 2, 3, 4, 5, 11 2.96% 6325

Haunches-in trot 2, 3, 4, 5, 11 2.46% 5269

Leg yield trot 3, 4 1.32% 2814

Half-pass-trot 2, 3, 4, 5, 11 2.72% 5829

Canter

Canter paces Canter paces

Collected canter 1, 2, 3, 4, 7, 8, 9, 10, 11 3.19% 6818

Working canter 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 14.22% 30,421

Extended canter 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 1.88% 4012

Canter movements and variations

Flying change Flying change 1, 2, 3, 5, 11 2.06% 4404

Lateral canter movements

Shoulder-in canter * 2, 3 0.63% 1337

Haunches-in canter 2, 3, 4, 5 0.68% 1447

Half pass canter 1, 2, 3, 4, 5, 11 1.25% 2666

Pirouette canter Pirouette canter 1, 2, 3, 5 2.46% 5254
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Table 3. Cont.

Equestrian Discipline Activities Horses Proportion (%) Samples

Jumping
Gaits

Walk 12, 13, 14 29.56% 46,835

Trot 12, 13, 14 24.98% 39,581

Left canter 12, 13, 14 20.07% 31,800

Right canter 12, 13, 14 18.36% 29,091

Jumping movements
Flying change 13,14 0.32% 503

Jump 12, 13, 14 6.70% 10,611
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3.5. Classification Process and Feature Extraction

As shown on the left of Figure 4, the jumping model consists of one phase, aiming at
classifying walk, trot, left-canter, right canter, jump and flying change. For the creation of
a high performance dressage model, a multi-phase approach was developed, aiming at
classifying the gaits, the paces, the variations on the gaits and main dressage movements.
The right side of Figure 4 displays the complete overview for the proposed approach. The
first phase classified horse movement, pace and variations on the gait at a specific gait,
distinguishing between halt, walk, trot and canter (phase 1 in Figure 4). Once a horse’s
gait class is classified, a second classifier is applied in order to classify the direction a horse
is moving in (phase 2 in Figure 4). Upfront knowledge of the hand on which the horse is
exercising in, is only required for certain movements (i.e., shoulder-in and haunches-in
walk and trot). Once a horse’s gait class is identified as walk, a classifier is applied in order
to classify pirouette in walk and a superclass containing all the other walk movements and
paces (phase 3 block 1 in Figure 4). The walk movements can then be further subdivided in
lateral walk movements and paces (phase 3 block 2 in Figure 4). Finally, the lateral walk
movements are subdivided in shoulder-in, haunches-in and half pass (phase 3 block 3
in Figure 4). Once a horse’s gait class identified as trot, a classifier is applied in order to
classify various superclasses (phase 3 block 4 in Figure 4), i.e., the trot paces, variations on
the trot gait and lateral trot movements. Next, the variations on the trot gait are subdivided
in passage and piaffe (phase 3 block 5 in Figure 4). The lateral trot movements are further
classified using three classes i.e., the superset side movement (leg-yield and half-pass),
shoulder-in and haunches-in (phase 3 block 6 in Figure 4). Finally, the side movements
are further classified using two classes, i.e., leg-yield and half-pass (phase 3 block 7 in
Figure 4). Once a horses’ gait class identified as canter, a classifier is applied in order to
classify various classes and one superclass, i.e flying change, pirouette and lateral canter
movements and paces (phase 3 block 8 in Figure 4). The lateral canter movements and
paces are then further subdivided in canter paces, shoulder-in canter, haunches-in canter
and half pass canter (phase 3 block 9 in Figure 4). Once the horses’ activity is classified as a
pace, a classifier is applied in order to distinguish between collected, normal and extended
(phase 4 in Figure 4).

Figure 4. Overview of the jumping model (left) and dressage model (right).
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3.5.1. Activity Classification

Each activity classification block in phases 1, 2, and 3 uses a hyperparameter-tuned
version of our previously released algorithms for classifying new activities, as well as
an optimized time period [11]. For the deep learning, the libraries TensorFlow [32] and
Scikit-learn [33] are used. It is a hybrid convolutional neural network (CNN), i.e., a CNN
for local feature extraction combined with features that retain knowledge about the global
time series form. To this end, the max-pooling layer output of the CNN is flattened and
fused with additional features. For each time window, a set of feature characteristics
was extracted from the acceleration signals that already demonstrated to be important
for classifying animal activities [14,34,35]. The input vector of the hybrid CNN contains
raw accelerometer data samples, i.e., the acceleration of the left (L) and right (R) leg
in three directions (axL, ayL, azL, axR, ayR, azR). The output layer produces a probability
distribution over the class labels. To find the best network structure for identifying activities,
various hybrid CNN models with different shapes were used in this study. Each network
model has a different number of convolutional layers, and the activation function for each
convolutional layer is a rectified linear unit (ReLU). A dropout with a probability of 0.55
was applied to the convolutional layers. The first convolutional layer is always followed
by a zero-padding operation.

3.5.2. Velocity Estimation

The velocity estimation model of phase 4 of the dressage model proposed in this study
is using the same convolutional network as for the activity classification. To estimate the
velocity we add eight variables as input to our neural network: the acceleration of the
two legs in three directions and the autorcorrelation function of the acceleration in the
x-direction (autoxL, autoxR). The height of test subjects (h) was added as the only feature.
The model is optimized for a low mean squared error, which means that it is punished
for making greater errors in the differences between expected and actual values. These
variables were chosen because many papers have illustrated that they are closely correlated
with stride parameters [36]. The desired network output is the velocity (v).

