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Summary

Since prehistory, when man started to settle, and shifted from a hunter-gatherer to
a settled-agricultural lifestyle, plants have played a crucial role in the development
and survival of humankind. Over time, plants have been cultivated and selected to
improve favorable characteristics. They are usually used as a source of food, feed,
construction material (e.g. fibers), aesthetics (e.g. flowers), fuel, or other non-food
products (e.g. latex, cotton, etc.). Through plant breeding, the yield of most crops
has improved over time, but to meet the required food supplies to support the
expected 9.5 billion people in 2050, the yield of these crops should increase up
to 70%. Unfortunately, the current genetic progress may not be sufficient. The
climate change makes it even more challenging to reach that goal, increasing the
pressure on food security. Truncation selection is often used to rapidly increase ge-
netic gain, but this is often associated with the loss in genetic variation. It causes
the loss of several favorable QTL alleles from the breeding population, reducing
the long-term genetic gain. Therefore, truncation selection can only deliver a tem-
porary solution to increase the genetic gain. To meet the needs of tomorrow, new
selection methods are needed to increase the genetic gain in the short as well as
in the long term.

With the help of a simulation study, we demonstrated the dangers and limitations
of using a greedy parental selection method. The loss of favorable QTL alleles is
problematic as it reduces the maximum reachable genetic value of the breeding
population. Because breeders are often focused on maximizing the short-term
genetic gain, the dangers of greedy selection are often overlooked. To reach the
required long-term genetic gains, we propose new parental selection methods that
avoid the loss of favorable QTL alleles by preserving the genetic variation of the
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breeding population. Each method is simulated in a similar way, allowing for a
fair comparison between the different parental selection methods under the same
circumstances.

Both the scoping method and the deep scoping method were able to maximize the
long-term genetic gain. The scoping method was able to reach up to 15% points
higher genetic gains compared to truncation selection, whereas the deep scoping
method was even able to reach up to 19% points higher genetic gains compared
to truncation selection. Not only did both methods reach the highest long-term
genetic gains compared with other existing methods, but the loss in short-term
genetic gain was minimized, making both methods a promising alternative for
truncation selection.



Nederlandstalige samenvatting

Sinds de prehistorie, toen de mens overstapte van een jager-verzamelaar naar
een agrarische levensstijl, hebben planten een belangrijke rol gespeeld in de ont-
wikkeling van de mens. Doorheen de tijd werden planten gekweekt en geselec-
teerd om gunstige eigenschappen door te geven aan de volgende generatie. De
meeste gecultiveerde gewassen worden gebruikt als voedselbron, constructiema-
teriaal (bv. vezels), esthetica (bv. bloemen), farma, brandstof, of als ruw materiaal
(bv. latex, katoen, etc.). Met behulp van plantenveredeling kon de opbrengst in de
meeste gewassen aanzienlijk verhoogd worden, maar dit is voorlopig nog steeds
onvoldoende om de voedselvoorziening van de voorspelde 9,5 miljard mensen in
2050 te ondersteunen. Er wordt verwacht dat de opbrengst met meer dan 70%
zou moeten toenemen maar helaas is de huidige vooruitgang nog onvoldoende.
Door de huidige klimaatsveranderingen wordt het nog uitdagender om het doel
van 70% in 2050 te halen waardoor de druk op de voedselvoorraad blijft toene-
men. Truncatieselectie wordt vaak gebruikt om snel de genetische opbrengst op
korte termijn te maximaliseren, maar leidt ook vaak tot het verlies van genetische
variatie. Truncatieselectie is geassocieerd met het verlies van verschillende gun-
stige QTL allelen uit de veredelingspopulatie, waardoor de genetische opbrengst
op lange termijn sterk verlaagd wordt. Hierdoor kunnen methoden zoals truncatie-
selectie slechts een tijdelijke oplossing bieden waarbij de opbrengst enkel op korte
termijn verhoogd wordt. Om een duurzamere oplossing te vinden, zijn er nieuwe
selectie methoden nodig die de genetische opbrengst op zowel korte als op lange
termijn maximaliseren.

Met een simulatiestudie konden we de gevaren en nadelen van een gulzige se-
lectie aantonen. Het verlies van gunstige QTL allelen is vaak problematisch aan-
gezien dit de maximaal haalbare genetische waarde van de veredelingspopulatie
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sterk verlaagt. De meeste veredelaars zijn sterk gefocust op het economische
aspect en zijn dus enkel geïnteresseerd in het maximaliseren van de genetische
opbrengst op hele korte termijn waardoor de gevaren van een gulzige selectie vaak
over het hoofd worden gezien. Daarom stellen wij nieuwe selectiemethoden voor
die het verlies van gunstige QTL allelen kan voorkomen door de genetische variatie
van de veredelingspopulatie te behouden. Elke methode werd onder dezelfde om-
standigheden ontwikkeld en gesimuleerd zodat de verschillende methoden eerlijk
met elkaar vergeleken kunnen worden.

Zowel de scopingmethode als de deep scopingmethode resulteerden in een ho-
gere genetische opbrengst vergeleken met truncatieselectie (gulzige selectie). De
scopingmethode kon tot 15 %-punt hogere genetische waarden behalen in verge-
lijking met truncatieselectie, terwijl dit verder opliep naar 19 %-punt voor de deep
scopingmethode. Beide methoden slaagden er ook in de genetische waarde op
korte termijn hoog te houden, waardoor deze methoden een perfect alternatief
vormen voor truncatieselectie.
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1
Introduction

1.1 General overview

Imagine a breeder that is responsible for the development of new breeding lines.
How will (s)he proceed? The easiest strategy dates back to the beginning of agri-
culture and consists of cultivating the available breeding lines, and selecting supe-
rior lines as parents based on visual morphological characteristics (or phenotype).
This method is often referred to as truncation selection, has been used for ages,
and coincides with the experience and insight of breeders. Despite the high short-
term gains that are often associated with truncation selection, this strategy has
certain disadvantages and limitations. First of all, to select individuals based on
morphological characteristics, each individual needs to be cultivated, which re-
quires time and resources. Second, different (random) effects (e.g. environmental
effects) can also influence the morphological characteristics of individuals result-
ing in a completely different parental selection compared to the same breeding
population under different environmental conditions. A breeding line containing
individuals with the same genetic constitution (clones) can still lead to a different
phenotype due to differences in the environment they were cultivated in. It is,
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therefore, possible that a superior individual in an unfavorable environment has a
lower phenotypic value and is thus not selected as a parent, reducing the genetic
value of the offspring. There is also a human factor in which certain characteristics
will be weighted more severely depending on the preferences of the breeder. Each
measurement of the phenotype will also be dependent on the time of sampling
and the accuracy of the measurement itself.

The phenotypic expression of certain genes results in a specific morphological
characteristic. Therefore, the genetic information of an individual could be used
to detect the presence of favorable genes, guiding the parental selection. It was
only in 1866, that Mendel was able to classify the phenotypic expression of dif-
ferent genes into discrete classes (Mendel, 1866). However, certain traits could
not be classified in discrete classes, and a new theory was needed to predict the
phenotypic expression of these genes. That theory, coined quantitative genetics,
was developed by Fisher, Wright, and Haldane (Fisher, 1918; Wright, 1931; Hal-
dane et al., 1918). In quantitative genetics, traits like grain yield are controlled
by hundreds of genes (or quantitative trait loci (QTL)) that all have an additive
effect. Moreover, the trait phenotype increases or decreases depending on the
allelic composition of each gene.

Over time, breeders started to collect and store the information of parental lines.
Especially in animal breeding, pedigree information was used to guide the parental
selection. Based on the idea that the quality of parents should be determined
based on the genetic values of their offspring, and not their genetic values, supe-
rior parental lines could be selected, resulting in major advancements in animal
and plant breeding. By combining the phenotypic information with pedigree infor-
mation, the impact of the environment and measurement errors is reduced. The
cultivation of each (promising) breeding line is still required before it is possible to
identify and select the next parents.

With the discovery of genetic markers, genotyping became more accessible, mak-
ing it possible to apply the concept of quantitative genetics in breeding programs.
Marker-assisted selection (MAS) uses the genotype of each individual to predict its
estimated breeding value (EBV). Because the locations of most QTLs are unknown,
a genetic map is generally constructed requiring a large dataset containing geno-
typic and phenotypic data. Markers that are located close to a gene of interest are
selected and used to guide the parental selection. One way to achieve this is by fit-
ting a linear mixed effects model using the genotypic and phenotypic information
of a training population. Next, the phenotypic values of the offspring can be pre-
dicted without cultivating or phenotyping the whole breeding population, reducing
the time and cost of each consecutive breeding cycle. MAS has been used suc-
cessfully to improve single-major gene resistance (Miedaner and Korzun, 2012),
but despite the expectations, it was unable to predict phenotypic traits that were
controlled by many small-effect QTLs, reducing its applicability in quantitative ge-
netics. Genomic selection (GS) was proposed as an alternative method, using all
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the available markers over the whole genome. Based on the idea that each QTL
allele is in linkage disequilibrium (LD) with at least one or more markers, these
markers can be used to grasp and predict each QTL effect. In contrast to MAS,
GS does not require genetic mapping and only requires training data to estimate
the marker effects. To fit the linear mixed effects model, a training panel con-
taining genotypic and phenotypic data is still required. GS predicts the genomic
estimated breeding values (GEBVs) based on the genotype. This reduces the need
to cultivate and phenotype whole breeding populations. Based on the prediction
model, the genetic contribution of each individual is calculated and used to guide
the parental selection. As each parent is selected based on its genotype, the im-
pact of the environment on the prediction criterion will be reduced compared to
phenotypic selection. The prediction accuracy of the GEBVs will depend upon the
quality of the training dataset.

Genomic selection was able to improve both plant and animal breeding. However,
it also introduced new risks. Due to the high efficiency of genomic selection, meth-
ods like truncation selection that select individuals with the highest GEBVs result
in the loss of genetic variation and the fixation of several QTL alleles. Although
this may lead to high short-term genetic gains, truncation selection also leads to
the loss of favorable QTL alleles in a breeding population, reducing the maximum
reachable genetic value. Eventually, this could lead to a premature convergence
of the genetic value to a local optimum. To avoid this, new parental selection
methods are needed that preserve the genetic variation and lead to a slower but
more accurate fixation of the QTL alleles. These methods should aim to maximize
the genetic gain in the long term while preserving the short-term genetic gain.

1.2 Research questions

In genomic selection, different design choices have become so mainstream that
they are often used without questioning. In most research studies one predicts the
GEBV by using a linear mixed effects model, selects superior lines using truncation
selection, and evaluates the performance using the Pearson correlation between
the true and predicted selection criterion values.

In this dissertation, the advantages, risks, and limitations of these design choices
are assessed. The risks associated with truncation selection are studied and dis-
cussed. A hypothesis and several research questions are proposed and are an-
swered in the next chapters.

Hypothesis

The long-term genetic gain of a breeding population can be maximized by preserv-
ing or reintroducing the genetic variation in the population.
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Research questions

1. Which variables can be used to guide the parental selection?

2. How can the performance of the different parental selection methods be
compared?

3. Can the long-term genetic gain be increased by preserving the genetic vari-
ation?

4. Is the reintroduction of genetic variation required to maximize the long-term
genetic gain?

5. Can a balance be found between the short- and long-term genetic gain?

6. Can the genetic values of a breeding population be maximized after a spe-
cific number of breeding cycles?

In this thesis, with the help of a simulation study and based on the proposed re-
searched questions, new parental methods have been developed. Each method is
compared with other existing methods under similar conditions and is thoroughly
discussed in Part 2. In Part 3, the insights using these methods are used to answer
the different research questions.

1.3 Roadmap to this dissertation

This dissertation is divided into three parts: introduction and background, preser-
vation of the genetic variation in breeding programs, and conclusions and per-
spectives. In Part 1, the biological and mathematical background are thoroughly
discussed giving the reader the required insights to understand the experimental
work that will be discussed in Part 2. Finally, in Part 3, we summarize and highlight
different aspects of the research that was presented in Part 2. We recommend
to read this dissertation in a linear way, as each chapter is a continuation of the
preceding chapter. Only Chapter 6 is not required to understand Chapters 7 and
8. The roadmap is shown in Figure 1.1.

1.3.1 Part 1

The first part consists (aside from this introduction) of three chapters: the biolog-
ical background, the modelling background, and the simulation background. In
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Figure 1.1: Roadmap to this dissertation. The arrows indicate the order in which the different chapters
should be read.

each chapter, a theoretical background is given that will allow the reader to navi-
gate and understand the experimental part of this dissertation. Each subject that
is discussed in the introduction, has carefully been scaled down to avoid overload-
ing the reader with (unnecessary) information.

Chapter 2 starts with a brief history of plant breeding in which the most relevant
milestones are listed. Next, the reader is introduced to quantitative genetics and
how the genetic information and the physical appearance of an individual can be
linked to each other. Quantitative genetics is the backbone of genomic selection
and will play a central role in this dissertation. Next, sexual reproduction on a
genetic level will be discussed, explaining how genetic information can be passed
on to the next generation. Once the genetic background has been outlined, plant
breeding and the different breeding schemes are introduced. Although recurrent
breeding is consistently used in this research, other breeding schemes are also dis-
cussed. Next, the introduction and application of genetic markers in plant breeding
are discussed. Marker-assisted selection was the first strategy to use these mark-
ers to guide the parental selection followed by genome-wide association study
and genomic selection. Finally, a small overview of the top breeding companies is
given.

Chapter 3 will go deeper into the mathematical background of genomic selection.
First, the infinitesimal model is discussed, translating the biological background
into mathematical equations. Next, the mathematical background of rr-gBLUP and
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Bayes A–C models are discussed.

In Chapter 4, the knowledge of the previous two chapters is combined to construct
a simulation study that can imitate the behavior of a realistic breeding population.
The construction of the simulator, the different design choices, and parameter
values will be discussed step by step.

1.3.2 Part 2

In the second part, the author’s contributions are listed in four different chap-
ters. In each chapter, a new parental method that preserves the genetic variation
and maximizes the long-term genetic value is presented and discussed in detail.
The performance of each method is compared with another similar method under
different circumstances. Different genome constructions are used to study the ro-
bustness of each method against variation in the plant’s genome. The different
models that were discussed in Part 1 are each used to fit the linear mixed effects
model, and different methods to update the training population are considered.

In Chapter 5, the scoping method is proposed as a new parental selection method
that combines a two-part selection strategy to preserve the genetic variation while
maximizing the genetic progress of the breeding population. This is done by com-
bining two strategies, maximizing the genetic variation of the offspring and se-
lecting parents with a high genetic value. In Chapter 6, the scoping method is
further improved by using a variable scoping rate to guide the pre-selection of the
parental candidates.

In certain breeding programs, the genetic variation has already decreased due
to years of consecutive breeding. Therefore, methods like the scoping method
are insufficient, as there is barely any genetic variation left to be preserved. In
Chapter 7, the deep scoping method is then proposed as a remedy in which genetic
material is reintroduced in the breeding population resulting in a high long-term
genetic gain.

In Chapter 8, we propose and discuss different oracle methods to maximize the ge-
netic gain of the breeding population. An oracle method is a theoretical concept in
which a value of interest is maximized using the ground truth. Because the oracle
method uses data that is normally unavailable in a breeding program, these meth-
ods cannot be used in a breeding application but can give a better understanding
of how an idealistic selection could influence the long-term genetic gain.
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1.3.3 Part 3

In the third and final part, the results obtained in the previous chapters are dis-
cussed. Important conclusions and design choices are highlighted and future
prospects are discussed. An overall conclusion is given, finalizing a four-year re-
search program.
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2
Biological background

2.1 Historical background

2.1.1 The Mendelian era

Plant breeding dates back to the prehistoric period when mankind started to set-
tle, shifting from a hunter-gatherer to a settled-agricultural lifestyle. To understand
the principles of plant breeding, we need to go back to the very beginning, more
than 10,000 years ago, when the first signs of agriculture and domestication were
found in Southwestern Asia near the site of Abu Hureyra (Stuiver et al., 1998).
The increasing aridity in the region caused a declining growth of important wild
plants, decreasing the available food stock. This led to the cultivation and domes-
tication of different cereals like wheat and rye (Moore et al., 2000; Hillman et al.,
2001; Garrard, 1999). Without any specific knowledge of genetics, by selecting
plants with favorable properties, unfavorable characteristics like seed shattering
and dormancy were eliminated from the population, while favorable traits were
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accumulated over each generation. In 3000 BC, most of the major crops in the old
world (Africa, Europe, and Asia) were domesticated. This was followed by the new
world (America) only 2000 years later. Until the 17th century, crops were selected
based on visual observations. It was only in 1694 when Camerarius demonstrated
the mechanisms behind the sexual reproduction of plants in his book De sexu plan-

tarum epistola that more profound techniques could be developed (Camerarius,
1694). Kölreuter was the first to exploit this knowledge to develop the first hy-
brid offspring of the tobacco plant (Nicotiana tabacum). In the meantime, the first
breeding company was established in France by the family of de Vilmorin. Later
on, this company developed progeny testing, studying the traits of the offspring to
evaluate and guide the selection of the parental lines. Today, de Vilmorin is still an
important player in the seed market (Vilmorin, 2021). In the 19th century, Knight,
a prominent British horticulturalist and botanist studied the adaptive response of
plants and was the first to perform artificial hybridization. Later, Knight also ob-
served dominance, recessive, and segregation properties in peas, but was unable
to explain this phenomenon. It was only in 1866 that Mendel published the laws of
inheritance, explaining how traits can be inherited (Mendel, 1866). Unfortunately,
Mendel’s paper was not recognized by the scientific community until De Vries, Cor-
rens, and Von Tschermak each rediscovered Mendel’s laws of inheritance. Together
with the work of Charles Darwin, the foundation of plant breeding was set, starting
a new era, the Mendelian era.

