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Abstract—Drones are currently being explored for safety-
critical applications where human agents are expected to evolve in
their vicinity. In such applications, robust people avoidance must
be provided by fusing a number of sensing modalities in order
to avoid collisions. Currently however, people detection systems
used on drones are solely based on standard cameras besides an
emerging number of works discussing the fusion of imaging and
event-based cameras. On the other hand, radar-based systems
provide up-most robustness towards environmental conditions
but do not provide complete information on their own and have
mainly been investigated in automotive contexts, not for drones.
In order to enable the fusion of radars with both event-based and
standard cameras, we present KUL-UAVSAFE, a first-of-its-kind
dataset for the study of safety-critical people detection by drones.
In addition, we propose a baseline CNN architecture with cross-
fusion highways and introduce a curriculum learning strategy
for multi-modal data termed SAUL, which greatly enhances the
robustness of the system towards hard RGB failures and provides
a significant gain of 15% in peak F1 score compared to the
use of BlackIn, previously proposed for cross-fusion networks.
We demonstrate the real-time performance and feasibility of the
approach by implementing the system in an edge-computing unit.
We release our dataset and additional material in the project
home page.

Index Terms—People detection, sensor fusion, UAVs, curricu-
lum learning

SUPPLEMENTARY MATERIAL

Please visit the home page for the dataset and additional ma-
terial at: https://ali20480.github.io/PhDPortfolio/kuluavsafe/

I. INTRODUCTION

HUMAN detection for small Unmanned Aerial Vehi-
cles (UAVs) or drones is of up-most importance in

safety-critical applications where human agents and drones
are expected to evolve side by side. Such use cases range
from automated logistics and warehouse inspection to people
search and rescue. The performance of a human detection
system for drones can be characterized by the four following
performance factors. The first performance factor (PF1) is the
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Tim.Verbelen@imec.be). André Bourdoux is with imec, 3001 Leuven, Bel-
gium (e-mail: Andre.Bourdoux@imec.be).

Funding: “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
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detection accuracy and recall, measured using precision-recall
curves [1], by comparing the bounding boxes returned by the
detection system against the ground truth bounding boxes.
The second performance factor (PF2) is the detection speed,
measured in frames per second (FPS), which determines how
fast the drone can react to a human entering or evolving in
its field of view. The third performance factor (PF3) is the
energy and area consumption of the detection system (drones
have limited battery budgets): can the system be deployed on
small, low-power edge processors such as a Google Coral
edge-TPU [2]? The fourth performance factor (PF4) is the
detection robustness to hard sensor faults such as complete
RGB blackout, and to environmental conditions such as e.g.,
dirt and water droplets on camera lenses, low light and so on.

Thanks to the enormous progress in deep learning, high-
precision and high-recall object detection (PF1) using standard
imaging cameras is nowadays ubiquitous. This has mainly
been enabled by Deep Neural Networks (DNNs) based on
the You Only Look Once (YOLO) principle [3], that achieve
good performance with a high inference speed (PF2. ∼ 65
FPS) mainly on bulky, power-hungry desktop GPUs [3] or on
lower-power embedded GPU platforms such as the NVIDIA
Jetson Nano (∼ 30 FPS for a Tiny-YOLO [4]) however,
still unsuited for the tightest of energy budgets (∼ 10W vs.
∼ 2W for an edge-TPU [2]). On the other hand, deploying
those DNNs on small, ultra-low-power edge processors (PF3)
for fast embedded inference is actively being investigated by
studying pruning, quantization and network design strategies,
tightly coupled with DNN hardware accelerator co-design
(see [5] for a comprehensive overview). Among those works,
the SqueezeNet architecture has been proposed in [6] as an
AlexNet-level accuracy backbone network with < 50 MB
model size, making it well-suited for fast, ultra-low-power
edge inference (∼ 2ms inference time in an edge-TPU [2]).
For this reason, we adopt SqueezeNet [6] as our backbone
network throughout this paper.