3.5.3. Pace Classification

The classification of paces during phase 4 of the dressage model, is accomplished by
comparing and selecting the best decision regions from features for decision boundary
detection algorithms. As a result, a Quadratic Discriminant Analysis (QDA) model was
used to predict the gait pace [37]. The input vector of the QDA consists of a subset of
selected features calculated from raw accelerometer data. Various features are considered,
i.e., height at withers, velocity, stride duration, stride length. Afterwards, the most im-
portant features are identified, i.e., the height at withers and velocity for discriminating
different paces.

3.6. Performance of the Classification

Algorithmic performance was evaluated using overall accuracy and confusion ma-
trices [38]. The overall model accuracy is the number of true positive instances of all
behavioral classes divided by the total number of test instances. Here a true positive is
the number of instances where the algorithm correctly classified the activity using video
observations as a reference. Finally, confusion matrices are used to evaluate the designed
model where the diagonal elements represent whether the predicted test data label is equal
to the true label, while off-diagonal elements are mislabelled by the classifier.

4. Results for Jumping

The model evaluation is accomplished by training the model on the data of four horses
(12, 14, 2, 3) and by predicting activities of two horses (5, 13). The jumping horses landed
almost always on the correct leg during jumping training, so only two flying changes
were performed by the jumping horses. Flying changes are considered as an important
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jumping training activity and therefore, we added data of three dressage horses (two in the
training set and one in the validation set) performing nineteen flying changes to test the
model’s performance.Because the data is measured at 50 Hz and the optimal sampling rate
in our previous work [14] was set at 10 Hz, the dataset is sub-sampled at this rate. Figure 5
illustrates the jumping training classification results using 2 s samples of accelerometer
data sampled at 10 Hz. The number of successfully recognized instances for each class
is represented by the confusion matrix’s diagonal elements. Unrecognized instances or
recognition errors are represented by the off-diagonal elements. The darker blue the cell is
colored, the better the recognition accuracy.

Figure 5. Confusion matrix for the validation set of a jumping training with a sampling rate of 10 Hz
and a time interval of 2 s, achieving 100% overall accuracy.

The overall classification accuracy is 100%. The predictions are not affected by the
reduction of the sampling frequency to 10 Hz. To the best of authors’ knowledge, automatic
jumping training classification based on accelerometer data has not been studied previously
and so no comparison with literature could be made.

5. Results for Dressage

Since not all horses performed every dressage activity due to their different levels,
and in order to obtain a generically applicable model that provides good results for horses
of various levels, the experimental dataset is randomly divided into two disjoint sets: 66%
training and 34% test data. Table 4 presents the classification accuracies for dressage activi-
ties as well as the overall classification accuracy of dressage trainings at different modes of
specialization. The overall classification accuracy is determined using the proportion of
dressage activities present in the dataset which can be found in Table 3.
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Table 4. Modes of specialization for the classification model, as well as associated recognition accuracies and overall classification accuracy for dressage trainings.

Mode 1 Accuracy (%) Mode 2 Accuracy (%) Mode 3 Accuracy (%) Mode 4 Accuracy (%) Mode 5 Accuracy (%)

halt 100% halt 100% halt 100% halt 100% halt 100%

walk superclass 100% walk superclass with side 97.67%

walk paces 99.32% walk paces 99.32%

collected-walk 99.32%

working-walk 99.32%

extended-walk 86.91%

walk movements 100%
walk lateral movements 100%

shoulder-in-walk 69.35%

haunches-in-walk 84.00%

half-pass-walk 100%

pirouette-walk 100% pirouette-walk 100%

trot superclass 100% trot superclass with side 93.36%

trot paces 99.48% trot paces 99.48%

collected-trot 99.48%

working-trot 99.48%

extended-trot 99.48%

trot movements 97.04%

variations on the trot gait 97.92%
passage 97.92%

piaffe 89.02%

trot lateral movements 96.69%

shoulder-in-trot 87.54%

haunches-in-trot 71.60%

leg-yield-trot 78.25%

half-pass-trot 83.68%

canter superclass 100% canter superclass with side 100%

canter paces 99.74% canter paces 99.74%

collected-canter 99.74%

working-canter 99.74%

extended-canter 99.74%

canter movements 97.61%

flying-change 86.77% flying-change 86.77%

canter lateral movements 97.61%

shoulder-in-canter 82.60%

haunches-in-canter 79.02%

half-pass-canter 97.61%

pirouette-canter 97.61% pirouette-canter 97.61%

Overall accuracy (%) 100% 97.08% 99.10% 98.87% 96.29%
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As can be concluded from this table, the first mode accurately (100%) classifies the
gait with which a horse is performing any movement. With a 97.08% accuracy, the second
mode classifies the gait with details on the side of movement. Movements and paces
are distinguished from one another at the third way of classification, with a classification
accuracy of 99.10%. The third mode classification uses information derived from the first
mode, but not the second, because direction information is not required for the third
classification mode. Paces, lateral movements, variations in gait, and other movements
are recognized with a 98.87% accuracy in the fourth mode of classification. In the last and
most advanced mode of classification, all the recorded dressage movements are detected
separately with an overall accuracy of 96.29%. The mean and median classification accuracy
for all movements are 92% and 98%, respectively. Shoulder-in in walk and haunches-in in
trot performing the worst, with classification accuracy of 69.35% and 71.60%, respectively.
Halt, half pass in walk, and pirouette in walk are all classified with an excellent accuracy of
100%. The walk paces are distinguished from one another in this last way of classification.
Group assignment to a velocity profile is necessary for the classification of walk paces, as
will be discussed in Section 5.6.3. The different phases of classification as illustrated in
Figure 4 from which these results arise are discussed in detail in the next sections.

5.1. Phase 1: Activity Group

Figure 6 shows the confusion matrix of the superclassifier for phase 1 classification
when all the 25 dressage activities are merged into four disjoint sets to create supersets (i.e.,
halt, walk, trot and canter).

