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Abstract
This paper takes a previously proposed convolutional recurrent
deep neural network (DNN) approach to direction of arrival
(DoA) estimation and extends this to perform 2D localisation
using distributed microphone arrays. Triangulation on the indi-
vidual DoAs from each array is the most straightforward exten-
sion of the original DNN. This paper proposes to allow more co-
operation between the individual microphone arrays by sharing
part of their neural network, in order to achieve a higher local-
isation accuracy. Two strategies will be discussed: one where
the shared network has narrowband information, and one where
only broadband information is shared. Robustness against slight
clock offsets between different arrays is ensured by only shar-
ing information at deeper layers in the DNN. The position and
configuration of the microphone arrays are assumed known, in
order to train the network. Simulations will show that combin-
ing information between neural network layers has a significant
improvement over the triangulation approach.

1 Introduction
Wireless acoustic sensor networks (WASNs) is a field that is gain-
ing a lot of attraction recently. Multiple microphones or micro-
phone arrays are distributed around a room, in order to have a
bigger coverage. This can aid in a variety of applications [1], like
speech enhancement [2], beamforming [3], environment monitor-
ing [4], hands-free communication and speaker localisation [5].

When only a single microphone array is present, it is very
possible to estimate the direction of arrival (DoA) of the signal
coming from a speaker as long as the direct path from the source
to the array is dominant. In fact, a lot of research has already been
done on this topic and an overview of the classical methods for
DoA estimation may be found in [6, Ch. 6, P. 135-170]. Neural
networks led to recent advances in the filed [7–10]. However,
DoA estimation does not provide the distance of the source to
the microphone array, and thus does not localise the source in
2D space. Techniques based on the use of data-based approaches
such as deep neural networks (DNN), have tried to address this
problem [11, 12]. However, distance information can not easily
be inferred from the phase or amplitude. Other measures like the
coherent-to-diffuse power ratio need to be used [13].

This is where a WASN, composed of distributed microphone
arrays can help. Such configurations capture the source signal
from widely different positions in the room, thereby permitting a
better localisation estimate in the 2D space when the data from
these arrays is combined.

One should, however, also be aware of the extra challenges
that come with localisation using the distributed nodes in a
WASN. Typically the different nodes (microphones or micro-
phone arrays) are only weakly synchronised, meaning that the
clock signals can differ fractions of a sample, up to a few sam-
ples. Comparing signals with unsynchronised clocks will lead to
incorrect localisation [14–16]. WASNs generally also have limi-
tations on the bandwidth of each node.

In ad-hoc WASNs, an additional challenge occurs: the posi-
tions of the sensor nodes are also unknown. In that case, both
the source and the array positions need to be estimated, mostly
leading to an iterative approach [17–19], making the system a lot
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Figure 1: This figure shows the triangulation approach, consisting
of two networks that performs DoA estimation. The grey bands
represent that the weights of these layers are identical. After each
convolutional layer batch normalisation is done, dropout with rate
0.5 is used before each FC layer and ReLU activation is used after
each hidden layer.

more complex. This will not be further discussed here. The focus
of this paper is on the use of WASNs with a known configuration
(i.e., the location and configuration of each node is known and
remains static).

Triangulation is an example of source localisation in 2D
space using a WASN with multiple microphone arrays: each ar-
ray estimates a DoA, and these estimates can be aggregated under
the appropriate geometric constraints to provide an intersection
point where the source is located [20–22].

Triangulation approaches easily fit the synchronisation and
bandwidth limitations of WASNs: Triangulation is inherently ro-
bust against asynchronous clocks on different nodes, since the
DoA computations can be done independently on each node.
furthermore, by only sending the DoA to the central unit, the
throughput is very low. However, not sharing more information
between nodes limits the potential for higher localisation accu-
racy. Also, triangulation fails when the DoAs do not intersect,
which can occur e.g., when the cumulative errors in the DoA es-
timates are large and in opposing directions.

This paper proposes three architectures that extend a deep
convolutional recurrent neural network DoA approach [10]. The
model will be expanded from using one single microphone array
to being a WASN with two microphone arrays. A first, rather
straightforward, approach triangulates two DoAs from the two
different arrays. This will serve as the reference method. In order
to improve the localisation accuracy, we also propose two archi-
tectures where the DNN structure is suitably modified in order to
mix information between the different nodes at different depths in
the DNN. These architectures will be referred to as co-operative
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Figure 2: The narrowband mixing co-operative localisation ar-
chitecture (NM-CLA). The architecture from Figure 1 is altered
to mix information of both arrays right after the intra-array con-
volutional layers, by performing an inter-array convolution. This
is narrowband in the sense that the frequency dimension is still
present at that time.

localisation architectures (CLAs).
The architectures are designed such that they do not directly

combine the information at the microphone level between the
two arrays. Instead, the information exchange occurs at a deeper
layer. Thereby they are robust to clock offsets, even without ex-
plicitly training for these offsets. In order to share the informa-
tion, the different nodes send it to a central processing unit. While
such information sharing requires a larger bandwidth, it may be
an acceptable tradeoff against the higher localisation accuracy ob-
tained.