Regarding PF4, system robustness to sensor failure and
environmental conditions has been investigated by fusing
standard imaging cameras with other sensing modalities such
as radar [22] or Dynamic Vision Sensors [7] (DVS) (event-
based cameras), which asynchronously report the change in
per-pixel brightness as a train of binary pulses with ∼ 1µs
resolution. They provide a significantly higher dynamic range
than standard cameras (∼ 140dB vs. ∼ 60dB) [7]. Thus, fusing
a DVS sensor with a standard imaging sensor as done in a
DAVIS camera [8] enables high-speed and accurate sensing,
even in low-light conditions [7]. On the other hand, using
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a DAVIS camera alone still has drawbacks regarding PF4.
Sensing in darkness or extreme low light is still difficult, dirt in
the lens can still create occlusions, and so on. In addition, the
sensor does not provide ranging information on its own and
must be processed through rather compute-expensive depth
estimation algorithms in order to provide ranging [9]. For those
reasons, we choose to fuse a DAVIS camera with a Frequency
Modulated Continuous Wave (FMCW) radar in this work.
Indeed, a radar intrinsically provides ranging information,
is very robust towards environmental effects, can sense in
total blackout and is insensitive to occlusion by dirt [10].
In addition, it must be noted that compute-expensive depth
estimation must preferably be performed when a sensor fails.

Within this context, the novel contributions of this work
are the following. We acquire a first-of-its-kind dataset termed
KUL-UAVSAFE, providing RGB, DVS, radar, accelerometer,
gyroscope and altitude modalities in an indoor industrial
environment with a small drone flying near a walking person.
Second, we propose a novel baseline Convolutional Neural
Network (CNN) for human detection based on a SqueezeNet
backbone [6], augmented with cross-fusion highways [11] for
the DVS and radar modalities, resulting in an end-to-end,
monolithic network that can learn at which resolution stage
fusion should happen [11] Finally, we report our system per-
formance and robustness in different sensor ablation contexts
by introducing a new multi-modal curriculum learning [26]
procedure for our cross-fusion network that we call Shake-
up Learning (SAUL). Compared to the BlackIn procedure
previously introduced in [11], it provides an average gain of
15% on the peak F1 score of the detection system. We have
deployed the system on embedded hardware and demonstrate
the real-time feasibility of the approach.

This paper is organized as follows. Related works are
discussed in section II. Our methods are introduced in section
III. Results and their discussion are presented in section V.
Conclusions are provided in section VI.

II. RELATED WORKS

In recent years, a number of datasets featuring DVS cameras
for UAV and for object detection have been proposed [15]–
[17] but none of them contain radar data. Yet, radar has
extensively been used in automotive applications to increase
the system robustness and thus, its safety [11], [12]. A number
of automotive datasets fusing a standard imaging camera with
a FMCW radar have been proposed in literature [18], [19],
none of them featuring DVS data. In contrast, our KUL-
UAVSAFE dataset is the first one fusing RGB, DVS and radar
modalities for assessing the safety of UAVs towards human
agents in indoor environments.

RGB-radar fusion through deep neural network (DNN)
processing has already been studied in a number of works,
using different fusion strategies. Among those, the authors in
[22] proposed a road target classification and tracking system
using a 79-GHz FMCW radar and a standard imaging camera.
They adopt a late fusion approach, applying object recognition
independently to the camera data using a YOLOv3 detector
[23], and to the radar data, using a CNN-LSTM network. Then

the detections from both modalities are projected on a common
plane by homography, and an extended Kalman filter is used
for data fusion and tracking. While their system achieves a
very high performance even when an RGB failure is simulated,
their system is most suited for a static setup, requiring a
power-hungry desktop GPU in order to meet real-time speed.
Compared to our work, they use two distinct DNNs (one for
each modality), each requiring GPU compute power, while
we use a single CNN based on the SqueezeNet backbone
[6]. This drastically reduces the memory footprint and the
required computing power, which enables edge inference for
drones on a low-power CNN accelerator [2]. The authors in
[11] proposed a cross-fusion network to classify objects in
an automotive context with radar and camera data from the
nuScenes dataset [18]. They clearly demonstrate that a cross-
fusion approach is beneficial as it enables their network to
learn where fusion should happen the most. Inspired by the
architecture proposed in [11], we also make use of a cross-
fusion approach in our CNN design (although we use a totally
different architecture, better suited for edge computing). In
addition, a learning approach called BlackIn is proposed in
[11], where the RGB data is randomly blacked out during
training with a probability rate of 0.2. This prevents the cross-
fusion network proposed in [11] to focus learning on the RGB
modality only and provides a better detection performance.
Still, [11] does not provide an RGB sensor ablation study and
it is therefore unclear whether their system is robust towards a
hard camera failure. In contrast, we demonstrate in this paper
that combining the BlackIn procedure of [11] with a modified
curriculum learning procedure [26] enables our cross-fusion
network to significantly outperform the performance obtained
via BlackIn only, even when hard sensor failures are simulated.