Figure 6. Confusion matrix for the validation set of a dressage training activity classification at
phase 1 at a sampling rate of 50 Hz and a time interval of 2 s, achieving 100% overall accuracy.

The overall classification accuracy is 100%. As expected, the activity superclassifier
model presents good classification performances for halt, walk, trot and canter activities
since one study found already that one could determine the gaits, without other activities,
by means of individual acceleration value ranges [15].

5.2. Phase 2: Effect of Side

For the second phase of the classification, a 4 s, 1 s, and 2 s time interval were found
to be the most optimal for classifying the side of the walk, trot, and canter movements,
respectively. Figure 7 shows the confusion matrices for prediction of the direction of the
walk, trot and canter activities of the superclassifier.
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(a) Walk, t = 4 s, 97.67% (b) Trot, t = 1 s, 93.36%

(c) Canter, t = 2 s, 100%

Figure 7. Confusion matrix for the validation set of a dressage training side classification at phase 2
at a sampling rate of 50 Hz for walk, trot and canter movements, paces and variations on the gait.

As expected, the direction superclassifier model performs well in classification for
canter activities, as one study found that an Long Short-Term Memory (LSTM)—based
model could identify the canter lead with an accuracy of more than 96.5% [7]. In our
research, we are able to accurately (100%) classify not only the canter lead, but also the
direction of other canter dressage activities (paces, shoulder-in, haunches-in, half pass, and
pirouette). In addition, with an overall accuracy of 97.67%, the direction of walk activities
can be classified almost perfectly. The model validated on the data of the trot activities
performs the worst with a classification accuracy of 93.36% due to misclassification of the
direction of shoulder-in, haunches-in, leg yield and half pass.

5.3. Phase 3: Classification of Walk Movements

Figure 8 shows the confusion matrix of the classifier at phase 3 block 1 from Figure 4.
The overall classification accuracy is 100%.

To the best of authors’ knowledge, the automatic activity classification of lateral walk
movements and paces and pirouette in walk has not been studied previously and so no
comparison with literature could be made. Further, the superclass lateral walk movements
and paces can then be subdivided. Figure 9 shows the confusion matrix for the classification
of lateral walk movements and walk paces (phase 3 block 2). The overall classification
accuracy is 99.35%.
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Figure 8. Confusion matrix for the validation set a dressage training classification at phase 3 block 1
at a sampling rate of 50 Hz and a time interval of 2.4 s, achieving an overall classification accuracy
of 100%.

Figure 9. Confusion matrix for the validation set a dressage training classification at phase 3 block 2
at a sampling rate of 50 Hz and a time interval of 1.2 s, achieving an overall classification accuracy
of 99.35%.

The lateral walk movements are classified with an accuracy of 100% while only two
samples of walk paces are misclassified as lateral walk movements leading to an accuracy
of 99.32%. The latter class can then be further classified by the method as described in
Section 5.6.

The lateral walk movements, i.e., haunches-in, shoulder-in and half pass are classified
using the number of samples with a time interval of 0.64 s. Figure 10 shows the confusion
matrix for the classification of the lateral movements in walk when the direction is unknown.
The overall classification accuracy is 64.86%.
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Figure 10. Confusion matrix for the validation set of phase 3 block 3 for an unknown direction
in a dressage training at a sampling rate of 50 Hz and a time interval of 0.64 s, achieving 64.86%
classification accuracy.

Something that stands out is the confusion between dressage movements shoulder-in,
haunches-in and half-pass. As illustrated in Figure 1, these movements are defined by
bending around the rider’s leg while traveling in a particular direction. Due to the fact
that accelerometer data does not include information about the position of the legs, this
could explain why the model is confusing those various movements. Therefore, we want
to provide extra information to the model so that the accuracy for those movements can be
improved. Since shoulder-in and haunches-in are always performed on the same side were
the horse was previous in, we can add this information to the model. Since the direction
of a half pass in walk is independent of the previous hand, no side information for this
movement was added. The hand on which a horse is exercising in, can be determined with
an accuracy of 97.67% as discussed in Section 5.2.

Figure 11 shows the confusion matrix for the classification of the lateral movements in
walk when the direction is known for shoulder-in walk and haunches-in walk. The overall
classification accuracy is 86.84%.

Figure 11. Confusion matrix for the validation set of phase 3 block 3 for a known direction in
a dressage training at a sampling rate of 50 Hz and a time interval of 0.64 s, achieving 86.84%
classificiation accuracy.
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Adding information on the side on which the horse is walking leads to an overall
increase of 22% in classification accuracy. Half pass walk is classified with an accuracy of
100%. Three occurrences of shoulder-in walk have been erroneously labeled as half-pass
walk. This could be because both actions involve the crossing of the front legs, as explained
by the definitions in Section 3.1.1. To the best of authors’ knowledge, classification of
shoulder-in, haunches-in and half pass has not been studied previously and so no compari-
son with literature could be made.

5.4. Phase 3: Classification of Trot Movements

Figure 12 shows the confusion matrix of the trot superclassifier from phase 3 block 4
which distinguishes trot paces, variations on the trot gait and lateral trot movements.
The overall classification accuracy is 98.08%.

Figure 12. Confusion matrix for the validation set of the trot activity groups in a dressage training at
a sampling rate of 50 Hz and a time interval of 0.8 s, achieving 98.08% overall accuracy.

One study showed that the stride duration determined from video data was enough to
differentiate collected trot from passage and piaffe [10]. In our study, we are able to reliably
(97.92%) differentiate variations on the trot gait from all trot paces (collected, working, and
extended), as well as from other trot movements (shoulder-in, haunches-in, leg yield and
half pass). The trot paces (collected, normal and extended) can then be further classified by
the method as described in Section 5.6.

