
R E S E A R CH A R T I C L E

Multi-party computation mechanism for anonymous equity
block trading: A secure implementation of turquoise plato
uncross

John Cartlidge1 | Nigel P. Smart1,2 | Younes Talibi Alaoui2

1Dept. Computer Science, University of

Bristol, Bristol, UK

2imec-COSIC, ESAT, KU Leuven, Leuven,

Belgium

Correspondence

Nigel P. Smart, imec-COSIC, ESAT, KU Leuven,

Leuven, Belgium.

Email: nigel.smart@kuleuven.be

Funding information

Cybersecurity Research Flanders, Grant/Award

Number: VR20192203; Defense Advanced

Research Projects Agency, Grant/Award

Numbers: FA8750-19-C-0502, N66001-15-C-

4070; Fonds Wetenschappelijk Onderzoek,

Grant/Award Number: GOH9718N; H2020

European Research Council, Grant/Award

Number: ERC-2015-AdG-IMPaCT; Intelligence

Advanced Research Projects Activity, Grant/

Award Number: 2019-1902070006

Abstract

Dark pools are financial trading venues where orders are entered and matched in

secret so that no order information is leaked. By preventing information leakage, dark

pools offer the opportunity for large volume block traders to avoid the costly effects

of market impact. However, dark pool operators have been known to abuse their

privileged access to order information. To address this issue, we introduce a provably

secure multi-party computation mechanism that prevents an operator from accessing

and misusing order information. Specifically, we implement a secure emulation of

Turquoise Plato Uncross, Europe's largest dark pool trading mechanism, and demon-

strate that it can handle real world trading throughput, with guaranteed information

integrity.

K E YWORD S

dark pool, information leakage, information misuse, multi-party computation, secure trading,
trust, turquoise plato uncross

1 | INTRODUCTION

Most major financial exchanges now operate a continuous double

auction mechanism using a public limit order book (PLOB). Limit

orders that do not immediately execute will rest in the PLOB, adver-

tising willingness to trade at a given price. However, when large vol-

ume block orders are visible in the PLOB, market price can be

adversely affected (i.e., a large order to buy, or sell, will precipitate a

respective increase, or decrease, in market price), as traders adjust to

the new information contained in the order. To avoid this costly mar-

ket impact, block traders attempt to hide their trading intention. One

approach is to route orders to an alternative dark pool trading venue,

which are designed to keep all pre-trade order information hidden. As

long as no information leaks from a dark pool, block traders are able to

wait for execution without exposing themselves to market impact.

Unfortunately, however, many dark pool operators have been prose-

cuted for abusing their privileged access to “hidden” order

information for their own nefarious gain. This illegal practice comes at

a direct cost to dark pool customers and reduces market trust in dark

pool provision.

We address the issue of trust in dark pool provision by introduc-

ing provably secure dark pool matching protocols that ensure a dark

pool provider cannot access order information within the system. The

solution we propose uses multi-party computation (MPC) to instanti-

ate the dark pool operator as a set of n organisations (where n¼2 or

n¼3) that jointly match orders in a secure manner. As long as parties

do not collude, order information remains cryptographically secure.

Previously (Cartlidge et al. 2019), the authors have demonstrated that

2-party and 3-party MPC can be used to instantiate common financial

market mechanisms, including: (i) a simple periodic volume match, with

no price formation; (ii) a periodic auction, with clearing price formation,

and (iii) a continuous double auction, with price formation. In a simple

simulated market containing only one financial instrument (e.g., one

commodity, or one equity), results unsurprisingly demonstrated that

Received: 26 March 2020 Revised: 11 August 2021 Accepted: 26 September 2021

DOI: 10.1002/isaf.1502

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Intelligent Systems in Accounting, Finance and Management published by John Wiley & Sons Ltd.

Intell Sys Acc Fin Mgmt. 2021;28:239–267. wileyonlinelibrary.com/journal/isaf 239

https://orcid.org/0000-0002-3143-6355
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7947-9450
mailto:nigel.smart@kuleuven.be
https://doi.org/10.1002/isaf.1502
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/isaf
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fisaf.1502&domain=pdf&date_stamp=2021-11-01

price formation mechanisms (ii) and (iii), where trade price is calculated

from limit orders in the book, run much slower than volume only

matching (i), where trade price is taken from some reference value,

such as current mid-price on the primary exchange. Promisingly, while

reported maximum CDA throughput of 10-50 executions per second

(depending on order book depth) is too slow for most real world con-

tinuous financial markets, simple periodic volume matching was

shown to be capable of clearing 800 trades per second on standard

commodity hardware, suggesting that MPC is capable of real-world

application if an appropriate auction mechanism is used (Cartlidge

et al. 2019).

In this paper, we present the first demonstration that MPC proto-

cols can securely replicate a real-world dark pool, by implementing a

modified approximation of the London Stock Exchange Group's Tur-

quoise Plato Uncross (TPU). We select Turquoise Plato because: (i) it

is Europe's largest dark pool, trading more than €1 billion each day

across a universe of more than 4000 instruments (London Stock

Exchange Group, 2020a), so is a significant challenge to replicate;

(ii) TPU is a periodic auction mechanism with no price formation

(London Stock Exchange Group, 2020c), so is an ideal candidate for

MPC implementation; and (iii) members of the not-for-profit Plato

Partnership include a number of major sell side institutions who could

potentially act (on a rotating basis) as organisations in a real world

MPC implementation of the dark pool mechanism.1

The MPC protocols guarantee information and mechanism integ-

rity by enabling traders to securely send orders to the organisations

(the parties in the MPC) hosting the dark pool engine in such a way

that no information is leaked about these orders, and if a trader or

host organisation attempts to cheat, this cheating will be detected.

Using publicly available TPU trading data to validate performance, we

report that the MPC protocols are capable of executing real world

throughput. This result offers dark pool providers the significant

opportunity to utilise MPC to market their trading platforms as prov-

ably secure from information leakage and mechanism misuse.

To address the challenge of securely implementing TPU using

MPC, we present novel contributions to overcome two major chal-

lenges. First, with a universe of thousands of instruments traded, run-

ning one MPC engine per instrument (i.e., using a dedicated engine

per symbol traded) is impractical from an organisational stand point,

while using one MPC engine for all instruments is impractical from an

MPC stand point (due to the high computation costs of uncrossing

thousands of order books in parallel on the same engine). Therefore,

we efficiently distribute workload across multiple engines in a way

that leaks no order information, including information about the spe-

cific instrument that is being traded (i.e., from observing an encrypted

order in the system it is impossible to know the direction, the volume,

and the stock identity). To meet this strong requirement, in our MPC

emulation we are forced to slightly modify the operation of the real

TPU mechanism. However, we argue that since the specific design of

each dark pool mechanism is a commercial decision, these

modifications do not materially change the conclusion that MPC is

ready for industrial use. Second, since the dark pool is emulated by a

set of organisations that perform the MPC protocol on inputs from

other parties (i.e., traders), inputs must remain hidden from the organi-

sations during computation. This specific use case differs from what

we usually find in the literature, where inputs come from the same

parties performing the MPC computation.

The paper is organised as follows. In Section 2, we detail the

motivation for securing the integrity of dark pools, we review related

work applying MPC to secure auction mechanisms, and we present

detailed requirements for the MPC emulation of TPU. In Section 3,

we describe modifications required to emulate TPU and outline the

MPC architecture and cryptographic framework used. In Section 4,

we formally define the MPC protocols for emulating TPU, and present

run time analysis in Section 5. Section 6 discusses the implications of

assumptions and simplifications required for the MPC emulation,

before describing the practical benefits of MPC's distributed trust

model. Finally, Section 7 concludes that MPC is ready for commercial

exploitation.

2 | BACKGROUND

2.1 | Dark liquidity

Successful trading in the financial markets requires balancing the

conflicting objectives of finding a counterparty with whom to trade,

while not disclosing one's trading intention. The majority of

exchange venues simplify the process of finding a counterparty by

maintaining a public limit order book (PLOB), which displays all orders

currently available in the market and thereby provides a snapshot of

the market's current demand and supply. However, in these “lit”
exchange venues, as soon as a trader submits a new order, informa-

tion about the trader's intention to trade (the desire to buy or sell

some quantity at a particular price) is immediately disclosed. This

can be a problem if the order size (or volume) is relatively large, as

other traders in the market are likely to react to this information by

moving the price in the adverse direction. For example, a large vol-

ume sell order signals to the market that there is an excess supply,

and traders will quickly reduce their own order prices in anticipation

of a subsequent fall in price. This reaction to the discovery of a

large order is known as price impact, or market impact, and the costs

to a trader can be severe, far outweighing commission fees and

other trading charges. It has been estimated that market impact

increases approximately with the square root of volume (Farmer

et al. 2013), although accurate calculations of market impact from

empirical trading data are notoriously difficult and there is no con-

sensus on the exact functional relationship between volume and

impact (for a review of price impact, see Bouchaud et al. 2009; for

a technical discussion, see; Bouchaud et al. 2018, Chapters 11 and

12). Nevertheless, it is universally accepted that openly exposing

one's intention to trade, particularly when trading in large volume, is

extremely costly and best avoided.

1Plato Partnership members include, amongst others, Barclays, BofA Securities, Citi, Credit

Suisse, Goldman Sachs, JP Morgan, Morgan Stanley, and UBS. See: https://platopartnership.

com/.

240 CARTLIDGE ET AL.

https://platopartnership.com/
https://platopartnership.com/

Traditionally, to avoid market impact when attempting large

trades, traders would pay a trusted broker to find a counterparty

within their network of contacts. As long as a broker network keeps

all order information secret (as long as there is no information leak-

age), then a trade can occur with little or no market impact, since the

wider market is unaware of trading intention until after the trade exe-

cutes. However, there is a strong financial incentive for brokers to

misuse the privileged information of their clients' confidential orders.

By selling a client's order information to a third party, or by using the

information directly to front run a client's trade, brokers can profit at

the direct expense of their client. Although often difficult to prove,

such (illegal) activity is not uncommon. In 2005, twenty specialists on

the New York Stock Exchange (NYSE) were charged with committing

thousands of illicit front running trades between 1999 and 2003,

causing millions of dollars of customer losses (United States Securities

and Exchange Commission, 2005).

Front running describes acting in advance on confidential trading

information for one's own gain. For example, let us assume broker, B,

is instructed by client, C, to buy 20,000 shares in XYZ, and the current

PLOB is displaying the following offers to sell: 5,000 ∘$49;

15,000 ∘$50. If acting honestly, B will execute C's order by purchasing

5,000 shares at $49 and 15,000 shares at $50, for a total cost to C of

$995,000. However, since B knows that C's buy order will move the

market (i.e., the large buy order will have a positive price impact),

B decides to misuse C's intention to trade by front running the pur-

chase. To this end, on their own account, B buys 5,000 shares at $49

and simultaneously posts an offer to sell 5,000 ∘$50. The order book

for XYZ now displays sell offers: 20,000 ∘$50, allowing B to execute

C's request to purchase 20,000 shares at $50, for a total cost of $1

million to the client. Broker B has immediately sold their shares (to the

client, and at the direct expense of the client) for a risk-free profit of

$5,000. This practice is illegal but can be extremely difficult to detect,

particularly if B uses a third party (with no obvious connection to B or

C) to front run the trade.

To circumvent these malicious and predatory practices of human

brokers, the first dark pool crossing networks emerged in the 1980s

(Cartlidge et al. 2019). These alternative electronic trading exchanges

automatically match orders in secret. Unlike the visible orders entered

into the PLOB of a lit exchange, orders entering a dark pool remain

invisible, and details of trades are only published after execution. As

trading intention remains secret, even large orders can execute in a

dark pool with little or no market impact. The attraction of dark pools

is clear, and the demand from traders is strong. Over the last decade,

largely driven by regulation changes (RegNMS, USA, 2005; MiFID, EU,

2007) and the rise of high-frequency trading (HFT), the number of

dark pool venues and the volume they trade has ballooned. In the US,

around 40 dark pool venues now operate with approximately 15-18%

market share of equities trading (a quadrupling since 2005); while in

the EU, the volume traded on the fifteen major dark pools accounts

for over 8% of total value traded in equities (a rise from less than 1%

in 2009) (Petrescu & Wedow, 2017).

However, where there is trust, there is the possibility of abuse.

Although dark pools offer trading in secrecy away from prying eyes,

the operators of dark pools are trusted to maintain data integrity and

not misuse the confidential information inside. For many operators,

temptation has proven too great. As detailed in Table 1, between

October 2011 and November 2018, US dark pool operators paid more

than $217 million in penalty settlements to the Securities and

Exchange Commission (SEC) for illegal practices, including: (a) directly

misusing customers' information for front running (Pipeline, 2011

(United States of America before the Securities and Exchange

Commission, 2011); LavaFlow, 2014 (United States of America before

the Securities and Exchange Commission, 2014a); ITG POSIT, 2015

(United States of America before the Securities and Exchange

Commission, 2015a)); (b) selling customers' confidential information

to third parties (eBX, 2012 (United States of America before the Secu-

rities and Exchange Commission, 2012); Liquidnet, 2014

(United States of America before the Securities and Exchange

Commission, 2014b); Credit Suisse, 2016 (United States of America

before the Securities and Exchange Commission, 2016b); ITG POSIT,

2018 (United States of America before the Securities and Exchange

Commission, 2018b)); and (c) selling preferential access to customers'

orders to predatory traders (UBS, 2015 (United States of America

before the Securities and Exchange Commission, 2015b); Credit Suisse,

2016 (United States of America before the Securities and Exchange

Commission, 2016c); Barclays Capital, 2016 (United States of America

before the Securities and Exchange Commission, 2016a); Deutsche

Bank, 2016 (United States of America before the Securities and

Exchange Commission, 2016d); Merrill Lynch, 2018 (United States of

America before the Securities and Exchange Commission, 2018c);

Citigroup, 2018 (United States of America before the Securities and

Exchange Commission, 2018a)). We can consider cases (a) and (b) as

information misuse (misusing customers' confidential information for

the dark pool providers' own gains), and case (c) as mechanism misuse

(misusing the dark pool trading algorithm in a way that is detrimental

to customers, such that customers would be unlikely to use the dark

pool if they were aware of how it was being operated in practice).

With such significant (albeit illicit) financial rewards on offer,

information and mechanism misuse by dark pool operators is likely to

continue until the opportunity for misuse is removed. However, the

only way to guarantee that there is no information misuse is to ensure

that nobody, not even the dark pool operator, can gain access to the

data inside the system. One mechanism to achieve this data privacy is

to apply a multi-party computation (MPC) technique to the underlying

dark pool algorithm, such that internal order data is held in secret-

shared form, and is processed by a set of servers. If a given ratio

(depending on the precise MPC system) of the servers remain honest,

then the internal algorithm variables do not leak and privacy is thus

preserved. All orders can be entered using a protocol to convert an

external user's order into a secret shared form. MPC can then be used

to perform computation (order matching) on the secret shared data,

such that no order information is ever in the clear. This provides a dual

guarantee that the dark pool is provably secure from both information

misuse and mechanism misuse.

In the following section, we review the related literature on

secure auctions.

CARTLIDGE ET AL. 241

2.2 | Secure auctions: Related work

Given the significant financial and regulatory incentives for finding a

commercially viable solution to counter the problems of mechanism

and information misuse in financial markets (and, more generally, in

online auction venues for e-commerce), it is perhaps little surprise that

there is now more than two decades of research dedicated to securing

auction integrity through cryptographic protocols. This research can

be roughly categorised into two themes (Parkes et al. 2015):

Secrecy-preserving correctness: an auction operator can prove out-

puts (i.e., trades) are correct given the rules of the market and inputs

TABLE 1 SEC Penalty Settlements for US Dark Pool Operators (2011-2019)

Company and Settlement Illegal Activity

ITG (POSIT) Nov 2018, $12m (United States of America before the

Securities and Exchange Commission, 2018b)

Information misuse: ITG disclosed confidential trading information on dark

pool, POSIT, by offering reports on the prior day's trading activity to HFT

firms. Mechanism misuse: ITG secretly split POSIT into two separate non-

interacting dark pools.

Citigroup (Citi Match) Sep 2018, $12m (United States of America

before the Securities and Exchange Commission, 2018a)

Mechanism misuse: Nearly half of Citi Match orders were secretly routed to

other venues, with trade confirmation messages edited to indicate these

orders executed on Citi Match. Mechanism misuse/misleading customers:
Citigroup misled users with assurances that HFT were not allowed to trade

in Citi Match dark pool, when two of Citi Match's most active users

reasonably qualified as HFT and executed more than $9 bn of orders

through the pool.

Merrill Lynch (Instinct X) Jun 2018, $42m (United States of

America before the Securities and Exchange Commission, 2018c)

Mechanism misuse: Merrill Lynch (a broker-dealer) secretly routed customer

orders to external venues, with trade confirmation messages edited to

indicate these orders had executed in-house: a process they called masking.

In total, $141bn of transactions masked.