III. SENSOR SUITE AND DATA ACQUISITION

In this section, we first briefly introduce the sensing princi-
ple of the DVS camera and the FMCW radar used in our RGB-
DVS-radar fusion setup. Then, we describe the integration of
each sensor with the drone. Finally, we present the dataset
acquisition.

A. Background Sensor Theory

1) DVS principle: Compared to standard imaging shutters,
an event-based camera outputs binary events of polarity pk
for each independent pixel ~xk in an asynchronous manner
whenever the change in log-intensity at time tk, ∆L(~xk, tk),
crosses a certain threshold C [7]. The polarity pk is positive
if ∆L(~xk, tk) is increasing and vice versa for ∆L(~xk, tk)
decreasing. Using the usual optical flow constraint, it can be
shown that events are generated by moving edges [7] (since
edges have high contrast |∆L(~xk, tk)|). Therefore, DVS data
does not convey the same information as RGB data, which
justifies the use of a cross-fusion approach as this latter enables
the CNN to learn at which feature scale RGB-DVS fusion
should happen the most [11].

2) FMCW Radar principle: A FMCW radar emits chirps

pq(t) = exp j(2πfct+ παt2) (1)
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at its transmit antenna (where q is the chirp index, fc is the
start frequency and α is the slope), and senses the reflected
waves through a receive antenna array, providing not only
ranging but also angle-of-arrival (AoA) information [20]. The
received signal at each receive antenna is demodulated and the
following signal is obtained [21]:

rqm(t) =

Nt∑
i=1

ξie
j(−2παTdi

t−2πfcTdi
+παT 2

di
+mφi) (2)

where m is the receive antenna index, Nt is the number
of reflecting targets, φi is the phase shift of target i due
to its AoA, and Tdi is the round-trip time from the target
i to the radar antenna, linked to the distance di between
the radar and the target following Tdi = 2di

c (with c the
speed of light). Through successive FFT processing steps, a
range-Doppler-azimuth (RDA) heatmap can be obtained for
each radar frame (a packet of Ns chirps) [21]. Peaks in the
RDA heatmap indicate targets at certain ranges and AoAs,
and with a certain radial (or Doppler) velocities. A Constant
False Alarm Rate (CFAR) detector (which adapts its threshold
depending on the local noise estimate) can then be used to
detect potential targets against noise in the RDA heatmaps
[20]. As for DVS data, radar data does not convey the same
amount of information as RGB data. Indeed, compared to an
isolated RGB pixel, a single radar pixel can convey much
richer information such as range, radial velocity or AoA,
which, again, justifies the use of a cross-fusion approach [11].

θres dres dmax vmin vres vmax

15◦ 17.8 cm 9.11 m 0.36 m/s 0.12 m/s 3.84 m/s

TABLE I: Radar parameters. θres is the AoA resolution, dres
is the range resolution, dmax is the maximum range that can
be sensed, vmin is the Doppler velocity threshold, vres is the
velocity resolution, and vmax is the maximum velocity that can
be sensed.

B. Sensor suite description

Our first-of-its-kind sensor suite is composed of a DAVIS-
346 camera [8] simultaneously providing RGB frames at 30
FPS and event data with 1µs resolution. The DAVIS-346 also
provides accelerometer and gyroscope data that we log as well
during the flights. In addition, we use an AWR1443 79-GHz
radar, which provides radar detection frames at 30 FPS. In
contrast to a number of works that first acquire the raw radar
ADC data and post-process them in an external computing
unit [13], [14], we perform radar detection directly in the
embedded radar chip MCU using the detector proposed in
[20]. By performing detection in the embedded radar MCU
rather than in an external computing unit, we 1) drastically
reduce the data bandwidth between the radar and the central
computing unit, 2) remove the need for additional FPGA-based
modules (e.g., DCA1000EVM) used to translate radar signals
to gigabit Ethernet, making our setup less bulky, significantly
cheaper (saving ∼ 500$) and much less energy consuming
(saving > 3W) compared to setups using those FPGA-based
modules. Finally, we use a TF-MINI range sensor to log the

drone altitude at ∼ 20 FPS. The radar is time-synchronized
with the DAVIS-346 camera by sending a pulse signal to
the synch input of the camera when the radar acquisition
cycle starts. Finally, a Raspberry Pi 4 is used to log the data
coming from all sensors. We mount this sensor suite on a
NXP HoverGames drone platform. Fig. 1 shows the complete
drone-sensor setup.