Figure 13 shows the confusion matrix for the classification of piaffe and passage
(phase 3 block 5). The overall classification accuracy is 98.77%.

Figure 13. Confusion matrix for the validation set of the variations on the trot gait in a dressage
training at a sampling rate of 50 Hz and a time interval of 0.5 s, achieving 98.77% overall classifica-
tion accuracy.



Animals 2021, 11, 2904 19 of 28

Passage is classified with an accuracy of 100% and only one sample of piaffe is misclas-
sified as passage. This is as expected since one study found that the mean values of most
temporal variables differed significantly between passage and piaffe [10]. The accelerom-
eter patterns of the signal in the y-direction (forward direction) are more fluctuating for
the passage movement than for the piaffe movement, as illustrated in Figure 14, since the
horse stays more or less in one position during piaffe.

(a) Passage

(b) Piaffe

Figure 14. Typical accelerometer patterns of (a) passage and (b) piaffe in a 2 s window. The red line
represents the Y signal from the left accelerometer and the blue line represents the Y signal from the
right accelerometer, respectively.

In phase 3 block 6, the lateral trot movements are distinguished from each other
(shoulder-in, haunches-in and side movements). As in walk, shoulder-in and haunches-in
in trot are always performed on the same side were the horse was previous in, we can add
this information to the model. Since side movements such as half pass and leg yield may
be ridden to either the left or right side, regardless of the horses’ previous direction, no
side information is included in the model for those movements. As discussed in Section 5.2
the side of all the trot movements can be predicted with an accuracy of 93.36% due to
misclassification of the side of shoulder-in, haunches-in, leg yield and half pass. During
a dressage training session, shoulder-in and haunches-in excersises are always followed
after a trot pace (mostly collected trot) [25]. Therefore, the side of only the trot pace was
classified. A sliding time window approach is used in this step of the classification because
it resulted in higher classification accuracies. As shown in the corresponding confusion
matrix (Figure 15), the right side trot pace can be predicted with an accuracy of 100% while
the left side, due to the misclassification of two instances, can be predicted with an accuracy
of 96.22%. The overall side of the trot pace can be predicted with an accuracy of 98.31%.
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Figure 15. Confusion matrix for the validation set of the side of the trot pace in a dressage training at
a sampling rate of 50 Hz and a time interval of 2 s, achieving 98.31% accuracy.

Figure 16 shows the confusion matrix for the classification of the side movements
(half-pass and leg-yield), haunches-in and shoulder-in when the side of the trot pace prior
to the haunches-in and shoulder-in is known.

(a) Left, 89.53% (b) Right, 85.85%

Figure 16. Confusion matrix for the validation set of shouder-in, haunches-in and side movements in trot in a dressage
training at a sampling rate of 50 Hz and a time interval of 2 s.

As the confusion matrices show, shoulder-in is classified with the highest accuracy on
both the left and right sides. The class with the lowest classification accuracy is haunches-in,
with a left and right side classification accuracy of 76% and 75%, respectively. In both cases,
haunches-in is counfused with a side movement in trot. The side movements get good
classification results (≥85%) in both cases. As previously stated, lateral movements all
require the horse bending around the rider’s leg while travelling in a certain direction,
which may explain the model’s confusion. To the best of authors’ knowledge, classification
of the various lateral movements has not been studied previously and so no comparison
with literature could be made.

Effect of Multiple Sensors

When considering training classification, the question of multiple sensors impacting
on the classficiation accuracy is important, and more specifically what trade-offs if any
might be needed in terms of acceptable accuracy versus number of sensors. Therefore,
horse 4 wore hind leg accelerometers during exercise to examine the effect of more and other
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combinations of accelerometers on the classification accuracy of lateral side movements.
Table 5 shows the accuracy of the classification algorithm for the considered behaviors
when data from the front- and back-mounted accelerometers is combined and used for
classification while no upfront side information was used for shoulder-in and haunches-in.

Table 5. Accuracy for the validation set of lateral trot movements in a dressage training at a sampling
rate of 50 Hz, a time interval of 2 s and sliding window of 0.5 s using front and back mounted
accelerometers (LF = left front, LH = left hind, RF = right front and RH = right hind).

Leg Accelerometers Accuracy (%)

LF RF 65.15%
LF LH 72.73%
RF RH 80.30%
LH RH 77.27%
LF RH 75.76%
RF LH 84.85%
LF RF LH RH 81.82%

As seen in this table, accelerometer data from the left and right front legs results in the
lowest classification accuracy for lateral trot movements. When using either two or four
sensors, adding hind leg data improves classification accuracy to on average 79%. When
diagonal leg data from the right front leg and left hind leg is combined, the maximum
classification accuracy of 84.85% for lateral side movements is achieved.

Figure 17 shows the confusion matrix for the classification of the side movements in
trot, i.e., leg-yield and half-pass. The overall classification accuracy is 95.74%.

Figure 17. Confusion matrix for the validation set of the trot side movements in a dressage training
at a sampling rate of 50 Hz and a time interval of 0.8 s, achieving 95.74% accuracy.

As can be concluded from the confusion matrices, there is only one misclassification
of left leg yield and one misclassification of left half pass. Furthermore, because there is
no mixing of left and right movements, the direction of the movements can be accurately
determined. The distinct differences in the movements can account for those excellent
classification findings. Leg-yield is done while bending away from the direction of move-
ment in the working trot, and half-pass is done while bending towards the direction of
travel in the collected trot. To the best of authors’ knowledge, classification of the leg yield
versus half pass has not been studied previously and so no comparison with literature
could be made.
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5.5. Phase 3: Classification of Canter Movements

Figure 18 shows the confusion matrix of the canter classifier at phase 3 block 8 in
Figure 4. At this stage flying change, lateral canter movements and paces and pirouette
canter are distinguished from each other. The overall classification accuracy is 99.36%.

