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Abstract Recent work in multi-agent reinforcement learning has investigated inter
agent communication which is learned simultaneously with the action policy in or-
der to improve the team reward. In this paper, we investigate independent Q-learning
(IQL) without communication and differentiable inter-agent learning (DIAL) with
learned communication on an adaptive traffic control system (ATCS). In real world
ATCS, it is impossible to present the full state of the environment to every agent
so in our simulation, the individual agents will only have a limited observation of
the full state of the environment. The ATCS will be simulated using the Simulation
of Urban MObility (SUMO) traffic simulator in which two connected intersections
are simulated. Every intersection is controlled by an agent which has the ability to
change the direction of the traffic flow. Our results show that a DIAL agent outper-
forms an independent Q-learner on both training time and on maximum achieved
reward as it is able to share relevant information with the other agents.

1 Introduction

Traffic congestion is a worldwide problem which has a big environmental and eco-
nomical impact. It has been estimated that in the EU, most traffic congestion’s occur
around urban areas and that these congestion’s cost nearly 1% of the EU’s GDP [1].
In this work, we will investigate traffic light control in order to improve conges-
tion in urban area. Reinforcement learning (RL) is a machine learning method that
searches for a policy which will maximize the future expected reward. RL has been
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demonstrated to successfully learn a policy in a wide area of environments like
the Atari environments [8]. RL has also successfully been applied to intelligently
managing traffic lights [15][19]. Single agent RL implementations have shown ef-
fective in simplified traffic environments, but suffer in more complex and realistic
scenarios. To address this, Multi-Agent Reinforcement Learning (MARL) has been
proposed, in which every traffic light is controlled by a single agent. These indepen-
dent agents still have access to the full state of the environment. In this work, we
will investigate a MARL system with agents that do not have access to the full state
but only to their local observation for the Adaptive Traffic Control System (ATCS)
environment. In order to overcome this partial observability, the agents have the
ability to communicate with each other in order to share information about their ob-
servation with the other agents. The communication protocol is not predefined, but
are fully enveloped in the reinforcement learning process, meaning the agents will
learn how to communicate during the reinforcement learning process. If the agents
do not discover the benefit of communication, no emergence will take place. Inde-
pendent Q-learning and Differential Inter Agent Learning (DIAL) [3] are trained on
a simplified traffic environment, simulated with the open-source simulator Simula-
tion of Urban Mobility (SUMO) [6]. The FLOW framework is used as an interface
between the RL algorithm and the simulated traffic environment [18]. The paper
is structured as followed. In Section 2, we will discuss the related work. Section 3
describes the used reinforcement learning methods. The environment used to train
these reinforcement learning agent is discussed in Section 4. Next, we describe the
results in Section 5. Finally, we present our conclusion and future work in Section
6.

2 Related Work

This section will discuss the related work in the domain of MARL for the ATCS ap-
plication and the related work in communication learning using MARL. El-Tantawy
et al. [2] present a MARL ATCS called MARLIN-ATCS which is an independent
Q-learning method that has a coordination system with neighbouring agents. This
method is shown to outperform an independent Q-learner and real world controllers
on the simulated network of Downtown Toronto. Van der Pol et al. [10] presented a
multi-agent reinforcement learning system in which the global Q-function is learned
as a linear combination of local subproblems. The subproblems are trained on the
basic source problems containing two agents. Next, the global Q-function is used in
the max-plus coordination [4] algorithm to optimize the actions of the agents. This
methods allows the agent to learn an action policy while circumventing the non-
stationarity problem and the high training costs of MARL. Tan et al. [14] presented
a hierarchical multi-agent reinforcement learning system in which several regional
controllers are combined with a centralized global agent. The regional controllers
will all present a combination of actions which is further optimized by the central-
ized global agents. These methods focus on the challenges of large scale learning in
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an ATSC system. In this work we focus on the challenge of learning in a decentral-
ized Markov decision process (Dec-MDP) [9] in which agents learn to communicate
in order to share information about their local observation.