Fig. 1: Our drone setup with the sensor suite mounted on it,
as indicated with the arrows.

Name Background difficulty Number of captures

1) h-wall easy 2
2) h-benches medium 2
3) h-shelves medium 2
4) h-aisles challenging 7

5) f-wall easy 4
6) f-shelves-benches medium 2
7) f-gate medium 2
8) f-aisles challenging 4
9) f-aisles-gate challenging 2
10) f-aisles-wall challenging 3

TABLE II: Hover (h) and fly (f) sets with 6 different walking
subjects (30 acquisitions in total).

C. Dataset acquisition

With this drone-sensor setup, we have acquired a dataset
termed KUL-UAVSAFE, intended for the study of robust
people detection algorithms, in order to provide safety in en-
vironments where humans and drones evolve side by side. As
the data acquisition was conducted indoor during the COVID-
19 pandemic, the dataset currently contains a single walking
person only (our dataset will be extended with multiple
walking people in the future). The data is captured in different
locations with different backgrounds, from simple (e.g., wall
background) to more challenging (e.g., aisles background).
The dataset features 6 distinct human subjects in order to
capture variations in clothes color, shape, walking style and
so on. In all acquisitions, the human subject is asked to walk
arbitrarily in order to capture a large number of situations
(human crossing, coming close, turning, and so on). The drone
is either set to hover with light movements (to make the data
more challenging) or to fly straight. The radar parameters
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Fig. 2: Snippet from the f-aisles-1 acquisition. The static
background has a non-zero Doppler velocity with regard to
the drone as the drone is flying forward. Detections from the
right and left shelves are thus returned and can be used for
obstacle avoidance.

are given in Table I. Tables II gives an overview of the
acquired data. During all our acquisitions, we reject detections
having a Doppler velocity magnitude smaller than a threshold
vmin. This enables an automatic, on-line rejection of the static
background obstacles when the drone is in a (quasi) hover
state, which only requires the sensing of moving agents that
could collide with the hovering drone (as static obstacles
cannot collide with a static drone). On the other hand, this
filtering still allows the detection of static obstacles when the
drone is moving (see Fig. 2), as the background has a non-
zero Doppler velocity with regard to the drone in this case
(moving obstacles with a velocity close to the drone velocity
are also detected thanks to the fine-grain velocity resolution
of the radar). Finally, we refer the reader to the project home
page for additional videos showcasing the dataset.

IV. BASELINE CNN DESIGN

This section presents the CNN architecture we use (see Fig.
3). We first detail the input data pre-processing. Then, we
describe our baseline CNN architecture. Finally, we introduce
our novel SAUL training strategy.

A. Input pre-processing

The input to our CNN is a concatenation of the RGB, DVS
and radar modalities, forming a (356 × 260 × 6) tensor. The
first three channels are the RGB channels, rescaled between 0
and 1. The fourth and fifth channels correspond to the positive
and the negative polarity of DVS frames obtained by taking the
mean of the event time stamps tk,n for each pixel ~xk during
a time window ∆T = 10 ms, as follows:

D(~xk, t0) =

∑Nk(∆T )
n=1 tk,n − t0
Nk(∆T )

(3)

Here, D denotes the final pixel value of the DVS frame,
Nk(∆T ) is the number of events generated at pixel location
~xk during ∆T and t0 is the initial time of the accumulation
window. Eq. (3) is applied separately to the positive and the
negative channels, obtaining one DVS frame for each polarity.
Then, the DVS frames are normalized between 0 and 1 and
concatenated with the RGB. Finally, the radar data must be
projected from the range-azimuth view to the same perspective
domain as the RGB and DVS images. As the drone altitude is
not fixed, computing a homography between the radar range-
azimuth plane and the cameras directly as in [22] cannot be
done since the radar is not a projective sensor. This means
that, as the drone altitude changes (for fixed X,Y location),
the radar detection map does not change as the radar cannot
distinguish the objects elevation extents.

