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Abstract: Astrocyte cells form the largest cell population in the brain and can influence neuron
behavior. These cells provide appropriate feedback control in regulating neuronal activities in the
Central Nervous System (CNS). This paper presents a set of equations as a model to describe the
interactions between neurons and astrocyte. A VHDL–AMS-based tripartite synapse model that
includes a pre-synaptic neuron, the synaptic terminal, a post-synaptic neuron, and an astrocyte
cell is presented. In this model, the astrocyte acts as a controller module for neurons and can
regulates the spiking activity of them. Simulation results show that by regulating the coupling
coefficients of astrocytes, spiking frequency of neurons can be reduced and the activity of neuronal
cells is modulated.

Keywords: neuron; astrocyte; tripartite synapse

1. Introduction

Several different computational approaches, such as Runge–Kutta methods, finite ele-
ment, numerical linear algebra, statistics, numerical analysis, tensor analysis, and the most
important one, Neural Networks (NNs), have been used in various fields of researches such
as chemical engineering [1–9], electrical engineering [10–19], health and biology [20–34],
fluid mechanic engineering [35–46], civil engineering [47–50], computer sciences [51–53],
petroleum engineering [54–62], and mathematics [63–74] etc. The most important and most
applicable method is NNs, which has been inspired by human neural networks. Every
attempt to understand the natural neural network and modeling its structure can lead to
powerful tools for solving the above-mentioned engineering problems.

Scientific reports about the topology of the output patterns in biological neural net-
works show that neurobiology is now finding new ways to explain the different states of
data processing in the human brain [75]. To achieve a comprehensive view of the CNS,
a compact biological system by a large number of building blocks, neurons, and synapses
can be considered [76]. According to recent research, the description of the CNS in the
absence of astrocytes is not perfect, and to attain a comprehensive system operation model,
astrocyte cells’ properties must be considered [77]. In the human brain, neurons, which
form the basic building blocks, are in a close relationship with astrocyte cells. Astrocyte
cells could be of importance in terms of information and data processing in the brain. It
has been illustrated that astrocytes have a bidirectional interaction with neuronal cells,
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which has vital effects on various biological conditions. In addition, these cells are sub-
types of glial cells in the CNS and capable of supporting different metabolic features [78].
Astrocytes, which are inactive cells in terms of excitability and active voltage, release
calcium ions in the brain. A large number of scientific reports illustrate the vital role
of astrocytes in protecting and controlling neurons [79]. Therefore, investigation of the
neuron–astrocyte interaction effects is very significant in biology [80]. In this approach,
neural–glial modeling and different aspects of their interaction can help to detect various
biological states of the CNS [77]. These astrocyte cells can have several functional roles,
such as extracellular environment regulation, synaptic information regulation, neuronal
synchronization, and feedback to neural activity [75,77,81]. One of the most important
roles of astrocytes is their controlling effect on neurons. Based on tue tripartite synapse
model, neurons can stimulates the astrocyte via pathways, and astrocytes also produce
the stimulation current of neuronal cells [77,82]. Therefore, astrocytes have a basic role in
providing input stimulation of neurons, and by suitable parameter choices, the applied
stimulation can be reduced. Consequently, spiking behaviors are regulated. In this way,
we can use the VHDL–AMS process, which is very useful and simple for modeling the
systems. This paper presents mechanisms of astrocytes’ effects on neurons using VHDL–
AMS. In this paper, we consider the neuron–astrocyte interaction model by VHDL–AMS
for evaluating all activation pathways that help us select the suitable coefficient parameters.
In the mathematical model of neuron–astrocyte interaction, there are some nonlinear terms,
and their implementations need some approximations. In fact, because of the non-linearity
of the mathematical equations that describe the biological systems, some approximations
are required for realizing these systems. On the other hand, to implement the neuronal
models, we must consider some linear and modified models that mimic the original models
with high precision and low errors. In these approaches, some papers have focused on
the VHDL digital implementations of the neuronal models [75,76,83–88]. In these papers,
neuronal models have been modified based on the mathematical approximations and
were eventually realized on digital platforms such as FPGA. This procedure needs some
modifications and may be timely. Consequently, the VHDL–AMS method is very suitable
choice for evaluating the systems. Since this approach is capable of behavioral modeling,
linear and nonlinear systems are close together in the case of operation [89,90]. In this way,
to achieve a useful and simple modeling of neuron–astrocyte interaction, VHDL–AMS
stands out due to its convenience as a suitable option [89,90]. Furthermore, the digital and
analog sections of the system are coupled in this procedure. In this paper, our strategy is to
realize the different processes of neuron–astrocyte interaction leading to controlling effects
using VHDL–AMS. In other words, by modeling the neuron–astrocyte interaction model,
different effects of the astrocyte module on the neurons activity will be evaluated.

