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Abstract: Measuring fluid characteristics is of high importance in various industries such as the
polymer, petroleum, and petrochemical industries, etc. Flow regime classification and void fraction
measurement are essential for predicting the performance of many systems. The efficiency of
multiphase flow meters strongly depends on the flow parameters. In this study, MCNP (Monte
Carlo N-Particle) code was employed to simulate annular, stratified, and homogeneous regimes. In
this approach, two detectors (NaI) were utilized to detect the emitted photons from a cesium-137
source. The registered signals of both detectors were decomposed using a discrete wavelet transform
(DWT). Following this, the low-frequency (approximation) and high-frequency (detail) components
of the signals were calculated. Finally, various features of the approximation signals were extracted,
using the average value, kurtosis, standard deviation (STD), and root mean square (RMS). The
extracted features were thoroughly analyzed to find those features which could classify the flow
regimes and be utilized as the inputs to a network for improving the efficiency of flow meters. Two
different networks were implemented for flow regime classification and void fraction prediction.
In the current study, using the wavelet transform and feature extraction approach, the considered
flow regimes were classified correctly, and the void fraction percentages were calculated with a
mean relative error (MRE) of 0.4%. Although the system presented in this study is proposed for
measuring the characteristics of petroleum fluids, it can be easily used for other types of fluids such
as polymeric fluids.

Keywords: wavelet; feature extraction; two-phase; flow measurement

1. Introduction

Information on flow regimes is used to increase the performance of flow meters [1].
Regime recognition and void fraction measurement are important issues in many industrial
applications [2]. A wide variety of methods have been proposed for determining these
parameters. The gamma-ray attenuation technique is the most accurate of these [3,4].
Over the past several years, many studies have been performed to enhance the accuracy
of this method. Abro and co-authors [5] advanced a new methodology based on multi-
beam gamma-ray densitometry for flow regime classification and void fraction calculation.
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The dual modality densitometry technique was studied by Jiang et al. [6] for regime
classification in a two-phase flow using a radial basis function (RBF) neural network. Abro
et al. carried out a study investigating the efficiency of single-beam and multi-beam gamma-
ray densitometry in predicting the void fraction in two-phase flow systems [7]. Based on
the presented results, the multi-beam gamma-ray technique showed better performance
than the single-beam technique. Nazemi and co-authors performed research into void
fraction measurement that was independent of density changes in the liquid phase, by
employing a dual modality densitometry technique [3].

Roshani et al. [1] studied flow regime identification in a two-phase flow structure uti-
lizing the dual modality densitometry method. For regime identification and void fraction
measurement, three features were extracted. The extracted features were considered as the
inputs of an ANN. Nazemi et al. utilized a method to investigate the optimum position of
the scattering detector involving two features for achieving greater accuracy [8]. In this
study, an RBF neural network was used to accomplish the investigations. This strategy
enabled them to calculate volumetric percentages autonomously of the density changes. A
new approach was investigated by Peyvandi and co-workers that aimed to calculate the
void fraction in some specific conditions where only one side of the pipe is accessible [9].
Nazemi et al. carried out research into two-phase flow regimes for volume fraction calcu-
lations autonomously of the various types of regimes in the pipe, using the gamma-ray
attenuation technique [10]. In all the previously mentioned studies, three or more detectors
were employed, but in the latter study, the gamma-ray attenuation technique made it
possible to use two detectors in the structure. Subsequently, a new study was performed to
identify three flow regimes in a specific condition. Roshani et al. used one source and one
detector to classify three flow regimes in their system, but only two of them were identified
correctly [11].

Roshani et al. studied void fraction measurements independently of the type of flow
regimes using a dual-energy broad beam technique. In this context, several features were
extracted from the signals from the detector to use in network inputs [12]. Hanus et al.
studied time-domain feature extraction to recognize flow regimes by employing different
types of neural networks [13]. Sattari and co-workers used time-domain feature extraction
for estimating volumetric percentages and identifying flow regimes. In this study, void
fraction percentages were calculated with an MRE of 5.32 [14].