Figure 18. Confusion matrix for the validation set of flying change, lateral canter movements and
paces and pirouette canter in a dressage training at a sampling rate of 50 Hz and a time interval of
2 s, achieving 99.36% accuracy.

As can be concluded from the confusion matrix, only one sample of flying change is
misclassified as pirouette in canter.

The next phase of the classification (phase 3 block 9 in Figure 4) of the canter move-
ments consists of classifying haunches-in, shoulder-in, half-pass and canter paces (collected,
normal and extended). Figure 19 shows the confusion matrix and normalized confusion
matrix for the classification. The overall classification accuracy is 98.43%.

Figure 19. Confusion matrix for the validation set of the canter paces and lateral canter movements in
a dressage training at a sampling rate of 50 Hz and a time interval of 0.64 s, achieving 98.43% accuracy.

As predicted, there is no mixing of left and right side movements because the direction
could be distinguished with 100% accuracy. Haunches-in and left-shoulder-in are perform-
ing the worst with accuracies between 75% and 83%. Haunches-in gets misclassified as
half pass and left shoulder-in canter gets misclassified as left-canter. The other ’canter
classes’ get classified with high accuracies between 99% and 100%. More training samples
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will be required to improve accuracies even further. To the best of authors’ knowledge,
shoulder-in, haunches-in and half pass canter are never before classified so no comparison
with literature could be made. The canter paces (collected, normal and extended) can then
be further classified by the method as described in Section 5.6.

5.6. Phase 4: Collected, Extended and Normal Gaits

Each pace is characterized not only by style, but also by the horse’s velocity. As a result,
a velocity estimation model based on accelerometer data is needed. Therefore data of seven
horses and ponies (height at withers ≤ 148 cm) were collected, measuring the velocity at
each pace. The estimated velocity can be used as an input to calculate the stride length
which is an important training metric according to horse riders. Stride length is related to
velocity and stride duration and can be calculated as follows [4]:

L = v · ∆T (1)

with L the stride length, v the velocity and ∆T the stride duration. The stride duration
is the inverse of the step frequency ( f = 1/∆T) and can be determined by the highest
peak in the autocorrelation function of the acceleration in the x-direction. The peaks in the
acceleration signal in the vertical direction reflect the impact moments. The autocorrelation
function displays the correlation of a signal with itself as a function of delay [39]. As a
result, the moment when signal rehearses itself is represented by the highest peak in the
auto correlation function. Table 6 lists the mean measured velocities, the stride duration
and length for the horses and ponies.

Table 6. Mean velocities, stride duration and length for each type of gait for horses and ponies (≤148 cm).

Horse Type Gait Collected Normal Extended
(v) (m/s) ∆T (s) (L) (m) (v) (m/s) ∆T (s) (L) (m) (v) (m/s) ∆T (s) (L) (m)

Pony
Walk 1.20 ± 0.02 1.32 ± 0.34 1.60 ± 0.43 1.30 ± 0.04 1.12 ± 0.10 1.46 ± 0.14 1.37 ± 0.04 1.08 ± 0.08 1.48 ± 0.16
Trot 2.73 ± 0.05 0.71 ± 0.04 1.95 ± 0.14 2.93 ± 0.19 0.69 ± 0.03 2.03 ± 0.22 4.21 ± 0.37 0.69 ± 0.05 2.89 ± 0.10

Canter 3.27 ± 0.15 0.57 ± 0.03 1.87 ± 0.17 3.83 ± 0.26 0.57 ± 0.03 2.20 ± 0.27 4.72 ± 0.16 0.57 ± 0.02 2.67 ± 0.21

Horse
Walk 1.50 ± 0.13 1.30 ± 0.21 1.94 ± 0.34 1.75 ± 0.10 1.26 ± 0.25 2.20 ± 0.41 1.88 ± 0.07 1.19 ± 0.05 2.24 ± 0.15
Trot 3.46 ± 0.16 0.82 ± 0.02 2.85 ± 0.16 3.80 ± 0.15 0.80 ± 0.01 3.05 ± 0.14 4.64 ± 0.12 0.78 ± 0.03 3.60 ± 0.18

Canter 3.41 ± 0.14 0.64 ± 0.02 2.18 ± 0.11 4.03 ± 0.16 0.64 ± 0.01 2.57 ± 0.09 5.28 ± 0.14 0.62 ± 0.01 3.26 ± 0.09

The mean velocities, stride duration and stride lengths of the horses are similar for
the various types of gaits found in literature for horses [4,9,19]. In our study also two
ponies are analysed. To our knowledge, there are no studies about the stride parameters
of collected, working and extended gaits of ponies or the relationship between breed or
height at withers and stride parameters. In all gaits, the horses and ponies’ speed increased
from collected to working to extended pace. Increases in speed are usually accompanied
by an increase in stride length. As walk speed increased, the stride duration appeared to
decrease. The stride duration remained more or less constant as the speed increased in
the trot and canter. The alternation of stride length and duration is irregular and there is
no ready explanation for this. The ponies’ speed, stride length, and stride duration were
usually lower than the horses’ in all gaits.