Further, the output of the two proposed architectures will be
changed. Instead of yielding two DoAs for subsequent triangula-
tion, the network will directly output a 2D estimate of the source
position. This solves the problem where triangulation does not
come up with a intersection point.

The rest of the paper will be structured as follows. In Section
2, the conventions for the signals at different microphones will be
laid out, as well as the way in which the architectures predict the
positions. The reference method will also be explained in more
detail and then the two co-operative architectures will be shown.
In Section 3, an evaluation of all three methods will be given. It
will also be shown that the proposed methods work equally well
under the condition of weakly synchronised clocks. Section 4
concludes the paper.

2 Models
2.1 Signal Model
First the conventions of this paper will be described. M micro-
phone arrays will be used, which all consist of N microphones.
The signals at microphone n of microphone array m at time sam-
ple i is the combination of J target speakers xm,n,j(i) and noise
vm,n(i). xm,n,j(i) consists of the direct path of the speech sig-
nals as well as the reverberation of the room. In the short-time
Fourier transform (STFT) domain, the microphone signals are
then written as:
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Figure 3: the broadband mixing co-operative localisation archi-
tecture (BM-CLA). Here the mixing of information happens after
the FC layer, and is also performed by an inter-array convolution.

Ym,n(k, l) =
J−1

∑
j=0

Xm,n,j(k, l) +Vm,n(k, l) (1)

where k is the frequency index and l the time index of the
STFT. This representation is often chosen for speaker localisation
and separation due to the well-known properties of sparsity and
disjointness of speech signals in the STFT representation [23].

In vector notation, the signals at microphone array m are
represented by Ym(k, l) = [Ym,0(k, l), . . . ,Ym,N−1(k, l)]

T and
the signals from all the microphone arrays are represented by
Y = [Y0(k, l), . . . ,YM−1(k, l)]

T .

2.2 Prediction models
The starting point of all proposed methods is the convolutional
recurrent DNN proposed by Bohlender et al. [10], which extends
the convolutional DNN (CNN) based approach of [9] with tem-
poral context. Their network uses a single microphone array to
estimate the direction(s) of arrival (DoA) of target speaker(s). It
is assumed, here, that the target speaker is in the far field of the
microphone array, meaning that the amplitude carries less infor-
mation regarding the speaker location(s). That is why the input
features of the neural network are the phases for all N micro-
phones and K frequencies: [∠Ym(0, l), . . . ,∠Ym(K−1, l)].

To execute the 2D localisation, the newly proposed systems
make use of two microphone arrays (M = 2), whose relative posi-
tions are known. This means that the distance between the arrays
and their relative orientation are fixed. However, the position in
the room and the orientation with respect to the room can be ar-
bitrary but static. This knowledge is needed because the relation
between the input features and the positions of the arrays is not
linear. The localisation will be with respect to the centre of the
chosen array configurations. For absolute localisation, the array
positions should therefor also be known.
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Figure 4: Accuracy of the localisation approaches for different SNRs. A position is considered to be correctly estimated if it is within
one meter of the actual source position. The left figure shows the accuracy for low reverbrant rooms (RT60 < 0.5s). On the right, the
figure shows the accuracy of the highly reverberant rooms.

The phases ∠Y(k, l) are still chosen to be the input features,
despite the fact that the signal amplitudes at different arrays now
carry useful information. This is done in order to have a fair com-
parison between the triangulation and the CLAs. However, in or-
der to still satisfy the far field assumption, combined with spacial
aliasing concerns, the input features from different microphone
arrays are kept separate in the first few network layers.

2.3 Reference method
The baseline of this paper is a triangulation approach using the
DoA architecture of [10]. Two arrays are used individually to
yield two independent DoA estimates. The estimated 2D source
position is the intersection point of the rays extended in the di-
rection of the estimated DoAs from each array. The triangulation
architecture is shown in Figure 1. This can be implemented as
an almost completely distributed approach: all processing can be
done on the individual microphone arrays separately, and only
the two DoAs should be sent to the central processing hub which
does the triangulation. This implementation has a low demand on
the bandwidth to the central processor.