In the current study, a system including one source (cesium-137) and two detectors
(NaI) was used to register the emitted photons passing through a pipe. Three main regimes
consisting of homogeneous, stratified, and annular regimes with void fractions in the
range of 5–90% were considered and simulated using MCNP code. The signals from both
detectors were decomposed using DWT into approximation and detail components. In
order to achieve regime identification and void fraction measurement, two methods for
extracting features to utilize as the inputs of ANNs were analyzed.

In this paper, by utilizing an optimized structure and taking advantage of the wavelet
transform, the types of regimes and volume fraction percentages in a two-phase flow
were obtained precisely. In this study, the features of the signals were extracted using a
wavelet transform. Then, various feature extraction methods were applied to the signals
and finally, using the defined SA parameter, the best features with the best separation
ability were selected. Following this, the features were applied to the networks, and the
results demonstrated the precision and correctness of the presented solution. This method
reduced the rate of errors in terms of the void fraction.

2. Simulated Structure

MCNP code, which is a powerful tool for modeling radiation-based multiphase flow
meters [15–24], was used in this study to model the measuring system. In the simulations,
homogeneous, stratified, and annular regimes were considered in the structure. Simulations
were accomplished for void fractions ranging from 5% to 90% for all the aforementioned
regimes. Gas oil and air were defined as the liquid and gas phases, respectively. It is
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worth noting that radiation-based multiphase flow meters are independent of the chemical
characteristics of the materials inside the pipe that the radiation passes through. In other
words, it makes no difference whether the radiation passes through a polymeric fluid,
water, gas oil, or any other type of fluid. Therefore, instead of gas oil, which is used as an
example liquid inside the pipe in this study, there could be a polymeric liquid, and the
structure of the proposed measuring system would remain the same.

A 137Cs radioactive source (emitter energy: 0.662 MeV) and two 25.4 mm NaI transmit-
ted photon detectors were used to detect emitted photons. The detectors were positioned at
a distance of 250 mm from the source at angles of 0 and 13 degrees. It is worth mentioning
that the simulated structure used in this study was validated in several experiments in our
previous research [4,10].

The energy spectra of the registered photons for both detectors in three flow regimes
are illustrated in Figure 1.
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Figure 1. Registered signals in the 1st detector and 2nd detector (void fraction = 5%) for three flow regimes: (a) Stratified, 

(b) Homogenous, (c) Annular 
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The wavelet decomposition tree is shown in Figure 2. The approximation signal in 

the initial stage was also divided into new approximation and detail components and the 
procedure was reiterated [25,26]. 

Figure 1. Registered signals in the 1st detector and 2nd detector (void fraction = 5%) for three flow regimes: (a) Stratified,
(b) Homogenous, (c) Annular.

3. Discrete Wavelet Transform

The wavelet decomposition tree is shown in Figure 2. The approximation signal in
the initial stage was also divided into new approximation and detail components and the
procedure was reiterated [25,26].

There are many well-known wavelet families, such as Haar, Coiflet, Symmlet, and
Daubechies wavelets [27], etc., which have a wide range of applications. There is no
certain way to choose a specific wavelet family in research. The choice of wavelet functions
depends on the application. One of the greatest advantages of the Haar wavelet algorithm
is the fact that it is easy to compute and simple to understand [28].
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4. Feature Extraction

Feature extraction is utilized for highlighting specific patterns, with the purpose of
decreasing the substantial data loss. Classification and prediction can be carried out more
accurately when the pattern is represented by the principal features of the signal. Feature
engineering methods can be considered as a key element in classification and prediction
problems [26].

In this study, at first the registered signals of both detectors were decomposed using a
discrete wavelet transform (DWT). Following this, the approximation and detail compo-
nents of the signals were calculated using the Haar wavelet family. Finally, the statistical
features of the approximation signal were extracted [26] utilizing the average value (m),
kurtosis (g), standard deviation (σ), and RMS. Formulations relating to these features are
shown in Equations (1)–(4), respectively:

m =
1
N

N

∑
n=1

x[n] (1)

g =
m4

δ4 , m4 =
1
N

N

∑
n=1

(x[n]−m)4 (2)

σ =

√√√√ 1
N − 1

N

∑
n=1

(x[n]−m)2 (3)

RMS =

√√√√ 1
N

N

∑
n=1
|X[n]|2 (4)

The wavelet transform of the first detector’s signal (annular) is shown in Figure 3.