5.6.1. Velocity Estimation

In Figure 20 the velocity estimation results are presented together with the root mean
squared error (RMSE) and the R2-value. The square root of the mean of the square of all
errors is the RMSE, which is a commonly used measure of the variations between values
expected by a model and the values actually observed. The R2-value is a statistic that
indicates the goodness of fit between the expected and observed values.The x-axis denotes
the estimated velocity, the y-axis denotes the true velocity. The true and estimated velocity
should theoretically match on a line with slope one, meaning that the estimated value
equals the true value.
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(a) Walk, RMSE = 0.07 m/s, R2 = 0.92, t = 2 s (b) Trot, RMSE = 0.17 m/s, R2 = 0.89, t = 2 s

(c) Canter, RMSE = 0.42 m/s, R2 = 0.74, t = 1 s

Figure 20. True velocities as function of the estimated velocities of the gaits (walk, trot, canter) with
the RMSE, R2-value and optimal time interval.

As seen in the figures, all velocities can be estimated fairly accurately, with the best
estimations for walk paces and the worst estimations for canter paces (RMSE = 0.07 m/s
and R2-value = 0.92 vs RMSE = 0.42 m/s and R2-value = 0.92). This is to be expected,
considering that canter paces have more variability in velocity and there are fewer canter
samples to train the model on because the velocity was higher but the distance covered
remained the same. Another study found similar results when predicting speeds in five
gaits (walk, trot, tölt, pace, and canter), with an RMSE increasing from 0.20 to 0.34 m/s as
the algorithm assessed faster gaits [17]. We hypothesize that with additional canter training
data, the estimated canter velocity will be more accurate.

5.6.2. Decision Regions

The aim of phase 4 classification is to distinguish the various gait paces. As a result,
now that the velocity can be estimated accurately, various decision regions for the paces
need to be established. Various features, such as height at withers, velocity, stride duration,
and stride length, are calculated, but feature selection revealed that height at withers and
velocity are the most important features for distinguishing between different paces with
the QDA classifier. Figure 21 shows the classification boundaries with QDA based on
the heights of the horses together with the measured velocities for the paces in the gaits
walk, trot and canter. The overall classification accuracy for walk, trot and canter paces are
69.70%, 100% and 100%, respectively.

As can be concluded from the decision boundary plots, the trot and canter paces
can be predicted with an accuracy of 100% since for trot and canter there is almost no
overlap between the speeds of the various paces of all the horses and ponies which makes it
appropriate for decision boundary based classification. But fixed decision boundary-based
techniques are not suitable for detecting the different types of walk since they can only be
predicted with an accuracy of 69.70%. The fact that different horses’ paces overlap in walk,
even in a group of horses of similar height at withers as shown in Figure 21a, highlights
the importance of looking at individual velocity profiles rather than drawing conclusions
based on velocity regions, which will be addressed in the following section.



Animals 2021, 11, 2904 25 of 28

(a) Walk, t = 2 s , acc = 69.70% (b) Trot, t = 2 s, acc = 100%

(c) Canter, t = 1 s, acc = 100%

Figure 21. Velocities at collected, normal and extended gaits (walk, trot, canter) as function of the
height at withers of the horses together with the decision boundaries of the QDA classifier.

5.6.3. Group Velocity Profile

Although the walk velocity can be estimated with a low root mean square error
of 0.07 m/s, different horses’ velocities and paces overlap. As a result, an individual or
group velocity profile must be established, and an input is needed to address a horse to a
specific group velocity profile. Therefore, in this study, three groups are created, i.e., ponies
(height at withers ≤ 148 cm), slow horses and fast horses (minimum speed at collected
walk ≥ 1.6 m/s).

Figure 22 shows the confusion matrix of the QDA classifier for the walk paces when
three groups are considered. The overall classification accuracy for the ponies, slow horses
and fast horses are (a) 100%, (b) 100% and (c) 87.5%, respectively.

(a) acc = 100% (b) acc = 100% (c) acc = 87.5%

Figure 22. Confusion matrix together with the overall accuracy for the validation set of phase 4 classification of the walk
paces with QDA at a sampling rate of 50 Hz and a time interval of 2 s with (a) ponies, (b) slow horses and (c) fast horses.

As can be concluded from the confusion matrices, the walk paces of the ponies and
slow horses can be predicted with an accuracy of 100% while the walk paces of the fast
horses can be predicted with an accuracy of 87.5% due to the misclassification of one
sample of extended walk as walk.
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6. Conclusions

In this study we propose a solution for a horse jumping and dressage training activity
recognition problem that is based on based on leg accelerometer data. The results show that
for the first time 6 jumping training activities and 25 advanced dressage training movements
using an experimental dataset from 14 different types of horses could be automatically
classified with high accuracies, i.e., 100% and 96.29%, respectively. The experiment also
demonstrated that various subjects’ velocities can be correctly estimated, resulting in
a stride length estimation model. These results can help in further development of an
automatic system for training activity detection and help improve training sessions and
horses’ fitness levels. Capturing and analysing the medium variant of a gait will be
included in future work. Our suggested approach demonstrates superior potential in most
cases as shown by the above experimental results, but the main limitations of this study are
the reduced number of horses for each training activity group with data of only two ponies
present in our dataset. We conjecture that, with more training data of different breeds, our
behavior detector will be more robust to these different cases.
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2. Górecka-Bruzda, A.; Kosińska, I.; Jaworski, Z.; Jezierski, T.; Murphy, J. Conflict behavior in elite show jumping and dressage

horses. J. Vet. Behav. 2015, 10, 137–146. [CrossRef]
3. Munsters, C.C.; van Iwaarden, A.; van Weeren, R.; van Oldruitenborgh-Oosterbaan, M.M.S. Exercise testing in Warmblood sport

horses under field conditions. Vet. J. 2014, 202, 11–19. [CrossRef] [PubMed]
4. Clayton, H.M. Comparison of the collected, working, medium and extended canters. Equine Vet. J. 1994, 26, 16–19. [CrossRef]
5. Casella, E.; Khamesi, A.R.; Silvestri, S. A framework for the recognition of horse gaits through wearable devices. Pervasive Mob.