Although the works of Darwin and Mendel are fundamental, in the 20th century,
breeders were in disagreement whether evolution was caused by continuous vari-
ation or by discontinuous variation (Mendel) (Hallauer, 2007). Different genetic
studies that were conducted using the principles of Mendel, were not able to clas-
sify all the traits in discrete classes. Mendel’s theory failed to explain the inheri-
tance of certain traits, opening the search for new theories. Yule was one of the
first to recognize that the inheritance of these traits could be explained by a com-
bination of Mendelian laws and the inheritance of quantitative traits (Yule, 1907).
After one decade, this theory was developed by R.A. Fisher, S. Wright, and J.B.S.
Haldane (Fisher, 1918; Wright, 1931; Haldane et al., 1918), finally recognizing the
complementarity between Mendel and Darwin (Hallauer, 2007). Unfortunately,
the mathematical tools needed to understand this theory were at that point rather
limited. Most plant breeders were already able to improve different crops using
pedigree information and progeny testing, and could at that moment not grasp
the implications of such a theory on current breeding populations.

2.1.2 The green revolution

The green revolution was marked by different significant advancements in agricul-
ture between 1940 and 1960. In the 1940s, due to an increasing food shortage,
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Figure 2.1: Overview of important milestones in plant breeding, genetics and quantitative genetics.
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the Rockefeller Foundation released funds to rally researchers around the globe to
tackle that problem, starting the green revolution. Soon after, other (inter)national
institutions joined. The green revolution was initiated in Mexico and spread to In-
dia and Africa. In 1970, the Nobel Peace Prize was awarded to Norman Borlaug,
the father of the green revolution. During the green revolution, new breeding
methodologies were developed resulting in high-yield varieties (HYVs) of different
cereals. Those crops were developed using conventional breeding methods, hybrid
breeding, and shuttle breeding. The latter consists of cultivating crops at different
locations and crossbreeding these varieties to obtain widely adaptable lines. The
green revolution also coincides with technological advancements, the use of artifi-
cial fertilizers, agrochemicals, and irrigation systems. The rapid advancements in
agriculture and the development of HYVs, led to several concerns about the loss of
biodiversity. Certain favorable traits that had been selected over the last decades
were lost, and the reduced genetic variability could make the HYVs crops suscep-
tible to (a)biotic stress (Kumar, 2007). As a response to this, massive seed banks
such as the Svalbard Global Seed Vault were built, preserving the genetic variation
of different crop varieties over time.

2.2 Genetic background

2.2.1 Quantitative genetics

In plant breeding, plants are crossed in the hope to pass favorable characteristics
from the parents to the next generation, improving a trait of interest which can
vary from resistance against pathogens to morphological properties (like strength,
flower color, etc.). Although plants are often selected based on morphological
properties like yield and length, by understanding how traits are passed to the
next generations, a more accurate selection of the parents becomes possible.

Plants are constructed out of different cells containing membrane-bound organelles
like a nucleus, endoplasmic reticulum, and mitochondria. The nucleus has a dou-
ble membrane that encapsulates the nuclear deoxyribonucleic acid (DNA) of that
individual. The mitochondria and chloroplasts also contain DNA, but only nuclear
DNA will be considered in this dissertation. DNA is composed out of two polynu-
cleotide chains that are coiled around each other to form a double helix that is
interconnected with two nucleobases (see Figure 2.2). There are four different
nucleobases: adenine (A), cytosine (C), guanine (G), and thymine (T). The nucle-
obases form a linear connection between the two polynucleotide chains by form-
ing hydrogen bonds. Because of their chemical structure, adenine will only bond
with thymine and guanine will only bond with cytosine and vice versa. The se-
quence in which the base pairs (bp) are present in DNA will determine the genetic
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Figure 2.2: Illustration of a DNA string containing two polynucleotide chains that are coiled around each
other to form a double helix that is interconnected with the nucleobases adenine, cytosine, guanine, and
thymine. The DNA string is further condensed into a chromosome. The chemical structure of the four
nucleobases is illustrated. The H-bonds between two nucleobases are illustrated with a red-dotted bond
and the hydrogen atom at which the DNA is bonded is marked in magenta.

properties of that individual. To a large extent, there are other properties of DNA
such as methylation that also affect the genetic properties of each individual. The
sequence of the nucleobases represents the genetic information that after tran-
scription and translation will result in the synthesis of different cell metabolites,
affecting the characteristics and functionalities of that individual. The DNA is or-
ganised into chromosomes. Each genome is constituted out of one or more chro-
mosomes. Diploid individuals have two copies of each chromosome referred to
as homologous chromosomes (Xu, 2010). Several important crops like wheat and
potato are polyploid, meaning that their genome contains more than two copies of
each chromosome. For example, hexaploid wheat contains six complete versions
of each chromosome. The length of the genome of plants can range between 82
Mbp (floating bladderwort) and 149 Gbp (Paris japonica), but only a fraction of
the genome will result in the transcription and translation of metabolites (Ibarra-
Laclette et al., 2013; Pellicer et al., 2018). The regions of DNA that code for the
translation of metabolites are called genes. Each gene has different alleles that
can influence the phenotype. Homologous chromosomes often contain the same
genes, but a different allele can be present at each chromosome. Let us assume
a gene with two different alleles: A and . A diploid plant will have one of the
two available alleles on both homologous chromosomes. The individual can be ho-
mozygous, meaning that the individual carries the same allele on both homologous
chromosomes or heterozygous if a different allele is present on both homologous
chromosomes.

According to Mendel’s laws, the phenotypic observation of a trait can be classified
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Figure 2.3: Left panel: an overview of a Mendelian trait. Right panel: an overview of a quantitative
trait. The phenotypic observations of a Mendelian trait can be categorized into different discrete groups.
A quantitative trait is often controlled by hundreds of QTLs resulting in unique phenotypes.

into discrete classes (see left panel of Figure 2.3). However, different traits like
grain yield cannot be predicted by using a discrete classification. These traits are
controlled by hundreds of genes or quantitative trait loci (QTLs), each having an
additive effect on the total grain yield (see right panel of Figure 2.3). Each QTL
has a positive or negative effect on the phenotype. The total effect of the different
QTLs is known as the genetic value (GV). The breeding value is the total effect of
the different QTLs that an individual can pass to its offspring. Because, in this dis-
sertation dominance effects and epistatic effects are assumed absent (see later),
the genetic value and the breeding value will be the same. The genetic value
will often be different from the phenotypic value. This is because the phenotypic
value is also influenced by environmental effects. Two genetically identical plants
(clones) can have a different morphology when grown in a different environment.
Mathematically, we can express the phenotype of individual  (y) as:

y = g + E , (2.1)

with g the genetic value (or genetic effect) of the -th individual and E the effect
of the environment on the phenotypic value of the -th individual. The relation-
ship between the genetic value and the environmental effect is expressed by the
heritability. Based on Eq. (2.1), the phenotypic variance (σ2

y
) can be written as:

σ2
y
= σ2

g
+ σ2

e
+ cov(g,E) , (2.2)

with σ2
g

the genotypic variance, σ2
e

the environmental variance and cov(g,E) the
covariance between the genetic and environmental effects. Assuming that the co-
variance between the genetic and environmental effects is zero, the broad-sense
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heritability (H2) can be expressed as:

H2 =
σ2
g

σ2
y

. (2.3)

The broad-sense heritability represents the fraction of phenotypic variance that
is due to the variation in genetic values. In quantitative genetics, each allele is
considered to have an additive effect on the phenotype, therefore, the narrow-
sense heritability (h2) can be used instead:

h2 =
σ2


σ2
y

, (2.4)

with σ2


the variance component of the additive values. The genetic variance
can also be influenced by other components such as dominance, epistatic, and
maternal-paternal effects. The heritability gives an indication of how the geno-
typic and environmental effects influence a trait. A heritability close to 0 indicates
that a trait is mainly controlled by environmental effects (e.g. language spoken)
whereas a heritability of almost 1 indicates that a trait is mainly controlled by the
genotype (e.g. blood group). In this dissertation, the term heritability will always
be used to refer to the narrow-sense heritability. In Table 2.1 an estimation of the
heritability for a specific breeding population of winter wheat, barley and safflower
is given. Note that the heritability is population and trait specific.

Crop Trait Heritability (h2)
Winter wheat

(Triticum aestivum)
Grain yield 0.30
Plant height 0.77

Barley
(Hordeum vulgare)

Spike number 0.49
Grain number per spike 0.24
Thousand kernel weight 0.25

Safflower
(Carthamus tinctorius)

500 seed weight 0.66
Grain yield 0.31
Plant height 0.50

Table 2.1: An estimation of the narrow-sense heritability (h2) of different traits for winter wheat (Teich,
1984), safflower (Zhao et al., 2020), and barley (Bargougui, 2016).

2.2.2 Dominance effect

In a diploid individual, the effect of the genotype on the phenotype is defined by
both alleles and the interaction between them. Five different effects can be distin-
guished: dominance, codominance, incomplete dominance, overdominance, and
underdominance (see Figures 2.4 and 2.5). The dominance effect was demon-
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strated by Mendel in which one of the two alleles is dominant (A) whereas the
other allele is recessive (a). If the dominant allele is present on at least one of
the homologous chromosomes (AA/Aa/aA), only the dominant allele will determine
the expression of the phenotype. The recessive phenotype can only be observed
when an individual contains both recessive alleles (aa).

In codominance both alleles are expressed. For example, a homozygous phe-
notype can be expressed as a flower with either white (AA) or red (aa) petals.
The heterozygous phenotype (Aa) will be expressed as an intermediate blend of
both homozygous phenotypes resulting in pink petals. In incomplete dominance,
the dominant allele cannot completely mask the phenotypic expression of the re-
cessive allele. The heterozygous phenotype will closely resemble to one of the
homozygous phenotypes. Incomplete dominance can be observed in flowers, in
which a homozygous gene will result in e.g. either a red or a white flower whereas
a heterozygous gene will result in flower with a lighter shade of red or a darker
shade of white.

Overdominance occurs when a heterozygous genotype (Aa) results in a superior
phenotype compared to the homozygous genotypes (aa/AA). In other words, the
heterozygous genotype has a higher fitness. The human sickle cell anemia is an
example of overdominance. Hemoglobin is a four-part molecule built from two α

hemoglobin chains and two β hemoglobin chains. Sickle cell anemia is controlled
by a recessive gene that interferes in the synthesis of the β hemoglobin chain re-
sulting in malformed red blood cells. Sickle cell anemia is associated with different
health problems and reduced life expectancy. However, the abnormal form of the
blood cells gives that individual an advantage against malaria, a tropical disease
caused by Plasmodium that uses the red blood cells to reproduce. A homozygous
genotype at that gene will either lead to sickle cell anemia or an increased sen-
sitivity for malaria. A heterozygous genotype, however, will reduce the negative
effects of sickle cell anemia and will still offer a partial resistance against malaria.

Figure 2.4: Illustration of absolute dominance. Absolute dominance occurs when the expression of the
dominant allele (A) suppresses the expression of the recessive allele ().
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Figure 2.5: Illustration of codominance (top left panel), incomplete dominance (top right panel), over-
dominance (bottom left panel), and underdominance (bottom right panel). In codominance, the phenotype
of the heterozygous individuals is an intermediate blend of the phenotype of both homozygous individu-
als, whereas in incomplete dominance, the phenotype of the heterozygous individuals closely resembles
to one of the homozygous phenotypes. In overdominance, the heterozygous individuals have a superior
phenotype, whereas in underdominance, the homozygous individuals have a superior phenotype.
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Underdominance is the opposite of overdominance, in which a heterozygous geno-
type has a reduced fitness compared to a homozygous genotype. Because het-
erozygous individuals have an inferior phenotype, recessive genotypes are unsta-
ble and tend to fixate one of the two alleles in the population. Underdominance
can be found in Pseudacraea eurytus, an African butterfly that contains two alleles
that each imitates the appearance of a toxic butterfly species. An individual with
a homozygous genotype at that gene will be able to imitate the appearance of a
toxic butterfly, decreasing the likelihood to be killed by his predator. Individuals
that are heterozygous at that gene will have an intermediate appearance combin-
ing morphological characteristics from both alleles, making them distinguishable
from both toxic butterfly species and thus increasing their likelihood to be eaten
by a predator.

Until now, only the interactions between different alleles at one locus or gene have
been considered. Epistasis is the interaction between different loci or genes and
was first described by Bateson (1909). For example, a gene controlling hair color
will result in a different phenotype if at another locus, the allele for baldness is
present. The phenotypic expression of the gene that controls baldness will mask
the hair color of that individual. In diploid individuals, epistatic effects can be
observed between genes or between different alleles of both genes.

2.2.3 Sexual reproduction

Sexual reproduction allows for the merging of two gametes, combining genetic
information of both parents (see Figure 2.6). Gametes are haploid cells that are
obtained after meiosis. During meiosis, the genetic information of both homolo-
gous chromosomes is crossed-over, creating two haploid gametes containing one
recombined version of each pair of homologous chromosomes. Because crossing
overs occur at random places, each gamete will contain a unique set of chromo-
somes.

2.2.4 Doubled haploid

Double-haploidization (DH) is a technique in which haploid cells undergo a chro-
mosome doubling to create a homozygous diploid individual. The haploids can be
obtained via parthenogenesis (asexual reproduction) after which chemical agents
like colchicine and acenaphthene are applied to induce the chromosome dou-
bling (Rédei, 2008). The double haploid technique reduces the required time
for the development of homozygous lines, increasing the efficiency of a breeding
scheme.
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Figure 2.6: Overview of the meiosis process. The gamete is constructed based on the haploids of the
parents. The number of crossing overs is Poisson distributed with λ, the expected rate of occurrence, equal
to the length of the chromosome in Morgan. The locations of the crossing overs are uniformly distributed
over the chromosome.

2.3 Concept of inbreeding

Inbreeding is a natural phenomenon that occurs in a finite population, where two
individuals with a common ancestor are crossed. Inbreeding is often used to cre-
ate superior homozygous lines. However, by consistently crossing closely related
individuals in a breeding population, certain deleterious recessive alleles could be
inherited from each parent and determine the expression of the phenotype, de-
creasing the fitness of the offspring.

If both parents have the same chromosomal region containing alleles of a com-
mon ancestor, then there is a possibility that both parents pass that chromosomal
region to their offspring. In other words, the offspring inherit on both homologous
chromosomes the same ancestral genetic information, which is identical by de-
scent (IBD) (see Figure 2.7). At that point, both copies of a chromosomal region
have been passed in two separate loops from the common ancestor to an off-
spring via at least two parents (Falconer and Mackay, 2000). The probability that
an individual inherits two alleles that are IBD is better known as the inbreeding
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coefficient Ft. Assuming that the ancestor is not inbred, the inbreeding coefficient
can be calculated as:

Ft = (0.5)n1+n2+1 , (2.5)

with n1 and n2 the number of generations between the parent and the common an-
cestor (Pyeritz et al., 2018). For example, if two cousins are crossed, both cousins
are separated from their ancestor (grandparents) by two generations and thus
n1 = n2 = 2, resulting in an inbreeding coefficient of 0.03125. The inbreeding
coefficient can easily be calculated using pedigree information. Since the intro-
duction of genetic markers (see Section 2.5), the inbreeding coefficient can also
be calculated using genotypic marker scores, allowing for the development of dif-
ferent parental selection methods that try to control the inbreeding coefficient in
the next generation (Brisbane and Gibson, 1995; Akdemir and Sánchez, 2016). Be-
cause the inbreeding coefficient is calculated with respect to the base population,
a different inbreeding coefficient will be obtained if the base population is chosen
at an earlier or later generation. Therefore, controlling the inbreeding coefficient is
often mismanaged as there is no safe or dangerous value for Ft (Woolliams et al.,
2015). It is more important to study and control the rate of inbreeding (ΔF) as
it determines the effective population size (Ne) such that Ne = (2ΔF)−1. Several
negative effects are associated with higher values of ΔF such as loss of heterozy-
gosity, fixation of unfavorable alleles, and the loss of favorable QTL alleles in the
breeding population.

The coancestry coefficient is the probability that two individuals have the same
allele by descent. This probability can be calculated based on pedigree informa-
tion. When genetic markers are available, the genetic relationship can be used to
obtain the coancestry coefficient. The coancestry coefficient between two individ-
uals coincides with the expected inbreeding coefficient of their offspring. A high
coancestry coefficient indicates that individuals are closely related, resulting in a
low genetic variation of the breeding population. To obtain high long-term genetic
gains, the coancestry coefficient should be controlled such that a good trade-off is
obtained between genetic progress and the preservation of genetic variation (Lind-
gren and Mullin, 1997). In literature, different strategies have been proposed to
combine genetic progress and minimize the coancestry coefficient for long-term
profits (Brisbane and Gibson, 1995; Lindgren and Mullin, 1997).

In a breeding program, the goal is to maximize the genetic gain (ΔG). According
to Rendel and Robertson (1950) the genetic gain can be written as:

ΔG = ρσg/T , (2.6)

with  the selection intensity, ρ the accuracy of selection calculated as the Pear-
son correlation between the true and predicted criterion values, σg the genetic
variation, and T the time. From this equation, the genetic gain can be maxi-
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Figure 2.7: Overview of how the ancestral genetic information is passed over different breeding cycles
(BC). In this figure, a breeding cycle represents a crossing event between two parents resulting in one
offspring. If two individuals contain the same allele that has been copied from a common ancestor, then
both alleles will be identical by descent (IBD).

mized by increasing the selection intensity (), but unfortunately, increasing the
selection intensity will also increase ΔF quadratically, leading to high coancestry
coefficients (Woolliams et al., 1993). A second approach to maximize the genetic
gain is by increasing the prediction accuracy. This can be achieved in different
ways.In summary, a good balance should be found between achieving a high ge-
netic gain and preserving the genetic variation. A low value of ΔF indicates that
the selection is far from optimal resulting in low genetic progress, whereas a high
value of ΔF indicates an intensive selection resulting in high short-term, but low
long-term genetic gain. Ideally, ΔF is kept at a constant pre-defined value while
the genetic gain is maximized. Unfortunately, it is difficult to predict the Ft+1. As-
suming that a parent contains a chromosomal region that is IBD, the offspring can
only inherit that region on one homologous chromosome. Therefore, at least two
breeding cycles are required before a region is IBD on both homologous chromo-
somes, making it difficult to calculate the impact of each parent on the inbreeding
coefficient. However, it is possible to calculate ΔF based on the genetic long-term
contribution of each individual (Wray and Thompson, 1990). The long-term genetic
contribution of the -th individual (r) is defined as the proportion of the genes of
that individual that will be present in all the individuals of the breeding population
in the long term (Woolliams et al., 1993). The genetic relationship between r and
ΔF was further corrected by Woolliams et al. (2000) for non-random mating and



2 BIOLOGICAL BACKGROUND 24

can be mathematically expressed as:

ΔF = 1/4(1 − α)
n
∑

=1

r2

, (2.7)

with α a factor derived from the Hardy-Weinberg equilibrium and n the number
of individuals. Based on this equation, methods to keep the ΔF at a constant
value should control the long-term genetic contribution of the parental population
by preserving the genetic variation in the breeding population (Woolliams et al.,
2015). Another strategy is to control the rate of coancestry.