4.1. Extracting Same Features from Both Detectors

In the first case, the same features were extracted from the approximation signals of
both detectors. In Figure 4, the diagram of the extracted features from the first detector
versus the second detector is shown, illustrating the separation ability of each feature.

As a result of the overlap of the illustrated features in Figure 4, the flow regimes could
not be classified using these features.
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It should be noted that the points illustrated in each graph are related to different void
fraction percentages.

4.2. Extracting Different Features from Both Detectors

In this section, different features of the approximation signal were extracted from each
detector. The diagram of the extracted features from the first detector versus the second
detector is shown in Figure 5, illustrating the separation ability of each feature.
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5. Feature Selection

Considering Figure 4, it is possible to recognize type of flow regime using three features
(the standard deviation of the approximation signal of the first detector versus the kurtosis
of the approximation signal of the second detector, the RMS of the approximation signal of
the first detector versus the kurtosis of the approximation signal of the second detector, and
the average value of the approximation signal of the first detector versus the kurtosis of the
approximation signal of the second detector). For investigating the separation ability of these
three features, a novel parameter called the SA parameter, where SA stands for separation
ability, was calculated as shown below. One of the three mentioned features is shown in
Figure 6 for analyzing the operation of the SA parameter. The calculation methods for the SA
parameter are shown in Figure 7 and Equations (5) to (8).

D1 =
1
N ∑n

i=1 ∑n
j=1

√(
xai − xhj

)2
+
(

yai − yhj

)2
(5)

D2 =
1
N ∑n

i=1 ∑n
j=1

√(
xai − xsj

)2
+
(
yai − ysj

)2 (6)

D3 =
1
N ∑n

i=1 ∑n
j=1

√(
xhi − xsj

)2
+
(
yhi − ysj

)2 (7)

SA =
D1 + D2 + D3

3
(8)

where D1, D2, and D3 in the equations are the average distances between the annular–
homogeneous, annular–stratified, and homogeneous–stratified regimes, respectively.
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SA stands for separation ability.
By calculating the SA parameter for all three separated cases, the average value of

the approximation signal of the first detector and the kurtosis of the approximation signal
of the second detector can be recognized as the features that are able to classify the three
flow regimes, and can be applied as inputs to the ANN, aiming to enable flow regime
classification and void fraction measurement.

6. Artificial Neural Network

In the past few decades, various advanced computational approaches, e.g., finite ele-
ment, numerical linear algebra, statistics, numerical analysis, tensor analysis, and artificial
intelligence, have been applied in various fields of study such as chemical engineering [29–37],
electrical engineering [38–46], biomedical engineering [47–54], civil engineering [55–58], so-
cial sciences [59–69], mechanical engineering [70–77], computer and information technology
engineering [78–81], physics [82–87], petroleum engineering [88–94], mathematics [95–100],
etc. The ANN has been demonstrated to be the most potent technique for classification and
prediction among the aforementioned computational methods. The ANN is an appropriate
tool for handling modeling, optimization, prediction, and classification. These networks
are mathematical systems made of simple processing elements called neurons, with parallel
performance in single or multiple layers. One of the most well-known and widely used neural
networks is the multilayer perceptron (MLP). The idea behind artificial neural networks
comes from biological neural networks.

In this study, two different networks were utilized for recognizing the three flow
regimes and measuring the void fraction percentages. The average value of the approxima-
tion signal of the first detector and the kurtosis of the approximation signal of the second
detector were used as the inputs for both networks. A total of 54 different cases in three
different regimes were simulated using MCNPX code. A dataset containing 39 cases (about
70%) was used for training the network and a dataset of 15 cases (about 30%) was used for
evaluating the network.