Deutsche Bank (SuperX+) Dec 2016, $18.52m (United States of

America before the Securities and Exchange

Commission, 2016d)

Mechanism misuse: Coding error in the Dark Pool Ranking Model of dark pool

order router, SuperX+, caused two dark pools to receive inflated rankings

and consequently millions of orders that should have been routed elsewhere.

(SuperX+ is a dark router, not a dark pool.)

Barclays Capital (LX) Jan 2016, $35m (United States of America

before the Securities and Exchange Commission, 2016a)

Mechanism misuse: Barclays failed to police its dark pool, LX, from predatory

trading and lied when stating LX only used direct data feeds from exchanges

(to deter latency arbitrage), after inquiries were generated by the publication

of Michael Lewis's book, Flash Boys.

Credit Suisse (Crossfinder)Jan 2016, $54m (United States of

America before the Securities and Exchange

Commission, 2016b; 2016c)

Information misuse: Credit Suisse transmitted confidential order information in

Crossfinder to internal system Crosslink, which alerted HFT firms to the

existence of Crossfinder orders. Mechanism misuse: 117 million illegal sub-

penny orders were executed in Crossfinder dark pool.

ITG (POSIT) Aug 2015, $20.3m (United States of America before

the Securities and Exchange Commission, 2015a)

Information misuse: ITG's secret trading desk, Project Omega, accessed live

feeds of order information on dark pool, POSIT, and used it to implement

HFT strategies, including one that traded against POSIT subscribers.

UBS (ATS) Jan 2015, $14.4m (United States of America before the

Securities and Exchange Commission, 2015b)

Mechanism misuse: UBS offered secret PrimaryPegPlus orders to HFT firms,

which enabled HFT to jump ahead of other participants in the dark pool by

placing illegal sub-penny orders.

LavaFlow (ECN) Jul 2014, $5m (United States of America before

the Securities and Exchange Commission, 2014a)

Information misuse: LavaFlow allowed an affiliate to access and use

confidential trading information in their dark pool, through a smart order

routing service, ColorBook, which had access to the non-displayed orders of

LavaFlow ECN.

Liquidnet (Liquidnet) Jun 2014, $2m (United States of America

before the Securities and Exchange Commission, 2014b)

Information misuse: Liquidnet sought to find additional sources of liquidity for

its dark pool by offering Liquidnet subscribers' intentions to buy or sell

securities to firms looking to execute large equity capital markets

transactions.

eBX (LeveL) Oct 2012, $0.8m (United States of America before the

Securities and Exchange Commission, 2012)

Information misuse: eBX allowed a third party Order Routing Business (ORB)

to access confidential trading information in their dark pool, LeveL. The ORB

used unexecuted order information on LeveL to route orders for its own

benefit.

Pipeline (Pipeline) Oct 2011, $1m (United States of America before

the Securities and Exchange Commission, 2011)

Information misuse: The majority of shares traded in the dark pool were

executed by a wholly owned subsidiary, which used the side and price of

Pipeline subscribers' orders to front-run them by trading on the same side in

other venues before filling them on Pipeline.

242 CARTLIDGE ET AL.

(i.e., orders), without revealing any information about those inputs.

The operator publishes an encrypted audit trail that enables observers

to validate the correctness of the auction mechanism. These protocols

combat mechanism misuse. However, information misuse is possible.

Strong secrecy: an auction operator is unable to release any additional

information about inputs (i.e., orders) other than that implied by the

outputs (i.e., trades). As the operator has no access to internal infor-

mation (i.e., orders), these protocols guarantee no information misuse.

Strong secrecy, as the name suggests, provides greater security than

secrecy-preserving correctness, but poses a much greater computa-

tional challenge to achieve.

2.2.1 | Secrecy-preserving correctness: ensuring
mechanism integrity

The majority of work on secrecy-preserving correctness follows the

Evaluator-Prover (EP) framework (Parkes et al. 2015), where: (i) traders

secretly submit encrypted input order values x1, … , xn to the EP (the

auction operator); (ii) the EP executes the auction by computing a

function y¼ fðx1, :::,xnÞ, before outputting value y, and engaging in a

proof of the correctness of the result; finally (iii) the proof of correct-

ness is made publicly available for anybody to verify. To ensure

secrecy-preservation, proofs must not reveal anything about the input

(i.e., the orders) except for the information implied by the output value

(i.e., the trade). To achieve this, proof protocols use Paillier's homo-

morphic encryption for zero-knowledge proofs (Paillier, 1999), which

allows computation on ciphertexts and generates an encrypted result

which, when decrypted, matches the result of the operations as if

they had been performed on the plaintext.

In 2007, Thorpe and Parkes introduced an EP model for a contin-

uous double auction (CDA) mechanism with limit order and market

order types (Thorpe & Parkes, 2007). Before posting order O(p, q, d),

the trader encrypts order price, p, quantity, q, and direction,

d (bid/buy or ask/sell), using the market operator's public key.2 The

encrypted order, E(p, q, d), is then sent to the exchange, whereby the

market operator privately decrypts E to obtain O. Order O is entered

into a limit order book (LOB) and matching is performed in the clear

on the plaintext O. Post-execution, trades are published in encrypted

form, such that observers can validate the correctness of the market

operation by proof checking that encrypted inputs (orders) match the

expected encrypted output (trades) given the published CDA auction

mechanism. An empirical evaluation of the proposed protocol running

on low-end contemporary commodity hardware suggested an imple-

mentation of the system would have operational costs of approxi-

mately 5 cents (US) to place and verify an order. Later extensions by

Thorpe, Parkes, and their colleagues included a combinatorial auction

mechanism (trading baskets of stocks) (Thorpe & Parkes, 2009) and

the ability to enter more sophisticated conditional rule-based order

types (Thorpe & Willis, 2012). The EP model has also been applied to

simpler sealed-bid auctions, with calculation times reported at:

approximately 1 minute per order (using homomorphic encryption for

proofs) (Parkes et al. 2008); 500 milliseconds per order (using a ran-

dom representation protocol for proofs, which is faster than homomor-

phic encryption but has the drawback of allowing the proof to be

performed only once) (Rabin et al. 2007); and 0.02 milliseconds per

order (using an improved random representation protocol, in which

the proof can be performed any number of times) (Rabin et al. 2012).

However, in all cases the underlying encryption protocol remained

unchanged: traders are required to post orders encrypted using the

operator's public key, and the operator matches orders in the clear.

Therefore, while the post-trade audit trail is secure, the real-time mar-

ket information is not; thus enabling the possibility of information

leakage, or front-running traders' order flow.

To increase information security of the EP model, several exten-

sions have been proposed. For sealed bid auctions, a delayed private

key revelation service (DPKRS) is used to ensure that the operator can-

not decrypt incoming orders (and therefore cannot access order infor-

mation) before the time of auction close (Parkes et al. 2008).3 After

close, keys are revealed to the operator via the automated DPKRS,

and the auction is performed on plaintext orders, as usual. This

approach guarantees pre-trade information privacy in a one-shot auc-

tion, useful for a unique high-valued item such as a work of art, but

when there are a series of repeated auctions with returning partici-

pants (a characteristic of financial markets), information leakage is still

possible; as Hal Varian (Chief Economist at Google since 2002)

explains, “Even if current information can be safeguarded, records of

past behaviour can be extremely valuable, since historical data can be

used to estimate willingness to pay” (Varian, 1995). To further address

information leakage in the EP model (and to approach strong secrecy

guarantees), in 2015, Parkes et al. proposed that operators could host

auction software on Trusted Computing infrastructure; essentially a

secure “computer in a cage” installed in a physically secure location,

with digitally signed software, a secure processor, and with ongoing

and publicly observable automated monitoring (Parkes et al. 2015).

However, this approach essentially pushes the issue of trust from the

operator to a third party (the Trusted Computing infrastructure),

rather than provably guaranteeing strong secrecy, and the authors

themselves describe a possible security attack vector and note that

Trusted Computing infrastructure is still in its infancy. For these rea-

sons, we conclude that the EP model does not provide a credible

opportunity for strong secrecy in financial markets; a necessity for

guaranteeing no information leakage in dark pool trading venues.

2.2.2 | Strong secrecy: Ensuring information
integrity

The problem of avoiding information leakage in financial markets has

motivated several studies investigating the potential of multi-party

2For market order types, value p is not needed.

3The EP model does not enable operators to perform computation on encrypted inputs

(i.e., orders). Therefore, DPKRS is unsuitable for continuous double auctions as computation

occurs immediately upon order entry. There is no before and after time for key revelation in

an asynchronous, continuous market.

CARTLIDGE ET AL. 243

computation (MPC) to achieve auction protocols with strong secrecy.

MPC approaches enable n > 1 parties to jointly compute a function

over their inputs (i.e., orders) while keeping those inputs private

(i.e., orders remain in encrypted form, such that no individual party is

able to access the plaintext without colluding with other parties).

Using MPC to operate a trading venue requires computation to be

distributed across n parties and guarantees secrecy as long as at most

t parties are corrupt. We refer to t as the threshold trust or fault toler-

ance of the system.

Early work on MPC for secure auctions focused on simple sealed-

bid auctions, commonly used online. In 1998, an MPC protocol was

proposed with fault tolerance t < n/3, therefore ensuring that with

n¼4 parties no single party can cheat or violate privacy (Harkavy

et al. 1998). Shortly afterwards, a novel two-party protocol was pro-

posed (t¼1), making use of garbled circuits to significantly reduce the

required rounds of communication between parties (Naor et al. 1999);

followed by a two-party scheme without garbled circuits (Lipmaa

et al. 2003), shown to be an order of magnitude faster than (Naor

et al. 1999), but offering a lower level of confidentiality. However,

despite progress, none of this work was implemented as a practical

application.

Bogetoft and colleagues proposed MPC protocols for one-shot

double auctions, with fault tolerance t < n/2. These protocols were

the first to demonstrate practical success (protocol design Bogetoft

et al. 2006; application ; Bogetoft et al. 2009; commercialisation ;

Partisia, 2018). The double auction has two periods: (i) open period,

where limit orders are submitted in encrypted form; and (ii) close

period, where trades are executed at the market clearing price, calcu-

lated to minimise excess demand and supply.4 In the first real-world

application (Bogetoft et al. 2009), a system was developed for Danish

farmers to trade contracts for sugar beet production on a nation-wide

market. The role of the auctioneer is played by n¼3 parties (t¼1):

(i) Danisco, the only sugar beets processor on the Danish market;

(ii) DKS, the sugar beet growers' association; and (iii) SIMAP, the

research project team. During the open period, 1229 farmers submit-

ted orders. Auction computation was performed on 14 Jan 2008, and

approximately 25,000 tons of production rights changed ownership.

Timings for the live auction computation were not presented, but on

contemporary commodity hardware, tests showed computations for

1000 traders took around 30 minutes; and for 3000 traders around

75 minutes. The protocols have since been commercialised through a

private company, Partisia (Partisia, 2018), which continues to offer a

double auction mechanism with single clearing price using MPC. The

one-shot double auction mechanism is particularly suited to a one-off

high stake auction with sealed bids and long auction durations.

According to Partisia's website, their platform has been tailored for

the Norwegian Spectrum Auction to trade spectrum rights for a total

of NOK 877.983.276 (approximately USD $100 million) over the

course of 7 days and 83 bidding rounds in December 2015.5

Protocols for double auctions are further developed by Jutla, to

enable repeated (periodic) auctions (Jutla, 2015). In Jutla's proposal,

the market protocol is a secure n¼5 party computation, run by four

brokers and one regulating authority (e.g., the SEC), which can audit

saved computations and validate if they were performed according to

the protocol. During each auction period, traders can enter limit and

market orders. At the end of each auction round, the market is cleared

(at a single price) and price and volume information is revealed.

Uncleared orders remain in the market for the following auction

period. Jutla argues that current (2015) MPC technology is capable of

running repeated periodic double auctions for financial markets, using

a 30 minutes opening auction, followed by a succession of 15 minute

auctions, with 5 minute gaps in-between for processing and informa-

tion digestion.6 However, Jutla's protocol is not implemented or

empirically tested in this work, and to date the work has not been

published.7

MPC has also been used by Massacci et al. (2018) to implement a

secure futures market using distributed ledger technology, with

traders hiding behind a Tor network to communicate anonymously

(Massacci et al. 2018). Designed to replicate the functionality of the

Chicago Mercantile Exchange (CME), the system uses a CDA mecha-

nism for order matching. However, unlike previous approaches, dis-

cussed above, the focus of this work is on enabling anonymity of who

is executing a trade, rather than securing what and how much is being

traded; with MPC only used for a small subset of the operations to

enable this privacy. Whilst addressing part of the security problem,

the methodology still requires a trusted third party with access to

secret inputs of all participating traders, and therefore does not ensure

information integrity. A proof of concept implementation is demon-

strated, containing a population of 10 traders and an order book with

five levels. Results show that individual operations (e.g., post order,

cancel order, etc.) can be performed in around 24s.8 In subsequent

work, the same research team later introduced Witness-Key-

Agreements for maintaining order privacy in an blockchain-based

OTC distributed dark pool, where parties securely agree on a secret

key (Ngo et al. 2021). This approach demonstrated much quicker exe-

cution (combined challenge and response) times of around

20 seconds.

In 2019, we (the current authors) introduced 2-party and 3-party

MPC protocols for three auction mechanisms most commonly used in

financial markets: (i) continuous double auction (CDA); (ii) periodic

double auction (with clearing price calculated to maximise volume

traded); and (iii) periodic volume match (a simple auction protocol with

size priority and no price formation, where volume is cleared at a price

determined by some reference value, such as the current mid-price on

the London Stock Exchange) (Cartlidge et al. 2019). Empirical evalua-

tion of a simple market containing a single traded instrument demon-

strated that the CDA protocol can process between 10 and 50 orders

4Clearing price minimises excess demand and supply. At price p, if aggregate demand ΣDp is

greater than aggregate supply ΣSp then excess demand EDp ¼ΣDp�ΣSp >0 and excess

supply ESp ¼0. If ΣDp�ΣSp<0 then we have excess supply ESp ¼ΣSp�ΣDp >0 and EDp ¼ 0.
5For details, see: https://partisia.com/spectrum-auctions/

6These timings follow the open-auction period (30 minutes) of specialists on the New York

Stock Exchange (NYSE).
7Personal communication with the author, Oct 2018.
8For comparison, CME Globex report an average median latency for order entry of

200 microseconds during 2017 (CME Globex, 2018, p.2).

244 CARTLIDGE ET AL.

https://partisia.com/spectrum-auctions/

per second (depending on the size of the order book); the periodic

double auction protocol can process around 500 orders per second

(with the majority of time spent sorting orders by price as they are

entered); and finally, the simple periodic volume match protocol can

process around 800 orders per second, a throughput that may be via-

ble for some real-world dark pools. These results are promising,

suggesting that MPC may finally be ready for real-world application in

financial markets.

In the following sections, we introduce an MPC implementation

of Turquoise Plato Uncross (TPU) – the trading mechanism of one of

Europe's largest dark pools – to demonstrate the potential for MPC to

ensure dark pool integrity in financial markets.

2.3 | LSEG's turquoise plato uncross

Turquoise Plato is a dark pool trading service offered by the London

Stock Exchange Group.9 Designed for larger and less time sensitive

orders, Turquoise Plato contains a non-displayed order book with

size/time priority. Orders can be entered at any time, but rather than

continuous matching, the order book is only uncrossed periodically at

random intervals using the Turquoise Plato Uncross (TPU) mechanism,

which executes trades at a reference price equal to the midpoint of

the best bid and offer on the primary exchange. Turquoise Plato offers

a variety of passive order types, including Good For Auction (GFA),

which automatically expire after the next TPU uncrossing (whether

filled or not), and Good Till Time/Date (GTT/D), which persist in the

order book for repeated TPU cycles until the designated expiry time

(usually end of day) is reached. Orders may be cancelled, and can

sometimes be amended.

Turquoise Plato also offers the Turquoise Plato Block Discovery

(TPBD) service, which provides a liquidity discovery mechanism for

matching undisclosed large block indications. When TPBD discovers a

match, contraparties are notified and then required to immediately

(within 0.5 seconds) post a confirmed order (GFA, or GTT/D) to the

Turquoise Plato order book. These orders are then uncrossed, along

with the rest of the order book, during the next TPU. Since TPBD is a

discovery mechanism for generating order flow, in this paper we focus

our attention on TPU, which is the main execution logic of Turquoise

Plato. However, as TPU uncrossings can be triggered either by a ran-

domised timer, or by a TPBD match (see London Stock Exchange

Group, 2020c, p.31), we return to discuss the implications of TPBD in

Section 6.1. Here, we consider TPU uncrossings triggered by random-

ised timer only and ignore the interaction of TPBD.

TPU executes orders using an uncrossing mechanism that is per-

formed at random intervals throughout the day, with minimum period of

5 seconds and maximum period of 10 seconds between each uncross.