We present below a brief overview of the DNN used for es-
timating the DoA by each array. Further details may be found
in the original base paper [9], and [10] for the temporal context.
First, convolutional (conv) layers are used to combine informa-
tion from different microphones. This is done in multiple lay-
ers, where each layer only combines information form two neigh-
bouring microphones at a time. At this point, each frequency is
processed separately. The output of the convolutional layers is
then put through a fully connected (FC) layer followed by a re-
current layer: a long short-term memory (LSTM) layer. The FC
layer is the first layer which has information from all frequencies.
After the LSTM, the output layer classifies in which of the Nφ
angular sectors the source lies. More output classes can allow for
a finer DoA estimate. This is done for the two arrays separately.
Triangulation then gives the intersection point at which the refer-
ence method estimates the location of the target speaker.

2.4 Proposed methods
This paper proposes to increase the localisation accuracy by mix-
ing information from both arrays within the DNN. However, for
practical implementations, we need to ensure that there are no
strict synchronisation requirements between the two arrays. This
is done by combining the information at a deeper layer of the
DNN instead of at the input feature level. This omits the need
for asynchronous training data. Two co-operative localisation ar-
chitectures are discussed: narrowband mixing CLA (NM-CLA)
and broadband mixing CLA (BM-CLA). The narrowband variant
combines the information of the different microphone arrays right
after the last convolutional layer of both arrays, doing an inter-

array convolution instead of an intra-array convolution. Each fre-
quency bin up until this point is still considered separate, which
explains the naming choice.

The output is also defined as a classification problem, where
each class represents a rectangular region in 2D space. The out-
put of the DNN may be interpreted as the the probability of the
speaker being present within that region. The number of classes
depends on how precisely we want to localise the speaker. the
total number of classes is given by Nx ·Ny where Nx represents
the number of regions in the x direction and Ny that of the y
direction. In Figure 2, the described architecture is shown.

This NM-CLA however does increase the minimum band-
width requirements substantially: each node has to send 64 ·K
features to the central node. In this work, the STFT has K = 257
frequency bins.

The second proposed variant, the BM-CLA, lowers the band-
width requirements compared to NM-CLA. In this case, there is
an intra-array convolutional layer after the FC layer. This FC
layer already combines the different frequency bins, which makes
the newly added convolutional layer work on broadband informa-
tion. As an alternative, it was also tested to use a FC layer instead.
The stack operation should then also be changed to a flatten op-
erations, where the output dimension is then 1024. The convo-
lutional layer was empirically found to perform slightly better.
The output of the broadband architecture is again a classifier with
Nx ·Ny classes. This architecture only needs to send 512 fea-
tures per microphone array to the central unit. The BM-CLA is
depicted in Figure 3. Both CLAs do not increase the amount of
trainable parameters with that much, since both of them only add
one convolutional layer, which is small compared to the FC layer
already present in the triangulation networks. The amount of pa-
rameters are 10.6× 106 for triangulation, 10.7× 106 for NM-
CLA and 11,2×106 for BM-CLA.

In a WASN, the clocks of different nodes (here microphone
arrays) cannot be assumed to be perfectly synchronised. Trian-
gulation approaches are inherently robust against asynchronous
nodes. For the proposed architectures, this needs to be verified.
Section 3 will also present some results where asynchronicity is
simulated.

3 Evaluation
3.1 Training
The training data set is generated in a similar manner as described
in [10]. We want to account for time-variant source activity. This
includes moving sources, or speakers becoming inactive and new
speakers becoming active. A Markov model, Aj(t) ∈ {0,1}, is
used to generate this dynamic setting. Aj(t) indicates if source
number j is active (Aj(t) = 1) or not (Aj(t) = 0). The training
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Figure 5: A depiction of the broadband mixing co-operative source estimation. The left figure is the case where the network is perfectly
synchronised. On the right, the clock signals of both arrays differ by 10 samples. The big black box represents the room. The green dots
are single microphones: two microphone arrays with 4 microphones each, are present. The blue cross is the true source position. The
orange boxes are the possible areas where the co-operative DNNs can localise the source (only locations within the room are depicted).
the opaqueness indicates how high the probability is that the network has given to the corresponding location.

data set contains both instances where J ∈ {0,1,2}. The average
Markov transition probability between the two states is set so that
there is on average one transition per 1.5s. Each time a source be-
comes active, it is assigned a random 2D position within the room
to simulate source movement. The source signals are randomly
sampled speech signals coming from the TIMIT [24] or PTDB-
TUG [25] databases.

