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Abstract Artificial Intelligence (AI) powered building control allows deriving poli-
cies that are more flexible and energy efficient than standard control. However,
there are challenges: environment interaction is used to train Reinforcement Learn-
ing (RL) agents but for building control it is often not possible to use a physical
environment, and creating high fidelity simulators is a difficult task. With offline RL
an agent can be trained without environment interaction, it is a data-driven approach
to RL. In this paper, Conservative Q-Learning (CQL), an offline RL algorithm, is
used to control the temperature setpoint in a room of a university campus building.
The agent is trained using only the historical data available for this room. The re-
sults show that there is potential for offline RL in the field of building control, but
also that there is room for improvement and need for further research in this area.

1 Introduction

Building control is very complex due to the large number of components. The most
basic control is rule based control, where a fixed schedule is always followed and no
variability, such as open windows or weather conditions, is considered. Over the last
years interest has risen in Reinforcement Learning (RL) powered building control.
RL algorithms use environment interaction to learn, which is not straightforward for
building control. Letting a learning agent control an occupied building can lead to
discomfort and potentially unsafe situations for the occupants. During training the
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agent will take undesirable actions, such as heating the room to a high temperature or
letting the CO2 levels rise to explore the possibilities of the environment. Moreover,
it can take a long time for an agent to converge in a real world environment, between
20 up to 50 days [1]. Due to this, simulators are most often used, which represent the
environment in which the agent will be deployed with a model. This model has to
be as accurate as possible, otherwise the agent might work well in the simulator but
perform poorly in the real world due to some flaw it could exploit in the simulator.

Simulator design is a difficult task and requires a considerable amount of domain
knowledge. Buildings are complex nonlinear systems, influenced by a wide range of
parameters such as occupancy, weather conditions and deterioration. Additionally,
a new model has to be created for every building due to building specific charac-
teristics. Furthermore, some aspects can have other levels of importance in different
cases, so even for every case the model might have to be recreated.

Recently, advancements have been made in the field of offline RL [2–4]. Here
an agent is trained from a dataset, without need for environment interaction, elimi-
nating the need for highly accurate and case specific simulators. This dataset can be
collected using different policies from which the agent is often able to derive a better
policy [2]. With the rise of the Internet of Things (IoT), buildings are often equipped
with a wide range of sensors that can provide sufficient data for this approach.

In this paper we use offline RL to derive a control policy for a Heating Ventilation
and Air Conditioning (HVAC) system in a campus building. This building has over
3000 sensors measuring temperature, window states, and occupation, among others.
With just this information, we train an agent to control the room temperature with a
better policy than the currently implemented rule based control policy.

First, an overview of related work is provided in section 2, continued with offline
RL and its challenges in section 3. In section 4 our method is explained, followed
by the results and discussion in section 5. After that we conclude in section 6 and
suggest future work along with the limitations of this paper in section 7.

2 Related work

At the time of writing the authors have no knowledge of any other studies using of-
fline RL for building control. There are, however, several studies that use online RL.
Wang and Hong [5] provide a literature review on the use of RL for building control.
The majority (76.7%) of used algorithms in this review use value based techniques.
Furthermore, they state that, to have a fully observable environment, historical state
values should be included in the observation space, although only one out of six re-
viewed studies considers this. In addition, some studies (16%) use predicted states
such as weather forecasts, which can improve performance by 27% [6].

Most studies use discrete actions as value based algorithms are frequently used.
Some examples: Brandi et al. [1] use discrete actions by defining 5 possible setpoints
to control supply water temperature for heating terminals, and Zhang et al. [7] use
a larger action space that ranges from 20°C up to 65°C in increments of 5°C and an
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extra action to turn off the heating. Increasing the size of the action space linearly
increases the execution complexity [8], so when working with discrete actions the
value of adding more actions should be weighed to the increased complexity.

The reward function is based on which objectives should be optimized. Han et
al. [9] focus on studies where occupant comfort is the primary objective, with a few
studies only optimizing for comfort but the majority includes energy. Considering
both objectives is important however, as energy and comfort are conflicting.

MATLAB and EnergyPlus white-box simulators are very popular for building
simulation [5]. They are based on thermodynamic equations, opposed to black-box
simulators, where a neural network is trained with recorded data, or gray-box simu-
lators, where a mix of both is used. Afroz et al [10] provide a more detailed overview
of simulator modeling techniques used in building HVAC control systems.