We present this visually in Figure 1, where time from market opening is

shown on the x-axis, and events are listed from top to bottom on the y-

axis. At the start of the day, the market opens (top) and the TPU timer is

initialised at t¼0. While t<5 (represented by the grey box), we are

guaranteed that no uncross will take place as this is shorter than the

minimum interval of 5 seconds. Then, for the next 5 seconds,

i.e., while 5≤t≤10, there is a window, during which uncrossing can

occur at any time (represented by the white box with dashed borders).

In the example shown, the timer is randomly stopped at t¼8 and the

first uncross TPU1 occurs 8 seconds after opening (shown as a white

ellipse). The timer is reset to t¼0, and the process repeats. First, there

is a guaranteed period of 5 seconds with no uncross (grey bar),

followed by a 5 second window when uncross will occur (white bar).

This time, the timer is stopped randomly at t¼7 and the second

uncross TPU2 occurs t¼8þ7¼15 seconds after market opening.

This process repeats throughout the day until market close.

9For full operational details, refer to the Turquoise Trading Services Description (London Stock

Exchange Group, 2020c) and Turquoise Plato Block Discovery Trading Service Description

(London Stock Exchange Group, 2020b).

F IGURE 1 Turquoise Plato Uncross. Uncrossing occurs at random intervals with period t drawn from a uniform distribution with minimum
5 seconds and maximum 10 seconds, i.e., t¼ T�Uð5,10Þ. Here, the first uncrossing TPU1 occurs after 8 seconds. The second uncrossing TPU2

occurs 7 seconds later. This process repeats until close

CARTLIDGE ET AL. 245

Each order entered into TPU (requests to buy or sell a particular

quantity of an instrument) contains an instrument (i.e., the particular

stock to trade) a direction (buy or sell), a size (the quantity to buy/sell)

and a minimum execution size (MES), which is the quantity below

which the order will not execute. For each of U instruments traded

within TPU, orders entered during the order insertion phase will rest

in an order book for that instrument. Orders in the book are

prioritised by size and then time of order entry (if two orders have the

same size, the first order entered into the system will take priority,

i.e., it will be positioned higher in the order book). An example is

shown in Figure 2. In Figure 2(a), we see that six orders are entered

during the order insertion phase; three bids (orders to buy) and three

asks (orders to sell). These orders are prioritised by size, such that in

Figure 2(b), we see that the largest bid (id¼5) with size 100,000 and

the largest ask (id¼6) with size 50,000 are at the top. The first sell

order entered (id¼1) has the smallest size and so is placed at the bot-

tom of the order book. This is the state of the order book at the end

of the order insertion phase, immediately before the uncrossing

phase. During the uncrossing phase, Figure 2(c), orders execute sub-

ject to MES thresholds, such that a buy order of MES b (resp. a sell

order of MES c) can only be matched with sell orders of volume w s.t

b≤w (resp. buy orders of volume v s.t c≤v). We see that two trades

execute: a trade of size 50,000 (buyer id¼5 and seller id¼6); and a

trade of size 1,000 (buyer id¼4 and seller id¼2). The transaction

price for these trades is set as the instantaneous mid-price on the pri-

mary reference exchange (for example, the London Stock Exchange,

for shares listed in the UK). In Figure 2(d), we see the order book

immediately after uncrossing, with fully filled orders removed. In cases

where an order is partially filled and the remaining volume becomes

smaller than the MES, then the order is also removed as it can no lon-

ger be matched. Persistent orders (GTT/D) that are fully or partially

unexecuted remain in the order book, and new orders are inserted

into the order book as they arrive.

2.4 | Turquoise plato: Trading data and statistics

In this section, we aim to elaborate the trading dynamics of Turquoise

Plato, so that we are in a position to validate our later MPC implemen-

tation against real-world commercial demands. Trading data for Tur-

quoise Plato, and dark pools in general, is commercially sensitive and

accurate high-resolution data is therefore difficult to obtain. However,

all trading venues report aggregated data, and from this we are able to

estimate some trading statistics.

The European Central Bank (ECB) reported in 2017 that the share

of European equity trading conducted on dark pools has expanded

rapidly in recent years, growing from less than 1% in 2009 to over 8%

in 2016 (Petrescu & Wedow, 2017, p.5). In June 2016, Turquoise

Dark traded 1.37% of total equity volume traded in Europe

(Petrescu & Wedow, 2017, p.25), equivalent to approximately 17% of

all volume traded in 15 dark pools active in Europe at the end of 2016

(Petrescu & Wedow, 2017, p.22). This makes Turquoies Plato one of

the largest (by trade volume) and most successful dark pool trading

venues in Europe.

Table 2 summarises Turquoise Plato trading data from LSEG's

monthly trading reports. We see that over the last three years, the

F IGURE 2 Example Turquoise Plato Uncross: (a) six orders are entered during the insertion phase, with order ID incremented each time;
(b) orders enter the order book, sorted by size priority such that the largest buy order (ID=5) and the largest sell order (ID=6) are positioned at
the top; (c) during the uncrossing phase, two trades are executed. A trade of size 50,000 between buyer ID=5 and seller ID=6, and a trade of size
1,000 between buyer ID=4 and seller ID=2; (d) after uncrossing, three persistent orders remain in the order book and a new insertion phase
begins

246 CARTLIDGE ET AL.

total number of trades per day has only increased by 7.7%. However,

the total value traded each day has increased by 90%, which has pro-

duced an almost doubling in mean trade size over three years. Yet, it

is pertinent to note that the mean trade size on Turquoise Plato is a

misleading statistic, as it is heavily skewed by a relatively small num-

ber of very large in scale trades, which are particularly encouraged by

the Turquoise Plato Block Discovery (TPBD) service. In February

2017, TPBD traded an average daily value of € 199 million, with aver-

age trade size of € 768,783, suggesting an average daily number of

trades of only 154.8 (Comerton-Forde, 2017, p.12). LSEG report that

the record trade size on Turquoise Plato is € 17.33 million, executed

on 28 June 2018.10 Further details of large in scale trades are

reported in the 2018 Parliamentary Review (Barnes, 2018) for trading

on 16 Mar 2018 in Spanish company, Santander. On that day,

Santander's top ten trades by value all executed on Turquoise Plato,

with a combined share of trading (SoT) of 6.4%; i.e., just 10 trades on

Turquoise Plato accounted for more than 6% of the total value of all

Santander trading, across all trading venues, executed that day.

More detailed statistics for Turquoise Plato trading are shown in

Table 3 for February 2017. Comparing with Table 2 for the same

month, we can see that these figures are consistent with LSEG trading

reports, but also offer further insight into the skewed nature of trad-

ing towards a relatively small number of stocks. While in March 2020,

LSEG report that Turquoise Plato enables clients to trade a broad uni-

verse of U¼4,500 instruments (i.e., stocks and other tradable assets)

across 19 major European and emerging markets (note: this number

was likely lower in Feb 2017, with estimations from public reports giv-

ing U≈3, 000), we see that only 1,927 instruments traded during the

month of Feb 2017, and on average only 1,258 instruments traded

each day. Therefore, the majority of instruments available to trade on

Turquoise Plato have zero executions on any given trading day.

Table 3 presents the effective number of instruments traded, E, over a

given period. This is calculated as the reciprocal of the Herfindahl

index, H:

H¼
XN

i¼1
s2i ð1Þ

where si is the proportion of trading in each instrument, i. Note that, if

trading is uniform across all instruments, i.e., 8i : si¼1=N, then H¼
1=N and E¼1=H¼N. However, when the proportion of trading is

skewed heavily towards a small number of instruments, then E�N.

From Table 3, we see that E¼90:7�1,927¼N for the month of

February and E¼54:8�1,258¼N for average daily trading. There-

fore, it is clear that trading is heavily focused in a small number of

instruments. Each day, the majority of instruments on Turquoise Plato

trade rarely, or not at all.

2.5 | TPU implementation requirements

Here, we capture the requirements for an MPC implementation of

TPU, in order to assess whether the technology can be applied com-

mercially. We use real-world TPU trading data, presented in Sec-

tion 2.4, to ensure that the MPC system can handle similar order

throughput and trading activity. Assumptions and simplifications are

described, below.

Assumption 1: All uncrossings are triggered by TPU
timer

As shown in Section 2.4, in 2017, Turquoise Plato executed fewer

than 155 TPBD trades each day (Comerton-Forde, 2017, p.12). While

this number is likely to have risen as the market has matured, the

nature of block discovery means that the likelihood of a match in any

given instrument during a 5 or 10 second interval is vanishingly small.

Therefore, we assume that TPU is always triggered by the timer.

(We address the implications of this assumption in Section 6.1.)

Assumption 2: maximum computation time is 5 seconds

Turquoise Plato trades for 8.5 hours per day, between 08:00-16:30.

Since TPU occurs at random every 5 to 10 seconds, each day there

10For updated 2020 trading statistics and new trading records, see: https://platopartnership.

com/plato-partnership-2020-year-in-review/.

TABLE 3 Turquoise Plato data for Feb. 2017, reproduced from
LiquidMetrix: Guide to European Dark Pools (LiquidMetrix, 2017)

Turquoise Plato (Feb 2017) Month Avg. Daily

Total Number of Trades 1326140 66307

Total Value Traded (EUR millions) 13037 652

Number of Unique Instruments Traded

(N)

1927 1258

Effective Number of Instruments Traded

(E)

91 55

Mean Trade Size (EUR) 9831

Median Trade Size (EUR) 4114

TABLE 2 LSEG monthly trading reports for Turquoise Plato. Reproduced from (London Stock Exchange Group, 2020a; 2017)

Month Trading Days Total Number of Trades (Avg Daily) Value Traded (Avg Daily) Value Traded (Month) Mean Trade Size

Feb 2017 20 66,307 € 651 million € 13,029 million € 9,818

Feb 2020 20 71,416 € 1,237 million € 24,733 million € 17,321

CARTLIDGE ET AL. 247

https://platopartnership.com/plato-partnership-2020-year-in-review/
https://platopartnership.com/plato-partnership-2020-year-in-review/

are a minimum of 3,060 uncrossings (every 10 seconds) and maximum

of 6,120 uncrossings (every 5 seconds) per instrument. To ensure that

the system is capable of real-world throughput, we consider the worst

case scenario, such that TPU occurs every 5 seconds exactly. There-

fore, we assume there are 6,120 auctions per day per instrument, and

the MPC system has a maximum of 5 seconds to handle order entry,

order book insertion, and order book uncrossing. (We address the

implications of this assumption in Section 6.1.)

Assumption 3: orders cannot be cancelled

While Turquoise Plato allows order cancellation, we simplify our

implementation by assuming that no orders are cancelled.

(We address the implications of this assumption in Section 6.2.)

Assumption 4: uniform intra-day trading volume

From Table 3, we see that in Februrary 2017, TPU executed an aver-

age of 66,307 trades per day. The intra-day trading volume on Tur-

quoise Plato (not shown) has two peaks, the first at open (08:00) and

the second shortly before close (15:00), with average volume traded

during these peak hours roughly twice the size of volume traded dur-

ing off-peak hours (LiquidMetrix, 2017). We simplify to assume uni-

form intra-day trading volume, with an average of 66307/6120 ≈ 10

trades per auction interval, across all instruments. As discussed previ-

ously, Table 3 also shows that most trading occurs in a very small

number of instruments, with the majority of instruments trading very

rarely, or not at all. (Implications addressed in Section 6.3.)

Assumption 5: all orders eventually execute

Since Turquoise Plato is designed for larger, less time-sensitive orders,

we assume that all orders, given long enough, will eventually execute.

As TPU matches on volume alone (with trade price taken using mid-

price of the primary exchange as reference value), an order will exe-

cute as soon as a counterparty enters an order for the opposite direc-

tion with volume greater than MES. Therefore, we estimate the

average number of new orders entered into TPU to be twice the num-

ber of trades, i.e., approximately 20 orders per interval, across all

instruments. (Implications addressed in Section 6.3.)

Assumption 6: all orders are persistent

We assume orders are persistent and do not automatically expire after

TPU. To ensure no information leakage, the MPC implementation

requires that after each uncrossing, all uncompleted orders are wiped

from the order book and must be re-entered into the system to take

part in the next uncross (see Section 3.1). In the (extremely unlikely)

worst case scenario, we have a situation where every instrument has

multiple orders on one side of the order book only (e.g., all orders are

bids, or all orders are asks), such that none are able to execute, and all

have to be re-entered in the next interval. In Table 3 we see that the

average number of unique instruments trading each day is 1,258, and

the number of instruments trading each month is 1,927. Therefore,

we consider a situation where 2,000 instruments each have one order

in the order book as a worst case scenario for the system to handle.

(Implications addressed in Section 6.3.)

Requirements summary

We assume that any MPC implementation of TPU that can be applied

commercially must be capable of offering trading in a universe of U¼
4,500 instruments, and within 5 seconds be able to handle 2,000

orders entered and an average of 10 trades per uncross, without

leaking any information. In the following section, we introduce an

MPC implementation to meet these requirements.

3 | PRELIMINARIES

3.1 | Auction Modifications

To enable the required throughput to be achieved via an MPC system

we need to make a minor modification to the way Turquoise Plato

works. Instead of the operation given in Figure 1, we adopt the meth-

odology given in Figure 3. In particular we divide the day into five sec-

ond time intervals. In time interval i orders are entered, then in time

interval i + 1 the uncrossing occurs for the orders entered in time

interval i, and new orders for time interval i + 1 are entered. An

important difference, to maintain security of our solution, is that the

order book is flushed on every uncrossing. Thus, unfilled and partially

filled orders at interval i need to be re-entered into the system at

interval i + 1.

3.2 | Architecture

The setup we will consider is that of n organisations

Org¼fO1,…,Ong, which wish to run the dark-pool in a distributed

manner via MPC. The n organisations do this by creating L+1 entities

{E0,… , EL} each of which is instantiated as an MPC ‘engine’. The

engine Ei consists of fP1
i ,…,P

n
i g, where party/server Pj

i is run by orga-

nisation Oj. We will refer to the parties/servers fP1
i ,…,Pn

i g constitut-
ing Ei as P i. All entities P

j
0 and Pj

i for i≠0 are connected by pairwise

secure channels, meaning secret shared values held by Pj
0 can be pas-

sed securely to Pj
i.

The engine E0 is a special gateway engine, whilst engines E1, … , EL

deal with the actual auction, so we refer to these L engines as auction

engines. The reason for requiring multiple engines to deal with the

auction is to enable a high enough throughput to be reached when

the market is dealing with a large number of instruments. We do this

248 CARTLIDGE ET AL.

by distributing the instruments between the different engines, how-

ever we need to do so in a way that avoids linkage between orders

across different time intervals. To obscure this linkage, we repeatedly

randomise instruments assigned to each auction engine, which gives

rise to some complications (see sub-protocols Πprep and Πinp, below).

A trader T from the set of potential traders Tr places an order into

the auction through secure channels with P0. Figure 4 depicts the

setup for the case where L¼2 auction engines, and n¼3 organisa-

tions. The instruments (i.e., the specific stocks) are pulled from a given

fixed set S¼f1,…,Ug. In any one time interval we will divide the set

S up into disjoint subsets S¼ S1[…[SL and assign the set of instru-

ments Si to engine Ei. We let R denote the size of Si, where we assume

for ease of exposition that jSij ¼R for all i. This division is carried out

by the gateway engine E0 in such a way that a qualified set of the

organisations do not learn which instrument is assigned to which

engine. This is vital to stop organisations learning information about

unfilled orders; and by changing the allocation in each time interval

we also stop correlations being obtained by the organisations. How-

ever, in one time interval the assignment of an order to an engine will

leak some information (which we explicitly model in Section 3.4).

3.3 | Protocol overview:

Here, we present a high level overview of the protocol that organisa-

tions and traders need to execute (detailed implementation is

F IGURE 3 Modified Turquoise Plato Uncross. Orders are entered in five second intervals and the next set of orders are entered while the
uncrossing occurs. Note, the order book is cleared on every uncrossing, with unfilled and partially filled orders re-entered in the following interval

F IGURE 4 Example setup for L¼2
auction engines (E1 and E2) and n¼3
organisations (the parties, P1, P2, and P3),

who instantiate the MPC dark pool. A
trader submits an order for instrument i to
Gateway engine E0 in secret shared form.
The order is then routed to the auction
engine running TPU for instrument i

CARTLIDGE ET AL. 249

presented in Section 4). There are four distinct operations that must

be completed in a given time interval:

• Before the insertion phase:

1. Assign the instruments to the engines; we call this sub-protocol

Πprep (pre-process).

• During the insertion phase:

1. Take as input an order from a trader and get the gateway

engine E0 to forward it to the correct order book engine Ei; we

call this sub-protocol Πinp (input).

2. Each Ei now needs to insert each incoming order into its order

book; we call this sub-protocol Πins (insert).

• During the uncrossing phase:

1. Finally, each engine Ei needs to implement the uncrossing

phase; we call this sub-protocol Πunc (uncross).