Instead, we use the TF-MINI range sensor to measure the
drone altitude h and we augment the radar range-azimuth
detections (ri, θi) with this elevation information to obtain
tuples of the form (ri, θi,−h) for each detection i. Thus,
we assume that the detections are generated from objects
that are anchored to the ground, which is a very generic
assumption (shelves, benches and walking humans are all tied
to the ground floor). Using these augmented radar detections,
we construct an intermediate image-like representation of the
radar data as follows:[

xi
yi

]
=

f

−h

[
ri cos θi
ri sin θi

]
(4)

where (xi, yi) represent the coordinate of the radar detection
i in the intermediate space and f is a focal length factor,
which we chose equal to the focal length of our DAVIS-356
camera (measured through checkerboard calibration). Then
it is sufficient to compute the homography matrix M using
more than eight detection coordinates (xi, yi) and their cor-
responding locations on the image planes, for different drone
heights. We perform this step offline as an extrinsic calibration
procedure using a corner reflector as in [22]. Then, we project
the intermediate point coordinates (xi, yi) on the image plane,
and we extend their height vertically as done in [11] to better
cover their spatial context, assuming a prior height of 1.5 m
for all detections. We set the pixel values of the resulting radar
columns as the normalized depth value di = ri sin θi

dmax
measured

by the radar. Fig. 4 shows an example of the projected radar
columns obtained through this process (input to the CNN). It
must be noted that slight calibration errors may occur. But,
as our cross-fusion CNN can learn to mitigate them during
training, we did not observe any problem linked to such errors
during our experiments. Finally, we concatenate the radar
columns with the RGB and DVS channels as the last channel
of the input tensors Tn:

Tn = (I3
n, D

2
n, R

1
n) (5)

where n is the frame index, I3
n is the RGB image, D2

n is
the DVS frame with its two polarity channels, and R1

n is the
single radar channel. In order to obtain training labels, we
use a YOLOv3 detector [23] to automatically estimate the
bounding box coordinates and the presence or absence of a
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Fig. 3: Our CNN architecture with cross-fusion highways. The RGB, DVS and radar inputs are concatenated and fed to the
input of the SqueezeNet backbone. In addition, the DVS and radar inputs are concatenated and fed to the input of the

cross-fusion highway. During training, the network learns at which scale fusion must happen the most along the backbone.
Finally, two MLP heads are used for bounding box regression and for human presence detection.

Fig. 4: Radar columns obtained by projecting the range-
azimuth radar detections on the image plane by homography
(star-shaped markers) and extending them in height to cover
their spatial context.

human subject. In the case of occlusion, the YOLOv3 still
returns a bounding box covering the visible part of the walking
subject. The bounding box coordinates are encoded as:

b = (X1
bbox, Y

1
bbox, X

2
bbox, Y

2
bbox) (6)

where X1
bbox, Y

1
bbox is the normalized top-left coordinate and

X2
bbox, Y

2
bbox is the normalized bottom-right coordinate. The

normalization is done by dividing the coordinates by the length
of their respective axis to obtain values between 0 and 1.
Finally, we encode the presence or the absence of a human
subject as a one-hot encoded vector of two elements (P1, P2).
Naturally, it should be noted that the YOLOv3 annotation
is not perfect but still, the learning is very robust towards
annotation noise since the number of mistakes in annotation is
very small compared to the correct annotations. The successive
tensors and their corresponding labels are saved at the frame

rate of the RGB camera (30 FPS) to form the final labelled
datasets for each acquisition.

B. CNN design

Fig. 3 shows the baseline CNN architecture used in this
work. The network backbone is a SqueezeNet [6], chosen for
its advantageous balance between high accuracy, low inference
speed on typical edge-TPUs (∼ 2 ms) [2] and low memory
footprint (< 50MB). This performance is achieved thanks to
the use of Fire modules instead of the typical Convolutional
layers (see Fig. 3) [6]. We augment the SqueezeNet backbone
by adding a cross-fusion highway [11], which successively
applies Max Pooling on its input data and concatenates the
intermediate results with the corresponding feature maps of
the backbone, for each resolution level (see Fig. 3). In contrast
to traditional early fusion which only fuses data at maximal
resolution, our cross-fusion setting enables the network to
learn at which resolution level fusion must best take place
[11] (see ablation experiments in section V-B1). Finally, we
connect two distinct Multi-Layer Perceptron (MLP) heads to
the backbone. The bounding box head (see the green box in
Fig. 3) features four sigmoid outputs that are used for the
regression of the normalized bounding box coordinates (6).
The presence head (see the red box in Fig. 3) features a two-
class SoftMax output for predicting the presence or the absence
of the human subject. The input to the SqueezeNet backbone is
the concatenation of the RGB, DVS and radar maps (5), while
the input to the cross-fusion highway is the concatenation of
the DVS and the radar maps (D2