The rest of this paper is as follows: Interaction between neuronal and glial cells is
described in Section 2. Tripartite synapse is described in Section 3. Section 4 presents a
model based on the tripartite synapse. Section 5 presents the controlling effect for astrocyte.
Simulation results are given in Section 6. A brief discussion is presented in Section 7.
The paper concludes in Section 8.

2. Neural–Glial Interaction

Astrocytes are important components of the neurobiological communication system,
and they have the ability to modulate neuronal activity. Glutamate is released into the
synaptic gap when neurons fire, and it is partially attached to the astrocytes’ metabotrobic
glutamate receptors (mGluR). G-protein-coupled glutamate receptors, which regulate a
number of intercellular signaling pathways, are known as metabotrobic glutamate recep-
tors. Group-I glutamate receptors are a subtype of metabotrobic glutamate receptors that
are linked to polyphosphoinositol hydrolysis. Inositol 1,4,5-triphosphate (IP3), a type of
polyphosphoinoside, which works as a second messenger and modulates calcium signaling,
is a critical participant in the release of calcium from internal storage. When glutamate
binds to the astrocyte, IP3 is released into the astrocyte’s intracellular space. Ca is released
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from the ER into the cytosol after IP3 interacts with the IP3 receptor in the endoplasmic
reticulum (ER). On the other hand, the level of inositol 1,4,5-triphosphate is controlled by
external signals that reach the cell. The release of glutamate from the astrocyte is triggered
by an increase in intracellular calcium levels in astrocytes, which is augmented by extra-
cellular glutamate, modifying the pre-synaptic and post-synaptic depolarizing currents
in neurons. Furthermore, nonlinear amplitude and frequency modulation events repre-
sent inositol 1,4,5-triphosphate dynamics, whereas calcium oscillations are fundamentally
frequency-modulated [91]. To describe the architecture of the mathematical modeling,
which is explained in the next parts, Figure 1 depicts all important pathways of the sys-
tem. In this case, several important mediators are considered to cause increases in the
intercellular [K+], triggering the removal of potassium by glions, etc. In this structure, two
activation pathways for the glia can be evaluated: fast and slow mechanisms. The fast
process is shown by the glion depolarization in case of rise of the extracellular potassium
concentration. Furthermore, the slow process is considered by the IP3 production initiated
by synapse mediator diffusion. Moreover, a different pathway is applied for the glial
response both to the pre-synaptic neuron (its synaptic terminal) and to the post-synaptic
neuron [77,82,92,93].

Figure 1. Functional structure of neural–glial interaction.

3. Tripartite Synapse

As depicted in Figure 2, the basic tripartite synapse consists of a synapse gap that
can connect a pre-synaptic neuronal cell to a post-synaptic neuronal one. In this network,
an astrocyte cell is in a bidirectioal connection with them [77].

In this system, oscillatory behavior in an astrocyte cell can be produced by two main
pathways: the fast and the slow pathways. The fast activation pathway can be activated by
the post-synaptic neuron. Consequently, astrocyte cells reproduce the calcium waves as an
external oscillation.