The sub-protocols Πins and Πunc are essentially reproduced from

(Cartlidge et al. 2019), so for now we concentrate on the sub-

protocols Πprep and Πinp. The protocol Πprep is pre-processing, and

thus we assume this is done before the specific time interval, for

example over night. For all incoming orders in a specific time interval

the set of steps in Πinp need to be executed for all incoming orders in

the five second time window. During the uncrossing phase we need

Πins and Πunc also to be completed within the permitted five second

interval. However, this is an overestimate as Πins can be run in parallel

with Πinp, especially as Πinp puts the main computational strain on

engine E0, whilst Πins is purely an operation on Ei for a given i≥1.

The sub-protocol Πprep obliviously computes an assignment from

the set of instruments to the set of engines. For ease of notation we

write this assignment as ϕ : S! {1, … , L}, where an instrument r � Si

if and only if ϕ(r) = i. We emphasise that this mapping ϕ is not known

to any of the organisations, thus P0 will be oblivious to the sets S1,… ,

SL. Hence, organisations will not know which engine is dealing with

which instruments in this given time interval, however the organisa-

tions will learn which orders get assigned to which set (but not the

orders' specific instrument). In practice, P0 will engage in a sub-proto-

col, at the end of which they will obtain the sets Si as secret shared

indices in S¼f1,…,Ug.
The sub-protocol Πinp needs to take an ord for instrument r from

a trader T and then secret share it to the auction engine Eϕ(r). How-

ever, this needs to be done without P0 learning the instrument r in

this particular order, or the mapping ϕ(r). One way to address this, is

to simply send ord to every engine, and thanks to the equality test

implicit with Πins, the order ord will be inserted in exactly one engine

(the correct one). However, this will clearly degrade the performance

of our solution as each engine will have to deal with every order. An

alternative approach consists of revealing to E0 the instruments that

every set Si contains. However, from this information, parties in E0

can determine the corresponding engine without having to open the

instrument of ord. We consider this an unacceptable leak of informa-

tion, since we can determine sets of instruments among which trades

will occur, i.e., instruments of Si if the gateway is sending orders to Ei.

Therefore, to implement Πprep and Πinp we need to be more involved.

Our solution consists of having P0 obliviously construct a vector of

encryptions of the ϕ(j), given by c (EncPk(ϕ(1)),… , EncPk(ϕ(U))), with

a homomorphic encryption scheme that supports distributed decryp-

tion and re-randomisation of ciphertexts. In our instantiation, we do

this using Paillier encryption (Paillier, 1999). This vector c is the output

of our sub-protocol Πprep and is constructed without leaking anything

about the sets Si.

For the Πins sub-protocol, vector c is sent by P0 to the trader T. T

selects the r-th component of this vector cr and then re-randomises it

to obtain c0r before sending it back to P0. Finally, P0 will perform a dis-

tributed decryption on c0r to find ϕ(r). Note that trader re-

randomisation is necessary to avoid correlating orders for the same

instrument.

3.4 | Leakage model

Here, we define which events are to be considered information leak-

age (and thus break the security of our protocol) and which events are

not. The best case scenario is to consider that any information leaked

about an order that is not yet filled is a leakage of information. How-

ever, while this is theoretically possible, it will result in a protocol that

is not efficient, while our goal is to come up with a protocol that is

practical to implement for the real-world TPU. To this end, we for-

mally define how we modeled the leakage of information in Figure 5.

The security evaluation of our work follows this model, such that our

protocol is deemed secure as long as no leakage of information

occurs, aside from what we permit in Figure 5.

Informally, the leakage when L¼1 is what one would expect for

such an auction; one can determine which orders are buy and sell

orders and one knows at the end which orders have been filled, with

all other data remaining hidden. This is captured by Figure 5, items 1–

4. When L≥1 there is the additional leakage of information captured

in item 5; this additional leakage comes from our distribution of the

orders into R¼U=L buckets corresponding to each engine. Note, in

the extreme case of L¼U, i.e., when R¼1 and we have one engine

per instrument, the adversary will learn which instrument corresponds

to which order. Therefore, larger L leaks more information, but fewer

computational resources are needed to run the auction, whereas

smaller L leaks less information, but we risk not completing the auc-

tion within the allocated time. Thus, we obtain a form of

R¼U=L-anonymity on the instruments associated to an order.11 We

will aim to find a suitable value for L to implement the TPU protocols.

3.5 | Cryptographic background

We assume that the parties in P i, for i¼0,…,L, are probabilistic poly-

nomial time Turing machines. We will refer to sampling uniformly at

random an element r from a set X by r X. We also denote a variable

11It is not identical to R-anonymity as, whilst it is known that an order is for an instrument in

a set of R possible instruments, no party knows which R instruments are in the set.

250 CARTLIDGE ET AL.

assignment using a b, i.e., assigning the value of variable b to the

variable a. If D is a probability distribution over a set X, we denote

sampling from X with respect to the distribution D using a D. We

denote the component-wise multiplication of two vectors by v1
J

v2,

i.e., v3 v1
J

v2, where v3i ¼ v1i �v2i . Finally, ba will denote a vector of

size a where each element is equal to b.

3.5.1 | Paillier scheme

Our solution for sending orders to the corresponding engines is

inspired from the Helen system (Zheng et al. 2019); where they

needed to convert data back and forth between secret shared form

and encrypted form using a partially homomorphic with distributed

decryption procedure. Such a scheme can be instantiated using

Paillier encryption (Paillier, 1999). In the Helen protocol, to verify

that parties behaved honestly during these conversions, the parties

run the MAC check protocol on encrypted data, by using the

homomorphic property of Paillier encryption and by performing a

distributed decryption on the result of the MAC check protocol to

evaluate correctness. In this work, we also need to convert data

from secret shared form to encrypted form, and for this purpose

we also use the Paillier scheme. However, our approach to detect

cheating differs considerably and we avoid running the MAC check

protocol on encrypted data by taking advantage of the

nature of the computations we are performing. We formally

define the Paillier scheme, along with the properties it

satisfies, next.

Encryption scheme

A probabilistic public key encryption scheme is a set of algorithms

(KeyGen, Enc, Dec), such that:

• KeyGen(1λ) generates a public key and a private key (Pk, Sk), with

respect to some security parameter λ.

• EncPk(m, r) outputs a ciphertext c encrypting the message m with

randomness r, under the key Pk.

• DecSk(c) outputs the decryption of the ciphertext c under the key

Sk.

For correctness, we require that the decryption algorithm satisfies

the following:

• DecSkðEncPkðm, rÞÞ¼m for any randomness r.

Throughout the paper, we may also refer to the encryption of a

message m under the key Pk by EncPk(m), i.e., dropping the random-

ness from the notation. We will also abuse notation by referring to a

vector that contains encryptions under Pk of the components of a

vector v by EncPk(v), and to a matrix that contains encryptions under

Pk of the entries of a matrix M by EncPk(M). The scheme is considered

secure (in the IND-CPA sense) if no adversary can distinguish whether

a given ciphertext c is the encryption of message m0 or message m1.

Partial homomorphic encryption

A partially homomorphic encryption scheme is an encryption scheme

as defined above, with an extra requirement:

• For an operation
L

that defines a group over the plaintext space

(G,
L

) and an operation
N

that defines a group over the

ciphertext space (G0 ,
N

), DecSkðEncPkðm1, r1Þ
N

EncPkðm2, r2ÞÞ¼
m1

L
m2, for any two messages m1 and m2 and any randomnesses

r1 and r2.

This essentially means that we can perform computation on the

ciphertexts without having to decrypt them. It also means that we can

re-randomise ciphertexts. For instance, for the case where
L

consists

of addition and
N

consists of multiplication, we can re-randomise a

ciphertext c by multiplying it by EncPk(0G, r) for some r drawn at ran-

dom, where 0G is the identity element of (G,
L

).

Encryption scheme with distributed decryption

For a set of parties {P1, … , Pn}, an access structure A is a (monotoni-

cally increasing) subset of 2fP
1,…,Png ∖ ptyset, i.e., A is a collection of

F IGURE 5 Leakage model

CARTLIDGE ET AL. 251

non empty sets Cj of {P1,… , Pn}. The sets Cj¼fP1j,…,PjCj jjg for j in

1,…, jAj are called the authorised sets. A public encryption scheme is

said to have distributed decryption over parties P1,… , Pn, with respect

to an access structure A, if we can provide two protocols:

• ΠKeyGen: a protocol that securely implements the KeyGen algo-

rithm, i.e., it outputs a public key Pk and for every authorised set Cj
it outputs to every Pij a share Skij of the private key Sk.

• ΠDec: a protocol that securely implements the DecSk algorithm for

every authorised set Cj. It takes ciphertext c as a public input and

the shares of the secret key of one of the authorised sets Cj as a

private input, i.e., Skij of the parties Pij, then it outputs m¼
DecSkðcÞ to the parties in Cj.

The security requirement is that a ciphertext should remain

semantically secure, i.e., it reveals no information to any subset of {P1

, … , Pn} that is not contained in the access structure A. For instance,
for the case where A contains only one authorised set, namely all

parties in {P1,… , Pn}, then we require all parties to implement the

decryption algorithm.

The paillier scheme

Paillier is an encryption scheme that is both partially homomorphic

and has distributed decryption. We will consider the Damgård-Jurik

variant (Damgård & Jurik, 2001), as it offers flexibility regarding the

size of the plaintext space. To show how Damgård-Jurik works, we

will explain it through the simplified version given in (Damgård &

Jurik, 2001); note that if we take e¼1 then we obtain Paillier's origi-

nal scheme.

• KeyGen: Take N as the product of two prime numbers q1 and q2.

Set Pk N and Sk lcm((q1 � 1), (q2 � 1)).

• Enc: For a message m in ℤNe , where e>0 is an integer, take ran-

domness r ℤ ∗
Neþ1 and compute EncPkðm, rÞ ð1þNÞm � rNe

.

• Dec: For a ciphertext c in ℤ ∗
Neþ1 , compute d such that d¼1modNe

and d¼0modSk. Then, compute cd mod Ne+1 to obtain (1+N)m

mod Ne+ 1. Finally, extract the discrete logarithm of this value to

obtain m, which is feasible for this case.

The security rests on the DCR assumption, which itself is believed

to be as hard as finding the factorisation of N. Thus, one selects N of

around 2048 bits to obtain a suitable security. Distributed versions of

this scheme are available against active adversaries, for both honest

and dishonest majority (see Damgård & Jurik, 2001; Hazay et al.

2012). In addition it is easy to see that this scheme is partially homo-

morphic, i.e.:

EncPkðm1, r1Þ �EncPkðm2, r2Þ ¼ ð1þNÞm1þm2 � ðr1 � r2ÞN
e

¼EncPkðm1þm2, r1 � r2Þ:

This property is extremely useful. For instance, for an encrypted

matrix C EncPk(M) in MfR,Rg and a vector v of length R, we can

compute c EncPkðM �vðtÞÞ by simply computing ci Πj¼R
j¼1C

vj
i,j . Also,

from vectors of ciphertexts c1,… , cR, where ci¼EncPkðviÞ, we can

compute EncPk
P

iv
i

� �
by computing c1

J
…
J

cR. However, note

that if we consider the plaintext elements as integers of a given size,

then we need to ensure that the homomorphic operations we apply

do not produce wrap-around, i.e., we do not produce values that

exceed Ne in absolute value. Therefore, the result of a homomorphic

operation is only meaningful in the application if the modulus Ne is

chosen to avoid such wrap-around.

3.5.2 | Multi-party computation

We consider Secret Sharing based Multi-Party Computation (MPC)

protocols with abort against active adversaries. This means that inputs

of the parties remain private throughout the execution of the protocol

and when a set of adversaries deviate from the protocol, honest

parties will catch this with overwhelming probability and then abort

from the protocol. This should be compared to passively secure proto-

cols, which offer a much weaker guarantee that security is only pre-

served if all parties follow the precise protocol steps correctly. The

base MPC functionality is presented in Figure 6.

The SCALE-MAMBA framework

As in (Cartlidge et al. 2019), we use the SCALE-MAMBA system (Aly

et al. 2018) to run our experiments. SCALE implements multiple MPC

protocols realizing FP½MPC�. In the secret sharing based protocols,

computation takes place in a prime field Fp. A value x�Fp that is

secret shared among the parties in P is denoted as ⟨x⟩. SCALE works

in the pre-processing model, which means that there are two phases

within SCALE, an offline and an online phase:

• In the offline phase, independent input data are produced. These

include: random values ⟨r⟩ such that r Fp; Beaver triples, which

are random multiplication triples of the form {⟨a⟩, ⟨b⟩, ⟨c⟩} such that

a Fp, b Fp and c¼ a �b; and random bits ⟨b⟩ such that b
{0, 1}. These data will be further consumed in the online phase

when a multiplication of secret shared values is required.

• In the online phase, computation takes place on inputs to the

parties. In SCALE, addition is a local operation, while multiplication

requires communication between parties, which consumes Beaver

triples generated during the offline phase.

The nature of the MPC protocol is such that a value x held in

secret shared form ⟨x⟩ is authenticated, i.e., any attempt by a party to

change value x will be detected with overwhelming probability. If the

probability that a party cheats without being caught is equal to 1
p then

p is chosen to be extremely large (we discuss the selection of p later

in this section). The way authentication is achieved depends on the

underlying secret sharing scheme. In this work, we consider two

schemes: Shamir Secret Sharing based MPC, following the methodol-

ogy of (Keller et al. 2018); and the SPDZ protocol of (Damgård et al.

2012) and its follow-up papers. These two protocols differ in terms of

the access structures they support. Next, we briefly outline both

252 CARTLIDGE ET AL.

approaches and explain why the probability of cheating without being

caught corresponds to 1
p.

Shamir secret sharing based MPC

In Shamir Secret Sharing based MPC, each entity holds a share xi �Fp

of a secret x, where we have that x is the constant term of a polyno-

mial fx(X) of degree t such that xi= f(i) (mod, p), i.e. x= fx(0). We write

⟨x⟩ to denote a sharing of x in this way. Clearly, if t+1 parties come

together they can recover the polynomial fx(X) via interpolation, and

then recover x from fx(0). It is also clear that parties can compute arbi-

trary linear functions of their shares without interaction.12 To produce

the multiplication triples in the offline phase, we require t< n/2, so

the parties generate two random sharings ⟨a⟩ and ⟨b⟩ and then each

party produces the product of their local shares. The parties then re-

share the results and compute a specific linear function of the

resulting n sharings. On its own, this only provides passive security,

but the basic protocol can be made actively secure-with-abort with

very little additional overhead (e.g., see Keller et al. 2018).

SPDZ Based MPC

Shamir Secret Sharing requires t < n/2. When n/2≤t < n we require

SPDZ. Here, each party Pi holds a share αi �Fp of a global Message

Authentication Code (MAC) key. The MAC key is defined as α¼P
iαi.

Value x�Fp is then secret shared among the organisations as the

tuple {xi, γi}i� [n] such that x¼P
ixi and

P
γi¼ α �x. We call α � x the

MAC value on x. We use the notation γi[x] (resp. γ[x]) to refer to a

MAC share γi of γ (resp. the MAC γ), which specifies at the same time

the value x on which γ is a MAC. We again write ⟨x⟩ for this sharing so

as to unify notation and allow us to treat both situations at the same

time. Linear computation on shared values is again straightforward to

perform. In particular, given two secret shared values x and y and

three field constants a,b,c�Fp we can compute the sharing of z¼
a �xþb �yþc locally by each player:

z1 a �xiþb �yiþc for i¼1

zi a �xiþb �yi for i≠1

γi½z� a � γi½x�þb � γi½y�þαi �c for all i:

The production of the multiplication triples is now much more

involved and makes use of a Homomorphic Encryption scheme (for

more details about SPDZ, refer to (Damgård et al. 2012)).

Comparison of Shamir and SPDZ

For Shamir Secret Sharing based MPC, we assume that there is a hon-

est majority, i.e., among the n parties participating in the protocol, at

least a threshold of dnþ12 e parties are honest. If this is not ensured, the

security of the protocol collapses and there are no longer any security

guarantees. In comparison, SPDZ works with a Full Threshold setting,

i.e., we tolerate up to n�1 parties to be malicious. This means that all

the claimed security guarantees will hold, as long as there is at least

one honest party.

The two families perform authentication of the shared values in dif-

ferent ways. For Shamir Secret Sharing based MPC, we have an honest

majority which provides a direct method to provide authentication on

the underlying secret shared values; essentially using the error-detecting

properties of the underlying Reed-Solomon encoding. In fact, detecting

cheating for an opened value is done by simply checking the consis-

tency of the shares. Roughly speaking, if the shares were correctly com-

puted, recombining them will yield the secret, otherwise, no value from

Fp can be the combination of those shares. Thus, a malicious party

can guess a value that was not opened only with probability 1
p.

12When we discuss “shares” in context of MPC, we are referring to a share of secret ⟨x⟩; we

are not referring to a financial share (an equity) that can be traded.