n, R
1
n) only. As our dataset is

currently composed of a single walking subject and as our aim
is to analyse the sensor fusion encoding and learning strategies,
we used a single bounding box regression output at the head
of our CNN. Thus, our backbone can naturally be extended to
a multi bounding box case by adding e.g., the output layers
of a Tiny-YOLO [4] or of a RetinaNet [27], as done in [11].
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C. Choice of the loss function
In a general way, we can write the CNN learning objective

as the minimization of the following loss function:

Ltot = λLbbox + (1− λ)Lpres (7)

where Lbbox is the bounding box loss, measuring the distance
between the predicted bounding box and the ground truth,
Lpres is the presence loss associated with the human presence
detection head in fig. 3 and λ is a hyper-parameter controlling
the balance between the two losses. As usual for classification,
we choose Lpres to be the cross-entropy loss. For bounding
box regression, the learning task is to minimize the distance
Lbbox(b̂, b) between the estimated top-left and bottom-right
coordinates of the bounding box b̂ in Fig. 3 and the ground-
truth coordinates b (6). In a number of works [24], Lbbox is
chosen as the Huber (or smooth L1) loss for its robustness
towards outlier coordinates. Instead, we use the inverted Huber
(or berHu) loss (8) in order to focus learning on the diffi-
cult examples [25]. During our experiments, this choice was
confirmed by observing that the berHu loss gave significantly
better results than the Huber loss, qualitatively leading to less
fuzzy behaviour in the bounding box estimates during testing.

LberHu(b̂i, bi) =

{
|b̂i − bi|, if |b̂i − bi| ≤ c
(b̂i−bi)2+c2

2c , else
(8)

Similar to [25], we adaptively set the c parameter of (8) as
c = 0.2 × maxi |b̂i − bi| where the i index denotes the ith

element of the bounding box coordinate vector. Regarding the
setting of the hyper-parameter λ in (7), we observed during our
experiments that we systematically achieved better results by
first training our CNN for bounding box regression only and
then, freezing the weights of the network, adding a second
MLP head for human presence detection (see Fig. 3) and
training this second head independently. Indeed, optimizing
for the detection and bounding box regression objectives at the
same time may introduce antagonistic effects for our specific
architecture, which can harm learning. Instead, training for the
bounding boxes first enables the backbone CNN to learn robust
human feature representations, well-suited for the presence
detection head as well. Then, fine-tuning the detection head,
in turn, results in a high-accuracy human detection output.

D. SAUL: a curriculum learning strategy
Still one question remains: how should we present the data

during training to learn a system which does not predominantly
rely on one of the sensing modalities only? Indeed, a naive
learning strategy may result in a system that has learned to rely
on e.g., the RGB data only, not taking advantage of the other
modalities, which is fatal in the case of a hard RGB sensor
fault. To address this issue, the authors in [11] introduced a
procedure called BlackIn, where each modality j of the input
data has a probability pj of being zeroed out during training.
In our case, the input tensor is the concatenation of the three
RGB channels, the two DVS channels and the radar channel
(5). Using BlackIn, the input training example n can be written
as:

T bn = (Bp1I3
n,Bp2D2

n,Bp3R1
n) (9)

where Bpj is a Bernoulli-distributed random variable with
probability pj . Here, we remark that the stochasticity intro-
duced by BlackIn is stationary during training as the pj ,∀j
are fixed during the training procedure. In contrast, we use
curriculum learning [26] that relies on a changing dataset
during training (a non-stationary process). Formally, let Qλ be
a sequence of distributions modelling the target training distri-
bution from which the function of interest should be learned,
with a content difficulty parametrized through λ ∈ [0, 1]. Then,
the sequence Qλ is defined as a curriculum if [26]:

H(Qλ) < H(Qλ+ε) ∀ε > 0 (10)

where H denotes the entropy of the distribution. It has been
shown that such learning strategy can significantly enhance
the model performance on uni-modal tasks such as image
recognition, where gradually increasing the difficulty of the
images to be recognized (or equivalently, the entropy of the
training distribution) helps to obtain a better model [26].