Comput. 2020, 67, 101213. [CrossRef]
6. Maisonpierre, I.; Sutton, M.; Harris, P.; Menzies-Gow, N.; Weller, R.; Pfau, T. Accelerometer activity tracking in horses and the

effect of pasture management on time budget. Equine Vet. J. 2019, 51, 840–845. [CrossRef] [PubMed]
7. Bragança, F.S.; Broomé, S.; Rhodin, M.; Björnsdóttir, S.; Gunnarsson, V.; Voskamp, J.; Persson-Sjodin, E.; Back, W.; Lindgren, G.;

Novoa-Bravo, M.; et al. Improving gait classification in horses by using inertial measurement unit (IMU) generated data and
machine learning. Sci. Rep. 2020, 10, 17785. [CrossRef]

8. Williams, J.; Perlo, M.; Marlin, D. A preliminary analysis of factors that result in faults in amateur (90–120 cm) showjumping. J.
Equine Vet. Sci. 2019, 76, 59–60. [CrossRef]

http://doi.org/10.1016/j.jveb.2011.10.007
http://dx.doi.org/10.1016/j.jveb.2014.10.004
http://dx.doi.org/10.1016/j.tvjl.2014.07.019
http://www.ncbi.nlm.nih.gov/pubmed/25172838
http://dx.doi.org/10.1111/j.2042-3306.1994.tb04866.x
http://dx.doi.org/10.1016/j.pmcj.2020.101213
http://dx.doi.org/10.1111/evj.13130
http://www.ncbi.nlm.nih.gov/pubmed/31009100
http://dx.doi.org/10.1038/s41598-020-73215-9
http://dx.doi.org/10.1016/j.jevs.2019.03.060


Animals 2021, 11, 2904 27 of 28

9. Clayton, H.M. Comparison of the stride kinematics of the collected, working, medium and extended trot in horses. Equine Vet. J.
1994, 26, 230–234. [CrossRef]

10. Clayton, H.M. Classification of collected trot, passage and piaffe based on temporal variables. Equine Vet. J. 1997, 29, 54–57.
[CrossRef]

11. Eerdekens, A.; Deruyck, M.; Fontaine, J.; Martens, L.; De Poorter, E.; Joseph, W. Automatic equine activity detection by
convolutional neural networks using accelerometer data. Comput. Electron. Agric. 2020, 168, 105139. [CrossRef]

12. Williams, J.M. Electromyography in the horse: A useful technology? J. Equine Vet. Sci. 2018, 60, 43–58. [CrossRef]
13. Prochno, H.C.; Barussi, F.M.; Bastos, F.Z.; Weber, S.H.; Bechara, G.H.; Rehan, I.F.; Michelotto, P.V. Infrared thermography applied

to monitoring musculoskeletal adaptation to training in Thoroughbred race horses. J. Equine Vet. Sci. 2020, 87, 102935. [CrossRef]
14. Eerdekens, A.; Deruyck, M.; Fontaine, J.; Martens, L.; De Poorter, E.; Plets, D.; Joseph, W. A framework for energy-efficient equine

activity recognition with leg accelerometers. Comput. Electron. Agric. 2021, 183, 106020. [CrossRef]
15. Burla, J.B.; Ostertag, A.; Westerath, H.S.; Hillmann, E. Gait determination and activity measurement in horses using an

accelerometer. Comput. Electron. Agric. 2014, 102, 127–133. [CrossRef]
16. Schmutz, A.; Chèze, L.; Jacques, J.; Martin, P. A method to estimate horse speed per stride from one IMU with a machine learning

method. Sensors 2020, 20, 518. [CrossRef]
17. Darbandi, H.; Serra Bragança, F.; Van der Zwaag, B.J.; Voskamp, J.; Gmel, A.I.; Haraldsdóttir, E.H.; Havinga, P. Using Different

Combinations of Body-Mounted IMU Sensors to Estimate Speed of Horses—A Machine Learning Approach. Sensors 2021, 21, 798.
[CrossRef]

18. Schobesberger, H.; Peham, C. Computerized detection of supporting forelimb lameness in the horse using an artificial neural
network. Vet. J. 2002, 163, 77–84. [CrossRef]

19. Clayton, H.M. Comparison of the stride kinematics of the collected, medium, and extended walks in horses. Am. J. Vet. Res. 1995,
56, 849–852.

20. Calvert, D.; Bajcar, E.; Stacey, D.; Thomason, J. Analysis of equine gait through strain measurement. In Proceedings of the 25th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), Cancun,
Mexico, 17–21 September 2003; Volume 3, pp. 2370–2373.

21. Savelberg, H.; Van Loon, T.; Schamhardt, H. Ground reaction forces in horses, assessed from hoof wall deformation using artificial
neural networks. Equine Vet. J. 1997, 29, 6–8. [CrossRef]

22. Mouloodi, S.; Rahmanpanah, H.; Burvill, C.; Davies, H.M. Prediction of load in a long bone using an artificial neural network
prediction algorithm. J. Mech. Behav. Biomed. Mater. 2020, 102, 103527. [CrossRef]

23. Rahmanpanah, H.; Mouloodi, S.; Burvill, C.; Gohari, S.; Davies, H.M. Prediction of load-displacement curve in a complex
structure using artificial neural networks: A study on a long bone. Int. J. Eng. Sci. 2020, 154, 103319. [CrossRef]

24. GEOPAT. GEOPAT Polyflakes. 2021. Available online: https://www.geopat.be/en/geopat (accessed on 21 June 2021).
25. Internationale, F.E. Dressage Rules 25th Edition. 2021. Available online: https://inside.fei.org/sites/default/files/FEI_Dressage_