2.4 Breeding scheme

2.4.1 Pure-line breeding

The pure-line method is one of the first breeding schemes that was adopted by
breeders. It was designed to create new homozygous superior lines, starting from
existing cultivars. Pure-line breeding can be seen as a strategic approach to in-
breeding in which inbreeding can be used to pass favorable characteristics to
the offspring while minimizing the risks. The pure-line method is illustrated in
Figure 2.8 and is mainly used for self-pollinating crops like barley and soybean.
Self-pollinating crops are fertilized by their pollen, and can pass only their genetic
material to the next generations and will therefore result in homozygous lines. As-
suming a heterozygous individual, then the degree of homozygosity after t breed-
ing cycles can be calculated as 1 − (0.5)t.

The pure-line method starts with the selection of superior lines from a genetically
broad population (Allard, 2021). Both parents should contain desirable character-
istics that are preferably complementary to each other. In the first breeding cycle,
both parents are crossed with each other, creating heterozygous F1 hybrids that
contain the genetic material of both parents. Over the next breeding cycles, the
superior lines are selected and the next generation is obtained via self-pollination.
The required time to create a homozygous line will depend upon the crop and often
varies between five and ten breeding cycles. Over the first breeding cycles, the se-
lection is mainly used to remove unfavorable traits from the breeding population.
In the subsequent breeding cycles, field tests are used to test the performance of
the progeny under different circumstances and environments (local and regional
tests) and only the most superior lines are selected. Finally, the high-performance
homozygous lines can be used for commercialization purposes.

Single-seed descent (SSD) is a breeding technique that is often used to rapidly
fixate genes in a breeding line. Plants are grown in conditions that do not allow
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Figure 2.8: Illustration of pure-line breeding in which two parents are crossed followed by 5 to 10 gener-
ations of inbreeding.

for an accurate evaluation of the yield potential. In other words, seeds can be
collected in a short time frame, but their characteristics cannot be evaluated to
guide the selection. This means that single-seed descent can result in a superior
homozygous breeding line, but it can also result in an inferior breeding line. In
other words, single-seed descent cannot guarantee that the best offspring will be
obtained but allows for a rapid evaluation of homozygous lines after hybridiza-
tion (Gajghate et al., 2018). The number of required generations will depend upon
the desired degree of homozygosity. SSD can thus be used to efficiently produce
a large number of homozygous lines in artificial conditions (Boerma and Cooper,
1975).

2.4.2 Hybrid breeding

Hybrid breeding was developed in the 20th century and has been able to increase
the yield of major crops like maize, and rapeseed (Duvick, 2005; Whitford et al.,
2013; Melchinger and Gumber, 1998b). In hybrid breeding, favorable characteris-
tics from two inbred lines are combined to produce a genetically uniform progeny
that is superior to both parents. This process is illustrated in Figure 2.9. Compared
to pure-line breeding, in hybrid breeding each parent has to come from a different
heterotic group and is therefore unrelated to each other. According to Melchinger
and Gumber (1998a) a heterotic group consists of individuals that display a simi-
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lar combining ability. These individuals can be related or unrelated to each other
and come from the same or a different population. To construct a heterotic group,
hybrid tests are required to acquire knowledge about the combining ability, hy-
brid performance, and genetic diversity (Boeven et al., 2016). Individuals can be
classified into heterotic groups based on pedigree information. Nowadays, genetic
markers like single nucleotide polymorphisms (SNPs) are used, resulting in a more
reliable classification of the inbred lines into the different heterotic groups (Qi-Lun
et al., 2008; Pejic et al., 1998).

When two homozygous parents from a different heterotic group are crossed, the
heterozygous F1 hybrids can be superior to both parents. This effect is known as
heterosis and has been described by Shull and Gowen (1952). The positive effect
of heterosis is a result of the heterozygosity of the F1 hybrids in which recessive
genes that are often associated with unfavorable traits are masked. In other words,
dominance, and epistatic effects play an import role in hybrid breeding. Assuming
that both parents are homozygous, all the F1 hybrids will have the same genetic
information. The heterosis effect has contributed to the success in hybrid breeding
and was used to improve different crop characteristics like increased vigor, fruit-
fulness, speed of development, and pest control (Beckett et al., 2017; Shull and
Gowen, 1952).

Over time, heterotic groups are improved by inter-population selection using re-
current breeding in which the mean performance and genetic variance are used
as selection criteria. There should be no exchange of genetic material between dif-
ferent heterotic groups. Based on the available parents of both heterotic groups,
the genetic values of the hybrids can be predicted based on the general combining
ability (GCA) and specific combining ability (SCA) (Sprague and Tatum, 1942). The
GCA is related to the genetic value of each parent when crossed with members
of the complementary heterotic group and the influence of the additive marker
effects on the genetic value of the offspring, whereas the SCA represents the non-
additive effects of both parents on the genetic value of the offspring. Based on
both heterotic groups, the number of possible genotypes after hybridization rapidly
increases up to millions of possibilities. Therefore, breeders often rely on prediction
models to guide the parental selection such that the performance of the hybrids is
maximized. The factorial design crosses all the available inbred lines to create a
broad population of different F1 hybrids. This design would be able to predict the
effect of future parental crosses on the genetic value of the offspring, but would
also require large datasets that are often unavailable due to limited resources.
The incomplete factorial design has been proposed as a solution, only evaluating
a subset of the hybrids and thus only requiring a smaller dataset. The top-cross
design is a third popular method to construct a training population in which individ-
uals of the first heterotic group with a varying genotype are selected and crossed
with one or more test individuals of the second heterotic group. The F1 hybrids are
evaluated and used to predict the outcome of future crosses. Once a training pop-
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Figure 2.9: Illustration of the hybrid breeding scheme in which individuals from two heterotic groups are
crossed to create a heterozygous and superior F1 hybrid.

ulation is constructed, parents from both heterotic groups are selected to create
F1 hybrids that can be commercialized.

2.4.3 Recurrent breeding

A recurrent breeding scheme is a closed cycle to increase the frequency of fa-
vorable QTL alleles in the breeding population (Orf, 2008). Over each cycle, the
favorable QTL alleles are accumulated in the population, continuously increasing
the genetic gain in the breeding population. In the case of polygenic traits, the
trait is controlled by many genes and thus when recurrent breeding is applied,
a frequency shift is observed in which the genetic variance is rearranged in the
offspring, increasing the genetic gain of the population (White, 2004). In other
words, a recurrent breeding cycle is used to improve a breeding population while
preserving the genetic variation to the extent possible. Different types of recurrent
breeding have been developed over time: simple recurrent selection, recurrent
selection on GCA, recurrent selection on SCA, reciprocal recurrent selection, and
marker-assisted recurrent selection.

In simple recurrent selection (SRS), parents are selected from a breeding popula-
tion based on their phenotype after which a new breeding population is obtained
by intermating the selected parents. This method was already used more than
10,000 years ago to improve the first crops, but over time, the simple recurrent
selection was replaced by other more efficient breeding schemes (White, 2004).
The recurrent selection on GCA (RSGCA) or the half-sib recurrent selection uses
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heterozygous testers to increase the genetic gain of a population and is most
effective in a breeding population with incomplete dominance. The recurrent se-
lection on SCA (RSSCA) uses homozygous testers to select and combine individu-
als of a breeding population according to the SCA and will thus be more efficient
for traits that are controlled by genes with overdominance or when the breeding
value is also governed by non-additive effects like epistasis. The reciprocal re-
current selection (RRS) combines both GCA and SCA to increase the genetic gain
of two source populations simultaneously (Comstock et al., 1949). The RRS uses
heterozygous testers and is efficient with incomplete dominance, complete domi-
nance, and overdominance. The marker-assisted recurrent selection uses e.g. SNP
markers to guide the selection in a recurrent breeding cycle. First, parents are
intermated to create F1 hybrids. After two or three generations of single-seed de-
scent, the new breeding population is obtained from which new parents can be
selected (see Figure 2.10).

2.4.4 Pedigree method

The pedigree method is often used by breeders to improve self-pollinating and
cross-pollinating plants. The pedigree method is used to develop homozygous
lines starting with F2 individuals. The development of those F2 individuals is often
done using other methods that are less labor-intensive. Over each breeding cycle,
the pedigree method will select the best families (offspring that occur from the
same parental cross). From the selected families, the seed of each individual is
cultivated in a row and the most prominent rows are selected. Finally, the superior
individuals are selected from these prominent rows. The selected individuals are
then crossed and the offspring is evaluated (Capettini, 2009). In the last breeding
cycles, the breeding lines that survived the different selection rounds are tested in
different environments before commercializing the superior inbred lines.

2.5 Genetic markers

2.5.1 The introduction of genetic markers in plant
breeding

The crops available today are the result of decades of breeding. Before biotechno-
logical techniques were available, breeders used morphological characteristics to
select the most successful individuals of a breeding population. Therefore, breed-
ers needed to grow and monitor every single individual before making a final se-
lection, making this an expensive and time-consuming process. With the discov-
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Figure 2.10: Illustration of the reciprocal recurrent selection scheme. First, parents are crossed to create
F1 hybrids. After two (or three generations) of single-seed descent, the new breeding cycle is obtained
from which new parents can be selected.

ery of genetic markers, genetic information can be mapped and used to guide
and improve current breeding programs. A genetic marker can be a chromosomal
landmark or allele that traces a specific DNA region, a specific DNA sequence at a
known position on the genome, or a gene that can be used as a probe to detect the
presence of a specific nucleus, chromosome, or locus (King and Stansfield, 1997).
In general, three different classes of genetic markers are distinguished: morpho-
logical, biochemical, and molecular markers. The most primitive ones are morpho-
logical markers, which are based on morphological characteristics. Biochemical
markers are based on the detection of biochemical metabolites like the production
of certain proteins or enzymes. Both the morphological and biochemical mark-
ers are limited in number and often require a fully developed organism, reducing
the usefulness of these markers (Winter and Kahl, 1995). Molecular markers are
used to detect variation in certain DNA regions and can, therefore, be applied
at the earliest development stage of any organism. Different molecular markers
are available like single nucleotide polymorphisms (SNPs) and simple sequence
repeats (SSRs).

When a marker is located close to a gene (or QTL) of interest, that marker and
gene could be in linkage disequilibrium (LD), meaning that both the gene and the
marker are often inherited together. In that case, the marker acts as a proxy to
monitor the presence or absence of that gene in the genome. For biallelic SNP
markers, the LD will remain the same for different allelic combinations between
two loci, however, when multiallelic markers such as SSRs are used, the LD value
between two loci will depend on the allelic combination. Based on the infinitesi-
mal model (see Subsection 3.1), a trait of interest is controlled by many different
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QTLs. Because most QTL locations and effects are unknown, markers are used
instead to predict the trait of interest via marker-assisted selection or genomic se-
lection. The introduction of molecular markers in breeding programs has different
advantages (Roychowdhury et al., 2013):

1. Time saving: with molecular markers, the genetic information of an individ-
ual can be collected in every stage of its development making it possible to
select and develop individuals in an earlier stage and thus reducing the time
per breeding cycle.

2. Consistency: compared to morphological characteristics, molecular markers
are not influenced by environmental effects, resulting in a more consistent
evaluation of the individuals.

3. Biosafety: molecular markers can work as a proxy to indicate if disease re-
sistance is present or absent without the need to isolate the gene itself or to
inoculate the pathogen.

4. Efficiency: markers make it possible to evaluate the different progeny lines in
an early stage, resulting in more efficient breeding as unsuccessful breeding
lines can be rejected directly.

Molecular markers were able to improve the genetic gain in several breeding pro-
grams and helped to introduce several new characteristics like tolerance to abi-
otic stress, resistance to pathogens, and agronomic characteristics in a breeding
population (Tester and Landridge, 2010; Song et al., 2003). Using molecular mark-
ers, different variables like the inbreeding coefficient, allele frequency, and ge-
netic relationship of the breeding population can be calculated and used to guide
the parental selection, further optimizing current breeding programs (Akdemir and
Sánchez, 2016).

2.5.2 Genetic markers and their applicability

Different types of markers are available to translate the genetic information present
in the genome of an individual. SSRs, also known as microsatellites, are short
strings of DNA containing one to six nucleotides that are repeated several times (Ap-
pleby et al., 2009). In plants, SSRs are widely spread throughout genic and inter-
genic regions of the genome and occur with a frequency of approximately 1 SSR
per 50 kbp (Morgante et al., 1994; Cox and Mirkin, 1997). The number of repeats
is specific and can be influenced by mutations. These mutations are caused by
errors made by the DNA polymerase enzyme during DNA replication, which often
results in the addition or subtraction of a repeat unit (Strand et al., 1993). Because
SSRs are abundantly present in the genome of plants and are highly polymorphic,
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SSRs are often used as markers in MAS, genetic diversity analyses, and genetic
mapping (Ashkani et al., 2012; Appleby et al., 2009).

SNPs are the most abundant markers present in a genome. An SNP is a locus at
which in a certain fraction of the population the nucleotide at that locus is substi-
tuted with another nucleotide. The different nucleotides that can be detected in a
SNP are referred to as the marker alleles. Biallelic SNP markers will always have
two possible nucleotides at each locus. Because SNPs have a low mutation rate
and remain stable during evolution, they are often used as genetic markers in a
wide range of applications such as MAS, GS, and LD studies.

2.5.3 Genotyping techniques

The simplest and most popular way to obtain the genotype of SSR markers is by
using PCR technology (Weber and May, 1989). First, a specific primer is required.
Primers are oligonucleotides and are specific for each SSR marker. For most crops,
SSR primers are already available in public libraries, otherwise, they have to be
built from scratch. The primers are complementary to a region flanking the SSR.
During PCR, the SSR region is amplified (Mason, 2015). Next, the amplified frag-
ments can be visualized using capillary electrophoresis.

GeneChip assays are based on the hybridization of allele-specific oligonucleotide
(ASO) probes with a specific DNA fragment to distinguish SNP alleles. To do so,
the difference in thermal stability between a perfectly matched and mismatched
ASO probe and the target DNA is used. Because it is difficult to achieve an optimal
hybridization, 40 different ASOs are used to identify each SNP loci. When hybridiza-
tion occurs, a fluorescence pattern can be observed and used to distinguish SNP
alleles (Chagné et al., 2007).

Illumina Microarray Technology uses silica microbeads that contain thousands (or
even millions) of genotypes or oligonucleotides that can be used to identify the
genotype of an individual. The DNA fragments are added to the microarray. Each
probe on the microbead will bind with a complementary DNA fragment that is
flanking a marker of interest. Next, allele specificity is conferred by extending
each hybridized probe with one labeled nucleotide using DNA polymerase. After
exciting the microbeads with a laser, the intensity of that signal can be used to
calculate the allelic ratio at each locus (Illumina, 2021).

2.6 Phenotyping

The term phenotyping was coined by Johannson during his research on the inher-
itance of seed size in beans (Johannsen, 1903). In plant breeding, the phenotype
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can refer to a wide range of traits. Those traits can range from grain yield to the
presence of certain cell metabolites. In today’s breeding programs, elite plants are
often selected based on hundreds of measurements. To do so, high-throughput
phenotyping can be used, often using non-destructive sensors and imaging tech-
nology (Furbank and Tester, 2011). Over time, phenotyping using sensors and
cameras has become more affordable due to a decrease in the cost of the required
equipment (Deery et al., 2014). Different sensors like thermography point sensors,
drones, and phenomobiles have been successfully used in the field (Walter et al.,
2015). In greenhouses, robots can be deployed to measure different characteris-
tics in an automated way (Leister et al., 1999).Phenotyping is still an expensive
process, but with the development of different automated phenotyping platforms,
we can expect that the cost will further decrease over the next years.