Several networks with different parameters were analyzed, which led to finding the
optimized network. The network characteristics and the diagram of the optimized network
for regime classification are shown in Table 1 and Figure 8, respectively.

Table 1. Network characteristics for regime classification.

Input Layer 2 Neurons

First hidden layer 5 neurons
Output layer 1 neuron

Epochs 250
Activation function Tansig
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Epochs 250 

Activation function Tansig 
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Type of flow regimes

Input layer Hidden layer Output layer  
Figure 8. Network structure for regime classification.

The performance of the obtained neural network for classifying the flow regimes is
shown in Figure 9.
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According to the presented results (Figure 9), with the aid of the proposed techniques,
all the considered regimes were identified correctly.

In the second network, the same inputs were applied to the ANN, and the output of
the network was the percentage void fraction. The characteristics of the neural network
utilized to predict the void fraction are shown in Table 2 and Figure 10.

Table 2. Network characteristics for void fraction measurement.

Input Layer 2 Neurons

First hidden layer 3 neurons
Second hidden layer 5 neurons

Output layer 1 neuron
Number of epochs 300
Activation function Tansig
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The performance of the implemented network for determining the void fractions of
the training and testing datasets is illustrated in Figures 11 and 12, respectively.
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The obtained errors of the proposed artificial neural network model are shown in
Table 3, where the MRE% and RMSE values were calculated using Equations (9) and (10),
respectively.

MRE =
1
N

N

∑
j=1

∣∣∣∣∣Xj(Sim)− Xj(Pred)
Xj(Pred)

∣∣∣∣∣ (9)



Polymers 2021, 13, 3647 11 of 16

RMSE =


N
∑

j=1
(Xj(Sim)− Xj(Pred))2

N


0.5

(10)

where N, X (Sim) and X (Pred) stand for the number of data points and the simulated
and predicted values of the neural network, respectively. The low error for the testing set
validates the presented model and also shows that overfitting has not occurred.

Table 3. Errors related to training and testing procedures.

Data Set MRE% RMSE

Training 0.33826 1.7886
Testing 0.40168 1.9227

Table 4 shows a comparison between this study and other relevant studies in this field.

Table 4. Comparison between current study and previous research.

Refs Predicted Volume Fractions (RMSE)

[10] 2.12
[14] 5.32
[101] 6.12

Current study 1.92

Measuring volumetric percentages is a matter of key importance in many industries.
Dozens of investigations have been carried out in this field to accomplish this task more
accurately and decrease the rate of errors. According to the information shown in Table 4,
the current study shows better performance and a lower rate of errors. The three studies
mentioned adopted time-domain as well as statistical features to calculate volumetric
percentages. In this study, by utilizing wavelet feature extraction, all the flow regimes were
classified correctly, and the calculated void fraction percentages had notably lower error
rates in comparison with the previous studies.

The simulated and predicted values of the implemented network for void fraction
percentages can be found in Table 5.

Table 5. Simulated and predicted values for volumetric percentages.

Simulated Predicted Values Using ANN

10 8.1759
30 32.4837
55 56.1648
70 73.3724
85 87.3543
5 4.6828

20 20.8134
40 38.4591
60 61.7835
75 73.1175
90 90.8015
15 17.6312
35 35.4866
55 55.5997
75 72.1979
90 87.6535
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7. Conclusions

To conclude, three conventional flow regimes were simulated using MCNP code. The
output signals of both transmitted photon detectors were decomposed using a discrete
wavelet transform. Several statistical features were extracted from the approximation
signals of both detectors. All these features were analyzed in order to find the best features
with the highest ability to classify the relevant flow regimes, for use as the inputs to
the networks. The average value of the approximation signal of the first detector and
the kurtosis of the approximation signal of the second detector were found to be the
features with the best separation ability. One ANN was used for classifying the three flow
regimes and another ANN was employed for predicting the void fraction percentages. The
low error rates of the presented ANNs demonstrate the precision and correctness of the
presented models.

It should be noted that in the current research, using the described methods, all
the flow regimes were identified correctly, and the volume fraction percentages were
determined with an RMSE of less than 1.93, which is about three times better than in
previous work [4].
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