F IGURE 6 Operations for Secure Function Evaluation

CARTLIDGE ET AL. 253

For SPDZ, given that it does not assume a honest majority,

detecting cheating is not as straightforward as for Shamir Sharing. To

obtain the same form of authentication, the SPDZ protocol introduced

MACs into the secret sharing. That is, each opened value goes

through the MAC check protocol. The soundness of this protocol

comes from the fact that it is hard to forge a MAC. This means that an

opened value y can only have a valid MAC if there was no cheating

while computing it. The probability of cheating without being caught

corresponds to guessing the MAC key α. Since α is drawn at random

from Fp, this probability is equal to 1
p.

Arithmetic using SCALE-MAMBA and the size of p

Addition, multiplication, and comparison of secret shared values ⟨x⟩

and ⟨y⟩ will be denoted by ⟨z⟩ ⟨x⟩ + ⟨y⟩, ⟨z⟩ ⟨x⟩ � ⟨y⟩,
⟨z⟩ ⟨x⟩ > ⟨y⟩, i.e., form a sharing ⟨z⟩ of the result of the operation

on the sharings ⟨x⟩ and ⟨y⟩. We use Open ⟨x⟩ to denote revealing a

value to parties. We also abuse notation by using ⟨v⟩ to refer to a vec-

tor that contains the secret sharing of the components of a vector v;

and ⟨M⟩ to refer to a matrix that contains the secret sharing of the

entries of a matrix M. Although computation in our MPC engines

takes place over a prime field Fp, we actually need to perform compu-

tation over integers to emulate matching orders, i.e, to execute Πins

and Πunc. In particular, we need to compute and compare on k-bit

integers. We will encode an integer in [�2k�1,… , 2k�1] as its stan-

dard representative modulo p. Then, we need to ensure that no wrap-

around takes place, i.e., the range [�2k�1,… , 2k�1] is big enough to

catch all the computation. This task is easy for us, since we are per-

forming a number of conditional summations and so the maximum

size of all values can be known ahead of time.

To perform a comparison operation, such as ⟨b⟩ ⟨x⟩ < ⟨y⟩,

SCALE follows the methods of (Catrina & de Hoogh, 2010; Catrina &

Saxena, 2010; Damgård et al. 2006), where the comparison operator

is implemented using only additions, multiplications, and output to all.

Importantly, this method is required to take a shared value ⟨x⟩ for x in

[� 2k � 1, … , 2k � 1] and mask it by a value ⟨r⟩ by computing ⟨x

+ r⟩ ⟨x⟩ + ⟨r⟩, then opening ⟨z⟩ ⟨x + r⟩ so that the parties obtain

x + r. However, this would be problematic if r is not big enough, as it

reveals information about x. In fact, if r is chosen from the interval

[� 2sec + k � 1, … , 2sec + k � 1], the statistical distance of z from the uni-

form distribution is 2�sec, i.e., r is chosen from an interval that is 2sec

times larger than the range of x. Parameter sec is called the statistical

security parameter for arithmetic. To run experiments, we select sec¼
40 and k¼64. Then, to ensure valid arithmetic and an acceptable

soundness, we need to select p such that kþsec< log2p and 1/p is a

negligible probability. To this end, we picked p such that log2p¼128.

Using these parameters, Table 4 presents the costs of the basic

operations within SCALE for multiplication, comparison, and equality

testing.

4 | EMULATING THE DARK POOL
OPERATOR

We now treat each of the sub-protocols realising the phases in turn:

4.1 | Allocating instruments to an engine: the Πprep

sub-protocol

From now on, we will assume that the players in P0 hold a Paillier key

pair (Pk, Sk), where Sk is distributed among the organisations. We also

assume that the players have access to a protocol ΠDec to decrypt,

which is actively secure for the specified access structure A, equiva-
lent to the access structure for the underlying MPC protocol

(i.e., threshold (t, n) for Shamir and full-threshold for SPDZ). Finally, we

assume the Paillier key (N, e) is chosen so that Ne > n � p, where n is the

number of parties and p is the underlying modulus of the MPC sys-

tem. A formal description of the Πprep sub-protocol is presented in

Figure 7. The main idea to build Πprep consists of obliviously generat-

ing a permutation π in order to construct the map ϕ : S! {1,… , L},

which will be used to assign the instruments to the engines. Namely,

ϕ will be constructed as follows:

πð1þR � iÞ¼…¼ πðRþR � iÞ¼ϕ�1ðiþ1Þfori¼0,…,L�1:

In order to achieve this, the parties generate an U � U secret

shared permutation matrix M of a random permutation π, by having

each party contributing to the construction of M, then producing the

same permutation in encrypted form under the Paillier key (Pk, Sk).

The secret shared form will be used to produce the sets S1, … , SL.

That is, Siþ1¼fπð1þR � iÞ,…,πðRþR � iÞg, for i¼0,…,L�1, and the

encrypted form to produce the vector c. Recall that we want c
(EncPk(ϕ(1)),… , EncPk(ϕ(U))). Therefore, in Figure 7 step 1, P0 produces

⟨M⟩, then in step 2 assigns instruments to Si and sends them to Ei.

Parties reproduce M in encrypted form C, by having each party

encrypt their share of the matrix M and broadcast it to the other

parties. Finally, in step 5, P0 obtain the vector c from the transpose of

C. As Πprep does not deal with any orders, it is clear that no informa-

tion about orders can leak at this stage. However, we need to prove

that, while executing Πprep, the matrix M provided by the parties cor-

responds to a permutation matrix; and the map ϕ used to compute

the vector c is indeed the same as the one used to produce the sets Si.

TABLE 4 Costs of operations in
SCALE, with parameters sec¼40, k¼64,
and log2p¼128

Operation Open ⟨a⟩ � ⟨b⟩ ⟨a⟩ < ⟨b⟩ ⟨a⟩ < b ⟨a⟩¼ ⟨b⟩ ⟨a⟩= b

Triples 0 1 120 63

Bits 0 0 105 104

Rnds of Comm. 1 1 7 7

254 CARTLIDGE ET AL.

These two requirements are crucial for the remaining sub-protocols. If

the checks in steps 1.III and 1.IV go through, a sufficient and neces-

sary condition about M being a permutation matrix is then satisfied.

Therefore, proving that Πprep is secure reduces to proving that the

check in step 4 guarantees that the same map ϕ was used. To prove

this, we require the following trivial Lemma:

Lemma 1. For the random variables X, Y , and Z, where

X follows the uniform distribution over Fp , Y follows

some distribution D1 over Fp, and Z follows some distri-

bution D2 over Fp ∖ f0g, we have:

• The variable H (X + Y) follows the uniform distribution

over Fp.

• The variable G (X � Z) follows the uniform distribution

over Fp.

Theorem 1. If Ne > n � p, the check in Figure 7 step 4.V

is correct and sound, i.e, if ⟨M⟩ and C correspond to the

same permutation and organisations were honest during

the execution of this sub-protocol, then we will have t0 ¼

m0 mod p; and if ⟨M⟩ and C do not correspond to the same

matrix, we will have t0≠m0 mod p except with negligible

probability.

Proof. Correctness: Here, we aim to prove that

although computation in the secret shared domain is

modulo p and computation in the plaintext domain of

Paillier is with a different modulo (Ne� p), if parties are

honest, then in Figure 7 step 4.V, we will have t0 ¼m0

mod p. If parties are honest, they will provide the same

matrix M in secret shared form ⟨M⟩ and encrypted form

C¼EncPkðMÞ, along with vectors ti in secret shared

form ⟨ti⟩ and encryptions ci of M � (ti)t. Note that ci con-

tains the same elements in ti shuffled with respect to

the permutation matrix M. Having the components of ci

smaller than p, the ciphertext c0 which encrypts the sum

of the plaintexts of ci will contain elements that are

smaller than p � n. Therefore, the plaintext of c0 mod p is

equal to the secret shared vector M � (t)t as there was no

wrap-around mod Ne in the plaintext domain, given that

Ne > n � p.

F IGURE 7 The Πprep sub-protocol used for allocating R instruments to L engines

CARTLIDGE ET AL. 255

Proof. Soundness: Let us assume that an adversary

controlling a set of parties lie about their orders. This

can be modelled as having ⟨M⟩ and t in secret shared

domain and C¼EncPkðMþAÞ and c00 ¼EncPkðtþaÞ,
where A≠0. If the check in Figure 7 step 4.V goes

through, this means that:

F IGURE 8 The Πinp sub-protocol used for inputting orders to the gateway engine E0

256 CARTLIDGE ET AL.

ðMþAÞ � ðtþaÞt ¼M � tt
M �atþA � ttþA �at¼0

A � tt¼�M �at�A �at

where A and a are chosen by the adversary, M is a uniformly random

permutation matrix, and t is uniformly random from Fp. Given that

A≠0, there will be at least one entry Ai, j in A, such that Ai, j≠0. Let

us consider the ith component of the resulting vectors of the left and

right sides of this equation. From Lemma 1, the ith component in A � tt
is uniformly random, as it is the sum of variables following some distri-

bution over Fp, plus a variable, which is the product of Ai, j that follows

some distribution and the ith component of t, which is uniformly ran-

dom. Thus, the adversary needs to satisfy an equation where the left

side (the ith component in A � tt) is a uniformly random value and the

right side consists of a sum of variables that follows some distribution

D. The probability Pr that the adversary can produce values to satisfy

this equation is:

Pr¼1
p
�Prð0 DÞþ…þ1

p
�Prðp�1 DÞ¼1

p

Therefore, the adversary can succeed with at most the (negligible)

probability 1
p.

4.2 | Inputting orders into the system: the Πinp

sub-protocol

Figure 8 presents the Πinp sub-protocol. Trader T inputs an order

⟨ord⟩¼ð⟨name0⟩,⟨r⟩,⟨b0⟩,⟨v0⟩Þ as follows: P0 sends vector c to T; the

trader then re-randomises the rth component of this vector to obtain

c and sends it back to P0 along with ⟨ord⟩. Parties in E0 then perform

a distributed decryption on c to obtain ϕ(r) and re-share ⟨ord⟩ among

engine Eϕ(r). However, remember that we must provide a way for

traders to securely input their orders into the system. The trivial way

to do this consists of drawing a random ⟨r⟩ from E0 and then opening

it to T by having parties in E0 send their shares of r to T. Then, if T

wishes to input m, the trader computes d¼mþ r and sends it back to

parties in E0. Parties in E0 then compute ⟨m⟩¼ d� ⟨r⟩. This reveals

nothing about m as d is a random value. However, nothing can stop

parties in E0 from sending the wrong shares of r to T. This is due to

the fact that r did not go through any procedure to check its correct-

ness, unlike what happens when we open an authenticated value to

the parties. The fix for this depends on the underlying MPC protocols

we are considering. For the case of Shamir, simply having parties in E0

send their shares of ⟨r⟩ will be sufficient, as T will detect cheating

thanks to the error detecting property of Shamir (see Figure 8, proce-

dure Send½Shamir�–Sub). For SPDZ, the fix is more complex. The

MAC check protocol makes use of the fact that ⟨r⟩ is opened to all

parties within an MPC engine (there is also a variant that checks the

correctness of a value opened to only one party). However, in our

case, we cannot execute this protocol on ⟨r⟩ as we intentionally do

not open the value to any party within the engine, and we cannot

reveal the MAC key α for the trader to perform the MAC check proto-

col. To solve this, we introduce Figure 8 sub-procedure

Send½SPDZ�–Sub, which guarantees that:

• The MAC α of SPDZ is not compromised; and

• If the check in step 4 goes through, the trader is convinced that

parties in E0 sent the correct shares.

This is due to the fact that r is a random value and α0 reveals noth-

ing about α, as it is the product of α with another random value. The

protocol ensures that all parties in E0 sent the correct shares by send-

ing trader T all the necessary material to let T run the MAC check pro-

tocol on r, where r is MAC'd with the MAC key α0 ¼ α � s.

Theorem 2. The sub-procedure Send½SPDZ�–Sub
(Figure 8) is correct and sound; i.e, an honest trader

accepts the check in step 4 if the shares ri sent to him cor-

respond to ⟨r⟩, otherwise he rejects except with a negligible

probability.

Proof. Correctness: If parties are honest while execut-

ing Send½SPDZ�–Sub, i.e., the shares {ri, αi0, γi[γ0]} corre-

spond to {r, α0, γ0}, we have α0 � r¼ α � s � r and γ0 ¼ α � s � r.
This means that the shares of ⟨r⟩ sent to T are

correct.

Proof. Soundness: Let us assume that an adversary

controlling a set of parties lie about their shares, i.e., the

shares they sent along with the shares of honest parties

sum to {r0 0, α0 0, γ0 0}, where r0 0 r + ϵ1, α0 0 α0 + ϵ2,

γ0 0 γ0 + ϵ3; and ϵ1 ≠ 0, where ϵ1, ϵ2, and ϵ3 are

known to the adversary. If the check in step 4 goes

through, this means that:

α00 � r00 ¼ γ00

ðα0 þϵ2Þ � ðrþϵ1Þ ¼ ðγ0 þϵ3Þ
ðα � sþϵ2Þ � ðrþϵ1Þ ¼ ðα � s � rþϵ3Þ
ðα � sÞ � ðrþϵ1Þ ¼ ðα � s � rþϵ3Þ�ϵ2 � ðrþϵ1Þ

α � s ¼ ϵ3 �ϵ�11 �ϵ2�ϵ2 � r �ϵ�11

which is an equation of the form r1¼ fðϵ1,ϵ2,ϵ3, r2Þ, where r1, r2 are

uniformly independent random numbers from Fp and ϵ1, ϵ2, ϵ3 are

chosen by the adversary. Then, the right hand side follows some dis-

tribution D and the probability Pr that the adversary can produce

values to satisfy this equation is:

Pr¼1
p
�Prð0 DÞþ…þ1

p
�Prðp�1 DÞ¼1

p

Therefore, the adversary can succeed with only the (negligible) proba-

bility 1
p.

CARTLIDGE ET AL. 257

Using the sub-procedures Send½Shamir�–Sub and

Send½SPDZ�–Sub, each order ord is sent to P0 without being rev-

ealed. Also, using the vector c, the engine Ei to which ord is sent is

determined without revealing the corresponding instrument. Finally,

the implementation of Πprep ensures that P0 are oblivious to the

instruments that Ei deals with. Thus, the fact that ord was sent to Ei

does not reveal the corresponding instrument. Otherwise, any other

leakage falls within the scope of what an adversary is allowed to know

(detailed in Figure 5 events 1 and 5).

4.3 | Inserting orders into the order book: the Πins

sub-protocol

Here, we describe the Πins sub-protocol that is executed by every

engine Ek for every order ord received. The basic protocol was pres-

ented and analysed in (Cartlidge et al. 2019). The only difference in

this paper is that instead of having one instrument per engine we have

R instruments per engine. We assume that at any point during the

auction, the buy list (resp. the sell list) of each instrument can contain

at most M orders (resp. N orders). We also assume that no volume can

reach a maximum bound MAX. A buy order (resp. a sell order) for

instrument r submitted to the auction will be of the form

ð⟨nameb0⟩,⟨r
b⟩,⟨b0⟩,⟨v0⟩Þ (resp. ð⟨names0⟩,⟨r

s⟩,⟨c0⟩,⟨w0⟩Þ).
To hide how many orders were submitted per instrument, while

at the same time keeping instrument lists separated, each order

entered into the system is filtered in a secure manner using an equal-

ity check on the corresponding instrument. In the insertion phase, we

insert ð⟨nameb0⟩,⟨b0⟩,⟨v0⟩Þ of instrument r into the list

Lbr ¼ ½ð⟨namebj ⟩,⟨bj⟩,⟨vj⟩Þ�
sizeðLbr Þ
j¼1 : the list of buy orders submitted during

this round for instrument r. Similarly, we insert ð⟨names0⟩,⟨c0⟩,⟨w0⟩Þ
into the list Lsr ¼ ½ð⟨namesk⟩,⟨ck⟩,⟨wk⟩Þ�sizeðL

s
r Þ

k¼1 : the list of sell orders sub-

mitted during this round for instrument r. Figure 9 presents a formal

description for inserting a new buy order (an identical algorithm is

used to insert a sell order). Note that, for every new order entered

into the auction, we add a dummy order (⟨0⟩, ⟨MAX⟩, ⟨0⟩) to every list

(unless the list has already reached maximum size), then we oblivi-

ously replace a dummy order by the new order in its corresponding

list. This hides how many orders are submitted for each instrument.

This sub-protocol leaks no information as no secret shared values are

opened (for a formal analysis, see (Cartlidge et al. 2019)).

4.4 | Order book uncrossing: the Πunc sub-protocol

In the uncrossing phase, parties in every engine in {E1, … , EL} execute

the Πunc sub-protocol presented in Figure 10 for each corresponding

instrument. Again, this protocol was presented and analysed in

(Cartlidge et al. 2019) for the case of R¼1. The extension to general-

ise to any value of R is immediate. Note that, if a buy and sell order

are matched, one of them will be completely filled and the other may

be only partially filled. In our implementation, we do not remove

completely filled orders during the auction. Instead, we replace them

in an oblivious manner with dummy orders of the form

(⟨0⟩, ⟨MAX⟩, ⟨0⟩), thus ensuring that we do not leak which order is

only partially matched. Similarly, if for some order the remaining

F IGURE 9 The Πins sub-protocol for inserting a new buy order into the buy list (sell order insertion is identical)

258 CARTLIDGE ET AL.

volume becomes smaller than MES, we obliviously replace this order

by a dummy order. This prevents leaking orders that were partially

filled and still have remaining volume greater than MES.