2.7 Marker-assisted selection

Marker-assisted selection (MAS) uses molecular markers that are in strong LD with
one or more QTL alleles. Although it seemed that MAS could revolutionize animal
and plant breeding, it is mainly constrained to monogenic traits that are controlled
by major QTL effects (Xu and Crouch, 2008; Dekkers and Hospital, 2002). Because
MAS is able to accurately predict these traits, it plays a significant role in the back-
crossing of major genes in elite varieties (Holland, 2004; Heffner et al., 2009). MAS
makes it possible to evaluate individuals at an early development stage, reducing
the overall cost, selecting for low-heritability traits, and improving the selection by
eliminating environmental, pleiotropic, or epistasis effects (Roychowdhury et al.,
2013). Unfortunately, MAS has also several limitations. First, because MAS uses
molecular markers that are in strong LD with QTLs, linkage mapping is required
to find such markers. Therefore, huge datasets with different breeding popula-
tions are needed. Breeding programs are often limited in funds and often use
a biparental population with a limited size. By consequence, such datasets are
underpowered causing a poor estimation of the QTL positions and reduce the ap-
plicability of MAS in most breeding programs (Dekkers and Hospital, 2002; Schön
et al., 2004). Second, MAS fails to grasp the effect of many small-effect QTLs,
which is essential for the successful development of several crop varieties con-
taining complex quantitative traits (Lande and Thompson, 1990). Third, the use of
a dataset with a biparental population that does not represent the current breed-
ing population could result in a poor estimation of the QTL positions (Jannink et al.,
2001; Sneller et al., 2009).
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2.8 Genomic selection

Genomic selection (GS) is an improved version of MAS in which the challenges im-
posed by MAS for quantitative traits are overcome. In contrast to MAS, GS does
not reduce the number of markers to those that are associated with a large-effect
QTL but uses high-density markers that are equally distributed over the whole
genome. When high-density markers are used, each QTL should be in LD with at
least one marker. The remaining markers will then be able to capture the remain-
ing genetic variance, leading to an accurate estimation of large- and small-effect
QTLs (Heffner et al., 2009, 2010; Beyene et al., 2015). GS still needs a training pop-
ulation to estimate the marker effects. A training population contains genotypic
and phenotypic information of individuals and is used to estimate all the marker
effects simultaneously. Next, the genomic estimated breeding values (GEBVs) of
a breeding population can be calculated. In contrast to the training population,
only genotypic information is required (Meuwissen et al., 2001). The GEBVs can
then be used as a selection criterion and replace the need for phenotypic data.
The performance of the GEBVs can be calculated based on a test population. This
population contains the genotype and phenotype of individuals that have not been
used in the training population. Based on the predicted marker effects, the GEBVs
can be calculated and compared with the phenotype. The prediction accuracy is
usually defined as the Pearson correlation between the GEBVs and the phenotypic
values. Over time, a breeder should update the training population to keep an
accurate estimation of the marker effects (Neyhart et al., 2017). GS was able to
revolutionize current breeding programs in both plant and animal breeding (Hayes
et al., 2009; Heffner et al., 2009). Not only did GS improve the genetic gain in
different major crops, but it also reduced the need for phenotypic data, which is
not only costly to collect but also requires fully developed individuals. By using
the GEBVs as a selection criterion, an individual can already be evaluated as a
seedling, increasing the time efficiency of most breeding programs.

GS uses a large number of markers and, therefore, there are often more marker
effects that need to be estimated than there are observations available in the train-
ing population. Certain markers can also be correlated to each other resulting in
the problem of rank deficiency. One could consider reducing the number of mark-
ers, but this would conflict with the main idea of GS in which marker selection is
avoided (Meuwissen et al., 2001; Jannink et al., 2010). When predicting the marker
effects, overfitting should be avoided at all cost. Overfitting can occur when the
estimated marker effects captures the residual noise in the model, leading to an
accurate prediction of the individuals present in the training population but fails to
predict the GEBVs of individuals in the test population. Different methods like Best
Linear Unbiased Prediction (BLUP), ridge regression, Bayes A–C models, etc. have
been proposed to predict the marker effects while avoiding overfitting. In the next
paragraph, a short overview of the different models is listed. In the next chapter,
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each model will be discussed in more depth.

The genomic Best Linear Unbiased Predictor (gBLUP) is commonly used in GS and
estimates the marker effects as a random effect. BLUP assumes that the marker
effects are normally distributed with a mean 0 and a variance component σ2


.

Bayes A–C models are based on the assumption that each marker effect has a
different variance component, that certain markers do not affect the phenotype,
or that certain marker effects follow a Student t-distribution. Different machine
learning techniques like support vector machines (SVM) and random forest (RF)
have also been used, but their application in GS is limited and will therefore not be
considered.

Genomic selection facilitates the rapid selection of superior genotypes and ac-
celerates the progress in plant breeding. By taking into account environmental
interactions, dominance, and epistatic effects, GS is widely used to improve phe-
notypic traits in different major crops (Sweeney et al., 2021). GS is also used for
improving multiple traits at once or to select individuals that are resistant to a
certain pathogen or (a)biotic stress (Lenz et al., 2020; Pincot et al., 2020). Aside
from plant breeding, genomic selection is also used in animal breeding to improve
the livestock, but also to reduce their environmental impact (Pryce and Mekonnen,
2020).



3
Mathematical background

Before being able to simulate a breeding population, the biological background
needs to be translated into mathematical equations. Therefore, in this chapter,
the mathematical background of quantitative genetics and genomic selection is
discussed. The infinitesimal model translates the biological background of quanti-
tative genetics into mathematical equations that will be used in the next chapters
to simulate a breeding population. Next, the linear mixed effects model is in-
troduced. This model can be used to predict breeding values of the genotyped
members of a breeding population. To do so, the marker effects (and variance
components) are estimated using the ridge regression genomic Best Linear Unbi-
ased Predictor (rr-gBLUP) or Bayesian models.

3.1 The infinitesimal model

To develop new breeding methods, it is not only important to collect sufficient
data of existing breeding populations, but also to implement these methods in
field experiments. Taking into account that the number of breeding cycles in plant
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breeding is limited to only a few per year, it can take a considerably long time
before the effects of these methods can be studied. The infinitesimal model is
a simple and robust model that simulates the behavior of a breeding population
over different breeding cycles. By simulating a breeding population, the effects of
a breeding method can be studied in a shorter time frame and under different con-
ditions. The infinitesimal model or polygenic model assumes that a quantitative
trait is controlled by an infinitely large number of independent additive small-effect
QTLs (Bulmer, 1971; Fisher, 1918). In a large population, a quantitative trait of the
offspring is normally distributed with a mean genetic value situated between the
genetic value of both parents. The true breeding value () of individual  is defined
as:

 =
L
∑

k=1

Zkqk , (3.1)

with L the number of QTLs, Zk the genotype of the -th individual at the k-th QTL
and qk the k-th additive QTL effect. This equation can be rewritten as:

 =
L
∑

k=1

Xk , (3.2)

with Xk the contribution to the genetic value of the k-th QTL of the -th individ-
ual (Lange, 1997). Assuming that each locus has a similar QTL effect, then, ac-
cording to the central limit theorem,  approximately follows a multivariate normal
distribution (Lange, 1978; Fisher, 1918).

The phenotypic value of a trait is defined as:

y =  + E , (3.3)

with y the phenotypic value of the -th individual and E the environmental effect
of the -th individual. The simplest way to define the environmental contribution
is by assuming that E follows a normal distribution N (0,ϒ) with ϒ = σ2

E
n, σ2

E
the environmental variance and n the identity matrix of dimension n. Asides the
environmental contribution, phenotypic data often contains measurement errors,
therefore, a residual error is modeled according to a normal distribution N (0,R)
with R = σ2

e
n and σ2

e
the residual variance. Taking into account the residual error

(ε), the phenotypic value of an individual  is:

y =  + E + ε . (3.4)
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3.2 Linear mixed effects model

A linear regression model is a statistical approach to express the mathematical
relationship between different variables using the equation:

y = Xβ + ε , (3.5)

with y a vector containing n different observations, X the incidence matrix with
dimension n × (p + 1), β a vector containing p + 1 fixed effects and ε the residual
error. The variance of the observations (y) can be calculated as: vr(y) = vr(ε) =
V. For example, let us assume that there is a linear relationship between the milk
production and the body mass per cow and between the milk production and the
amount of digested feed per cow. The milk production (y) can then be predicted
with X, a matrix containing in the first column only ones, in the second column
the mass of each cow, and in the third column the amount of digested feed of
each cow. β will contain three variables, the averaged milk production per cow,
the effect of the body mass on the milk production and the effect of the amount of
digested feed on the milk production. Normally, fixed effects (β) are unknown and
need to be estimated with the help of a training population containing data about
the milk production, body mass, and feed quantity for a population of cows. The
fixed effects are estimated using the generalized least square estimator (GLSE):

GLSE(β) = (X′V−1X)−1X′V−1y , (3.6)

with V the covariance matrix. Because V is in most cases unknown, the ordinary
least squares (OLS) is more commonly used. Assuming that V = σ2


, the covari-

ance matrix is simplified and fixed effects can easily be predicted as:

β̂ = (X′X)−1X′y , (3.7)

with β̂ the estimated fixed effects. In vivo, predicting milk production based on
feed quantity and body mass is difficult, but the use of genetic markers has been
proven useful to predict complex traits such as milk production. Based on the
infinitesimal model, the phenotypic values (y) can be calculated as follows:

y = 1nμ + Q + ε , (3.8)

with 1n a vectors of size n containing ones, μ the phenotypic mean, Q a matrix
containing the genetic information of the QTLs (coded as -1, 0, and 1),  the QTL
effects and ε the residual error (Goddard, 2009; Goddard et al., 2011; Hayes et al.,
2009). The genetic information (Q) of the QTLs is often unknown and difficult
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to estimate, therefore, genomic markers covering the whole genome are used
instead. Because in genome-wide regression, the numbers of markers are usually
much larger than the number of observations, a problem of rank deficiency can
occur, where marker effects cannot be estimated at the same time due to low
degrees of freedom (Neves et al., 2012). Therefore, marker effects are predicted
using a linear mixed effects model, treating the marker effects as random effects
and not as fixed effects (Meuwissen et al., 2001). The linear mixed effects model
is expressed as:

y = 1nβ + Z + ε , (3.9)

with β the fixed effect containing the phenotypic mean, Z is the incidence matrix
containing the genotype of each individual (coded as -1, 0, and 1) and  the ad-
ditive marker effects with length k. The additive marker effects follow a normal
distribution with a mean zero and a covariance matrix G. The residual errors ε

also follow a normal distribution with a mean zero and a covariance matrix R. As-
suming that the random effects and the residual error are independent from each
other, the variance of y is simplified to:

vr(y) = ZGZ′ + R , (3.10)

with G = vr() and R = vr(ε). The linear mixed effects model can also be
expressed in matrix form:
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. (3.11)

The additive marker effects and mean phenotypic value need to be estimated,
therefore, a handful of methods are available. Although rr-gBlup is the most com-
monly used method, an overview of the different methods is listed in detail in the
next paragraphs.

3.3 The genomic best linear unbiased predic-
tor

The Best Linear Unbiased Predictor (BLUP) was introduced by Henderson (1963)
predicting phenotypic values of a breeding population using pedigree information.
Over time, pedigree information was replaced by molecular markers leading to the
development of the genomic Best Linear Unbiased Predictor (gBLUP). The introduc-
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tion of molecular markers combined with gBLUP has improved livestock breeding
programs, leading to a 20-50% increase of the prediction accuracy (VanRaden
et al., 2009). While gBLUP uses a linear model to predict the phenotype, non-
linear models like Bayes A, Bayes B and Bayes C models have also been proposed.
The use of both linear and non-linear models have resulted in similar prediction
accuracies (Moser et al., 2009), but gBLUP has a better performance compared
with the Bayesian models when many small-effect QTLs are present. By simulta-
neously predicting all the marker effects at once, higher prediction accuracies are
observed compared with single marker regression (Yang et al., 2010). To simulta-
neously predict all the marker effects, a linear mixed effects model (see Eq. (3.9))
is used under the following assumptions:

�



ε

�

∼ N
�

0,

�

G 0

0 R

��

, (3.12)

y ∼ N (Xβ,V) ,

V = ZGZ′ + R ,

with X a vector of size n containing ones, G = σ2

k and R = σ2

e
n. The mean

squared error of the linear mixed effects model is given as:

E[( − ̂)2] =
∫∫

(̂ − )2ƒ (,y)dyd , (3.13)

with ƒ (,y) the joint probability density function of the additive marker effects 
and the phenotypic values y, which is given as:

ƒ (,y) =

exp

�

− 12
�

′ (y − Xβ)′
�

−1
�



y − Xβ

��

(2π)(n+k)/2||1/2
, (3.14)

where

 =

�

G GZ′

ZG V

�

,

and k the number of elements in vector . Assuming that V is invertible, the
determinant of  can be calculated as:

|| = |V||G − GZ′V−1ZG| , (3.15)

and therefore, −1 can be calculated using the blockwise inversion:

−1 =

�

W −WGZ′V−1

−V−1ZGW V−1 + V−1ZGWGZ′V−1

�

, (3.16)
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with

W = (G − GZ′V−1ZG)−1 . (3.17)

The joint density function can then be rewritten as:

ƒ (y,) =
exp

�

− 12
�

(y − Xβ − Z)′R−1 (y − Xβ − Z) + ′G−1
�

�

(2π)(n+k)/2|R|1/2|G|1/2
. (3.18)

To minimize the mean squared error, Eq. (3.18) is maximized by taking the partial
derivatives with respect to β and :

∂ƒ (y,)

∂β
= (X′R−1y − X′R−1Xβ − X′R−1Z) ƒ (y,) , (3.19)

∂ƒ (y,)

∂
= (Z′R−1y − Z′R−1Xβ − Z′R−1Z + G−1) ƒ (y,) . (3.20)

An optimum can be found by setting both derivatives to zero, which results in the
following equations:

X′R−1Xβ̂ + X′R−1Ẑ = X′R−1y , (3.21)

Z′R−1Xβ̂ + (Z′R−1Z + G−1)̂ = Z′R−1y , (3.22)

with β̂ and ̂ the estimated values for β and , respectively. These equations are
known as the mixed model equations (MME) and can be written in a matrix form:

�

X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

��

β̂

̂

�

=

�

X′R−1y

Z′R−1y

�

. (3.23)

The MME are commonly simplified by assuming that both the molecular marker ef-
fects and the residual effects are independent and that both variance components
σ2


and σ2
e

are homoscedastic:

vr() = G = σ2

k , vr(ε) = R = σ2

e
n . (3.24)

By taking into account these assumptions, the MME are further simplified to:

�

X′X X′Z

Z′X Z′Z + δ

��

β̂

̂

�

=

�

X′y

Z′y

�

, (3.25)

with δ = σ2
e
/σ2


. If initial values for both variance components are known, both β

and  can be calculated by solving Eq. (3.25). Because δ can be seen as a pe-
nalization factor that controls the sum of squares of the marker effects (), this
approach is often referred to as ridge regression gBLUP (rr-gBLUP). The values for
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both variance components can be estimated iteratively via the Restricted Maxi-
mum Likelihood method (REML). By rewriting Eq. (3.12), G and R can be written
in function of γ and ϕ, two vectors containing the variance components of respec-
tively G and R:

�



ε

�

∼ N
�

0, σ2
�

G(γ) 0

0 R(ϕ)

��

. (3.26)

Based on the probability density function of the phenotypic values y ∼ N (Xβ, σ2V)
the log-likelihood function is given as:

(β, σ2,γ,ϕ|y) = −
1

2

�

1

σ2
(y − Xβ)′V−1(y − Xβ) + n log(2πσ2) + log(|V|)

�

. (3.27)

The log-likelihood function can be differentiated with respect to β and the variance
components. Differentiating the log-likelihood with respect to β and equating it to
zero will result in the GLSE (see Eq. (3.6)). Compared to the maximum likelihood
estimator, REML only maximizes the part of the log-likelihood that is invariant to
the fixed effects. The derivation of REML is beyond the scope of this thesis, but
can be found in De Coninck et al. (2014) and Patterson and Thompson (1971). The
REML log-likelihood is given as:

REML(σ2,γ,ϕ) = −
�

(n − 1) log(σ2) + log|G| + log(|R|) + log(|C|) +
y′Py

σ2

�

, (3.28)

with n the number of observations, k the number of markers, C the coefficient
matrix of the MME (see Eq. (3.25)) and:

P = V−1 − V−1X(X′V−1X)−1X′V−1. (3.29)

By making the following assumptions: σ2 = σ2
e
, R = n, G = γk and γ = σ2


/σ2

e
, the

REML log-likelihood can be written in function of the two variables σ2
e

and γ:

REML(σ2e , γ) = −
�

(n − 1) log(σ2
e
) + k log(γ) + log(|C|) +

y′Py

σ2
e

�

. (3.30)

Both C and P only depend on γ and, therefore, based on the REML log-likelihood,
if γ is known, a solution for σ2

e
exists that maximizes the log-likelihood:

σ2
e
=
y′Py

n − 1
. (3.31)

Differentiating the REML log-likelihood with respect to γ results in the score func-
tion that will be used in a next step to find both variance components iteratively.
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The score function is mathematically expressed as:

REML

∂γ
= −

�

k

γ
−
tr(CZZ)

γ2
−
̂′̂

σ2
e
γ2

�

, (3.32)

with CZZ the lower right block of the inverse of C. Because the score function
cannot be used to directly calculate γ, an iterative scheme is used in which both
the value for γ and σ2

e
are approximated. The Newton–Raphson method is a well-

known iterative method that can maximize the log-likelihood relying on the first
differentiation of the log–likelihood with respect to the different parameters and
the Hessian matrix. The gradient is given as:

∇REML(σ2
e
,γ) =







∂REML(σ2e ,γ)
∂σ2

e

∂REML(σ2e ,γ)
∂γ






, (3.33)

and the Hessian matrix is given as:

H =





∂2

(∂σ2
e
)2

∂2

∂σ2
e
∂γ′

∂2

∂σ2
e
∂γ′

∂2

∂γ∂γ′



 REML(σ2e , γ) . (3.34)

Because the construction of the Hessian matrix may be tedious, it can be replaced
by the Fisher information matrix which is easier to construct (Patterson and Thomp-
son, 1971).

The iterative scheme of Newton–Raphson can be written as:

κ +1 = κ  − H−1 ∇REML(κ ) , (3.35)

with κ  a vector containing γ and σ2
e

at the -th iteration, H the Hessian matrix
of REML at the -th iteration and ∇REML(κ ) the gradient of the REML log-likelihood
with respect to κ .

When the Hessian matrix is replaced by the Fisher information matrix, the calcula-
tion of the trace of a large-sized matrix is still required. To avoid this, the average
between the observed and expected Hessian can be computed, resulting in the
averaged information matrix (AI-REML) (Thompson et al., 2003):

HA =
1

σ2
e

Q′PQ , (3.36)

with
Q =

h

y
σ2
e

Ẑ
γ

i

. (3.37)
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Substituting H−1 with H−1A, in Eq. (3.35) results in the AI-REML. Based on a dataset
of a breeding population containing phenotypic values (y) and genotypic informa-
tion (Z) coded as -1, 0 or 1, , β and both variance components can be estimated
by following the next steps:

1. Set an initial value for γ. Next, ξ is defined, such that when the relative
update of γ becomes smaller than ξ, convergence is reached and a solution
for β, , σ2


and σ2

e
is found.