The slow activation pathway can be considered by the pre-synaptic neuron-spiking
behaviors. In this way, by triggering the synapse with a pre-neuron, astrocyte will be
stimulated. After this stimulation, astrocyte generates the secondary mediator (Sm) in the
intra area. Therefore, it can trigger the calcium release and then creates calcium oscillations.

A feedback mechanism is observable by the astrocyte mediator (Gm), which can
influence both the synapse gap and the post-neuron behavior simultaneously. Thus,
by producing calcium oscillations in the astrocyte, the mediator enters the internal area,
and the regulation of neurons activity will be achieved.
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Figure 2. Mechanisms of interaction between neurons and astrocyte in the tripartite synapse based
on coupling coefficients, α, β, γ, δ.

4. System Modeling Using VHDL–AMS

The VHDL–AMS technique help us to reduce the simulation and realization time of
the system modeling. Thus, this approach can be a very useful case to evaluate and process
the complex systems without any mathematical approximations or estimations [89,90]. In
addition, VHDL–AMS behavioral modeling of the systems can be handled so that we can
have a real dynamical system. On the other hand, since the basic elements of the biological
systems have the nonlinear parts, it is expected to need a total approximation of them to be
implemented. This procedure can require a long time sequence. Therefore, by using the
VHDL–AMS for modeling these nonlinear and complex mathematical equations, the exact
and real results are observable, similar to a real hardware. The VHDL–AMS modeling of
neuron-astrocyte interaction has been done as follows.

We have modeled the behavior of this interaction as a compact system that connects
two coupled neurons together, and an astrocyte cell controls the coupling behaviors of
them. Different parameters of the astrocyte can influence the behaviors of neuronal signals.
Each parameter in this system can influence the frequency and time of spiking in the
pre-synaptic and post-synaptic neurons. Consequently, by proper selection of the astrocytic
parameters, the spiking behaviors of the neuronal cells will be modulated.

4.1. Neuron and Synapse Modeling

The Izhikevich neuron model gives the recognized behavior of neuron dynamics,
where different spiking and bursting signals are shown. Another advantage is that the
model has real-time properties. The Izhikevich neuron model can reproduce all of the
20 firing schemes. On the other hand, this neuron model is capable of reproducing many
different firing behaviors that can occur in biological spiking neurons. To explain the pre-
and post-neuronal cells, the Izhikevich neuronal model is considered [94], which consists
of two coupled differential equations:

dv
dt

= 0.04v2 + 5v + 140− u + I (1)

du
dt

= a(bv− u) (2)
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By conditional reset equations:

i f v > vth then
{

v←− c
u←− u + d

(3)

Here, v denotes the voltage variable and u represents a recovery variable, which
accounts for the activation of K+ ionic currents and inactivation of Na+ ionic currents,
and it provides negative feedback to v. In these equations, I is the input stimulation of
neurons. In the pre-neuronal equation, IPresynaptic = Istimulate is the input stimulus such
that that, by this excitation, the tripartite synapse can be triggered and generates a set of
spikes. If the synaptic gap triggers the pre-neuron, the stimulus current of the synapse
ISynapse is genereted, and the astrocyte cell also generates its stimulus current, IAstrocyte.
Consequently, the excitation of post-synaptic neuron is produced by two different ways:

IPostsynaptic = (KModi f ied)ISynapse + IAstrocyte (4)

where
ISynapse = (ks − δGm)(z− z0) (5)

IAstrocyte = γGm (6)

KModi f ied = 0.01 (7)

In these equations, γ and δ control the astrocytic and synaptic currents, respectively,
in the case of regulating the post-synaptic neurons activity.