The MARL domain is an active research domain in which several MARL com-
munication learning methods have been developed. Sukhbaatar et al. [11] presented
the CommNet RL method that will encode the communication information into the
hidden state. This hidden state will be shared with the other agents and combined
with their hidden state into the final hidden state which will be used by the agent to
generate an action. This communication is learned end-to-end by allowing the gra-
dients to flow through the agents based on the loss of the receiving agents. Foerster
et al. [3] presented two methods to learn to communicate. Reinforced Inter-Agent
Learning (RIAL) will use Q-learning to select both the action and the message to
send to the other agents. Differentiable Inter-Agent Learning (DIAL) will train the
communication end-to-end as discussed in section 3.2. Their experiments show that
DIAL outperforms RIAL because of the direct feedback the receiving agent can
give to the sending agent using the end-to-end training. DIAL has been extended
by Vanneste et al. [16] to include a value-decomposition network [12]. The value-
decomposition network can be used to improve the lazy agent problem in which a
low performing agent is rewarded for the performance of the other agents. Another
method to reduce the lazy agent problem while learning to communicate is by using
a centralized critic as shown in the MADDPG method [7] and the MACC method
[17].

3 Method

In this section, independent Q-learning and Differentiable Inter-Agent Learning are
described. These two methods will be used to train our agent for the ATCS.

3.1 Independent Q-Learning

In the traditional single agent RL setting, the agent will receive the state st ∈ S
at timestep t and respond with an action ut ∈ U . The environment will use this
action to present the next state st+1 and reward rt to the agent which will be used
to train the agent. Q-learning learns a Q-value for every state-action pair Q(s,u) in
which a higher Q-value represents a better action. The RL policy can be defined as
π(s) = argmaxuQ(s,u). Deep Q-learning will use a deep Q-network (DQN) with
network parameters θ to represent this Q-function. This network will be trained by
minimizing the loss function which is show in Equation 1. The discount factor γ is a
value between 0 and 1 and represents the balance between long term and short term
goals.
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Li(θi) = Est ,ut ,rt ,st+1

[
(rt + γ max

ut
Q(st+1,ut+1,θi)−Q(st ,ut ,θi))

2] (1)

An extension to DQN is independent Q-learning (IQL)[13] which allow us to
train agents in a cooperative multi-agent setting. In IQL, every agent a will train
an individual Q-network Qa(st ,ua

t ;θ a) based on the global state st , the individual
action of the agent ua

t and the team reward rt . The agent receive the same team
reward in order to encourage cooperative behaviour.

3.2 Differentiable Inter-Agent Learning

IQL assumes that the full state st is available to every agent. In real-world appli-
cations, agents often have only a partial observation ot of the environment. In this
work, we will assume that our problem can be represented as a decentralized Markov
decision process (Dec-MDP) [9] which means that the combination of all the obser-
vations of the different agents again represent the full state. In order to overcome
this partial observability, the agents will have the ability to communicate with each
other. The communication will allow the agent to send relevant observation infor-
mation to other agent in order to recreate the state as required by IQL.

The Differentiable Inter-Agent Learning[3] (DIAL) method is an extension to the
IQN in order to allow agent to learn an inter agent communication protocol. This
communication protocol is not predefined but is learned simultaneously with the
action policy. The action part of DIAL is identical to IQL apart from the fact that
the action policy will also have access to the received messages. The DIAL method
will learn the communication end-to-end by allowing the gradients to flow from the
receiving agent back to the sending agents. These gradients are calculated in order
to improve the IQN loss function of the independent Q-learner. DIAL can be used
to learn continuous or discrete messages. In this work, we used continuous mes-
sages but this can be altered to discrete messages by including a discretise/regularise
unit[3]. We have made a slight alteration to DIAL by splitting the action and com-
munication policy without sharing any network parameters between these policies.
This is possible because in our application, we are focusing on overcoming the par-
tial observability of the Dec-MDP and no information is shared between the action
and communication policy. This separation is however not possible when agents
need to communicate strategic decisions with each other. The DIAL training pro-
cess is illustrated in Figure 1.