Very few studies evaluate the trained agent in a physical environment, less than
12% of the studies reviewed by Wang and Hong [5] and 18% of the studies reviewed
by Han et al. [9]. Additionally, multiple papers suggest that there is need for a uni-
versal benchmark to test and compare RL algorithms for building control. Jia et
al. [11] propose a Building Virtual Testbed that integrates EnergyPlus simulations
with Python to enable easier evaluation of RL algorithms.

3 Offline reinforcement learning

Traditional, or online, RL can generally be grouped in two categories, on-policy
and off-policy. For on-policy RL the agent improves its policy by interacting with
the environment using its current policy. The action, state, reward and new state are
saved as transitions which are used to update to a new policy, as shown in Fig. 1a.

With off-policy RL every learned policy adds new transition tuples to a buffer,
which is then used to learn a new policy as shown in Fig. 1b. This means that tran-
sitions are not only gathered by the current policy, but also by all previous policies.

Offline RL, a data-driven approach for RL, trains an agent without environment
interaction [2]. A buffer is also used, but it is initialized with previously collected
transitions and during training no new transitions are appended, as shown in Fig. 1c.

Off-policy algorithms can be used in offline settings by preinitializing the buffer
and not using environment interaction, but suffers from distributional shift [2,12]. A
new policy is learned from a dataset which has a certain state-action distribution, but
when deployed it will induce a different state-action distribution which enters states
that are not not in the dataset. An agent learns by approximating a high dimensional
function with the training data, but this function extrapolates beyond the domain of
the data. The policy might overestimate the value of out-of-distribution states, taking
actions that yield a low reward. Distributional shift also occurs for off-policy RL, but
with environment interaction, the agent can learn and correct those overestimations.

Levine et al. [2] provide an overview of the different solutions in previous litera-
ture. Three approaches are listed to deal with this problem:
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(a) on-policy RL (b) off-policy RL (c) offline RL

Fig. 1 On-policy RL (a): the new policy is updated with transitions from the current policy. Off-
policy RL (b): the new policy is updated using a buffer with transitions from all previous policies.
Offline RL (c): the new policy is learned from a preinitialized buffer

Explicit Policy Constraint Methods limit the difference between the learned
policy π and the behavioral policy πβ . This approach is pessimistic but it does not
include great risk. A disadvantage is that πβ must be known or estimated. Using an
estimation for πβ can introduce an extra error.

Q-values Regularization changes the objective to learn a conservative value
function. A penalty is added for state-action pairs that were not in the training dis-
tribution. This prevents overestimation of Q-values without constraining π to stay
close to πβ , so there is no need to know πβ .

Implicit Policy Constraint Methods discourage selecting out-of-distribution
actions by creating a weighted behavioral cloning objective that prefers good ac-
tions over bad actions. It uses a filter function to favor high-reward transitions that
were sampled from the data. In this case πβ does not need to be known either.

Monier et al [12] show that the most promising algorithms are Conservative Q-
Learning (CQL) [3] and Critic Regularized Regression (CRR) [4], based on the
second and third approach, respectively. Both significantly outperform off-policy
algorithms and are capable of deriving a better policy than present in the data.

When comparing CQL and CRR, CRR seems more robust to hyperparameter
tuning and performs better with sparse rewards, whereas CQL is very sensitive to the
value of α , but shows a better accuracy when properly tuned [12]. CRR is an actor-
critic method whereas CQL supports both actor-critic and value-based settings. Due
to a continuous action space we will focus on actor-critic CQL.

Regarding building control, CQL seems the best fit, since it is more conservative,
which is safer and, when properly tuned, yields a better accuracy than CRR [12].

4 Method

In this section we will describe the problem setup and our goal by giving an
overview on the data, how the reward is designed and how validation is handled.
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4.1 Data

The dataset used in training contains data ranging from December 1st to December
24th 2020. This data is gathered using the sensors present in building Z at cam-
pus Groenenborger of the University of Antwerp. Roughly every minute all of the
sensors log their value. From this data, features were selected to present to the agent.

These features include the room and outside temperature, the difference between
the room and target temperature, occupation, the hour and the minutes. The target
temperature is the setpoint provided to the Proportional-Integral-Derivative (PID)
control unit, which is the action taken by the behavioral policy. This policy is based
on a calendar system that defines a setpoint based on the current date and time.