In our case, instead of defining a curriculum over data
examples, from easy to hard, why not defining it over sensors,
from low-to high-entropy sensory data and combine this
principle with BlackIn? In order to test this idea, we define the
learning procedure of Algorithm 1 by combining BlackIn [11]
with curriculum learning to shake up the basins of attraction
of the loss landscape in order to ease convergence towards a
better local minimum [26]. We call this new method Shake-up
Learning (SAUL). The algorithm is described below.

Algorithm 1 SAUL procedure

Input: T = T bn,∀n : training data (9), ~pa, E1, ~pb, E2 : proba-
bility vectors and corresponding epochs

1: for epochs in 1 to Ne do
2: if epochs ∈ E1 then
3: ~p←− ~pa {initial probabilities of Eq. (9)}
4: else if epochs ∈ E2 then
5: ~p←− ~pb {abrupt change in probabilities of Eq. (9)}
6: end if
7: Train(T, ~p) {training with pruned dataset according to

Eq. (9) where pj are the components of the ~p vector.}
8: end for

In the case of our sensor suite, we initialise the probabilities
in (9) such that the RGB data is the most pruned (high p1),
followed by the DVS data (p2 < p1). The radar data is
never pruned (p3 = 0). Then, we decrease the pruning rate
of both the RGB and the DVS data abruptly in epochs E2,
half way through the training procedure. By doing so, we
impose a sudden jump in the entropy of the training data
distribution. This complies with the curriculum definition of
(10) as the RGB data distribution has a higher entropy than
the DVS distribution (edge image with an important number
of zero-valued pixels compared to non-zero pixels), which has
a higher entropy compared to radar (sparse set of detections
with even more null pixels than the DVS). In the next section,
we compare the performance of our model trained via BlackIn
against the performance obtained via SAUL and will report
a significant boost in detection and bounding box regression
performance.
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V. EXPERIMENTAL RESULTS

A. Precision-Recall Analysis

We first train our model for bounding box regression during
300 epochs. We then fine-tune the presence detection head
during 40 epochs. For training and testing, we use 5-fold leave-
one-out cross-validation as follows. In each cross-validation
fold, we keep as test set one fly acquisition with challenging
background in Table II and use the remaining acquisitions as
the training set. We use Adam with batch size 32 and learning
rate 5× 10−5 for both training phases. We report the perfor-
mance of our proposed model by measuring the peak F1 score
(i.e., maximum over i of F1,i = 2 PiRi

Pi+Ri
) along each precision-

recall curve (Pi, Ri) in Fig. 5 (the higher, the better) [1].
During our experiments, we train two models. One model is
trained using the BlackIn procedure of [11] with p1 = 0.3 for
the RGB and p2 = 0.09 for the DVS, while keeping p3 = 0 for
the radar in (9). The other model is trained with our proposed
SAUL procedure (Algorithm 1) with ~pa = [0.7, 0.2, 0] (for the
first 150 epochs during bounding box learning and the first 20
epochs during detection learning) and ~pb = [0.1, 0, 0] (for the
last 150 epochs and the last 20 epochs of each learning phase),
in order to first severely prune the RGB and moderately prune
the DVS and then, moderately prune the RGB only. We found
those parameter values by testing different combinations and
choosing the best ones for both BlackIn and SAUL. Doing
so, the model is trained to mostly rely on DVS and radar,
and to be resilient to an RGB fault since RGB is pruned
the most during training. This is in-line with our envisioned
scenario where the RGB sensor is considered to be the most
fragile modality of the sensor suite. The precision-recall curves
are generated for an Intersection over Union (IoU) threshold
of 0.5, by sweeping the threshold of the presence output of
our CNN (see Fig. 3) from 0 to 1 [1]. Compared to a pre-
trained tiny-YOLO [4], our cross-fusion system provides a
gain of 13% on the peak F1 score. Compared to BlackIn,
our proposed SAUL procedure provides an average gain of
15% across the different sensor combinations. This clearly
shows that using SAUL, our cross-fusion model can learn to
use the sensing modalities in a significantly better way than
through the use of BlackIn (achieving PF1 from section I).
Fig. 5 also shows the robustness of the system against an
RGB fault. Under an RGB sensor fault, a gain of 17% is
obtained against BlackIn when using our SAUL procedure. In
addition, Fig. 5 shows the impact of the radar on the peak
F1 score. Furthermore, Fig. 5 also show that the losses on
the precision-recall trade-off due to sensor ablation is more
sudden using our proposed SAUL procedure compared to the
losses obtained using BlackIn (achieving PF4 from section I).
Even though outside our RGB fault scenario, it should be noted
that the models are very sensitive to a DVS ablation, which
is expected since the training procedure mostly relies on DVS
and radar at the beginning of the curriculum.