4 Environment

Reinforcement learning requires an environment to provide observations, execute
the actions and evaluate the behaviour of an agent. To simulate the traffic, the Sim-
ulation of Urban MObility (SUMO) simulator [6] is used. SUMO allows for large-
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Fig. 1 DIAL with a separate action and communication policy.

scale, continuous simulation with precise control over many factors. The FLOW
project [18] is a deep reinforcement learning framework that provides an interface
for implementing and training RL algorithms on top of the SUMO simulator. It con-
sists of both a network and an environment. The FLOW network contains all the
information about the SUMO traffic simulation itself. It consists of a traffic layout
defining the lanes and intersections. This layout is populated with vehicles and two
traffic lights, each having a logic controller that defines their behaviour. For the vehi-
cles, the built-in controller algorithm is used which will mimic human-like braking
and acceleration behaviour. For the traffic lights, we substitute the controller with
an IQL or DIAL agent. The FLOW environment acts as the interface between the
RL agent and the simulation. It defines the observation space that is returned to the
agents, performs the agent actions on the environment and defines the reward func-
tion. In Figure 2, our SUMO simulation is shown where the network consists of
a grid of two intersections connected by a shared road. Both intersections contain
traffic lights that are controlled by separate RL agents.

The 26 values of the observation are shown in Table 1. The first 12 values con-
tain information on the speed, distance and position of the leading vehicle on each
lane going toward the intersection. The edge number is used to identify which lanes
the agents are observing, providing them information on their position in the en-
vironment. The following 12 values contain information on the traffic congestion,
waiting queue and total vehicle waiting time of each of the four adjacent lanes. The
final two bits indicate which direction the intersection is allowing through and if
it is currently switching, indicated by a yellow light. Each agent also observes the
communication messages which consist of 5 continuous values.

The action consists of a single value that is used to switch directions of the traf-
fic on the intersection. The reward function aims to optimize global waiting times
and is formulated as followed. Each vehicle contains an accumulated waiting time
value that is incremented by one for each timestep its velocity is below 2 miles per
hour. When the vehicle surpasses this velocity threshold, the total waiting time is
decremented by 0.4 each timestep. The reward is the negative of the average of all



6 Simon Vanneste et al.

Fig. 2 A SUMO simulation with a network consisting of two intersections of four lanes, connected
by a horizontal lane and currently being populated with vehicles.

0:3 4:7 8:11 12:15
Speed distance to edge edge number total vehicles
16:19 20:23 24 25

waiting vehicles waiting time direction currently yellow

Table 1 The 26 dimension observation space representing the current state of the environment.

accumulated waiting times at that timestep of both intersections. This reward was
chosen in order to find a balance between waiting time and throughput on the inter-
sections.

5 Results

This section will evaluate both IQL and DIAL in the traffic light environment. In
the first subsection, we will evaluate the training behaviour of IQL and DIAL. In the
second subsection, the trained policies are evaluated on different levels of inflow.
These experiments are trained using a DIAL implementation within the RLlib [5]
framework. In both experiments, the IQL and DIAL method have the same neural
network architecture for the action policy. This action neural network consists of
two layers of 256 neurons and a ReLu activation function. The final layer consists
of a linear layer with and output size of 2. The hyperparameters for both methods
are shown in Table 2. The DIAL method has an additional communication neural
network which consists of no hidden layers as this network will make an encoding of
the observation into a messages with 5 dimensions. This network could be expanded
in order to reduce the size of the message or to move processing from the receiver
towards the sender. In this work, we chose a linear mapping between observations
and message in order to make the messages more understandable.
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Parameter Value
Gamma 0.99
Epsilon 1

Epsilon Decay 0.99995
Minimal Epsilon 0.05

Learning rate 0.0005
Optimizer Adam

Table 2 The IQL and DIAL hyperparameters.