2. The MME (see Eq. (3.25)) are constructed. Using the Cholesky decomposi-
tion, a solution for β and  is found.

3. Based on the coefficient matrix (C) of the linear mixed effects equations, an
analytical solution for σ2

e
can be calculated using Eq. (3.31).

4. Based on ̂ and the analytical solution of σ2
e
, Q can be calculated according

to Eq. (3.37).

5. The matrix P is calculated according to Eq. (3.29) assuming that V = ZGZ′+
R with G = γ k and R = n. Next, HA is calculated according to Eq. (3.36).

6. The score function is calculated using Eq. (3.32) and multiplied with the
inverse of HA resulting in a 2× 2 update matrix. Next, the sum of the lower
right element of the updated matrix and γ is taken yielding the value for
γ+1 which will be used in the next iteration. If γ+1 has a negative value,
the relative update (the lower right element of the updated matrix) is divided
by 2 until the new value for γ+1 has a value greater than zero.

7. Repeat step 2 to step 6 until convergence, which is reached when the rela-
tive update becomes smaller than ξ.

In this dissertation, the additive marker effects are estimated using the rrBLUP

package in R (Endelman, 2011). The rrBLUP package uses spectral decomposition
to maximize the log-likelihood function. When β = (X′V−1X)X′V−1y and σ̂e =
y′Py
n−1 , the log-likelihood function is maximized. Using spectral decomposition, the
eigenvalues λ can be obtained from the following equation:

σ2
e
= (U′y)′dig[(λ1 + γ, ..., λn−1 + γ)]−1U′y

=
n−1
∑

s=1

η2
s

λs + γ
,

(3.38)

with U a eigenvector matrix of size n × (n − 1), λs the s-th eigenvalue and η is
defined as U′y = [η1, η2, ..., ηn−1] (Kang et al., 2008). The restricted maximum
likelihood can be rewritten such that:



3 MATHEMATICAL BACKGROUND 44

ƒREML(γ) =
1

2

�

(n − 1)log
�

n − 1

2π

�

− (n − 1)

−(n − 1)log

 

n−1
∑

s=1

η2
s

λs + γ

!

−
n−1
∑

s=1
log(λs + γ)



 , (3.39)

with ƒREML(γ) the rewritten log–likelihood function. The differentiation of the log–
likelihood function is given as:

ƒ ′REML(γ) =
n − 1

2

∑

s η
2
s
/(λs + γ)2

∑

s η
2
s
/(λs + γ)

−
1

2

∑

s

1

λs + γ
. (3.40)

The parameter γ can be obtained using the Newton–Raphson method. Because
the spectral decomposition needs to be calculated only once, this method has a
lower time complexity compared to the classical REML using the Newton–Raphson
method. The time complexity of REML is O(rn3) while using spectral decomposi-
tion the time complexity becomes O(n3+ rn) with r the number of iterations (Kang
et al., 2008).

3.4 Gibbs sampling

The Gibbs sampling is a special case of the Metropolis-Hastings algorithm to obtain
a sequence of observations from a multivariate distribution (Geman and Geman,
1984). Gibbs sampling is used when it is difficult to sample from the multivariate
distribution, but not from the conditional distributions. The sampling procedure
can be divided into three steps:

1. Initialize X11

2. Sample X12 ∼ P(X2|X
1
1)

3. Sample X21 ∼ P(X1|X
1
2)

4. Repeat Steps 2 and 3 k times

The BGLR package in R is used in the next part to estimate the additive marker ef-
fects (̂) using Bayesian models. In the case of Bayes Ridge-Regression (BRR), the
Gibbs sampler is used to estimate ̂, using the posterior probability distributions
and initial values for β, σ2, γ, and ϕ. Next, the different variables are repeatedly
sampled from their conditional distributions:
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Sample β+1 from p(β|σ2 , γ, ϕ, y);

Sample σ2
+1

from p(σ2|β+1, γ, ϕ, y);

Sample γ+1 from p(γ|β+1, σ2 +1, ϕ, y);

Sample ϕ+1 from p(ϕ|β+1, σ2 +1, γ+1, y);

with  ∈ {1,2, ..., k} (Adeniyi and Yahya, 2020). The Gibbs sampler requires an
initial value for each variable. This could interfere with the sampling over the first
iterations resulting in an unreliable approximation of the multivariate distribution.
To resolve this, the first b iterations referred to as burn-in are not considered. Only
after the burn-in, k new iterations are generated to approximate the multivariate
distribution. The BRR should result in a similar estimate of the variance compo-
nents as rr-gBLUP.

3.5 Bayesian models

In this dissertation, the additive marker effects and variance components of the lin-
ear mixed effects model are estimated using rr-gBLUP. Other models like Bayes A,
Bayes B, and Bayes C have also been studied (Meuwissen et al., 2001). The three
different Bayesian models are implemented using the BGLR package in R (Pérez
and de los Campos, 2014).

3.5.1 Bayes A model

The Bayes A model estimates the variance component of each marker (Meuwissen
et al., 2001). Compared to rr-gBLUP, the additive marker effects do not have a
common variance. Each marker  has a variance vr() = σ2


. The variance

component σ2


is sampled from an inverted chi-square distribution χ−2(ν, S) with
ν the number of degrees of freedom and S a scaling parameter (Wang et al., 1993).
The Bayes A model cannot be estimated directly, however, Gibbs sampling can be
used.

3.5.2 Bayes B model

In vivo, not all marker loci affect the trait of interest. Therefore, in the Bayes B
model, the Bayes A model is extended to account for the possibility that a genetic
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marker has a zero effect (Meuwissen et al., 2001). The marker variance is then
defined as:

¨

σ2

= 0, , with probability π

σ2

∼ χ−2(ν, S) , with probability (1 − π)

. (3.41)

Similar as the Bayes A model, the Bayes B model uses a Gibbs sampling algorithm
to estimate model parameters, including the additive marker effects.

3.5.3 Bayes C model

The Bayes C model assumes that a fraction (π) of the marker effects has a zero
effect while the other fraction (1−π) follows a multivariate normal distribution with
a common marker effects variance N (0, σ2


k) (Lorenz et al., 2010; Habier et al.,

2011). The linear mixed effects model is expressed as:

y = Xβ + Z + ε , (3.42)

The parameter π needs to be estimated. If π is zero, the Bayes C model reduces
to rr-gBLUP.

3.6 Prediction accuracy

In genomic selection, the prediction accuracy is often measured as correlation be-
tween the GEBVs and the true breeding values (Calus et al., 2008; Rabier et al.,
2016). The correlation between the GEBVs (ĝ) and the genetic values (g) is calcu-
lated by means of the Pearson correlation (ρ):

ρ(ĝ,g) =
cov(ĝ,g)

σĝσg
, (3.43)

with σĝ the standard deviation of the GEBVs and σg the standard deviation of the
genetic values. Because in field experiments, the true breeding values cannot be
measured, the prediction accuracy can be estimated as the correlation between
the GEBVs and the phenotypic values. In the next chapters, the term prediction
accuracy will always refer to the Pearson correlation between the GEBVs and the
genetic values.



4
Simulation background

4.1 Introduction

To study the long-term effects of a design choice in a breeding population, years
of consecutive breeding are required. By simulating a breeding population, the
long-term effects can be estimated and studied. The infinitesimal model is used to
simulate a breeding population, combining both the biological and mathematical
backgrounds. The backbone structure of the simulator was developed by Neyhart
et al. (2017), using the packages GSSimTPUpdate and hypred in R (version 3.6.3).
Two datasets of North American barley (Hordeum vulgare) from the University of
Minnesota (UMN) and the University of North Dakota (NDSU) are used to construct
a base population. The UMN and NDSU dataset contain the genotype of 1590 SNP
markers coded as -1, 0, and 1 for 384 and 380 individuals, respectively. For each
marker, the marker position, as well as the genotype is available.
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4.2 Experimental design

Two types of user inputs can be distinguished: inputs that control the crop char-
acteristics (e.g. heritability, number of QTLs, etc.) and inputs that influence the
design of the breeding population (e.g. parental selection intensity, individuals per
cross, etc.). The heritability (h2) and the number of QTLs are normally not within
the control of the breeder but can be used to simulate a specific breeding popu-
lation. In most crops, the exact number of QTLs is still unknown. GWAS is used
to detect and identify these QTLs, but depending on the quality and quantity of
the available data, the estimation of QTLs could be misleading. In spring and
winter barley, 217 and 143 QTLs are detected in the genome, respectively (Xu
et al., 2018). The number of QTLs controlling a single trait ranges between 29
QTLs for leaf length (Du et al., 2019) and 66 QTLs for grain length (Xu et al.,
2018). The selection of barley often relies on different traits like grain mass, grain
length, number of spikes, etc. The heritability of different traits for barley is listed
in Table 2.1. Normally, 100 QTLs and a heritability of 0.5 are used to simulate a
breeding population of barley. According to the literature, both values are a realis-
tic representation for the genomic characteristics of barley and have already been
used in a similar simulation study (Neyhart et al., 2017). However, the heritability
and the number of QTLs can be underestimated and thus, other values for the
heritability and the number of QTLs will also be used in this dissertation.

To understand how the number of QTLs and the heritability can influence the ge-
netic value of the breeding population, a simulation was performed using trunca-
tion selection, selecting the individuals with the highest GEBVs and crossing them
randomly. The impact of the number of QTLs on the genetic value is shown in the
bottom left panel of Figure 4.1. When a lower number of QTLs are present, higher
genetic gains are observed in the long term. Assuming that the number of mark-
ers remains the same, when the number of QTLs decreases, more markers are
available to grasp the genetic variation, allowing for a better estimation of the QTL
effects. When truncation selection is used, selecting individuals with the highest
GEBV (or phenotype) as parents, often results in the loss of favorable QTL alleles
(see Chapter 5). Regardless if the parental selection is based on the GEBVs or the
phenotype, parents are chosen based on a single value. Therefore, a small-effect
QTL can be masked by the presence of other QTLs, resulting in the loss of that
small-effect QTL. This is often the case when a high number of QTLs are present,
and results in a lower long-term genetic gain. Moreover, a higher number of QTLs
increase the probability that a favorable QTL allele is in LD with an unfavorable
QTL allele, reducing the maximum reachable genetic value.

The impact of the heritability on the genetic gain is shown in the top left panel
of Figure 4.1. The heritability represents the fraction of the phenotypic variation
that can be explained by the genotype. A trait with a high heritability will hardly
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Figure 4.1: Mean genetic value and maximum reachable genetic value for different heritabilities (top
left), parental selection intensities (PSI) (top right), QTLs (bottom left) and individuals per cross (IPC)
(bottom right).
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be influenced by the environment and the phenotype or GEBVs can easily be used
to select individuals containing favorable QTL alleles. Therefore, when truncation
selection is used, high genetic gains will rapidly be obtained. However, when a
trait has a low heritability, the selection of individuals containing favorable QTL
alleles becomes more tedious. An individual with a low genetic value may have
a high phenotypic value due to the impact of the environment, decreasing the
genetic progress in the next generations. In other words, a low heritability will
result in a lower genetic gain, both in the short and the long term.

The parental selection intensity (PSI) and the number of individuals per cross (IPC)
define the size of the breeding population. A default value of 100 and 20 is set for
PSI and IPC, respectively, resulting in a breeding population of 1000 individuals.
The impact of the PSI and IPC on the mean genetic value of the top-10 individuals
is shown in respectively the top right panel and bottom right panel of Figure 4.1.
The PSI represents the number of parents that are selected in each breeding cycle,
controlling the amount of genetic variation that can be passed from the breeding
population to the next generation. By selecting a low number of parents, only a
small amount of genetic variation can be passed to the next generation resulting
in a rapid fixation of the QTL alleles and a premature convergence of the genetic
value. This can be avoided by increased the number of parents, but it will also
increase the financial cost of the breeding population. The IPC represents the
number of offspring that is generated between two parents. Increasing the IPC re-
sults in different recombinations between the genetic information of both parents.
Compared to PSI, increasing the IPC decreases the genetic gain in the long term.
When each pair of parents produces more progeny, the probability that closely
related individuals are selected as a parent in the next breeding cycle increases.
This leads to the loss of genetic variation causing a premature convergence of the
genetic value.

The choice of the prediction model, the size of the training population, and the
training population update method will also have major repercussions on the pre-
diction accuracy. Increasing the size of the training population will increase the
prediction accuracy to a certain extent, but it will also increase the financial cost
for phenotyping and genotyping such a population. Therefore, the training pop-
ulation size is kept constant in the remainder of this work, but different methods
to update the training population and different prediction models will be used in
Part 2.

4.3 Genome construction

A genome of barley is constructed based on two datasets containing marker in-
formation and haplotype information of 1590 biallelic SNP loci coded as 0 and 1.
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Based on the marker information, a genetic map is constructed containing the
marker position for each chromosome. Next, 100 QTLs (L = 100) are selected
randomly from the available 1590 biallelic SNP loci. The remaining 1490 biallelic
SNP loci are available as markers for prediction and selection purposes. The QTL
effects are calculated according to a geometric series. At the k-th QTL, the fa-
vorable homozygote has a value of k, the heterozygote a zero value and the
unfavorable homozygote a value of −k with  = (L − 1)/(L + 1) (Bernardo, 2009).
The favorable QTL alleles are randomly divided between the first (haplotype = 0)
and second (haplotype = 1) allele. Dominance and epistatic effects are assumed
to be absent, but could be incorporated if required. In total, 100 different genomes
are constructed and are used for 100 simulation runs for each parental selection
method. Each genome has the same number of QTLs and the same QTL effects,
but because the QTL locations are randomly sampled, each genome will result in
a unique scenario. An overview of the simulator is given in Figure 4.2.

Figure 4.2: Schematic overview of the simulator based on the UMN and NDSU datasets. Both datasets
contain the genotype of each individual and a genetic map with the relative location of each SNP loci in
the genome. A genome is constructed by randomly selecting 100 SNP loci as QTL. The remaining 1490
SNPs serve as markers. Based on the genotype of these 100 QTLs, the phenotype of each individual is
calculated. From both datasets, 50 individuals with the highest phenotype are selected and randomly
crossed with each other. The base population is obtained after two generations of single-seed descent.

4.4 Construction of the breeding population

The base population is constructed based on the haplotype information of both
datasets. The haplotype is represented in a matrix of size 2n×k with n the number
of individuals and k the number of markers. The haplotype of an individual  is
represented at rows 2 − 1 and 2 and is coded as 0 and 1, representing which
SNP allele is present at each marker location. The two haplotypes of an individual



4 SIMULATION BACKGROUND 52

 can be converted into its genotype Z following the conversion rules shown in
Table 4.1. Simulation studies that use a different coding for the genotype (like
-0.5, 0, 0.5 and 0, 1, 2) will yield the same results. However, if the linear mixed
effects model is extended with a polynomial of the genotype (e.g. Z2), then the
coding will influence the simulation results and methods using a different coding
should not be compared with each other (Martini et al., 2019). Both the genetic and

Haplotype 1 0 1 0 1
Haplotype 2 0 0 1 1
Genotype -1 0 0 1

Table 4.1: Conversion of the haplotype coding to the genotype coding of an individual.

phenotypic values are calculated based on the genotypic information. The genetic
value of the -th individual (g) is obtained by summing the QTL effects present
in the genome. The phenotypic value of the -th individual (y) is calculated as
follows:

y =
1

3

3
∑

j=1

(g + ej + εj) , (4.1)

with ej the j-th environmental effect and εj the residual effect of the -th individ-
ual and the j-th environment. The environmental effect is averaged over three
different environments (j = 3) drawn from a normal distribution with mean 0 and a
variance component σ2

E
that is set to eight times the genetic variance (Bernardo,

2014). The residual effect is drawn from a normal distribution with mean 0 and a
variance component σ2

e
:

σ2
e
= ne(σ2E /h

2) − σ2
E
, (4.2)

with ne the number of environments. The residual variance component is scaled
to simulate a population with a heritability of 0.5.

To create the base population, the top-50 individuals of the UMN dataset are ran-
domly paired with the top-50 individuals of the NDSU dataset. Only at this stage of
the simulation, the parental selection uses phenotypic values to guide the parental
selection.

4.5 Simulation of a breeding cycle

A new breeding cycle starts with the selection of 100 parents according to one
of the parental selection methods that will be proposed in Part 2. The selected
parents are paired and each couple produces 20 offspring resulting in 1000 F1
hybrids. After two generations of single-seed descent 1000 F3 individuals are ob-
tained. These individuals form the new breeding population.
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Different methods to select and cross parents will be proposed in Part 2 and form
the backbone of this dissertation. Each of our parental selection methods tries
to preserve the genetic variation and maximize the genetic gain in the long term
while preserving the short-term genetic gain. Our methods will be compared with
other approaches such as truncation selection in which 100 individuals with the
highest GEBVs are selected and crossed randomly.

To simulate a parental cross, a gamete is constructed for each parent by recom-
bining both haplotypes. At each marker, the parent has two alleles that together
define the genotype of that parent at that marker. To simulate the recombination,
the haplotype information of one of the two homologous chromosomes is copied.
Then, at a certain location, a crossing over is simulated, copying the haplotype
information of the other homologous chromosome until the next crossing over.
The number of crossing overs is Poisson distributed with λ =  and  the length of
the chromosome in Morgan. The locations where the crossing overs will occur are
sampled uniformly at random. An overview of the gamete construction is given
in Figure 2.6. The gametes of both parents will become the new genotype of that
offspring. In case of single-seed descent, the same mechanism is used to create
the offspring, but now, both gametes will originate from the same parent.