Moreover, in this model, the synapse terminal is capable of connecting a pre-synaptic
neuron to a post-synaptic one and can be modeled as follows [88,95]:

τs
dz
dt

= [1 + tanh(Ss(v1 − hs))](1− z)− z
ds

(8)

Here, z is a variable for synaptic activation, and other parameters of synapse are also
given as

• τs : delay (s) ;
• Ss, ds : activation and relaxation of z ;
• hs : Threshold parameter ;
• ISynapse : Synapse stimulus current ;
• ks : Conductance ;
• δGm : Response for astrocyte ;
• z0 : Reference state of z .

z0 is the initial state of synaptic activation variable.
By triggering synapse with the pre-synaptic neuron, if v1 < hs, the synapse is inactive

and z = 0. Increasing v1 makes the hyperbolic tangent function differ with a high value
and z = 1 with the rate of 1/τs. By activation of the synapse terminal, the voltage of
pre-synaptic neuron is transferred to the post neuron.

4.2. Astrocytic Cell

In the CNS, the tripartite synapse [77,82] explains how two coupling neurons are
connected to each other in a general formation. As depicted in Figure 2, the astrocyte
module produces two main mediators: the secondary mediator (Sm) and the glia mediator
(Gm). Moreover, calcium dynamics in the astrocyte is represented by c. Mathematical
modeling is given by

τc
dc
dt

= −c− c4 f (c, ce) + (r + αu2 + βSm) (9)

εcτc
dce

dt
= f (c, ce) (10)
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f (c, ce) = c1
c2

1 + c2 − (
c2

e
1 + c2

e
)(

c4

c4
2 + c4

)− c3ce (11)

τSm

dSm

dt
= [1 + tanh(sSm(z− hSm))](1− Sm)−

Sm

dSm

(12)

τGm

dGm

dt
= [1 + tanh(sGm(c− hGm))](1− Gm)−

Gm

dGm

(13)

In these equations, the variable c denotes the cytoplasmic calcium, and ce is responsible
for the calcium in the endoplasmic reticulum. The excitation part, (r + αu2 + βSm) shows
the external effects of different pathways on the astrocyte. Furthermore, f (c, ce) describes
the relationship between cytoplasmic and ER calcium oscillations. Moreover, by the
triggering of the synapse (z), IP3 (Sm) will be evoked, and by the production of calcium
(c), the glutamate (Gm) will be released. Furthermore, as depicted in Figure 2, different
pathological states of the neural–glial interaction can be evaluated by different parameters
such as α, β, γ, and δ. In other words, by variation of these vital parameters, different
interaction behaviors are generated. Different parameters of the CNS modeling are given
in Table 1.

Table 1. Different Parameters of the CNS Modeling.

c1 = 0.13 c2 = 0.9 c3 = 0.004 c4 = 50 εc = 0.04

τc = 8 τSm = 100 τGm = 50 sSm = 100 sGm = 100

hSm = 0.45 hGm = 0.5 dSm = 3 dGm = 3 Ss = 1

hs = −68 ds = 3 τs = 10 ks = 1000 z0 = 0.0002

a = 0.02 b = 0.2 c = −65 d = 6 IStimulation = 14

5. Controlling Effects of Astrocyte Module

The oscillatory behaviors of active neurons in the brain are very important issue in
terms of unstable conditions, which may be causes different problems such as high rate of
oscillations between pre- and post-neuronal cells. This additional oscillatory and high-rate
activity synchronized neurons in ranges of times, and some problems may occurs such as
epilepsy in the case of synchronized additional spiking activity [88,96,97]. In this approach,
the astrocyte biological cell plays a vital and significant role in adjusting the neuronal
behaviors in terms of controlling effects on them in the CNS. Furthermore, astrocyte
cells generate the excitation currents for the post-neurons at different levels. Since the
applied stimulus current of post-synaptic neuron depends on the synaptic transmission
and astrocyte activity, the appropriate selection of feedback coefficients, γ and δ, is very
important. As can be seen in Figure 3 and also Equations (4)–(6), the excitation current of
the post-neuron can be reduced by the effect of astrocytic cells on the synapse transmission
that is proportional to δ. This excitation current can be increased by the direct effect of
astrocyte cell on the post-neuronal cell, which is proportional to γ. Therefore, if the coupling
coefficients, γ and δ are not adjusted, the input excitation current of the post-neuron can be
significantly increased, and the frequency of the spiking behavior is increased. However,
if γ is reduced and δ is increased, spiking behavior of the post-neuron by decreasing input
current can be regulated.