The training set consists of 10 different room dimensions
paired with thier own reverberation times (RT60). All the room
impulse responses are generated using pyroomacoustics [26].
Spatially diffuse and temporally uncorrelated noise is added with
SNRs ranging from 0 dB till 30 dB. During training, the Adam
optimiser is used to minimise the binary cross entropy cost func-
tion. The batch size is chosen to be 20, where each sample con-
sists of a sequence generated by the Markov model of length 2s.

3.2 Evaluation
For the evaluation, two microphone arrays are used that are
spaced 2 meters apart. Both arrays have four microphones, placed
at each corner of a square of side 21mm. The output of the model
can classify Nx ·Ny different locations, where for this evalua-
tion Nx =Ny = 16 is chosen. Each class represents a square of
0.5m× 0.5m, where the network output should ideally be 1 for
the class where the true source position lies. For our configura-
tion this restricts the true source position to a maximum of 4m
from the centre of the two arrays in the x and y directions.

The evaluation is carried out in unseen room dimensions and
random reverberation times between 0.2 s and 0.8 s. 6 SNR lev-
els are simulated between -5 dB till 20 dB, in steps of 5 dB. For
each SNR and architecture, 1000 simulations are carried out. The
results are divided in two subsets: one with lower reverberation
times (RT60 < 0.5s), and one with higher reverberation times
(RT60≥ 0.5s). For the evaluation, we focus on the case where
only one source is active.

The results can be seen in Figure 4. A localisation is deemed
successful if the estimate is within one meter of the real speaker
location. The figure clearly shows that both proposed CLAs have
significantly higher localisation accuracies at all the SNR levels
compared to the reference triangulation approach. This trend is
even greater in the highly reverberant and high SNR case. One
specific case where the CLAs outperform triangulation substan-
tially, is where the source and the microphone arrays lie on the
same line. The intersection point can then be non existing, even
without error in the DoA estimates, due to their discrete nature.

Another interesting result is that BM-CLA outperforms NM-
CLA in accuracy at every SNR. This in combination with the
lower bandwidth requirements makes BM-CLA superior to NM-
CLA. This is somewhat surprising, since we hypothesised that
microphone arrays sharing more information would increase the

accuracy. One possible explanation could be that combining
the narrowband information between microphone arrays, can in-
crease the risk of spatial aliasing since the arrays are far apart.
In the broadband variant, the DNN is already forced to mix all
the frequencies before the information from different arrays are
combined, which reduces the spatial aliasing problem.

3.3 Robustness against clock asynchronicity
In order to be able to deploy the proposed systems, they should
also be robust against a slight misalignment of the clock signals as
it is hard to perfectly synchronise two different nodes in WASNs.
The evaluation process is done by repeating the experiment from
Section 3.2, where subsample delays are added to the RIRs of
the second microphone array. The delays are uniformly sampled
from 0 to 2 samples. The accuracy plots with this added asyn-
chronicity are almost identical to those of Figure 4, indicating that
the proposed methods are inherently robust to sampling inaccura-
cies between the nodes. Instead of showing this result, therefore,
we consider a specific case from BM-CLA with and without per-
fect synchronicity which are shown in Figure 5. The room is 7
by 4.3 m, and 2.6 m high. The RT60 is 0.72 s and diffuse noise is
added 15 dB SNR. Here the clock of the second array is actually
10 samples apart from the first array. It is clear that in both cases,
the network gives the highest probability to the same (correct)
position. Similar results are present for different scenarios.

4 Conclusion
This paper showed that the localisation accuracy in a WASN can
be significantly increased by sharing information early between
microphone arrays, compared to triangulation. This is done by
expanding upon a convolutional recurrent DNN based approach
for DoA estimation. Two different co-operative multi-array lo-
calisation methods were discussed and compared: NM-CLA and
BM-CLA. NM-CLA mixes information between microphones
where narrowband information is still present, while BM-CLA
only does the inter-array mixing after the broadband informa-
tion has already been mixed by the individual microphone arrays.
BM-CLA has the best accuracy and also has a lower bandwidth
requirement on the WASN. Both CLAs are robust against small
deviations in clock synchronicity between different nodes. This
comes inherently since the features between nodes are only mixed
at deeper stages of the DNN, where they are more abstract and no
longer dependent on the exact clock samples. Future work in-
cludes extending the proposed methods for use in ad-hoc WASN
applications, including amplitude information for an even greater
localisation accuracy and doing mask based source separation,
similar to, e.g. [27].
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