Several variables are calculated to track the progress of the breeding population
during simulation. The genetic relationship matrix G is calculated as follows (Van-
Raden, 2008):

G =
MM′

2
k
∑

=1
P(1 − P)

, (4.3)

with M a matrix with n rows and k columns of which each column is calculated
as Z − 1n[2(P − 0.5)], n the number of individuals in the breeding population, Z
the genotype of n individuals at the -th marker, 1n a vector of size n containing
ones, k the number of markers, and P the frequency of the second allele at the
-th marker. The averaged inbreeding coefficient F is calculated as:

F =
1

n

n
∑

=1

G − 1 , (4.4)

with G the diagonal elements of the genetic relationship matrix. To track the
fixation of the different QTL alleles, new variables are introduced. The maximum
genetic value is the sum of the favorable QTL effects. The fixed genetic value
is the sum of the QTL effects that are fixed. The maximum reachable genetic
value is the sum of the QTL effects that are fixed (both favorable and unfavorable)
and the sum of the favorable QTL effects that are not yet fixed. It represents the
maximum genetic value that could still be reached, taking into account the fixation
of unfavorable QTL alleles. All these variables are converted into percentages,
where the maximum genetic value of 1 can only be achieved if all favorable QTL
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alleles are present.

Before selecting the next parents, GEBVs are predicted using the rrBLUP (Endel-
man, 2011) package or BGLR package (Pérez and de los Campos, 2014) in R. To do
so, a phenotypic and genotypic information is required. In the first breeding cycle,
the base population is used as training population. Once the GEBVs are predicted,
the parents are selected according to one of the described parental selection meth-
ods and paired to construct the crossing block. Both the phenotypic and genotypic
values are calculated and used to track the progress of the genetic gain through-
out the different breeding cycles. Based on the GEBVs, in each breeding cycle,
the training population (TP) is updated according to the tails method, selecting the
bottom-75 and top-75 individuals while the oldest 150 lines are eliminated from
the training population (Neyhart et al., 2017).

4.6 Prediction model and training population

The parental selection schemes are based on GEBVs that are obtained by fitting a
linear mixed effects model:

y = 1nβ + ZTP + ε , (4.5)

with y a vector with phenotypic values, n the number of individuals in the training
population, 1n a vector of size n containing ones, β the fixed effect (phenotypic
mean), ZTP the incidence matrix of the training population with marker information
(coded as -1, 0 and 1),  the marker effects following a normal distribution N (0,G)
with G = σ2


k (with k the identity matrix of dimension k) and ε the residual effects

following a normal distribution N (0,R) with R = σ2
e
n. Both variance components

σ2


and σ2
e

are estimated by means of restricted maximum likelihood (REML). The
GEBVs of the individuals are calculated as:

ĝ = Ẑ , (4.6)

with ĝ the GEBVs, Z the marker information (coded as -1, 0, and 1) and ̂ the
predicted marker effects. Assuming that the phenotypic data of the entire base
population is available, it can be used to construct the initial TP with a total size
of 764 individuals. During subsequent breeding cycles, the TP is updated with 150
new individuals selected from the breeding population, limiting the required phe-
notyping effort per cycle to only 150 individuals. The 150 individuals that have
been the longest in the TP are removed keeping the size of the TP constant. The
removal of old lines in the TP does not affect the prediction accuracy significantly,
but reduces the required computation time. The selection of 150 new individuals
during the TP update is done using the tails method (Neyhart et al., 2017). In



4.6 PREDICTION MODEL AND TRAINING POPULATION 55

Chapter 5, markers with a minor allele frequency smaller than 0.03 are removed.
After reevaluation, we demonstrated that removing low-frequency markers from
the training population resulted in a lower genetic gain. Therefore, in the subse-
quent chapters, all markers are used to fit the linear mixed effects model.

Although the training population is updated by using the tails method, other meth-
ods to update the training population will also be studied. The training popula-
tion can also be updated selecting 150 individuals with the highest GEBVs (top
method), with the lowest GEBVs (bottom method) or the individuals can be se-
lected at random (random method) (Neyhart et al., 2017). Individuals can also be
selected to minimize the prediction error variance (PEVmean method) or by maxi-
mizing the expected reliability of the predictions (CDmean method) (Rincent et al.,
2012). The PEVmean method selects individuals in the training population that
minimize the prediction error variance (PEV):

PEV = vr(̂ − ) . (4.7)

The PEV can be calculated using the MME equation Eq. (3.25) in combination with
a contrast matrix c and a design matrix M:

PEV = dig
�

c′(Z′MZ + δG)c

c′c

�

× σ2
e
, (4.8)

with M defined as M = t − X(X′X)−X′, (X′X)− the generalized inverse of X′X, t
the number of individuals that are added to the training population, δ = σ2

e
/σ2


, G

the genetic relationship matrix, and t the identity matrix of size t (Rincent et al.,
2012; Maenhout et al., 2010; Laloë, 1993; Neyhart et al., 2017). Complementary
to PEV, the generalized coefficient of determination (CD) can be used to construct
a training population that maximizes the expected reliability of the contrast. The
CD is defined as:

CD = dig

�

c′(G − δ(Z′MZ + δG−1)−1)c

c′Gc

�

, (4.9)

and ranges between 0 and 1, indicating whether the predictions are unreliable (CD
∼ 0) or reliable (CD ∼ 1).

Systematically updating the training population will increase the financial cost, but
if the training population remains unchanged, the prediction accuracy will degrade
over time causing low prediction accuracies and ultimately resulting in low genetic
gains (Neyhart et al., 2017). Therefore, updating the training population should
always be considered.

An overview of the parameter values used in the simulation study is listed in Ta-
ble 4.2. In Part 2, the simulator is used in each chapter to simulate a breeding
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Parameter Value
Genome Barley
Number of chromosomes 7
Number of QTLs 100
Number of markers 1490
Heritability 0.5
Population size 1000
Number of breeding cycles 50
Number of iterations 100
Parental selection 100
Individuals per cross 20
Number of environments 3
Prediction model rr-gBLUP
Update training population 150
training population update method Tails

Table 4.2: Overview of the parameters used the simulate a breeding population of Barley over 50 breed-
ing cycles.

population over 50 breeding cycles. Specific modification of the simulator will be
reported per chapter if required.
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5
The scoping method

Genomic selection has been successfully implemented in plant and animal breed-
ing. The transition of parental selection based on phenotypic characteristics to
genomic selection (GS) has reduced breeding time and cost while accelerating
the rate of genetic progress. Although breeding methods have been adapted
to include genomic selection, parental selection often involves truncation selec-
tion, selecting the individuals with the highest genomic estimated breeding values
(GEBVs) in the hope that favorable properties will be passed to their offspring. This
ensures genetic progress and delivers offspring with high genetic values. How-
ever, several favorable quantitative trait loci (QTLs) alleles risk being eliminated
from the breeding population during breeding. We show that this could reduce the
mean genetic value that the breeding population could reach in the long term with
up to 40%. In this chapter, by means of a simulation study, we propose a new
method for parental mating that is able to preserve the genetic variation in the
breeding population, preventing premature convergence of the genetic values to
a local optimum, thus maximizing the genetic values in the long term. We do not
only prevent the fixation of several unfavorable QTL alleles, but also demonstrate
that the genetic values can be increased by up to 15 percentage points compared
with truncation selection.
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The material of this chapter is based on the following publication:
Vanavermaete, D., Fostier, J., Maenhout, S., De Baets, B., 2020. Preservation of
genetic variation in a breeding population for long-term genetic gain. G3, 10(8),
2753–2762.

5.1 Introduction

In times of climate change and rapid population growth, new methods need to
be developed to further improve different crop properties like yield and resistance
to pathogens and drought (Tester and Landridge, 2010). These properties are
controlled by different chromosomal regions or quantitative trait loci (QTLs), mak-
ing it difficult to improve crop properties by only relying on phenotypic charac-
teristics (Dekkers and Hospital, 2002). Initially, pedigree information was used
to guide the selection of parental lines in animal and plant breeding. Nowadays,
molecular markers like single nucleotide polymorphisms (SNPs) serve as proxies
for QTLs, assuming that markers are in strong linkage disequilibrium with one or
more QTLs (de Roos et al., 2008). The linear relationship between the genetic
markers (genotype) and the phenotype can then be estimated using a mixed ef-
fects model. This concept was first introduced in marker-assisted selection (MAS),
but only minor improvements in yield were reported (Goddard and Hayes, 2002).
Genomic selection was introduced as an alternative for MAS (Meuwissen et al.,
2001). By using markers that cover the complete genome, the fraction of the
genetic variance that can be explained by the molecular markers was better cap-
tured, leading to an improved estimation of large and small QTL effects (Heffner
et al., 2009, 2010; Beyene et al., 2015). Genomic selection improved yield in ani-
mal and plant breeding and reduced the time in between breeding cycles (Hayes
et al., 2009). For example, crops like oil palm (Elaeis guineensis Jacq.) reach
sexual maturity after three years but require 13 to 15 years before phenotypic
characteristics can be obtained: the transition of phenotypic selection to genomic
selection reduced the time of one breeding cycle from 15 to three years (Cros
et al., 2018). In the course of time, genomic selection has further evolved and
has become a powerful tool in animal and plant breeding (Meuwissen et al., 2001;
Bernardo and Yu, 2007; Crossa et al., 2010). Over the last years, several advance-
ments were achieved ranging from yield maximization to the development of new
drought/heat-resistant plants (Wang et al., 2019; Sun et al., 2019; Suontama et al.,
2019). Nevertheless, the implementation of genomic selection in certain breeding
populations with complex traits and environmental interactions is still challeng-
ing (Juliana et al., 2018; Voss-Fels et al., 2018).

Several simulation studies on genomic selection have resulted in high prediction
accuracies and genetic values in the short term (VanRaden et al., 2009; Hayes
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et al., 2009). These studies often rely on truncation selection of the parents, lead-
ing to a high genetic gain in the short term but the loss of favorable QTL alleles,
genetic variation and prediction accuracy over time (Jannink, 2010). Truncation
selection selects the top fraction of the individuals based on their genomic esti-
mated breeding values (GEBVs), which serve as estimators for the true breeding
values. Because the GEBVs are calculated as the sum of the estimated additive
marker effects, the contribution of favorable small-effect QTLs can be concealed
leading to their loss in the breeding population, thus reducing long-term genetic
gain. The loss of those favorable QTL alleles could be reduced by weighting the
marker effects of favorable low-frequency alleles more heavily, thereby safeguard-
ing long-term gain (Jannink, 2010; Liu et al., 2015). In recent years, different
parental methods have been developed that aim to reduce the loss in genetic
variation. This helps to increase the prediction accuracy and the genetic gain
in the long term. To preserve genetic variation, the selection of closely related
individuals should be avoided (Lindgren and Mullin, 1997) or the inbreeding co-
efficient should be minimized (Brisbane and Gibson, 1995). Although genomic
selection uses GEBVs for parental selection, alternative score functions to guide
the parental selection have been proposed. Daetwyler et al. (2015) proposed a
parental selection scheme based on the genomic optimal haploid value, select-
ing parents that optimize the genetic values of their offspring. This method was
further improved by simulating the meiosis between parental haploids, yielding
an improved prediction of offspring. This, in turn, leads to a more accurate eval-
uation of the double haploids, thereby guiding the parental selection to further
increase long-term genetic gain (Müller et al., 2018). In an alternative approach,
Lehermeier et al. (2017) proposed the criterion of usefulness, which takes into
account the selection intensity, mean genetic value and genetic variance of the
breeding population, improving the long-term genetic gain.

Over the last years, new mating designs have been proposed to further improve
the parental selection and maximize the genetic gain in the short or long term. In
a new mating design, the genetic variation is preserved by penalizing crosses be-
tween two parents with high coancestry (Cervantes et al., 2016). Moreover, long-
term gain was further improved by also minimizing the rate of inbreeding and con-
trolling the allele heterozygosity and allele diversity (Akdemir and Sánchez, 2016).
The introduction of an optimal mating design using a two-part plant breeding se-
lection with rapid recurrent genomic selection reduced the drop in genetic diver-
sity, thus maximizing the conversion of genetic variance into genetic gain (Gorjanc
et al., 2018).

Although parental selection methods play a major role in the realization of long-
term genetic gain, as long as those methods are based on GEBVs, the results
will be influenced by the choice of the prediction model and the training popula-
tion design. Several training population designs have been proposed although no
significant difference was observed in the long term, as long as the training popu-
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lation was systematically updated over time (Akdemir et al., 2015; Rincent et al.,
2012; Neyhart et al., 2017).

In this chapter, the scoping method is presented as a new parental mating scheme
to reduce the loss of favorable QTL alleles by preserving the genetic variation and
thus maximizing the genetic value in the long term. The scoping method combines
genetic progress (truncation selection) and the preservation of the genetic varia-
tion of each marker in the breeding population. Based on the observation that two
closely related individuals might contain a different rare marker allele, both indi-
viduals should be selected to preserve the genetic variation of both markers in the
breeding population. Therefore, in contrast to other methods, the genetic relation-
ship or inbreeding coefficient is not taken into account, but individuals are selected
based on their genotype, ensuring the maximal selection of the different marker
alleles and thus maximizing the genetic variance of their offspring. By doing so, we
reduce the risk of premature convergence of the genetic values to a local optimum.
Combined with truncation selection, the genetic progress is ensured in the short as
well as in the long term. We benchmark our proposed scoping method against two
existing selection strategies: the population merit method (Lindgren and Mullin,
1997) and the maximum variance total method (Cervantes et al., 2016). Both
methods try to maximize long-term genetic gain by preserving the genetic varia-
tion of the breeding population. Whereas the scoping method preserves the ge-
netic variation by maximizing the variation of each marker, the population merit
method preserves the genetic variation by minimizing the average genetic rela-
tionship of the parental population. Both the population merit method method
and the maximum variance total method aim to maximize the genetic variation of
the parental population, and thus are good candidates against which our proposed
scoping method can be benchmarked.

We also propose the backcrossing method. This method combines truncation se-
lection with the reintroduction of new genetic information to help preserve the ge-
netic variation of the breeding population. Reintroducing new genetic information
could suddenly reduce the genetic gain of the breeding population. Therefore, the
backcrossing method is only used to study to which extent reintroducing genetic
variation can maximize the genetic gain in the long term.

5.2 Materials and methods

We adopt the base population and breeding scheme of Neyhart et al. (2017), mak-
ing it possible to compare our results with truncation selection as reported by Ney-
hart et al. (2017). The base population consists of two datasets of North American
barley (Hordeum vulgare) from the University of Minnesota (UMN) and the Uni-
versity of North Dakota (NDSU) counting respectively 384 and 380 six-row spring
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inbred lines with 1590 biallelic SNP loci. Recurrent selection is applied to the base
population to simulate the later breeding cycles (see Subsection 5.2.1).

The scoping method, in which a parental selection method is combined with a new
mating design, is proposed and compared with truncation selection with random
mating. The scoping method tries to maximize the genetic values in the long
term, while preserving the genetic variation of the breeding population. It aims
to avoid the loss of positive-effect QTL alleles, preventing the convergence of the
genetic values to a local optimum. Because this method might select extreme
GEBVs, the Pearson correlation cannot be used to evaluate the selection method
due to its sensitivity to outliers. Instead, the mean genetic value of the breeding
population, calculated on the basis of the true breeding values, is used to measure
and evaluate the genetic gain for each method. The mean genetic value of the top-
10 individuals is also reported. Our method aims to maximize the genetic gain of
the top-10 individuals, while the remaining individuals of the breeding population
serve to preserve important genetic marker alleles in the breeding population.

5.2.1 Breeding scheme

The recurrent selection scheme is illustrated in Figure 5.1. Starting with 100 in-
dividuals, a crossing block is constructed, pairing the selected individuals. Each
couple produces 20 offspring resulting in a total of 1000 F1 hybrids. After two
generations of single-seed descent, 1000 F3 individuals are obtained. These in-
dividuals form the new breeding population from which again 100 parents are
selected to start a new breeding cycle. This selection occurs either according to
the baseline, scoping, backcrossing, population merit or maximum variance total
methods. The first breeding block (in breeding cycle zero) pairs 50 individuals of
the NDSU dataset with 50 individuals of the UMN dataset with the highest phe-
notypic value, regardless of the parental selection method. This design choice
ensures that each parental selection method has the same number of individuals
in the breeding population over each breeding cycle. The subsequent parental se-
lections are fully based on GEBVs, reducing the financial cost of phenotyping. A
linear mixed effects model is used to obtain GEBVs from molecular marker scores
(see Subsection 4.6). Each simulation consists of 50 breeding cycles. This number
was specifically selected as it allowed to compare and visualize the converging
behavior of each examined method. All results are averaged over 250 simulation
runs.



5 THE SCOPING METHOD 64

Figure 5.1: Overview of the recurrent selection scheme. First, 50 couples of parents (P1, P2) each produce
20 offspring yielding a total of 1000 F1 hybrids. Then, after two generations of single-seed descent, 1000
F3 individuals are obtained. From those F3 individuals, new parental lines are selected. Three different
parental selection methods are considered: i) the baseline method selects 100 parents with the highest
GEBVs (truncation selection); ii) the scoping method combines the selection of 50 parents (P1) with the
highest GEBVs and 50 parents (P2) that maximize the genetic variation (see Eq. (5.1)); iii) the backcrossing
method selects every tenth breeding cycle the P2 parents from the base population. After the parental
selection, the TP is updated according to the tails method.

5.2.2 The baseline method

The baseline method selects 100 parents with the highest GEBVs (truncation selec-
tion) and pairs them randomly. The idea is that favorable properties will be passed
on to the next offspring, leading to high short-term gain and rapid fixation of favor-
able QTL alleles. However, several favorable QTL alleles will be eliminated from
the breeding population during breeding, reducing long-term gain and causing the
convergence of the genetic values to a local optimum.