From mathematical point of view, the stimulation of the post-neuron can be rewritten as

IPostsynaptic = KModi f iedKsZ + (γ− KModi f iedδZ)Gm (14)

Based on this stimulation of post-synaptic neuron, the role of γ, δ as a control parame-
ters of astrocytes are very important.
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Figure 3. Input excitation current of post-synaptic neuron that is created by the synapse and astrocyte
at the same time.

6. Simulation Results

The results of neuron–astrocyte interaction simulation with VHDL–AMS are given
in this part. In this way, different effects of astrocyte parameters on the neurons behavior
are evaluated.

This section presents the results of the simulation of the impact of astrocytes on the
post-synaptic neuron behavior in the general case. In all cases, it assumed that the fast
activation pathway is blocked and the slow activation pathway for the feedback activity
is selected.

In the first case, we assume that δ = 0, such that the effect of reduction coefficient in
the post-synaptic neuron current is removed. In this state, we assume that z0 = 0 and the
excitation of the post-neuronal cell is given as

IPostsynaptic = KModi f iedKsZ + γGm (15)

Thus, based on the Equation (15), due to a high value of γ, the post-neuron excitation
current will be significantly increased and cause adverse effects on neuronal activity.
Furthermore, In Figures 4–6, the time interval of the post-synaptic neuron activity for
different amounts of γ and δ is represented. As depicted in these figures, with increasing
γ, the time interval for the post-neuron activity is increased, and with increasing δ, this
problem can be solved. On the other hand, as δ is increased and γ is decreased, the spiking
activity of post-synaptic neuron can be regulated.

Also, as depicted in Figure 7, simulation results for this case based on different values
of γ are presented. When γ = 0, pre- and post-neuronal cells are simultaneously found in
the spiking activity. By increasing γ, we can see that the post-synaptic neuron activity at
some point in time is independent of the pre-synaptic neuron activity. Thus, if the feedback
coefficient of the astrocyte increases strongly, the spiking frequency will also be increased.

In the second case, we assume that γ = 0, such that the effect of incremental coefficient
in the post-synaptic neuron current is removed. Thus, the input excitation of post-synaptic
neuron is given as

IPostsynaptic = KModi f ied(Ks − δGm)Z (16)

Based on this equation, δ controls the input current of the post-synaptic neuron, and
since γ = 0, the post-synaptic neuron is starts to spiking activity in the time interval of the
pre-synaptic neuron and not an independent activity.
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As depicted in Figure 8 at δ = 0, both the pre-synaptic and post-synaptic neurons
are simultaneously activated. By increasing δ, the intensity of post-synaptic neuronal cell
activity will be reduced.

Figure 4. Effect of feedback coupling coefficient γ on the frequency and spiking interval of post-
synaptic neuron.

Figure 5. Effect of feedback coupling coefficient δ on the frequency and spiking interval of post-
synaptic neuron.
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Figure 6. Effect of γ and δ at the same time. Spiking activity of post-synaptic neuron can be modulated.

In the third state, two parameters γ and δ influence spiking behaviors. In this state,
as δ increases, the effect of γ in the subscribe time interval will be neutralized. In this case,
based on the γ parameter, the post-synaptic neuron starts to activate, again by interruption
in the pre-neuron activity. Different states for this case are shown in Figure 9.

It is illustrated that astrocytes are able to control the synaptic coupling behaviors
by proper selection of parameters. In this way, the feedback behavior in the neural–glial
interaction will be regulated and can prevent problems in neural networks.