For a formal security analysis of Πunc we refer the reader to

(Cartlidge et al. 2019). Here, we briefly consider uncrossing sub-

protocol leakage with respect to the leakage model presented in

Figure 5. In Figure 10 stepv1.I.A.iii, if f ¼0, then the adversary only

obtains the information that a buy order and a sell order do not

match. This is allowed by Figure 5 event 2. Alternatively, if f¼1, one

order will be completely filled and the other order will be partially

filled. The name, MES, instrument, and the filled volume of both

orders will be opened at the end of this period, which is captured by

Figure 5 event 3. Finally, all unfilled and partially filled orders will be

discarded. This allows the adversary to bound the volumes of these

orders from opened orders and is captured by Figure 5 event 4.

5 | RUNTIMES FOR TURQUOISE PLATO
UNCROSS

Here, we determine whether the MPC protocols can handle the real

world requirements detailed in Section 2.5. For the given number of

instruments and expected throughput, we test whether we are able to

consistently evaluate the protocols within five second time intervals.

Recall that orders entered in time interval t are uncrossed during time

interval t + 1; and during interval t + 1, orders are simultaneously

entered for uncrossing during time interval t + 2. As remarked earlier,

we assume that all non-completed trades are wiped at the end of each

time interval. We then attempt to determine the principal parameter

R, which is the number of instruments assigned to each engine.

We conducted experiments on n identical machines with

i7-7700K CPUs and 32 GB of RAM, each running Ubuntu. Machines

were connected by a 10 GBit switch, with ping time 0.47 milliseconds

between each. We considered two settings for the number of organi-

sations: n¼2, where we use the SPDZ-based MPC protocol; and n¼
3 where we use the Shamir-based MPC protocol. We examine each

of the phases in turn. We start by noting that Πprep is a pre-processing

protocol and so can happen offline, ideally during the night before

each trading day opens.

5.1 | Input Protocol Runtime

The Πinp input protocol is executed by the gateway engine E0 and the

main cost is the computation of a single Paillier distributed decryption

per order. For both of our access structures, the Paillier decryption

took dd¼0:118 seconds, using values of N¼2048 bits and e¼1.

Decryption time dd is presented as the execution time per order on a

single core of each machine in the gateway engine E0. As discussed

earlier, due to the need to clear the order book at the end of every

time interval, we expect that traders will input at most 2000 orders in

every five second period. Assuming, in a real installation, that gateway

E0 is implemented using machines with 64-cores, then processing the

Paillier decryptions should take around 2000 �0:118=64¼3:687 sec-

onds per machine. However, this ideal latency might scale back due to

network bottlenecks within gateway engine E0, although this can be

F IGURE 10 The Πunc sub-protocol used for uncrossing the order book

CARTLIDGE ET AL. 259

easily remedied by having multiple versions of E0. Thus, in practice we

do not foresee a problem in executing Πinp in a real-world scenario.

5.2 | Insert protocol runtime

The Πins insertion protocol is run by each engine Ei, where i > 0, and

can be run in parallel with input protocol Πinp. Each engine processes

(obliviously) R different instruments. Engines receive an incoming

order and insert it into the buy or sell list for the relevant instrument,

without knowing which instrument that is. Figure 11 presents the

online time required to insert incoming orders into the buy order book,

for various values of R.13 Note that the time needed to insert a new

order increases as the number of already processed orders increases

(i.e., the larger the current order book, the longer the insertion proto-

col takes to execute).

Assuming a uniform distribution, we expect 66307/6120 ≈ 10

trades to execute every five seconds (see requirements Section 2.5).

In the worst case scenario, these 10 trades all execute on the same

engine Ei, which we name the ‘hot’ engine. Thus, Ei must process at

least 10 buy orders and 10 sell orders that will execute (during the

subsequent uncrossing); and we expect that the 2000 other orders

entered during the time interval will not execute. On average, 2000/L

of these orders will be routed to the hot engine Ei and since they will

not execute, we can assume that they all arrive on the buy side, which

will give us the worst case performance shown in Figure 11. Thus, we

assume that the hot engine Ei has M¼10þ2000=L buy orders and

N¼10 sell orders to insert. For example, when R¼16 we find that

L¼U=R¼4500=16≈281, which gives us M¼17 buy orders and N¼
10 sell orders on the ‘hot’ engine. From Figure 11 (left), we see that

when n¼2, this translates to a run time of 0.8109 seconds to insert

M¼17 buy orders and 0.2915 seconds to insert N¼10 sell orders,

giving a total run time of 0:8109þ0:2915¼1:1 seconds to evaluate

the protocol Πins. When n¼3 (Figure 11; right), total insertion time is

1:4229þ0:5115¼1:9 seconds. Using a smaller value of R results in a

faster insertion, but at a cost of more information leakage (see Sec-

tion 3.4). However, using a larger value of R, such as R¼32, results in

run times that do not fulfil the requirement to guarantee that all

phases complete in under five seconds.

5.3 | Uncross protocol runtime

The Πunc uncrossing protocol occurs in time period t + 1 for orders

placed in time period t. However, we want to quickly feed back results

to enable traders to place new orders in time period t + 1, for orders

that do not execute in period t. If we let T(M, N) denote the time to

perform the uncrossing for M buy and N sell orders, then we see that:

TðM,NÞ≤ TðV,VÞ when V¼ðMþNÞ=2: ð2Þ

The reason for this is that the algorithm for uncross essentially

works as follows: (i) for all i � {1, … , N} and all j � {1, … , M} compute

and open a value; (ii) if the value is one (i.e., if a trade has executed),

then do some operations which do not depend on M or N. Thus, for a

fixed number of trades, the most expensive case is whenM � N is max-

imal, which implies the above equation (2).

Thus, we first investigate how T(M, N) behaves when M¼N and

we vary the number of completed orders v. For the case of

M¼N¼10, we obtain the graphs in Figure 12. The run time itself

(theoretically) depends on the number of trades that are actually com-

pleted. The number of trades is bounded by M+N�1 (when

M,N≠0), as each trade implies at least one order is completely filled.

However, as Figure 12 shows, run times are largely unaffected by the

number of trades. This is because Figure 10 step 1.I.A.i must be exe-

cuted N �M times; while step 1.I.A.iii is only executed when a trade

occurs. Since the most expensive step is the comparison, and since

we have a ‘base’ number of 2 �N �M comparisons that must always

F IGURE 11 Run times for Πins insertion for buy (or sell) orders for two parties (left) and three parties (right)

13The offline time for MPC protocols can be much longer, but since these calculations are

offline, they can be performed ahead of time (e.g., during the previous night, when market is

closed). For the SPDZ protocol for two parties, the offline time is a factor 150-350 times

slower than the online time; whereas for the three party Shamir based protocol, it is only a

factor of 3-8 times slower. This cost of the offline phase could impact the choice of n¼2 or

n¼3 in practice. The offline phase is more expensive when n¼2, but the online phase is

faster when n¼ 2. This disparity is why we give both implementations in this paper.

260 CARTLIDGE ET AL.

happen, plus an extra 3 comparisons per order executed, then the run

time is approximately 2 �N �M+3 � v. In our experiment we set N¼
M¼10 and v≤20, so in Figure 12 we see that the number of trades

makes little difference to the overall runtime (some small variation is

due to empirical errors). In Figure 13, we see the growth of T(M,N)

when M¼N for a fixed number of 10 trades. When R¼16, we see

that the ‘hot’ engine requires T(17, 10)≤T(14, 14)≈2.5 seconds to

complete the uncrossing phase in the 2-party case (left); and T

(17, 10)≤T(14, 14)≈3.6 seconds for the 3-party case (right).

5.4 | Runtimes summary

Having selected R¼16 to obtain a reasonable level of leakage within

a given time to perform the uncrossing, we can now determine the

resources needed to implement TPU in this way. Recall from earlier

that Turquoise Plato offers U¼4500 different instruments, so we

require L¼U=R¼281 MPC engines. Adding one engine for the gate-

way, we require 282 engines in total. Thus, to implement the

complete dark pool, each organisation will need to provide

282 machines. This figure could be considerably improved if more

powerful machines were used to implement the engines E1,… , EL.

However, as with all MPC systems, pushing more CPU power into the

application may not give the expected performance benefit, as one

also needs to worry about bandwidth constraints. Thus, it would be

necessary to improve the throughput of the underlying network con-

necting the machines within each engine.

6 | DISCUSSION

We have demonstrated that the MPC implementation of TPU can

meet the real world requirements detailed in Section 2.5, when

R¼16. However, we made several simplifying assumptions when

formalising these requirements. Here, we begin by addressing the

implications of relaxing the six assumptions detailed in Section 2.5.

We then discuss the practical implications of using MPC technology

in real dark pools, and the increased security that is derived.

F IGURE 13 Πunc run times for two parties (left) and three parties (right) with respect to M¼N, for 10 trades

F IGURE 12 Run times for Πunc uncrossing for two parties (left) and three parties (right) when M¼N¼10

CARTLIDGE ET AL. 261

6.1 | TPU Interval Timings

In Section 2.5, we assumed that (1) TPU is only ever triggered by the

timer, and therefore, (2) maximum computation time is 5 seconds.

However, the real Turquoise Plato trading system is more complicated

than the simplified version we have presented in this paper. In particu-

lar, we have abstracted away from the interaction between Turquoise

Plato Block Discovery (TPBD) and TPU. As described in the Turquoise

Trading Services Description (v.3.36.2) (London Stock Exchange

Group, 2020c, p.31),14 TPU is triggered by either the randomised

timer, or by a Block Indication (BI) or Block Discovery Notification (BDN)

match on TPBD, whichever happens sooner. A schematic is presented

in Figure 14. At the top, we see a TPU timer trigger. For the first 5 sec-

onds after the previous TPU the order book will not be uncrossed

(however, orders can be entered throughout this time). Then, the next

TPU will occur at a random point between 5 and 10 seconds after the

previous TPU. Between 0.5 seconds and 2 seconds before TPU, a Call

Market alert is sent on the data stream to notify that a TPU will soon

occur. Members then have a final 500 milliseconds to enter an order

(the Order Submission Interval), if they wish to take part in the TPU.

Note that all the persistent orders currently resting in the Turquoise

Plato Order Book (TPOB) will automatically be entered into TPU, so

this Order Submission Interval is only relevant for member's late arriv-

ing orders. We expect these orders to be relatively rare, as most

orders in the system will be persistent Good Till Time or Good Till Date

orders, which rest in the order book between TPU events and arrive

throughout the day (i.e., before the Order Submission Interval).

Prior to May 2017, TPBD implemented a periodic mechanism,

such that each time a Call Market was triggered by the TPU timer,

TPBD would attempt to match BIs/BDNs between TPBD members,

and between BIs/BDNs and liquidity in the TPOB. When a match is

identified, matched members then have a short 500 milliseconds win-

dow (the Order Submission Interval, previously called the Confirmation

Interval) to convert BIs/BDNs into a confirmed order submitted to the

TPOB. If a confirmed order is not submitted, the trader will receive a

punishment to their reputation, therefore reducing their chance of

matching on TPBD in the future. When TPBD was periodic, the Tur-

quoise Plato system only ran as shown in Figure 14, top. However,

since May 2017, TPBD has implemented continuous matching of

BIs/BDNs. Now, as soon as a match is discovered on TPBD, a Call

Market is triggered. This process is shown in Figure 14, bottom.

Therefore, it is now possible for a TPU to be triggered within 5 seconds

of a previous TPU uncross. Yet, the instantaneous likelihood of this

TPBD trigger event occurring for a given instrument during any given

5 second period is extremely low. For instance, in February 2017,

TPBD initiated an average of only 154.8 trades across all instruments

per day (Comerton-Forde, 2017, p.12). Therefore, given thousands of

instruments, each having thousands of uncrossings per day, the pro-

portion of TPU events triggered by TPBD is less than one in a million.

This should not be a surprise, however, since TPBD-initiated trades

are likely to be extremely large in scale, and so by definition are

expected to be uncommon.

14Download the latest Trading Service Descriptions for Turquoise and Turquoise Plato Block

Discovery from LSEG's Turquoise Document Library. Available online: https://www.lseg.

com/markets-products-and-services/our-markets/turquoise/information-centre/document-

library.

F IGURE 14 TPU trigger events: (a) Timer trigger – the order book will not uncross for 5 seconds following the previous TPU. During seconds
5-10, TPU will occur at random. A Call Market alert notifies members that TPU will happen within the next 2 seconds. The first 0.5 seconds is a
fixed interval for new orders to be submitted to the order book for uncrossing. No more orders can then be placed until uncross occurs at random

during the next 1.5s interval; (b) Block Discovery trigger – a BI or BDN contraparty match is discovered on TPBD. A Call Market alert is
immediately sent and matched TPBD contraparties must send confirmed submissions to the order book within 0.5 seconds, ready to take part in
the next TPU. TPBD halts matching between a Call Market alert and TPU

262 CARTLIDGE ET AL.

https://www.lseg.com/markets-products-and-services/our-markets/turquoise/information-centre/document-library
https://www.lseg.com/markets-products-and-services/our-markets/turquoise/information-centre/document-library
https://www.lseg.com/markets-products-and-services/our-markets/turquoise/information-centre/document-library

While the number of TPU events triggered by TPBD is likely to

be minimal, and the number of orders entered during the 0.5s Order

Submission Interval is also likely to be small (compared to all orders in

the book), below, we consider the effects of these restrictions.

Relaxing the assumption of 5 seconds computation
time

We previously considered a maximum of 5 seconds for order input

and demonstrated that one gateway engine with 64 cores is sufficient,

as it can process 2000 order submissions in 3.687 seconds (see Sec-

tion 5.1). However, if in the worst case scenario we have only 0.5s for

the order insertion phase, we will need 8 gateway engines of 64 cores

to implement the gateway. This configuration can input 2000 orders

in 3:687=8¼0:46 seconds.

To assess the runtime performance of insertion (Section 5.2) and

uncrossing (Section 5.3), we assumed as a worst case scenario that all

orders are for the same instrument, and so are inserted and uncrossed

by one individual engine, which we named the “hot” engine. The most

appropriate value for R (the number of instruments per engine)

depends on the time available for computation. Tables 5 and 6 pre-

sent runtimes for insertion (Ins), uncrossing (Unc) and total (Ins+Unc)

for the 2-party and 3-party cases, respectively. We see, for example,

that in the 2-party case (Table 5), when R¼4, the total runtime for

insertion and uncrossing is just over half a second. As R is reduced,

more auction engines, L, are required to instantiate TPU. Since

L¼U=R, then if R¼4 we require 4500=4¼1125 auction engines for

uncrossing, in addition to the 8 engines required for the gateway.

Therefore, a total of 1133 machines could implement the complete

2-party MPC dark pool with total insertion and uncrossing runtime of

0.567 seconds; quick enough to cover the unlikely case of a TPBD

trigger, followed by the insertion of all 2000 orders after the Call

Market alert. While 1133 is a large number of machines, it is not unre-

alistic, particularly when we consider that code optimisation and high

performance hardware would significantly reduce the number of

machines required for a real world implementation. We estimate that

professional engineering of hard-coded protocols using a native lan-

guage (rather than the general SCALE-MAMBA framework that we

use) may give a 5-10 fold increase in performance.

6.2 | Order cancellations

To simplify the problem, in Section 2.5, we assumed that orders can-

not be cancelled (Assumption 3). However, in the real world, the

majority of Turquoise Plato orders can be cancelled from the order

book. As described below, we are able to adapt the MPC protocols to

enable order cancellation before uncrossing begins.

Protocol amendment: Insert order

Each time a trader submits an order ord, the gateway engine E0 gener-

ates a random number in secret shared form, ⟨rand⟩, which acts as a

unique order ID. The gateway then opens ⟨rand⟩ to the trader, so that

only the trader (and not the gateway) knows the unique value rand.