B. Ablation studies

1) Cross-fusion vs. early-fusion: In Section IV-B, we mo-
tivated our use of a cross-fusion strategy in order to enable
the network to learn at which feature scales fusion should

Fig. 5: Precision-recall curves with an IoU threshold of 0.5.

Fig. 6: Ablation studies showing a) cross-fusion vs. early-
fusion of RGB, DVS and radar modalities, and b) fusion vs.
single modality networks.

happen the most. It is therefore important to demonstrate
the gain induced by cross-fusion over a traditional early-
fusion strategy, where all modalities are concatenated once and
given as input to the CNN (no cross-fusion highway). Fig. 6
compares the precision-recall curves obtained using our cross-
fusion network against early-fusion. The cross-fusion strategy
provides a gain of 21% on the peak F1 score. This is expected
since the cross-fusion strategy enables the network to learn
at which scales the different sensing modalities should be
optimally fused.

2) Sensor fusion vs. single modality: In addition, it is
important to quantify the robustness gained by fusion of
the modalities against single-modality networks. We compare
our cross-fusion CNN to both an RGB-CNN and a DVS-
CNN. We do not report a radar-trained CNN system since
radar detections alone do not convey any features that can be
efficiently learned by the CNN (they only indicate the position
of a reflector object). Fig. 6 shows the precision-recall curves
comparing the single modality networks to our cross-fusion
CNN. The cross-fusion strategy provides respective gains of
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Mean Inference Time Standard Deviation
13 ms 5 ms

TABLE III: A mean inference rate of 77 FPS is reached (vs.
∼ 30 FPS for a multi-class Tiny-YOLO [4]).

21% and 37% on the peak F1 score compared to the RGB-only
and the DVS-only CNNs.

C. Real-time Performance Analysis

We demonstrate the real-time feasibility and performance
(PF2 and PF3 from section I) of our system using a Coral
edge-TPU as our CNN accelerator (see Fig. 1). We choose
the Coral USB accelerator instead of the popular Nvidia Jetson
Nano board as the former consumes around 5 times less power
(∼ 2W vs. ∼ 10W) [2], increasing the maximum flight time
that the drone can reach (the Raspberry Pi could be later re-
place by a lower-power system as the bulk of the computation
is delegated to the TPU). We deploy our CNN (Fig. 3) to the
TPU using the tools provided in Tensorflow. Table III reports
the mean inference time and standard deviation (evaluated over
10000 frames) for our CNN running in the edge-TPU. This
inference time takes into consideration both the TPU time and
the USB communication overhead. A mean inference rate of
77 FPS is reached, which is more than double the inference
rate of a Tiny-YOLO running in similar hardware [4] (this gain
could be even more enhanced by exploring modifications on
the CNN topology). Naturally, we expect this inference time
to slightly grow when using a multi-bounding box output layer
[27], mainly due to the need for non-maximum suppression.
Finally, videos showcasing the real-world demonstration of our
system are available in the supplementary material provided
in the project home page.

VI. CONCLUSION

This paper has presented KUL-UAVSAFE, a first-of-its-kind
dataset fusing RGB, DVS and radar modalities in order to
pave the way towards up-most safety and collision avoidance
in applications where human agents and drones evolve side-
by-side. A baseline CNN architecture trained through our
novel multi-modal curriculum learning approach (SAUL) has
been proposed and compared against BlackIn. It has been
shown that SAUL provides a significant gain in precision,
recall and robustness towards sensor failure, which makes it
a well-suited learning strategy for training multi-modal object
detector networks.
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