Figure 7. Closed-loop behavior in the neural glial interaction. (a) Calcium dynamic. (b) Astrocyte
mediator (glutamate). (c) Spiking activity of pre-synaptic neuron. (d–j) Spiking activity of post-
synaptic neuron based on different values of γ. By increasing γ, the intensity of neural activity has
been increased.
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Figure 8. Closed-loop behaviour in the neural–glial interaction. (a) Calcium dynamic. (b) Astrocyte
mediator (glutamate). (c) Spiking activity of pre-synaptic neuron. (d–j) Spiking activity of post-
synaptic neuron based on different values of δ. By increasing δ, the intensity of neural activity is
decreased and the spiking activity is controlled.

Figure 9. Closed-loop behavior in the neural–glial interaction. (a) Calcium dynamic. (b) Astrocyte
mediator (glutamate). (c) Spiking activity of pre-synaptic neuron. (d–h) Spiking activity of pos-
tsynaptic neuron based on different values of γ, δ. By increasing δ and decreasing γ, the spiking
activity of post-synaptic neuron is regulated. In this case, when the pre-synaptic neuron is already in
the resting state, the post-synaptic neuron starts to activate again.

7. Discussion

As mentioned, the CNS is made of some basic building blocks: neurons, synapses,
and astrocytes. Neurons, as a primary blocks in this biological network, can receive, process,
and transmit data to other parts of system. In this context, synaptic coupling between two
coupled neurons (pre-synaptic and post-synaptic neurons) can occur if the pre-synaptic
neurons can trigger the synaptic gap by appropriate signaling. When this transmission
is complete, post-synaptic neuron also starts to undergo spiking activity, with a rate
proportional to its synaptic excitation, which is provided by the synaptic cleft. Indeed,
after triggering the synapse by the pre-synaptic neurons, it makes an increase or decrease
in the level of stimulus current for the post-synaptic neurons [88,98]. In this case event,
the astrocyte module can act as a controller for regulating the neurons’ activity. On the
other hand, the astrocyte can control the applied stimulation current that is injected into
the post-neuron. If the synaptic current to the post-neuron starts to increase strongly, by th
proper selection of the astrocyte parameters, the additional spike trains will be removed
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and some problems such as epilepsy can be controlled [77,82,88,99,100]. Consequently,
by proper selection of the astrocyte parameters such as α, β, δ, and γ, the neuronal activity
can be modulated and the biological system will be controlled.

The main purposes of different papers can now be compared. In [75], a digital real-
ization of the neuron–astrocyte model with dynamic behaviors are presented in low-cost
and high-speed approximation-based states. In [76], the digital realization of the Adex
neuronal model on FPGA platforms is implemented. In [89], the behavior of a set of
benchmark designs in VHDL–AMS and SystemC-AMS is modeled. In [88], a complete
neuron–astrocyte digital implementation is proposed based on the low-error function ap-
proximation. In [83], a digital implementation of a biological astrocyte with Hopf oscillator
interaction is considered. In [84], a reconfigurable and efficient 2-D neuron model capable
of extending to higher dimensions is presented. In [85], just a digital implementation of
astrocyte model is evaluated without any interactions with external forcing such as neurons.
In [86,87], a digital implementation of neuron–astrocyte model is implemented without any
consideration of the controlling effects of astrocyte on neurons, and the synaptic terminal
model is different from the model we used. In this paper, a VHDL–AMS modeling of
neuron–astrocyte is presented. In this approach, it is proved that by the proper selection of
astrocyte coupling coefficients, the neurons’ behavior can be controlled and the neuron–
astrocyte communication mechanisms are modulated. In fact, this technique (behavioral
modeling) brings down the simulation time of the design while having good accuracy and
run time without any approximation for the non-linear systems.

8. Conclusions

This paper presents a modeling of neuron–astrocyte interaction using VHDL–AMS.
In the general case, the effect of astrocytes on the neurons behavior is considered. The effect
of astrocytes in three general states is analyzed; it was expected that neuronal activity is
regulated by proper choice in the astrocyte parameters. Therefore, astrocyte cell has a very
significant and vital role in the regulation of neuroglial interaction mechanisms, and if
astrocytes do not work properly in the CNS, this can have a corrupting influence on the
neurons’ behavior.
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