The order ID is now appended to the order, such that orders have the

form: ord¼ ½⟨name⟩,⟨r⟩,⟨b⟩,⟨v⟩,⟨rand⟩�. We then adapt the Πins sub-

protocol for inserting a new order into the book, such that in Figure 9

section (IV) we append a new line (H), as follows:

⟨rand0j⟩ ⟨fj⟩ � ⟨randj⟩þ ⟨f0j⟩ � ⟨rand0⟩þ ⟨f 00j ⟩ � ⟨randj�1⟩ ð3Þ

Protocol amendment: Cancel order

To cancel an order we have two choices, either: (i) a trader sends

cancel¼ ½rand� on clear data to the gateway E0, which then forwards

TABLE 5 Time in seconds for the worst case performance of the “hot” engine for the 2-party case

R L M Ins(M) Ins(10) Ins = Ins(M) + Ins(10) Unc (upper bound) tot(Ins+Unc)

2 2250 11 0.038 0.032 0.07 0.213 0.283

4 1125 12 0.092 0.066 0.158 0.409 0.567

8 562 14 0.258 0.136 0.394 0.951 1.345

16 281 17 0.810 0.291 1.1 2.5 3.6

TABLE 6 Time in seconds for the worst case performance of the “hot” engine for the 3-party case

R L M Ins(M) Ins(10) Ins = Ins(M) + Ins(10) Unc (upper bound) tot(Ins+Unc)

2 2250 11 0.072 0.06 0.132 0.324 0.456

4 1125 12 0.165 0.119 0.284 0.485 0.769

8 562 14 0.458 0.251 0.709 1.409 2.118

16 281 17 1.422 0.511 1.9 3.6 5.5

CARTLIDGE ET AL. 263

rand to all engines E1,… , EL. Before uncrossing, the engines will open

⟨randj⟩ for all orders and the order for which randj¼ rand will be

removed; or, more efficiently, (ii) the gateway will store the tuple {c, E}

of every order, where c is the value calculated by the trader in the

Πinp sub-protocol for inputting an order (Figure 8, Πinp step (2)) and E

is the engine to which this order was sent. Then, to cancel an order, a

trader sends: cancel¼ ½rand,c�. Using lookup tuple {c, E}, the gateway

then forwards rand only to engine E, which removes orders where

randj¼ rand.

Summary of costs

To implement order cancellation as described above, the additional

computational costs are summarised as:

• Gateway E0 generating a secret shared value for every order and

opening it to the trader during order input.

• Gateway E0 storing tuple {c, E} for every order entered.

• Additional computation required in the insertion phase (Figure 9

(IV), new line (H), as shown in equation (3), above).

• Opening ⟨randj⟩ for all orders at the beginning of the uncrossing

phase in the engines that receive a notification of cancellation.

While these costs are non-negligible, they will not significantly

alter the runtimes we have presented. That is, the MPC framework

remains viable with order cancellation implemented.

6.3 | Order flow

In Section 2.5, we also made three assumptions regarding order flow.

In Assumption 4, we assumed a uniform intra-day trading volume.

However, we know that during peak hours there is roughly twice the

trading volume as non-peak hours (LiquidMetrix, 2017). This means

that our order flow underestimates peak-hour order flow. In Assump-

tion 5, we also assumed that all orders eventually execute and there-

fore we estimate that the total number of orders entered is twice the

total number of trades. This, again, is an underestimation of order

flow. However, in Assumption 6, we assume that all orders are persis-

tent (e.g., Good for Day or Good Till Time) and remain in the order book

after TPU. This overestimates the number of orders that must be re-

entered each period, as many orders in the real system will be of type

Good For Auction, which immediately expire after each TPU event.

Therefore, Assumption 6 somewhat negates the effects of Assump-

tions 4 and 5. More significantly, however, when we evaluate maxi-

mum computation times (Section 5), we consider a theoretical upper

bounds of a worst case scenario where all order flow is to one “hot”
engine. This deliberately unrealistic upper bound is much greater than

the expected intra-day fluctuations of order flow caused by relaxing

Assumptions 4 and 5. Therefore, these assumptions do not signifi-

cantly alter the results presented.

6.4 | Implications of MPC

Distributed trust

For an MPC implementation, the key benefit is that rather than

trusting a single market operator, trust now derives from the assump-

tion that a majority of the MPC server owners are not corrupt. Thus,

we distribute trust amongst parties and remove the possibility for a

single party to act against the others. This means that we do not

require each MPC party to individually be any more honest than if

they were acting alone as a single market operator. Indeed, the origi-

nal owner/operator (e.g., the LSEG, in the case of Turquoise Plato)

can continue as an MPC party, but in order to cheat they would now

have to collude with other parties, openly discussing their intention to

cheat ahead of time and hoping that the other parties will partake in

this collusion and will not immediately notify the regulator of the

other party's intention to cheat. As an analogy, imagine living with a

known burglar as your neighbour. In the one party setting, when you

go on vacation you rely on trusting that the burglar will choose to not

burgle your home while you are away. In an MPC setting, however,

the burglar would first have to contact all your other neighbours and

convince the majority to conspire to burgle your house together,

while hoping that none of the neighbours contacted will alert the

police to the burglar's intention. This scenario is possible, but signifi-

cantly less likely than the burglar acting alone.

Security with abort

In the MPC dark pool, if one party acts dishonestly then the system

will abort. By having security with abort, we incentivise members to

behave honestly. If someone acts maliciously the entire dark pool sys-

tem is torn down, which is an attack if one is considering an adversary

wishing to mount a denial-of-service attack. However, given the par-

ticipants in the market have an economic incentive to keep the market

running, there is (for security-with-abort) a large economic incentive

to avoid executing an attack which results in a complete abort.

7 | CONCLUSION

Dark pool trading venues are designed to counter the adverse effects

of market impact by keeping pre-trade order information hidden.

However, the value of the hidden orders has tempted many dark pool

operators to illegally abuse their privileged access to this information

for their own gains. Indeed, between 2011–2018, dark pool operators

paid more than $217 million in penalty settlements to the Securities

and Exchange Commission for misusing order information and/or

misusing the reported dark pool trading mechanism.

We have presented a novel solution for securing dark pool mech-

anisms such that nobody, not even the operator, can access hidden

order information prior to trade. The solution we propose makes use

264 CARTLIDGE ET AL.

of Multi-Party Computation (MPC), such that the dark pool is oper-

ated by n parties and the order information is provably secure as long

as the parties do not collude. Previously, MPC has been used to imple-

ment some common trading mechanisms (for trading one instrument,

such as one commodity, or one stock) to determine performance of

continuous and periodic matching, and also mechanisms with and

without price formation (Cartlidge et al. 2019). Here, for the first time,

we have implemented a full MPC dark pool system capable of

securely trading a universe of thousands of instruments. The MPC

dark pool is a close emulation of Turquoise Plato, Europe's largest

dark pool venue, and uses the periodic Turquoise Plato Uncross (TPU)

mechanism for matching. To test the system, we have demonstrated

that it is capable of trading a universe of 4500 instruments with order

throughput equivalent to that observed in the real Turquoise Plato

dark pool.

We tested a 3-party MPC system using Shamir Secret Sharing,

which guarantees security as long as there is an honest majority

(i.e., two out of the three parties must remain honest); and a 2-party

system using SPDZ with full threshold security, such that we can toler-

ate one malicious party (i.e., one of the two parties must remain hon-

est). The 2-party system is shown to have quicker runtimes, but both

systems are capable of handling real world order flow. This is a signifi-

cant result, and we conclude that MPC is now ready for commercial

application in financial trading.

In order to emulate TPU using MPC, we were forced to make

some modifications to the trading mechanism, so we have not pro-

duced an exact replica of TPU. However, we argue that this is inciden-

tal. The main contribution of this work is to demonstrate that MPC

can secure a dark pool mechanism that is realistic and can handle

order throughput similar to that observed in a large trading venue.

The exact details of the trading mechanism is a secondary issue. In

practice, the specific mechanism used by a dark pool is a commercial

decision and can adapt over time. We have shown that MPC can emu-

late a periodic reference-pricing mechanism with complexity similar to

TPU and can process order throughput equivalent to a large trading

venue, using compute resources that are manageable for a commercial

enterprise. While continuous mechanisms in venues proliferated by

high frequency traders is currently out of reach, this is not a problem

for many dark pool services, which are designed for preserving pre-

trade order secrecy for a relatively small number of large-in-size non-

time-sensitive block trading members. We state with confidence that

providing secure trading mechanisms for these customers is well

within the capacity of MPC.

Finally, the use of MPC raises an obvious question: who acts as

the n parties operating the dark pool? In the example of Turquoise

Plato, one could imagine that the London Stock Exchange Group

acts as a permanent party and the other n � 1 parties are drawn,

on a rotating basis, from members of the not-for-profit Plato Part-

nership, which includes a number of major sell side institutions. Sim-

ilarly, for other dark pools, such as Liquidnet, n � 1 parties could be

drawn from the large buy side members. The costs of running and

managing the operation can remain with the permanent party; then

the role of the n � 1 supporting parties is primarily to ensure

honesty. Alternative frameworks could see the emergence of third

party vendors that exist to act as a party in the MPC. These could

be purely commercial enterprises, or they could be a public-private

body. Some benefits would also arise from splitting dark pool provi-

sion between n parties within the same commercial group, as one

rogue actor would need to collude with other actors across the

group. However, history tells us that this arrangement is more sus-

ceptible to dishonesty.

ACKNOWLEDGEMENT

This work has been supported in part by ERC Advanced Grant ERC-

2015-AdG-IMPaCT, by the Defense Advanced Research Projects

Agency (DARPA) and Space and Naval Warfare Systems Center,

Pacific (SSC Pacific) under contract No. N66001-15-C-4070 and

FA8750-19-C-0502, by the Office of the Director of National Intelli-

gence (ODNI), Intelligence Advanced Research Projects Activity

(IARPA) via Contract No. 2019-1902070006, by the FWO under an

Odysseus project GOH9718N, and by CyberSecurity Research Flan-

ders with reference number VR20192203.

Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not neces-

sarily reflect the views of any of the funders. The U.S. Government is

authorised to reproduce and distribute reprints for governmental pur-

poses notwithstanding any copyright annotation therein.

DATA AVAILABILITY STATEMENT

The software need to run the experiments is the SCALE-MAMBA sys-

tem which is available from https://homes.esat.kuleuven.be/

�nsmart/SCALE/.

All data used in the paper has been synthetically generated. The

data that support the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

John Cartlidge https://orcid.org/0000-0002-3143-6355

Nigel P. Smart https://orcid.org/0000-0003-3567-3304

Younes Talibi Alaoui https://orcid.org/0000-0002-7947-9450

REFERENCES

Aly, A., Keller, M., Orsini, E., Rotaru, D., Scholl, P., Smart, N. P., & Wood, T.

(2018). SCALE and MAMBA documentation. https://homes.esat.

kuleuven.be/�nsmart/SCALE/Documentation.pdf

Barnes, R. (2018). Turquoise trading. The Parliamentary Review (Finance):

Highlighting Best Practice, 18–20. https://www.

theparliamentaryreview.co.uk/organisations/turquoise-trading

Bogetoft, P., Christensen, D. L., Damgård, I., Geisler, M., Jakobsen, T.,

Krøigaard, M., Nielsen, J. D., Nielsen, J. B., Nielsen, K., Pagter, J.,

Schwartzbach, M. I., & Toft, T. (2009). Secure multiparty computation

goes live. In Dingledine, R., & Golle, P. (Eds.), Fc 2009: 13th Interna-

tional Conference on Financial Cryptography and Data Security, Lecture

Notes in Computer Science, Vol. 5628. Accra Beach, Barbados:

Springer, Heidelberg, Germany, pp. 325–343.
Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., & Toft, T.

(2006). A practical implementation of secure auctions based on multi-

party integer computation. In Di Crescenzo, G., & Rubin, A. (Eds.), Fc

2006: 10th International Conference on Financial Cryptography and Data

CARTLIDGE ET AL. 265

https://homes.esat.kuleuven.be/%7Ensmart/SCALE/
https://homes.esat.kuleuven.be/%7Ensmart/SCALE/
https://orcid.org/0000-0002-3143-6355
https://orcid.org/0000-0002-3143-6355
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7947-9450
https://orcid.org/0000-0002-7947-9450
https://homes.esat.kuleuven.be/%7Ensmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/%7Ensmart/SCALE/Documentation.pdf
https://homes.esat.kuleuven.be/%7Ensmart/SCALE/Documentation.pdf
https://www.theparliamentaryreview.co.uk/organisations/turquoise-trading
https://www.theparliamentaryreview.co.uk/organisations/turquoise-trading

Security, Lecture Notes in Computer Science, Vol. 4107. Anguilla, Brit-

ish West Indies: Springer, Heidelberg, Germany, pp. 142–147.
Bouchaud, J.-P., Bonart, J., Donier, J., & Gould, M. (2018). Trades, quotes

and prices: Financial markets under the microscope. Cambridge, UK:

Cambridge University Press. https://doi.org/10.1017/

9781316659335

Bouchaud, J.-P., Farmer, J. D., & Lillo, F. (2009). How markets slowly digest

changes in supply and demand. In Hens, T., & Schenk-Hoppe, K. (Eds.),

Handbook of financial markets: Dynamics and evolution. Amsterdam, NL:

Elsevier: Academic Press, pp. 57–160. https://doi.org/10.1016/B978-
012374258-2.50006-3

CME Globex (2018). Marketing brochure. https://www.cmegroup.com/

globex/files/globexbrochure.pdf

Cartlidge, J., Smart, N. P., & Talibi Alaoui, Y. (2019). MPC joins the dark

side. In Galbraith, S. D., Russello, G., Susilo, W., Gollmann, D.,

Kirda, E., & Liang, Z. (Eds.), Asiaccs 19: 14th ACM Symposium On infor-

mation, Computer and Communications Security. Auckland,

New Zealand: ACM Press, pp. 148–159.
Catrina, O., & de Hoogh, S. (2010). Improved primitives for secure multi-

party integer computation. In Garay, J. A., & Prisco, R. D. (Eds.), Scn 10:

7th international conference on security in communication networks, Lec-

ture Notes in Computer Science, Vol. 6280. Amalfi, Italy: Springer,

Heidelberg, Germany, pp. 182–199.
Catrina, O., & Saxena, A. (2010). Secure computation with fixed-point

numbers. In Sion, R. (Ed.), Fc 2010: 14th International Conference on

Financial Cryptography and Data Security, Lecture Notes in Computer

Science, Vol. 6052. Tenerife, Canary Islands, Spain: Springer, Heidel-

berg, Germany, pp. 35–50.
Comerton-Forde, C. (2017). Shedding light on dark trading in Europe.

https://cepr.org/sites/default/files/Comerton-Forde%2C%20Carole%

20paper.pdf. Keynote Speech: CEPR-Imperial-Plato Inaugural Market

Innovator (MI3) Conference.

Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J. B., & Toft, T. (2006). Uncondition-

ally secure constant-rounds multi-party computation for equality,

comparison, bits and exponentiation. In Halevi, S., & Rabin, T. (Eds.),

Tcc 2006: 3rd Theory of Cryptography Conference, Lecture Notes in

Computer Science, Vol. 3876. New York, NY, USA: Springer, Heidel-

berg, Germany, pp. 285–304.
Damgård, I., & Jurik, M. (2001). A generalisation, a simplification and some

applications of Paillier's probabilistic public-key system. In Kim, K.

(Ed.), Pkc 2001: 4th International Workshop on Theory and Practice in

Public Key Cryptography, Lecture Notes in Computer Science,

Vol. 1992. Cheju Island, South Korea: Springer, Heidelberg, Germany,

pp. 119–136.
Damgård, I., Pastro, V., Smart, N. P., & Zakarias, S. (2012). Multiparty com-

putation from somewhat homomorphic encryption. In Safavi-

Naini, R., & Canetti, R. (Eds.), Advances in cryptology – CRYPTO 2012,

Lecture Notes in Computer Science, Vol. 7417. Santa Barbara, CA,

USA: Springer, Heidelberg, Germany, pp. 643–662.
Farmer, J. D., Gerig, A., Lillo, F., & Waelbroeck, H. (2013). How efficiency

shapes market impact. Quantitative Finance, 13(11), 1743–1758.
https://doi.org/10.1080/14697688.2013.848464

Harkavy, M., Tygar, J. D., & Kikuchi, H. (1998). Electronic auctions with pri-

vate bids. In 3rd USENIX Workshop on Electronic Commerce, pp. 61–73.
Hazay, C., Mikkelsen, G. L., Rabin, T., & Toft, T. (2012). Efficient RSA key

generation and threshold Paillier in the two-party setting. In

Dunkelman, O. (Ed.), Topics in Cryptology – CT-RSA 2012, Lecture

Notes in Computer Science, Vol. 7178. San Francisco, CA, USA:

Springer, Heidelberg, Germany, pp. 313–331.
Jutla, C. S. (2015). Upending stock market structure using secure multi-

party computation. http://eprint.iacr.org/2015/550. Cryptology ePrint

Archive, Report 2015/550.