5.1 Training

The IQL and DIAL policies are trained using 25∗103 epochs and 35 million envi-
ronment interactions. An epoch is defined as a training iteration in which we use 7
episodes with a fixed length of 200 timesteps. The agents are trained using a ran-
dom inflow probability between 0.1% and 60%. Every configuration is trained five
times using a different random seed. The average reward from these experiments
are presented in Figure 3. At epoch 5∗103, DIAL starts to outperform IQL in aver-
age reward while having a smaller standard deviation. Between epoch 22∗103 and
25 ∗ 103, the standard deviation of IQL becomes smaller as the standard deviation
of DIAL but the average reward of DIAL remains higher than the average reward
of IQL. These results show that DIAL is outperforming IQL both in learning speed
and in average reward.
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Fig. 3 The average training results of five runs for IQL and DIAL in the traffic light environment
with the shaded area showing the standard deviation.

Table 3 shows the average reward of the best performing training iteration for
both IQL and DIAL. These results show that DIAL is able to achieve a higher peak
reward (8% improvement) and achieve this faster than IQL.
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Method Peak Performance Epoch Average Peak Reward Peak Performance Standard Deviation
IQL 25.175∗103 −1986 54

DIAL 24.75∗103 −1555 223

Table 3 The average reward of five runs from the best performing training iteration for the IQL
and DIAL method.

5.2 Evaluation

Once the policies have been trained, a comparison on the performance is conducted
by evaluating them on environments with fixed inflows as opposed to the random
inflows used during training. Each policy iterates over ten fixed inflows and will
be evaluated 200 times per inflow. The inflows are distributed evenly between the
range of inflows used during training. The purpose of this experiment is to more
accurately evaluate the behaviour of the trained policies without the random factor
present during learning. An additional configuration is added to gain insight into the
need for communication during evaluation. The additional configuration will be us-
ing DIAL with disabled communication which is achieved by sending the message
to both agents that was generated by the communication policy when no vehicles
were observed. This will indicate whether communication is used as a bias or if it
is actually used during evaluation. If the communicating policy performance signif-
icantly drops when the agents are not allowed to communicate, communication is
used for cooperation.
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Fig. 4 Evaluation of the trained IQL and DIAL policies.

The result of this experiment can be found on figure 4. First, it is clear that DIAL
outperforms IQL by a substantial amount. The difference is largest with average in-
flows ranging from 40% to 80%, slightly decreasing at the extremes. This indicates
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that the emergence of communication leads to a more optimal traffic control be-
haviour. Finally, DIAL without communication is able to have similar performance
for the low inflow probabilities but is outperformed by DIAL as the inflow probabil-
ities increase. Since the default message used in the DIAL without communication
was generated when no vehicles are observed, this message will be close to the mes-
sage that DIAL will send when there is a low inflow probability. Therefore DIAL
without communication and DIAL will have a similar average reward for these low
inflow probabilities. DIAL without communication has a lower average reward than
DIAL and IQL for an inflow probability of 100% as the agents are receiving mes-
sage from a low inflow probability situation. This result shows that DIAL does not
just have a better policy but has learned a valid communication protocol which in-
crease the performance over a range of inflow probabilities.

6 Conclusion

In this work, a multi-agent reinforcement learning agent for an adaptive traffic con-
trol system is investigated. We compare independent Q-learning with the DIAL
method which has the ability to learn communication between the agents. These
methods are compared on an environment with two traffic light, using the SUMO
simulator, in which the agents can only observe a part of the entire state. In this
configuration, we demonstrate that DIAL is able to learn faster and achieve a higher
maximum reward than an independent Q-learner. These methods are evaluated on
a range of inflow probabilities and the results demonstrate that DIAL is able to
achieve a better result on all of the evaluated settings. We believe that these results
show the importance of learning a communication policy simultaneously with the
action policy for real world use cases in which not every agent has access to the full
state but the agents need to learn how to share information in order to overcome this
limited view of the current state.

In future work, a more complex environment could be used that includes more
agents that control more individual intersections in which the agent will learn to
communicate with each other. This increase in number of agent will present certain
challenges like the lazy agent problem (see Section 2). This problem could be min-
imized by using a centralized critic which has been demonstrated by the MADDPG
method [7] and the MACC method [17]. Additionally, more communication topolo-
gies should be investigated. This will become especially important when the amount
of agents increases and broadcasting every message becomes infeasible.
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