Rules_2021_Mark_Up_Version_1.pdf (accessed on 7 April 2021).
26. Glossary. In Equine Behavior; McGreevy, P. (Ed.); W.B. Saunders: Oxford, UK, 2004; pp. 351–356. [CrossRef]
27. Axivity. Axivity AX6 Accelerometer. 2019. Available online: https://axivity.com/files/resources/AX6_Data_Sheet.pdf (accessed

on 7 April 2021).
28. Max Planck Institute for Psycholinguistics. The Language Archive, N.T.N. ELAN. Available online: https://archive.mpi.nl/tla/

elan (accessed on 15 March 2021).
29. Brugman, H.; Russel, A.; Nijmegen, X. Annotating Multi-media/Multi-modal Resources with ELAN. In Proceedings of the LREC

2004 (Fourth International Conference on Language Resources and Evaluation), Lisbon, Portugal, 26–28 May 2004.
30. Liebal, K.; Waller, B.M.; Slocombe, K.E.; Burrows, A.M. Primate Communication: A Multimodal Approach; Cambridge University

Press: Cambridge, UK, 2014.
31. Jeong, C.Y.; Kim, M. An energy-efficient method for human activity recognition with segment-level change detection and deep

learning. Sensors 2019, 19, 3688. [CrossRef] [PubMed]
32. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A

system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

33. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

34. Benaissa, S.; Tuyttens, F.A.; Plets, D.; Cattrysse, H.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Classification of ingestive-
related cow behaviours using RumiWatch halter and neck-mounted accelerometers. Appl. Anim. Behav. Sci. 2019, 211, 9–16.
[CrossRef]

35. Le Roux, S.P.; Marias, J.; Wolhuter, R.; Niesler, T. Animal-borne behaviour classification for sheep (Dohne Merino) and Rhinoceros
(Ceratotherium simum and Diceros bicornis). Anim. Biotelemetry 2017, 5, 25. [CrossRef]

36. Xing, H.; Li, J.; Hou, B.; Zhang, Y.; Guo, M. Pedestrian stride length estimation from IMU measurements and ANN based
algorithm. J. Sens. 2017, 2017. [CrossRef]

37. Tang, M.; Xia, L.; Wei, D.; Yan, S.; Du, C.; Cui, H.L. Distinguishing different cancerous human cells by raman spectroscopy based
on discriminant analysis methods. Appl. Sci. 2017, 7, 900. [CrossRef]

http://dx.doi.org/10.1111/j.2042-3306.1994.tb04375.x
http://dx.doi.org/10.1111/j.2042-3306.1997.tb05054.x
http://dx.doi.org/10.1016/j.compag.2019.105139
http://dx.doi.org/10.1016/j.jevs.2017.02.005
http://dx.doi.org/10.1016/j.jevs.2020.102935
http://dx.doi.org/10.1016/j.compag.2021.106020
http://dx.doi.org/10.1016/j.compag.2014.01.001
http://dx.doi.org/10.3390/s20020518
http://dx.doi.org/10.3390/s21030798
http://dx.doi.org/10.1053/tvjl.2001.0608
http://dx.doi.org/10.1111/j.2042-3306.1997.tb05041.x
http://dx.doi.org/10.1016/j.jmbbm.2019.103527
http://dx.doi.org/10.1016/j.ijengsci.2020.103319
https://www.geopat.be/en/geopat
https://inside.fei.org/sites/default/files/FEI_Dressage_Rules_2021_Mark_Up_Version_1.pdf
https://inside.fei.org/sites/default/files/FEI_Dressage_Rules_2021_Mark_Up_Version_1.pdf
http://dx.doi.org/10.1016/B978-0-7020-2634-8.50022-8
https://axivity.com/files/resources/AX6_Data_Sheet.pdf
https://archive.mpi.nl/tla/elan
https://archive.mpi.nl/tla/elan
http://dx.doi.org/10.3390/s19173688
http://www.ncbi.nlm.nih.gov/pubmed/31450654
http://dx.doi.org/10.1016/j.applanim.2018.12.003
http://dx.doi.org/10.1186/s40317-017-0140-0
http://dx.doi.org/10.1155/2017/6091261
http://dx.doi.org/10.3390/app7090900


Animals 2021, 11, 2904 28 of 28

38. Ruuska, S.; Hämäläinen, W.; Kajava, S.; Mughal, M.; Matilainen, P.; Mononen, J. Evaluation of the confusion matrix method in
the validation of an automated system for measuring feeding behaviour of cattle. Behav. Process. 2018, 148, 56–62. [CrossRef]

39. Martini, A.; Rivola, A.; Troncossi, M. Autocorrelation analysis of vibro-acoustic signals measured in a test field for water leak
detection. Appl. Sci. 2018, 8, 2450. [CrossRef]

http://dx.doi.org/10.1016/j.beproc.2018.01.004
http://dx.doi.org/10.3390/app8122450

	Introduction
	Related Work
	Materials and Methods
	Animals and Activities
	Dressage
	Jumping

	Data Collection
	Data Processing
	Datasets
	Classification Process and Feature Extraction
	Activity Classification
	Velocity Estimation
	Pace Classification

	Performance of the Classification

	Results for Jumping
	Results for Dressage
	Phase 1: Activity Group
	Phase 2: Effect of Side
	Phase 3: Classification of Walk Movements
	Phase 3: Classification of Trot Movements
	Phase 3: Classification of Canter Movements
	Phase 4: Collected, Extended and Normal Gaits
	Velocity Estimation
	Decision Regions
	Group Velocity Profile


	Conclusions
	References