As discussed in section 2, temperature history is important. We tested two ap-
proaches, the first one adds a certain amount of previous values as features. This
creates a very large observation space when taking into account more history, which
will make learning complex. The second one extracts the minimum, maximum and
slope from all of the history values and uses those as features. This creates the pos-
sibility to include a longer history without creating a very large observation space,
however a lot of information is lost when compared to the first approach

The state-action coverage of the dataset is essential. Since this building has a
rule-based controller implemented during the collection of the data, the visitation in
this dataset is considered expert, with little undesirable actions nor states. However,
since this data was recorded during the Covid19 pandemic, some unusual states are
present. Sometimes a temperature of 10°C is requested while there is somebody in
the room, which in normal circumstances is not considered an expert action. We
believe this is due to government restrictions where windows had to be opened for
ventilation and it is probable that heating was turned off at this moment, since a 10°C
setpoint does not appear in the calendar system. The fact that this data is recorded
during a pandemic, in which schools and universities were partially closed, is also
visible in the low occupation rate. For only 13.2% of the time the room is occupied.

4.2 Reward

The reward is based on four features: the current room temperature, the target tem-
perature from the calendar system, the occupation and the action taken by the agent,
which is the new setpoint for the PID control unit. In eq. 1 the reward is described
in a mathematical form, Oc refers to the occupation, which is either 1 or 0, Tr refers
to the room temperature, Tc is the temperature from the calendar and Ta is the action
taken by the agent. All temperatures are in degrees Celcius.

−Oc ∗ |Tr−Tc|− (1−Oc)∗ |Tr−Ta| (1)

This equation punishes the agent for the difference between the room temperature
and the scheduled temperature if the room is occupied. If the occupation is 0, the
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reward is the difference between the room temperature and the action the agent
takes, to stimulate lower energy usage.

4.3 Algorithm

As discussed in section 3, CQL was used. The implementation was provided by
d3rlpy [13], an offline RL library. A standard Soft Actor Critic (SAC) implementa-
tion is expanded with a conservative Q-function as suggested by Kumar et al. [3].

4.4 Validation

Validation is challenging due to lack of simulation and deployment possibilities. A
black-box model from previous research [14] was used, which is trained to predict
the temperature for the same room from which we have a dataset. This model is
wrapped in an OpenAI Gym environment to test deploying the trained agent.

The agent is deployed in the environment for 3000 timesteps, which corresponds
to roughly 60 hours. This allows observing the actions of the agent at both the start
and the end of several days, and there is sufficient time for the agent to have a mean-
ingful influence on the temperature. The behavior for this deployment is recorded
and used to calculate different error metrics to compare the agent to the original
PID control unit. The used error metrics are: Integral Absolute Error (IAE), Integral
Square Error (ISE) and Integral Time-Absolute Error (ITAE) and they are calcu-
lated between the room temperature in the simulation and the target temperature
(for the agent’s performance), and the room temperature from the dataset and the
target temperature (for the PID control unit’s performance).

When there is no occupancy the controller is encouraged to keep its temperature
as a naive approach to energy efficiency. Due to this, only values during daytime,
between 7:00 and 17:00, are used to calculate the error metrics. This puts the focus
on training an agent, only using data, to outperform the current policy by day.

During training several metrics give an indication if the agent is learning. This
includes the losses for both actor and critic, the standard deviation and average of
the values, and the reward from a short environment deployment (60 steps).

A large standard deviation can indicate that the agent is overfitting. A large av-
erage of the values can indicate overestimation due to out-of-distribution actions.
High losses for actor or critic show that the learned policy or value function is not
approximating with high accuracy. The reward can be interpreted as an indication
of learning correct behavior, but it is not enough to conclude learning is succeed-
ing. The reward can be high for episodes where the agent’s actions do not fluctuate
much and there is little occupation during that time, since then the agent will not be
penalized often for not being close to the target temperature.
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5 Results and discussion

In the first experiments the observation space presented temperature history as a
feature for each value for the length of the history. This increases the observation
space to almost four times its size and, as can be observed in the metrics in Fig. 2,
creates a too complex problem for the agent to solve. The losses are very high, the
values very low and the standard deviation is also very high compared to a training
using just the extracted features as history. Because of this, the history was presented
using the second approach discussed in section 4.1 for 30 steps.

Fig. 2 Training statistics comparing history with every value to
extracting features (min, max and slope)

Fig. 3 Training statistics com-
paring minutes in the observa-
tions space to an observation
space without minutes

Hyperparameter tuning uncovered a pattern in the actions in several experiments
that seemed to strongly correlate with the minutes of the hour. As a test, some exper-
iments were set up with the same hyperparameters and observation space, excluding
the minutes feature. In the metrics shown in Fig. 3 we can see that this renders train-
ing unstable, the actor loss goes up to 106 and the reward strongly fluctuates every
epoch and is lower compared to other experiments.