5.2.3 The backcrossing method

The backcrossing method introduces new genetic material into the population at
fixed points in time. Several favorable QTL alleles that might have been eliminated
during earlier breeding cycles are reintroduced in the breeding population, making
it possible to escape from a local optimum and improve the genetic values in the
long term. The backcrossing method is identical to the baseline method except
for the parental selection at every tenth breeding cycle. At this point, 50 parents
with the highest GEBVs are randomly crossed with 50 randomly chosen individuals
from the F1 hybrids of the original base population. The F1 hybrids of the base
population should show the highest degree of heterozygosity and thus reintroduce
the highest amount of genetic variation into the next breeding population. More-
over, by randomly selecting F1 hybrids, each hybrid has the same probability to
be selected as a parent, making it possible to reintroduce important unknown QTL
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alleles in the current breeding population. We expect a drop in the mean genetic
value after each backcrossing event, but a higher genetic gain might be obtained
in the long term.

5.2.4 The scoping method

The scoping method continuously preserves genetic variation, avoiding premature
convergence to a local optimum, while ensuring a gradual increase of genetic
values over breeding cycles. The parental selection is split into two parts: the pre-
selection and the selection. First, a fraction of the breeding population with the
highest GEBVs is pre-selected using truncation selection. This fraction, referred to
as the scoping rate (SR), can take a value between 0.1 and 1. A scoping rate of 0.1
pre-selects 100 individuals (10%) of the breeding population, whereas a scoping
rate of 1 pre-selects the entire breeding population (100%). During the selection,
100 different parents are chosen from the pre-selected population. In contrast
to the baseline method, parents are not paired randomly. From the pre-selected
individuals, the one with the highest GEBV is chosen as the first parent. The second
parent is chosen from the pre-selected individuals in such a way that the genetic
variation of selected parents is maximized over each marker. Mathematically, the
following score function is maximized:

Fscore =
k
∑

=1

var(Z)p , (5.1)

with k the number of markers, Z the -th row of the k × n matrix Z containing
the genotypes (coded as −1, 0 and 1) of the n already selected individuals and
where p denotes a vector of k Boolean values. Initially, p is set to a value of 1
for all marker positions. When both alleles at marker  are present, p is set to 0.
Thereby, the score function will maximize the variance of the genotype over each
marker for which both alleles are not yet present in the selected population, thus
avoiding the loss of low-frequency marker alleles. If p equals 0 for all markers,
the value of each p is restored to 1, again maximizing the variance over all the
markers. At this moment, all the available marker alleles of the current breeding
population are present in the selected parental population.

The scoping method combines truncation selection with a new mating design, pair-
ing individuals with high GEBVs with individuals that maximize the genetic varia-
tion of their offspring. The pre-selection process avoids that individuals with lower
GEBVs, which might maximize the genetic variation of certain parents, are not
available for selection and thus avoids the loss of genetic gain in the short term.
We expect that the mating design will reduce the loss of marker alleles while the
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pre-selection will eliminate unfavorable QTL alleles over time. This should lead to
a slower but more accurate fixation of the favorable QTL alleles.

5.2.5 The combined method

The backcrossing method uses the baseline method to design the crossing block
between each backcrossing occurring every tenth breeding cycle. In this combined
method, the scoping method is used to select the parents between every back-
crossing (breeding cycles 1-9). We expect that the scoping method will reduce
the loss in genetic variation caused by the baseline method, while the backcross-
ing will further increase the genetic variation and thereby increase the long-term
genetic gain.

5.2.6 The population merit method

The population merit method was introduced by Lindgren and Mullin (1997) and
aims to preserve the genetic variation of the breeding population by taking into
account the average coancestry of the parental population. Normally, the aver-
age coancestry is calculated based on pedigree information. Unfortunately, this
information is not available for both datasets. Therefore, the average genetic re-
lationship will be used instead. The population merit Bω is calculated as:

Bω = ĝm − cϕω , (5.2)

with ĝm the mean genetic value of the parental population, c a penalty weight and
ϕω the average genetic relationship of the parental population. At each breeding
cycle the population merit is maximized. First, 100 individuals are selected using
truncation selection. Second, the mean genetic value of the parental population
and the average genetic relationship are calculated. Third, the population merit
is maximized iteratively by replacing each parent with another individual of the
breeding population that increases the population merit. To do so, the mean ge-
netic value of the parental population and the average genetic relationship have to
be recalculated each time. The population merit is maximized when the parental
population remains unchanged.

5.2.7 The maximum variance total method

The maximum variance total (MVT) method aims to maximize the genetic variance
of the breeding population (Cervantes et al., 2016). The method was developed by
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Bennewitz and Meuwissen (2005) and further modified by Cervantes and Meuwis-
sen (2011). The genetic variance criterion vr() is calculated as:

vr() =
1

n

n
∑

=1

�

(1 + F) − 2Gp
�

, (5.3)

with n the number of selected parents, F the inbreeding coefficient of parent  and
Gp the average genetic relationship of the parents. Originally, the genetic vari-
ance criterion was calculated using the average coancestry, but due to the lack
of pedigree information, the average coancestry was replaced with the average
genetic relationship. Similar to the population merit method, the genetic variance
is maximized iteratively. However, the MVT method does not take into account the
genetic value. Therefore, it can only be used in a pre-selected population to guide
the final parental selection. The MVT method is used to select the P2 parents from
a pre-selected population similar to the scoping method. First, 300 individuals are
pre-selected using truncation selection. Second, from the pre-selected individuals,
100 parents are selected using truncation selection. Finally, the P2 parents are iter-
atively replaced such that the genetic variance criterion of the parental population
is maximized by only using the pre-selected individuals. We expect a higher long-
term gain compared with the baseline method, but a lower genetic gain compared
with the scoping method.

The mean genetic value of the breeding population, mean genetic value of the
top-10 individuals and the maximum reachable genetic value of all the proposed
methods are reported in Table 10.1, Table 10.2 and Table 10.3, respectively.

5.3 Results

5.3.1 The baseline method

The baseline method combines truncation selection with random mating. Our re-
sults are similar to those reported by Neyhart et al. (2017). During the first 10
to 20 breeding cycles, we observe a steep increase in genetic value and rapid
fixation of QTL alleles (see Figure 5.2). The maximum reachable genetic value is
reduced by more than 40%, due to the loss of favorable QTL alleles in the breed-
ing population. It is interesting to also consider the mean genetic value of the 10
individuals with the highest genetic values. Those individuals are of particular in-
terest to breeders for commercialization purposes. Therefore, their genetic value
is more important than the mean genetic value of the breeding population. In the
baseline method, the top-10 individuals have a higher genetic value over the first
breeding cycles, but due to strong fixation, the genetic variation is reduced and
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the difference between the top individuals and the breeding population average
becomes smaller.

Figure 5.2: Simulation results using the baseline method over 50 breeding cycles. Mean genetic value
of the breeding population increases rapidly over the first breeding cycles. The truncation selection,
however, causes the loss of several favorable QTL alleles, reducing the maximum reachable genetic value
and causing a premature convergence of the genetic value to a local optimum. The top-10 individuals of
the population have a higher mean genetic value than the breeding population, but after several breeding
cycles, the genetic variation is reduced, closing the gap between the top-10 individuals and the rest of the
breeding population.

5.3.2 The backcrossing method

The backcrossing method is organized in periodic blocks of ten breeding cycles
(see Figure 5.3). Over the first nine breeding cycles, the results are similar to
those of the baseline method. In the tenth breeding cycle, the introduction of
new individuals causes a drop in the number of fixed QTLs. This indicates that
several QTL alleles that had been eliminated from the breeding population over
the preceding nine breeding cycles are reintroduced. Obviously, only a fraction
of those QTL alleles has a favorable effect on the genetic value. Therefore the
inclusion of new individuals causes the mean genetic value to drop. This also
causes a decrease in the genetic relationship between the breeding population
and the training population (TP), leading to a poor estimation of the GEBVs (see
Figure 5.4). Hence, in the next breeding cycle, only a small increase of the genetic
value is observed. This problem is resolved after a single TP update, leading to a
better estimation of the GEBVs in the subsequent breeding cycles. Similar to the
baseline method, the top-10 individuals have a slightly higher genetic value than
the average of the breeding population. After each backcrossing, only a small drop
in genetic value of the top-10 individuals is observed.
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Figure 5.3: Simulation results using the backcrossing method over 50 breeding cycles. At every tenth
breeding cycle, when backcrossing occurs, the mean genetic value drops suddenly as a result of the (re-
)introduction of genetic material from the base population. This also introduces several favorable QTL
alleles that might have been eliminated during earlier breeding cycles, causing the maximum reachable
genetic value to increase. The drop in the mean genetic value is relatively modest for the top-10 individ-
uals. Only five breeding cycles are required to recover from the backcrossing event and higher genetic
values are reached in subsequent cycles. Over 50 breeding cycles, the breeding population attains a
higher genetic value compared to the baseline method.

During the nine breeding cycles that follow each backcrossing event (every tenth
cycle), increasingly higher mean genetic values are obtained. This indicates that
each time when new individuals are included, favorable QTL alleles are better
preserved in the breeding population. This makes it possible to escape from a
local optimum and approach the optimal genetic value. After 50 breeding cycles,
the backcrossing method yields a genetic value that is 7% points higher than the
baseline method. The global optimum is not yet reached and the loss of several
favorable QTL alleles causes the genetic value to reach a value of 63% of the
global optimum after 50 breeding cycles.

5.3.3 The scoping method

The scoping method introduces the scoping rate (SR) as a new parameter. With the
scoping rate, the breeder can control what fraction of the upper tail of the GEBV
distribution will be considered for parental selection. Using a small scoping rate,
only individuals with high GEBVs will be considered, leading to truncation selection.
When a higher scoping rate is used instead, individuals with lower GEBVs will also
be considered as candidates, making it possible to preserve the genetic variation
of the breeding population. The scoping rate provides the breeder with the option
to choose between the maximization of the rate of genetic progress in the short
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Figure 5.4: Genetic relationship between the breeding population and the training population and the
prediction accuracy of the backcrossing method over 50 breeding cycles. At every tenth breeding cycle,
when backcrossing occurs, the genetic relationship between the TP and breeding pool decreases, while
the prediction accuracy increases. However, the prediction accuracy will only reach a maximum value
over the next breeding cycle.

term on the one hand or the maximization of the genetic variation in the long
term on the other hand. As expected, the scoping method yields somewhat lower
mean genetic values over the first ten breeding cycles (see Figure 5.5). However,
the mean genetic value of the top-10 individuals is only slightly lower compared
with the baseline method. Certainly, for small scoping rate values (0.1 to 0.3) the
difference in genetic value is negligible.

After the tenth breeding cycle, the loss of several favorable QTL alleles causes
the baseline method to reach a local optimum, rendering it less efficient than
the scoping method. In contrast, by preserving the genetic variation within the
breeding population, the scoping method strongly reduces the loss of favorable
QTL alleles, thus preserving the potential to reach high genetic values. A higher
scoping rate will better prevent the loss of favorable QTL alleles, however, due
to a slower increase in genetic value, a high scoping rate will require a longer
time before outperforming the baseline method. Therefore, the use of a smaller
scoping rate is preferred. It delivers high genetic values in both the short and the
long term.

A scoping rate of 0.1 is a special case as it results in the same parental selection
as the baseline method, but it uses an alternative mating design to maximize
the genetic variation of the offspring. After 50 breeding cycles, this leads to a
4 percentage points higher mean genetic value of the top-10 individuals in favor
of the scoping method. This demonstrates that maximizing the genetic variation
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Figure 5.5: Simulation results using the scoping method for a scoping rate of 0.1, 0.3 and 0.6, simulated
over 50 breeding cycles. Additionally, the results of the baseline method are shown for the sake of com-
parison. In the top figure, the mean genetic value of the top-10 individuals and the maximum reachable
genetic value are shown for different scoping rate values and the baseline method. In the middle figure,
the mean genetic value of the breeding population is shown for different scoping rate values and the
baseline method. In the bottom figure, the rate of QTL fixation is shown for different scoping rate values
and the baseline method.

increases the genetic value in the long term. A scoping rate of 0.3 yields high
genetic values in both the short and the long term. Only eight breeding cycles
are needed before the top-10 individuals outperform the baseline method. Over
those eight breeding cycles, the difference in genetic value between the baseline
method and the scoping method is negligible. After 12 breeding cycles, the mean
genetic value of the population surpasses that of the baseline method. Ultimately,
after 50 breeding cycles, the scoping method with a scoping rate of 0.3 yields a
mean genetic value of 0.71 over the top-10 individuals, a 15 percentage points
increase compared with the baseline method.

5.3.4 The combined method

The combination of the scoping and backcrossing methods helps to preserve the
genetic variation, leading to a general improvement of the backcrossing method
(see Figure 5.6). Although higher genetic values are observed compared to the
backcrossing method, the combined method cannot outperform the scoping method.
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Moreover, our simulation study indicates that with the proper use of the scoping
method, the addition of new genetic information is not required.

Figure 5.6: Simulation results using the scoping method combined with the backcrossing method simu-
lated over 50 breeding cycles. Replacing the nine breeding cycles between every two backcrossings with
the scoping method helps to retain the genetic variation in the breeding population. This leads to a better
fixation of the favorable QTL alleles and to a higher maximum reachable genetic value. Moreover, higher
mean genetic values are reached compared to the backcrossing method. Further increasing the scoping
rate (> 0.6) only leads to negligible improvements of the mean genetic value.

5.3.5 The population merit method

The population merit method preserves the genetic variance by reducing the av-
erage genetic relationship of the parental population, leading to a higher genetic
gain in the long term compared with the baseline method (see Figure 5.7). Despite
the fact that a higher long-term gain is observed, the population merit method
only retains a fraction of the genetic variation, still causing the fixation of several
unfavorable QTL alleles and a premature convergence of the genetic value to a
local optimum. Compared to the scoping method, the same genetic value is ob-
served over the first eight breeding cycles. However, the population merit method
causes a strong reduction in the maximum reachable genetic value rendering this
method less efficient in the long term than the scoping method. Several values for
the penalty weight c were tested and the best results for c = 20 are reported. At
breeding cycle 50, only an 8 percentage points increase in the genetic value was
observed for the population merit method compared with the baseline method,
while a 15 percentage points increase in genetic value was observed for the scop-
ing method.
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Figure 5.7: Genetic value of the different parental selection methods over 50 breeding cycles. The
genetic value in the long term is the lowest when using the baseline method, followed by the maximum
value total (MVT) method, population merit method and the scoping method, which delivers the highest
genetic values in the long term.

5.3.6 The maximum variance total method

The MVT method combines the average genetic relationship and the average in-
breeding coefficient to maximize the genetic variation of the breeding population.
This method was used to compare the mating design of the scoping method with
the MVT method by using the same pre-selected population to select the P2 par-
ents. Only a small increase of the genetic gain was observed for the MVT method
compared with the baseline method (see Figure 5.7). Using a pre-selected popula-
tion combined with a truncation selection of the P1 parents, the MVT method only
preserved a small part of the genetic variation compared with the scoping method,
causing the loss of several favorable QTL alleles and thus reducing the maximum
reachable genetic value. At breeding cycle 50, only a 2 percentage points higher
genetic value was observed compared with the baseline method, rendering this
method less efficient than the scoping method.

The mean genetic value of the breeding population, mean genetic value of the top-



5 THE SCOPING METHOD 74

10 individuals and the maximum reachable genetic value of the baseline method,
scoping method, population merit method and MVT method are reported in Ta-
ble 10.1, Table 10.2, and Table 10.3, respectively. The mean genetic value of the
top-10 individuals and the maximum reachable genetic value of the backcrossing
method, and combined method are reported in Table 10.4, and Table 10.5, respec-
tively.

5.3.7 Robustness of the scoping method

The robustness of the scoping method has been tested and compared with the
baseline, backcrossing, combined, population merit and MVT methods using dif-
ferent genome constructions. We have compared the different methods for a heri-
tability of 0.1, 0.3, 0.7 and 0.9 (see Figure 5.8). Increasing heritability will result in
a better prediction of the additive marker effects, leading to an improved parental
selection and thus guiding the breeding population towards a higher mean genetic
value of the top-10 individuals. Decreasing the heritability will have the opposite
effect. As the heritability decreases, the effect of the environment becomes more
pronounced, making it more challenging to select parents based on the GEBVs.
Independent from the value of the heritability, the relative position between each
parental selection method remained the same, indicating that the heritability does
not influence the effectiveness of the different parental selection methods. How-
ever, a higher heritability will reduce the genetic gain between each method. The
genetic value was also studied for 50 QTLs and 200 QTLs (see Figure 5.9). Decreas-
ing the number of QTLs means that the same number of markers is now available
to grasp the effects of only 50 QTLs. This leads to a higher prediction accuracy and
a higher mean genetic value. When the number of QTLs is increased to 200, the
opposite effect is observed. Again, each method can maintain its relative position
towards the other methods indicating that the number of QTLs does not influence
the effectiveness of the different parental selection methods, except for the com-
bined method which resulted in a slightly higher mean genetic value of the top-10
individuals in the 50 QTLs scenario.