Keller, M., Rotaru, D., Smart, N. P., & Wood, T. (2018). Reducing communi-

cation channels in MPC. In Catalano, D., & De Prisco, R. (Eds.), Scn 18:

11th International Conference on Security in Communication Networks,

Lecture Notes in Computer Science, Vol. 11035. Amalfi, Italy: Springer,

Heidelberg, Germany, pp. 181–199.
Lipmaa, H., Asokan, N., & Niemi, V. (2003). Secure Vickrey auctions with-

out threshold trust. In Blaze, M. (Ed.), Fc 2002: 6th International Confer-

ence on Financial Cryptography, Lecture Notes in Computer Science,

Vol. 2357. Southampton, Bermuda: Springer, Heidelberg, Germany,

pp. 87–101.
LiquidMetrix (2017). Guide to European Dark Pools - February 2017. Intel-

ligent Financial Systems Limited. https://www.liquidmetrix.com

London Stock Exchange Group (2017). LSEG Electronic Order Book Trad-

ing, Monthly Market Report, Feb. Online: https://www.

londonstockexchange.com/statistics/monthly-market-report/feb-

17.pdf

London Stock Exchange Group (2020a). LSEG Electronic Order Book Trad-

ing, Monthly Market Report, Feb. https://www.londonstockexchange.

com/statistics/monthly-market-report/lseg-monthly-market-report-

february-2020.pdf

London Stock Exchange Group (2020b). Turquoise plato block discovery:

Trading service description (v2.27.2). https://www.lseg.com/sites/

default/files/content/documents/Turquoise%20Plato%20Block%

20Discovery%20Trading%20Service%20Description%20v2.27.2%

20FINAL.pdf

London Stock Exchange Group(2020c). Turquoise Trading Services

Description (v3.36.2). https://www.lseg.com/sites/default/files/

content/documents/Turquoise%20Trading%20Services%

20Description%203.36.2%20FINAL.pdf

Massacci, F., Ngo, C. N., Nie, J., Venturi, D., & Williams, J. (2018).

FuturesMEX: Secure, distributed futures market exchange, IEEE Sym-

posium on Security and Privacy (SP). San Francisco, CA: IEEE Computer

Society, pp. 335–353. https://doi.org/10.1109/SP.2018.00028
Naor, M., Pinkas, B., & Sumner, R. (1999). Privacy preserving auctions and

mechanism design. In Ec '99: Proceedings of the 1st ACM Conference on

Electronic Commerce, pp. 129–139. https://doi.org/10.1145/336992.
337028

Ngo, C. N., Massacci, F., Kerschbaum, F., & Williams, J. (2021). Practical

witness-key-agreement for blockchain-based dark pools financial trad-

ing. In: Borisov N., Diaz C. (eds) Financial cryptography and data secu-

rity. FC 2021 (LNCS vol. 12675, pp. 579–598). Springer. https://doi.
org/10.1007/978-3-662-64331-0_30

Paillier, P. (1999). Public-key cryptosystems based on composite degree

residuosity classes. In Stern, J. (Ed.), Advances in Cryptology –
EUROCRYPT'99, Lecture Notes in Computer Science, Vol. 1592.

Prague, Czech Republic: Springer, Heidelberg, Germany,

pp. 223–238.
Parkes, D. C., Rabin, M. O., Shieber, S. M., & Thorpe, C. (2008). Practical

secrecy-preserving, verifiably correct and trustworthy auctions. Elec-

tronic Commerce Research and Applications, 7(3), 294–312.
Parkes, D. C., Thorpe, C., & Li, W. (2015). Achieving trust without disclo-

sure: Dark pools and a role for secrecy-preserving verification. In Third

Conference on Auctions, Market Mechanisms and their Applications

(AMMA'15), Chicago, IL, pp. 38–48. http://nrs.harvard.edu/urn-3:HUL.

InstRepos:32785051

Partisia (2018). Secure order matching. https://partisia.com/order-

matching. Webpage.

Petrescu, M., & Wedow, M. (2017). Dark pools in European equity mar-

kets: emergence, competition and implications. (193): European Cen-

tral Bank: Occasional Paper Series https://www.ecb.europa.eu/pub/

pdf/scpops/ecb.op193.en.pdf

Rabin, M. O., Mansour, Y., Muthukrishnan, S., & Yung, M. (2012). Strictly-

black-box zero-knowledge and efficient validation of financial transac-

tions. In Czumaj, A., Mehlhorn, K., Pitts, A. M., & Wattenhofer, R.

(Eds.), ICALP 2012: 39th International Colloquium on Automata, Lan-

guages and Programming, Part I, Lecture Notes in Computer Science,

Vol. 7391. Warwick, UK: Springer, Heidelberg, Germany, pp. 738–749.

266 CARTLIDGE ET AL.

https://doi.org/10.1017/9781316659335
https://doi.org/10.1017/9781316659335
https://doi.org/10.1016/B978-012374258-2.50006-3
https://doi.org/10.1016/B978-012374258-2.50006-3
https://www.cmegroup.com/globex/files/globexbrochure.pdf
https://www.cmegroup.com/globex/files/globexbrochure.pdf
https://cepr.org/sites/default/files/Comerton-Forde%2C%20Carole%20paper.pdf
https://cepr.org/sites/default/files/Comerton-Forde%2C%20Carole%20paper.pdf
https://doi.org/10.1080/14697688.2013.848464
http://eprint.iacr.org/2015/550
https://www.liquidmetrix.com
https://www.londonstockexchange.com/statistics/monthly-market-report/feb-17.pdf
https://www.londonstockexchange.com/statistics/monthly-market-report/feb-17.pdf
https://www.londonstockexchange.com/statistics/monthly-market-report/feb-17.pdf
https://www.londonstockexchange.com/statistics/monthly-market-report/lseg-monthly-market-report-february-2020.pdf
https://www.londonstockexchange.com/statistics/monthly-market-report/lseg-monthly-market-report-february-2020.pdf
https://www.londonstockexchange.com/statistics/monthly-market-report/lseg-monthly-market-report-february-2020.pdf
https://www.lseg.com/sites/default/files/content/documents/Turquoise%20Plato%20Block%20Discovery%20Trading%20Service%20Description%20v2.27.2%20FINAL.pdf
https://www.lseg.com/sites/default/files/content/documents/Turquoise%20Plato%20Block%20Discovery%20Trading%20Service%20Description%20v2.27.2%20FINAL.pdf
https://www.lseg.com/sites/default/files/content/documents/Turquoise%20Plato%20Block%20Discovery%20Trading%20Service%20Description%20v2.27.2%20FINAL.pdf
https://www.lseg.com/sites/default/files/content/documents/Turquoise%20Plato%20Block%20Discovery%20Trading%20Service%20Description%20v2.27.2%20FINAL.pdf
https://www.lseg.com/sites/default/files/content/documents/Turquoise%20Trading%20Services%20Description%203.36.2%20FINAL.pdf
https://www.lseg.com/sites/default/files/content/documents/Turquoise%20Trading%20Services%20Description%203.36.2%20FINAL.pdf
https://www.lseg.com/sites/default/files/content/documents/Turquoise%20Trading%20Services%20Description%203.36.2%20FINAL.pdf
https://doi.org/10.1109/SP.2018.00028
https://doi.org/10.1145/336992.337028
https://doi.org/10.1145/336992.337028
https://doi.org/10.1007/978-3-662-64331-0_30
https://doi.org/10.1007/978-3-662-64331-0_30
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32785051
http://nrs.harvard.edu/urn-3:HUL.InstRepos:32785051
https://partisia.com/order-matching
https://partisia.com/order-matching
https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op193.en.pdf
https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op193.en.pdf

Rabin, M. O., Servedio, R. A., & Thorpe, C. (2007). Highly efficient secrecy-

preserving proofs of correctness of computations and applications. In

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007),

Wroclaw, Poland, pp. 63–76. https://doi.org/10.1109/LICS.2007.24
Thorpe, C., & Parkes, D. C. (2007). Cryptographic securities exchanges. In

Dietrich, S., & Dhamija, R. (Eds.), Fc 2007: 11th International Conference

on Financial Cryptography and Data Security, Lecture Notes in Com-

puter Science, Vol. 4886. Scarborough, Trinidad and Tobago: Springer,

Heidelberg, Germany, pp. 163–178.
Thorpe, C., & Parkes, D. C. (2009). Cryptographic combinatorial securities

exchanges. In Dingledine, R., & Golle, P. (Eds.), Fc 2009: 13th Interna-

tional Conference on Financial Cryptography and Data Security, Lecture

Notes in Computer Science, Vol. 5628. Accra Beach, Barbados:

Springer, Heidelberg, Germany, pp. 285–304.
Thorpe, C., & Willis, S. R. (2012). Cryptographic rule-based trading - (short

paper). In Keromytis, A. D. (Ed.), Fc 2012: 16th International Conference

on Financial Cryptography and Data Security, Lecture Notes in Com-

puter Science, Vol. 7397. Kralendijk, Bonaire: Springer, Heidelberg,

Germany, pp. 65–72.
United States Securities and Exchange Commission (2005). SEC institutes

enforcement action against 20 former New York Stock Exchange spe-

cialists alleging pervasive course of fraudulent trading. Press Release,

https://www.sec.gov/news/press/2005-54.htm

United States of America before the Securities and Exchange Commission

(2011). In the Matter of Pipeline Trading Systems LLC, et al., Securities

Exchange Act of 1934 Release No. 65609. https://www.sec.gov/

litigation/admin/2011/33-9271.pdf

United States of America before the Securities and Exchange Commission

(2012). In the Matter of eBX, LLC Securities Exchange Act of 1934

Release No. 67979. https://www.sec.gov/litigation/admin/2012/34-

67969.pdf

United States of America before the Securities and Exchange Commission

(2014a). In the Matter of LavaFlow, Inc. Securities Exchange Act of

1934 Release No. 72673. https://www.sec.gov/litigation/admin/

2014/34-72673.pdf

United States of America before the Securities and Exchange Commission

(2014b). In the Matter of Liquidnet, Inc., Securities Exchange Act of

1934 Release No. 72339. https://www.sec.gov/litigation/admin/

2014/33-9596.pdf

United States of America before the Securities and Exchange Commission

(2015a). In the Matter of ITG Inc. and Alternet Securities, Inc., Securi-

ties Exchange Act of 1934 Release No. 75672. https://www.sec.gov/

litigation/admin/2015/33-9887.pdf

United States of America before the Securities and Exchange Commission

(2015b). In the Matter of UBS Securities LLC, Securities Exchange Act

of 1934 Release No. 74060. https://www.sec.gov/litigation/admin/

2015/33-9697.pdf

United States of America before the Securities and Exchange Commission

(2016a). In the Matter of Barclays Capital Inc., Securities Exchange Act

of 1934 Release No. 77001. https://www.sec.gov/litigation/admin/

2016/33-10010.pdf

United States of America before the Securities and Exchange Commission

(2016b). In the Matter of Credit Suisse Securities (USA) LLC, Securities

Exchange Act of 1934 Release No. 77002. https://www.sec.gov/

litigation/admin/2016/33-10013.pdf

United States of America before the Securities and Exchange Commission

(2016c). In the Matter of Credit Suisse Securities (USA) LLC, Securities

Exchange Act of 1934 Release No. 77003. https://www.sec.gov/

litigation/admin/2016/33-10014.pdf

United States of America before the Securities and Exchange Commission

(2016d). In the matter of Deutsche Bank Securities Inc. Securities

Exchange Act of 1934 Release No. 79576. https://www.sec.gov/

litigation/admin/2016/33-10272.pdf

United States of America before the Securities and Exchange Commission

(2018a). In the Matter of Citigroup Global Markets, Inc. and Citi Order

Routing and Execution, LLC Securities Exchange Act of 1934 Release

No. 84124. https://www.sec.gov/litigation/admin/2018/33-

10545.pdf

United States of America before the Securities and Exchange Commission

(2018b). In the Matter of ITG Inc. and Alternet Securities, Inc., Securi-

ties Exchange Act of 1934 Release No. 84548. https://www.sec.gov/

litigation/admin/2018/33-10572.pdf

United States of America before the Securities and Exchange Commission

(2018c). In the Matter of Merrill Lynch, Pierce, Fenner & Smith Incor-

porated Securities Exchange Act of 1934 Release No. 83462. https://

www.sec.gov/litigation/admin/2018/33-10507.pdf

Varian, H. R. (1995). Economic mechanism design for computerized

agents. In 1st USENIX Workshop on Electronic Commerce, pp. 9.

Zheng, W., Popa, R. A., Gonzalez, J. E., & Stoica, I. (2019). Helen:

Maliciously secure coopetitive learning for linear models. In IEEE Sym-

posium on Security and Privacy (SP), pp. 724–738. https://doi.org/10.
1109/SP.2019.00045

How to cite this article: Cartlidge, J., Smart, N. P., & Talibi

Alaoui, Y. (2021). Multi-party computation mechanism for

anonymous equity block trading: A secure implementation of

turquoise plato uncross. Intelligent Systems in Accounting,

Finance and Management, 28(4), 239–267. https://doi.org/10.

1002/isaf.1502

CARTLIDGE ET AL. 267

https://doi.org/10.1109/LICS.2007.24
https://www.sec.gov/news/press/2005-54.htm
https://www.sec.gov/litigation/admin/2011/33-9271.pdf
https://www.sec.gov/litigation/admin/2011/33-9271.pdf
https://www.sec.gov/litigation/admin/2012/34-67969.pdf
https://www.sec.gov/litigation/admin/2012/34-67969.pdf
https://www.sec.gov/litigation/admin/2014/34-72673.pdf
https://www.sec.gov/litigation/admin/2014/34-72673.pdf
https://www.sec.gov/litigation/admin/2014/33-9596.pdf
https://www.sec.gov/litigation/admin/2014/33-9596.pdf
https://www.sec.gov/litigation/admin/2015/33-9887.pdf
https://www.sec.gov/litigation/admin/2015/33-9887.pdf
https://www.sec.gov/litigation/admin/2015/33-9697.pdf
https://www.sec.gov/litigation/admin/2015/33-9697.pdf
https://www.sec.gov/litigation/admin/2016/33-10010.pdf
https://www.sec.gov/litigation/admin/2016/33-10010.pdf
https://www.sec.gov/litigation/admin/2016/33-10013.pdf
https://www.sec.gov/litigation/admin/2016/33-10013.pdf
https://www.sec.gov/litigation/admin/2016/33-10014.pdf
https://www.sec.gov/litigation/admin/2016/33-10014.pdf
https://www.sec.gov/litigation/admin/2016/33-10272.pdf
https://www.sec.gov/litigation/admin/2016/33-10272.pdf
https://www.sec.gov/litigation/admin/2018/33-10545.pdf
https://www.sec.gov/litigation/admin/2018/33-10545.pdf
https://www.sec.gov/litigation/admin/2018/33-10572.pdf
https://www.sec.gov/litigation/admin/2018/33-10572.pdf
https://www.sec.gov/litigation/admin/2018/33-10507.pdf
https://www.sec.gov/litigation/admin/2018/33-10507.pdf
https://doi.org/10.1109/SP.2019.00045
https://doi.org/10.1109/SP.2019.00045
https://doi.org/10.1002/isaf.1502
https://doi.org/10.1002/isaf.1502

	Multi-party computation mechanism for anonymous equity block trading: A secure implementation of turquoise plato uncross
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Dark liquidity
	2.2 Secure auctions: Related work
	2.2.1 Secrecy-preserving correctness: ensuring mechanism integrity
	2.2.2 Strong secrecy: Ensuring information integrity

	2.3 LSEG's turquoise plato uncross
	2.4 Turquoise plato: Trading data and statistics
	2.5 TPU implementation requirements
	 Assumption 1: All uncrossings are triggered by TPU timer
	 Assumption 2: maximum computation time is 5 seconds
	 Assumption 3: orders cannot be cancelled
	 Assumption 4: uniform intra-day trading volume
	 Assumption 5: all orders eventually execute
	 Assumption 6: all orders are persistent
	 Requirements summary

	3 PRELIMINARIES
	3.1 Auction Modifications
	3.2 Architecture
	3.3 Protocol overview:
	3.4 Leakage model
	3.5 Cryptographic background
	3.5.1 Paillier scheme
	3.5.1 Encryption scheme
	3.5.1 Partial homomorphic encryption
	3.5.1 Encryption scheme with distributed decryption
	3.5.1 The paillier scheme

	3.5.2 Multi-party computation
	3.5.2 The SCALE-MAMBA framework
	3.5.2 Shamir secret sharing based MPC
	3.5.2 SPDZ Based MPC
	3.5.2 Comparison of Shamir and SPDZ
	3.5.2 Arithmetic using SCALE-MAMBA and the size of p

	4 EMULATING THE DARK POOL OPERATOR
	4.1 Allocating instruments to an engine: the Piprep sub-protocol
	4.2 Inputting orders into the system: the Piinp sub-protocol
	4.3 Inserting orders into the order book: the Piins sub-protocol
	4.4 Order book uncrossing: the Piunc sub-protocol

	5 RUNTIMES FOR TURQUOISE PLATO UNCROSS
	5.1 Input Protocol Runtime
	5.2 Insert protocol runtime
	5.3 Uncross protocol runtime
	5.4 Runtimes summary

	6 DISCUSSION
	6.1 TPU Interval Timings
	 Relaxing the assumption of 5 seconds computation time

	6.2 Order cancellations
	 Protocol amendment: Insert order
	 Protocol amendment: Cancel order
	 Summary of costs

	6.3 Order flow
	6.4 Implications of MPC
	 Distributed trust
	 Security with abort

	7 CONCLUSION
	ACKNOWLEDGEMENT
	 DATA AVAILABILITY STATEMENT

	REFERENCES