Using a parameter sweep we determined the actor and critic learning rate,
gamma, and alpha. Other parameters were fixed, and can be observed in Table 1.

Since we still had relatively high losses, the learning rates for both actor and
critic were lowered. A grid search was conducted with 1e-5, 3e-5 and 5e-5, training
would stabilize most desirably for a learning rate of 1e-5 for both actor and critic.

For gamma the values 0.9, 0.99 and 0.999 were tested, 0.999 yields the best
results when combined with the other parameters. This makes sense as temperature
varies slowly and a high gamma assigns more importance to future rewards. This
could be observed when comparing evaluations of agents that were trained with a
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Table 1 Fixed hyperparameters

Parameter Value

Initial SAC temperature 1
Temperature learning rate 1e-5
Tau 5e-3
Batch size 512

different gamma value. In Fig. 4 agent 1 and 2 are trained with gamma 0.999 and
agent 3 is trained with gamma 0.99. All agents requested higher temperatures in
the morning, but agent 1 and 2 chose higher setpoints than agent 3 and kept higher
values until the late afternoon. This resulted in a faster rise of the temperature in the
morning and a higher average temperature during the day.

The CQL specific alpha value determines how conservative the Q-function
should be. In our experiments, several values are tested from 0.001 up to 10. For
lower values of alpha, 0.001 up to 5, the agent often just picked one of the outer
boundaries of the action space and always executed an action in a range of 5 de-
grees from it. With alpha equal to 10, the agent did learn to follow the schedule very
roughly, as it did increase the temperature in the morning and lowered in the early
evening, but the agent would almost never pick values higher than 22 degrees or
lower than 19, which means the agent was too conservative. The best results were
obtained with an alpha of 9.

In Fig. 4 the simulation temperature for the two best agents is shown, along with
the original temperature in the bottom right plot and a simulation of an agent trained
with gamma 0.99 in the bottom left plot. When observing the actions of the agent,
the requested temperature, we can deduce that the agent learned from this dataset
that heating should start early and that it can stop heating before the end of the day
as the room will not cool down very fast due to the thermal mass of the building.

In Table 2 the error metrics are shown, all error metrics are calculated by integrat-
ing over time. The ISE uses the square of the error, tolerating smaller errors more
than larger errors. When comparing the agents performance to the original data with
this metric, we can conclude that the errors of the agents are generally smaller. The
ITAE multiplies the absolute error with the time before integrating, this penalizes
errors that persist. This can also be observed in Fig. 4, as time passes, the temper-
ature is closer to the target temperature and therefore the error is smaller at later
timesteps. The IAE does not add extra importance to any kind of error. The lowest
error scores are marked in bold and, with the comparison above, we can conclude
that the agents outperform the PID controller during the day.
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Fig. 4 Simulation results: agent 1 and 2 are trained with gamma 0.999, agent 3 with gamma 0.99

Table 2 Error metrics during training

Error metric Agent 1 Agent 2 Agent 3 Data

ISE 880.97 676.08 2053.19 2726.52
ITAE 364638.38 276110.46 896962.30 1028230.78
IAE 894.03 742.07 1543.17 1771.49

6 Conclusion

In this paper we introduced offline RL to building control, first the challenges of
offline RL are discussed, after that we elaborated on the available data and explained
the set up for training. This was followed by the results of a case study in which a
novel offline RL algorithm is used for continuous control of the setpoint temperature
for an HVAC system. In these results we can see that, using just a historical dataset
of a building, the agent could grasp the concept of thermal mass, as it starts and
stops heating before the target temperature changes. Additionally, the agent was
able to outperform a scheduled PID control unit during daytime by requesting higher
temperatures than those that should be reached according to the schedule, so that the
temperature would rise faster.

7 Limitations and future work

While in this work only one objective is optimized, most RL studies in the HVAC
domain also try to optimize energy. However, energy data was not readily accessible
due to the limitations of the building sensor measurements. This only allows perfor-
mance optimization during the day. During the night, the temperature is kept con-
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stant as shown in Fig. 4, which is likely to use more energy. In future work, energy
consumption should be used as part of the reward. This does require an improved
dataset. Other options include training a model to predict energy consumption based
on the state or calculating a rough estimate when there is enough system knowledge.

Multi-room or even building wide control would improve the impact of the of-
fline RL approach. We propose a multi agent approach since the large observation
space will create a problem that might be too complex to solve in a single actor-
critic setting. When all the rooms of the building have very similar characteristics,
there is also an option to use a centralized critic with multiple cooperating actors.
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