5.4 Discussion

5.4.1 Risks of truncation selection

Nowadays, the use of truncation selection is still popular among breeders, de-
spite the fact that fixation of unfavorable QTL alleles associated with this selec-
tion method has been reported (Jannink, 2010). By selecting parents based on
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Figure 5.8: Genetic value of the different parental selection methods for different heritabilities over
50 breeding cycles. The genetic value in the long term is the lowest when using the baseline method,
followed by the maximum value total (MVT) method, population merit method and the scoping method,
which delivers the highest genetic values in the long term. In other words, each method can maintain
its relative position towards the other methods indicating that the heritability does not influence the
effectiveness of the different parental selection methods.

their GEBV using truncation selection, breeders hope to maximally pass favor-
able QTL alleles on to the next generation. However, the GEBV represents only
a single value per individual that integrates the genetic information of more than
1000 molecular markers (see Eq. (4.6)). In contrast to MAS, in genomic selection,
only a fraction of those molecular markers are in strong linkage disequilibrium
with QTLs (Meuwissen et al., 2001). By summarizing the information of all those
marker effects into a single number, important genetic information is lost, ren-
dering it difficult to detect the presence or absence of favorable QTL alleles. This
is especially the case when rare marker effects are masked by the presence of
many other marker effects. This was demonstrated in the baseline method, where
several negative QTL alleles were fixed in the breeding population. Eynard et al.
(2017) simplified the selection of favorable QTL alleles by assigning weights to rare
marker alleles. Nevertheless, it is clear that truncation selection does not guaran-
tee the presence of all favorable QTL alleles in the parental population and could
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Figure 5.9: Mean genetic value of the top-10 individuals using the baseline, backcrossing, maximum
variance total (MVT), population merit, scoping and combined methods simulated over 50 breeding cycles
with at the left 50 QTLs and at the right 200 QTLs. Each method can maintain its relative position towards
the other methods indicating that the number of QTLs does not influence the effectiveness of the different
parental selection methods.

hence result in their loss. However, the baseline method has a positive genetic
gain over each breeding cycle, indicating that the fixation of favorable QTL alle-
les has a higher impact on the genetic value than the fixation of unfavorable QTL
alleles. The reduction of the genetic variation of the breeding population, which
is often associated with truncation selection, causes a reduction in prediction ac-
curacy (Heffner et al., 2009), which implies poorly estimated marker effects and
substandard parental selections (see Figure 5.11). In turn, a poor parental selec-
tion in combination with a low genetic variation will further contribute to the loss
of favorable QTL alleles as observed in the baseline method. Jannink (2010) tack-
led this problem by limiting the rate of inbreeding in the TP and thereby reducing
the loss of genetic variation. However, methods based on truncation selection still
cause the loss of several favorable QTL alleles. The scoping method also tackles
this problem by preserving the genetic variation throughout the breeding cycles
and increases long-term gain (see Figure 5.10).

Combined with truncation selection, the recurrent selection cycle can also cause
the loss of several favorable QTL alleles, further reducing the genetic variation of
the breeding population. During selection, 100 parents are selected and divided
into 50 couples. Each couple is crossed for twenty times followed by two genera-
tions of single-seed descent leading to 1000 F3 individuals. If one couple is able
to produce 20 F3 individuals with high GEBVs, they will all be selected in the next
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Figure 5.10: Genetic variance of the different parental selection methods over 50 breeding cycles. The
genetic variance drops the fastest when using the baseline method, followed by the maximum variance
total (MVT) method, population merit method and the scoping method with a scoping rate of 0.3. Both
the backcrossing and combined methods result in a high genetic variation after each backcrossing event,
but a drop in the genetic variation is observed in the subsequent breeding cycles.

parental population. This means that at least 20% of the parental population will
then have the same ancestor, which could cause a strong reduction in genetic
variation and the loss of several favorable QTL alleles. Certainly QTL alleles that
are masked by many other QTL effects are at risk. Therefore, breeders should al-
ways be cautious when applying truncation selection in a breeding program. Using
the average genetic relationship or marker information as done by the population
merit method and scoping method could prevent the selection of too closely re-
lated individuals and thus prevent the loss of genetic variation.

5.4.2 Preserving genetic variation for long-term ben-
efits

Truncation selection causes the loss of several favorable and unfavorable QTL al-
leles, reducing the genetic variation of the breeding population and causing a pre-
mature convergence of the genetic value to a local optimum. Reintroducing new
semi-wild species can temporally increase the genetic variation. The backcrossing
method uses, therefore, the F1 hybrids of the base population, making it possi-
ble to study this method in a predefined simulation setting and compare it with
other selection methods. Although the introduction of those F1 hybrids in the
parental population helped to increase the long-term genetic gain, the backcross-
ing method suffered from abrupt changes in mean genetic value after each back-
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Figure 5.11: Prediction accuracy of the different parental selection methods over 50 breeding cycles.
The prediction accuracy drops the fastest when using the baseline method, followed by the maximum
variance total (MVT) method, population merit method and the scoping method with a scoping rate of 0.3.

crossing event. Introducing a pre-breeding program, in which semi-wild species
are crossed for several generations to increase the reintroduction of favorable QTL
alleles could reduce the abrupt changes in the mean genetic value, but it would
also reduce the cost and time efficiency of the backcrossing method. The scoping
method consistently preserves the genetic variation in the breeding population for
as long as possible and thus avoids a premature convergence of the genetic value.
In less than 20 breeding cycles, both methods yield offspring with higher genetic
values compared to the baseline method.

Using the backcrossing method, the global optimum is eventually approached by
moving from local optimum to local optimum. However, the relative gain of ev-
ery consecutive backcrossing period (10 cycles) decreases. The scoping method
avoids local optima by consistently preserving the genetic variation in the breed-
ing population for as long as possible and thus approaches the global optimum
in a more direct manner. The combination of selecting parents with high GEBVs
and preserving both marker alleles in the breeding population has proven to be
more efficient than reintroducing genetic information in the breeding population,
making the scoping method the most efficient one.

In the backcrossing method, the timing of the backcrossing event is an important
design choice. Expediting the backcrossing event to five breeding cycles leads to
a decrease in the genetic gain. Each backcrossing event is now only followed by
four breeding cycles of truncation selection which is not enough to recover from a
sudden drop in the genetic value. Retarding the backcrossing event to 20 breeding
cycles will reduce the time efficiency of the backcrossing method. Each backcross-
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ing event is now followed by 19 breeding cycles of truncation selection. The trun-
cation selection causes a rapid loss of the genetic variation leading to premature
convergence of the genetic value to a local optimum. That optimum is reached
well before the next backcrossing event, causing a temporary loss in genetic gain
between the period in which the local optimum is reached and the next backcross-
ing event. In summary, the time between each consecutive backcrossing should
be on the one hand large enough to recover from the sudden change in genetic
value caused by the reintroduction of several QTL alleles and on the other hand
short enough to avoid a premature convergence of the genetic value in a local
optimum. Both design criteria were achieved when introducing the backcrossing
event every 10 breeding cycles.

Both the scoping method and backcrossing method do not only preserve the ge-
netic variation in the breeding population but also in the TP, leading to an im-
proved prediction accuracy (see Figures 5.10 and 5.11) (Voss-Fels et al., 2018).
In the case of the backcrossing method, after nine breeding cycles of truncation
selection, most marker frequencies approach either zero or one. Backcrossing the
breeding population with the base population yields closely related individuals with
alterations on certain markers. This makes it possible to uncover important marker
effects that had been masked during previous breeding cycles. In the case of the
scoping method, by preserving both marker alleles at each marker, both alleles at
each QTL were also preserved in the breeding population. If certain marker effects
were masked or poorly predicted, the alternate allele could still be built into the
next generation.

The scoping method delivers an important message. Fixation of favorable QTL
alleles is not a prerequisite to obtain high genetic values. The scoping method
was able to outperform the baseline method and backcrossing method with only
40% of the QTL alleles fixed in the breeding population. Preserving both alle-
les at each QTL prevents the elimination of poorly predicted QTL alleles. In the
combined method, the incorporation of the scoping method not only increased the
mean genetic value of the breeding population, but it also increased the maximum
reachable genetic value making it easier to converge towards the global optimum.

5.4.3 Reintroducing genetic material in the breeding
population

In this chapter, the importance to preserve the genetic variation has already been
pointed out several times. The scoping method has been proposed as an alterna-
tive method to help reduce the loss in genetic variation. However, even when the
scoping method was used, a small fraction of the favorable QTL alleles was still
lost during breeding. Therefore, the combined method was proposed, combining
the backcrossing method with the scoping method. This method was not only able
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to preserve the genetic variation like the scoping method, but it also reintroduced
lost QTL alleles during the backcrossing process, leading to the highest maximum
reachable genetic values compared to the other methods. Unfortunately, the sud-
den change in the genetic value after each backcrossing event reduces the usabil-
ity of this method.

In the long term, the combined method gained the same mean genetic value of
the top-10 individuals as the scoping method, but the genetic variation and the
maximum reachable genetic value of the combined method are still surprisingly
higher than the scoping method, making the combined method potentially more
interesting. Combining this method with a pre-breeding program could reduce the
drop in the mean genetic value, making it possible to reach the full potential of
the combined method. Unfortunately, this will also be accompanied by high costs,
reducing its applicability.

Nevertheless, both the backcrossing and combined methods indicate that the rein-
troduction of genetic variation is important when different favorable and unfavor-
able QTL alleles have been eliminated from the breeding population. In Chapter 7,
a new method is proposed that reintroduces genetic variation in the breeding pop-
ulation while the drop in the genetic value is avoided.

5.4.4 Comparison of the scoping method with exist-
ing methods

Two existing methods (the population merit method (Lindgren and Mullin, 1997)
and the MVT method (Cervantes et al., 2016)) were compared with the scoping
and backcrossing methods. The population merit method calculates a score per
parental population and is maximized using an iterative algorithm. By penalizing
a high genetic relationship between parents, the loss in genetic variation is min-
imized. The population merit method delivered a significant improvement com-
pared with the baseline method, but the scoping method was able to outperform
the population merit method within the first 10 breeding cycles. The backcrossing
method had the same mean genetic gain of the top-10 individuals compared with
the population merit method. However, the backcrossing method cannot fully re-
cover after each backcrossing event, making the population merit method more
efficient as it delivered a positive genetic gain over each breeding cycle. The com-
bined method also had a sudden drop in the genetic value after each backcrossing
event. However, by using the scoping method instead of truncation selection, a
higher genetic gain was observed during the next nine breeding cycles. Using the
combined method, higher genetic values were observed in the long term, but af-
ter each backcrossing event, the combined method needed four breeding cycles
before outperforming the population merit method. The population merit method
was able to preserve a certain fraction of the genetic variation and thus improve
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long-term genetic gain, but only using the genetic relationship matrix was not
enough. Over the first breeding cycles, a strong decrease in the maximum genetic
value was still observed, indicating the fixation of several unfavorable QTL alle-
les. This was probably caused by the loss in genetic variation, leading to a lower
prediction accuracy and thus a poor estimation of the additive marker effects (see
Figures 5.10 and 5.11). The population merit method reduces the information of
the genetic relationship matrix into a single averaged value. This certainly helps to
preserve the genetic variation, but it does not guarantee that all the marker alleles
will be preserved in the breeding population. A decrease of the maximum reach-
able genetic value is a good indicator to monitor the loss of favorable QTL alleles.
A good parental selection method should be able to keep the maximum reachable
genetic value fixed. It is clear that the population merit method fails at preventing
the loss of those favorable QTL alleles. The scoping method ensures the inclusion
of all available marker alleles, reducing the loss of favorable QTL alleles and thus
maximizing the genetic variation over each breeding cycle.

Over the first breeding cycles, a lower mean genetic value of the top-10 individuals
is observed for the population merit method. Compared with truncation selection,
individuals with high GEBVs are exchanged with other individuals to minimize the
average genetic relationship of the parental population, affecting the genetic gain
in the short term. Compared to the scoping method, each individual can be se-
lected as a parent. This means that an individual with low GEBV and a low genetic
relationship could be selected as parent if c is chosen high enough. Although the
population merit method had a low genetic gain in the short term, the genetic vari-
ation was well preserved, leading to a better prediction of the marker effects and
a better parental selection. The MVT method also had a low genetic gain in the
short term, despite the fact that a pre-selection was used to avoid the acceptance
of low-GEBV individuals. The MVT method did not take into account the genetic re-
lationship per couple or the mean genetic value of the parents, possibly leading to
a low genetic gain in the short and the long term. Again, the use of the inbreeding
coefficient and relationship matrix only prevents the selection of closely related
individuals, but it does not directly prevent the loss of certain QTL alleles. Similar
to the GEBVs, the genetic value summarized the genetic information (genotype
and allele frequency) into a single value, masking important information during
breeding. The MVT method should preserve the genetic information, however,
in the current setting, the genetic variation is barely preserved. Testing the MVT
method without pre-selection and greedy parental selection (P1) led to a much
higher genetic variation, but because the method does not take into account the
genetic value, only low genetic values were observed. It is clear that the combina-
tion of the MVT method with a pre-selection and a greedy parental selection was
not successful, but it did deliver higher genetic values compared with the baseline
method.
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5.4.5 Limitations of the Pearson correlation

In genomic selection, the prediction accuracy is defined as the linear correlation
between the GEBVs and the true breeding values. This can be measured by taking
the Pearson correlation between the GEBVs and the genetic values. Although the
Pearson correlation is widely used in GS to evaluate the performance of a method
(or prediction model), this performance measure is prone to outliers and is influ-
enced by the amount of genetic variation in the breeding population, resulting in
an overestimation of the prediction accuracy (Devlin et al., 1975; Glass and Hop-
kins, 1996; Goodwin and Leech, 2006).

In Figure 5.12 the mean genetic value of the top-10 individuals, the mean ge-
netic value of the breeding population, and the Pearson correlation are shown for
a breeding population using truncation selection and the scoping method. Accord-
ing to the mean genetic value of the top-10 individuals and the Pearson correlation,
the scoping method outperforms truncation selection between breeding cycles 7
and 8, while a lower prediction accuracy is observed for truncation selection at
breeding cycle 6. According to the mean genetic value of the breeding population,
the scoping method will only be able to outperform truncation selection at breed-
ing cycle 15, but at that point, the scoping method already resulted in superior
individuals compared to truncation selection. The goal of breeding is to develop
new superior breeding lines, and therefore, the mean genetic value of the top-10
individuals is a better choice than the mean genetic value of the breeding popula-
tion to evaluate a method.

Figure 5.12: Mean genetic value of the top-10 individuals, Mean genetic value of the breeding population
and the prediction accuracy (Pearson correlation) are shown for a breeding population using truncation
selection and the scoping method simulated over 50 breeding cycles. The Pearson correlation degrades
over each breeding cycle while the genetic gain is increased.
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At breeding cycle 20, the mean genetic value of the top-10 individuals using trun-
cation selection converges. At that point, the Pearson correlation is still degrading
and will only converge around breeding cycle 40. Based on the Pearson correla-
tion, we could expect that truncation selection will have a better performance at
breeding cycle 20 than at breeding cycle 50. However, the mean genetic value of
the top individuals remains unchanged over these breeding cycles. High long-term
genetic gains can be obtained by using a good parental selection strategy and a
good estimation of the marker effects. As long as the parental selection strat-
egy requires the estimation of marker effects, if a poor estimation is obtained, a
lower long-term genetic gain will be observed. Therefore, we believe that using
the mean genetic value of the top-10 individuals is a better and safer choice to
correctly evaluate the performance of the different parental selection methods.

Especially for a small scoping rate, the Pearson correlation can be deceiving. In-
dividuals with a low genetic value can be pre-selected if their GEBV is high due
to a poor estimation. Because these individuals are often associated with a broad
genetic variation, when the scoping method is used, one of these individuals will
probably be selected as a P2 parent, leading to F3 individuals (their offspring) with
a lower genetic value. Because the genetic value of these F3 individuals will dif-
fer from the rest of the population, the Pearson correlation will be overestimated.
While the high prediction accuracy could give the breeder the wrong impression,
the genetic gain over the subsequent breeding cycles will be lower, indicating that
the parental selection was far from optimal.

5.4.6 Prediction model

Different prediction models are available to estimate the marker effects. In ge-
nomic selection, rr-gBLUP is often used, but non-linear models like Bayes A, Bayes
B and Bayes C have also been used in different research settings. The effect of
the different prediction models on the genetic value for the baseline (top line) and
scoping (bottom line) methods are evaluated (see Figure 5.13). As expected, the
Bayesian models resulted in a similar mean genetic value of the top-10 individuals
as rr-gBLUP (Moser et al., 2009).

Normally, in each breeding cycle, low-frequency markers are removed from the
training population to increase the prediction accuracy Edriss et al. (2013). To
study the effect of low-frequency markers on the prediction accuracy of both rr-
gBLUP and the Bayesian models, a breeding population is simulated using all the
available markers to fit the mixed effects model. Removing the low-frequency
marker alleles had a negative effect on the genetic value. Based on the results as
depicted in Figure 5.13, low-frequency markers should not be removed from the
training population. Although Bayesian models result in a similar breeding value
in the long term, models like the Bayes B and Bayes C models require a parameter
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Figure 5.13: Simulation results of the baseline method (top line) and scoping method (bottom line) using
a training population in which low-frequency markers are removed (left) or using a training population in
which all markers are used (right). Each prediction model results in the same long-term genetic gain.
When low-frequency markers are removed from the training population, a lower genetic gain is observed.
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π, which needs to be fine-tuned by the breeder. Unfortunately, this fine-tuning
process often relies on gut feeling and will thus differ from breeder to breeder. A
prediction model like rr-gBLUP can directly be used without the need of fine tuning
and is therefore a safer choice.

5.4.7 Updating the training population

Neyhart et al. (2017) reported the importance of systematically updating the TP to
counter the decay in prediction accuracy. Several update methods were studied
in combination with the scoping method, confirming the importance of updating
the training population. Not updating the training population decreases the rela-
tionship between the training population and the breeding population (Isidro et al.,
2015). In turn, poorly estimated GEBVs will essentially result in a random selec-
tion, explaining the premature convergence of the mean genetic value. Over each
subsequent breeding cycle, favorable QTL alleles are eliminated from the breeding
population, resulting in a much lower genetic gain.

The effect of the different training population update methods is shown in Fig-
ure 5.14. The difference in genetic value between the different update methods is
almost negligible and is in accordance with Neyhart et al. (2017). In the long term,
the tails update method results in a slightly higher mean genetic value of the
top-10 individuals whereas selecting individuals with the lowest GEBVs (bottom
update method) results in the lowest mean genetic value of the top-10 individu-
als. A training population that only contains individuals with the lowest GEBVs will
have difficulties in correctly predicting the top individuals. Certainly for the scop-
ing method with a scoping rate of 0.3, it is important that the GEBVs are correctly
predicted to avoid the selection of low-GEBV individuals that could decrease the
genetic gain over the next breeding cycles. The tails method combines the infor-
mation of both tails of the population and results in an accurate prediction of the
top and bottom individuals. Selecting individuals with the highest GEBVs in the
TP (top update method) results in an accurate selection of the top individuals but
individuals with a lower genetic value are predicted inaccurately. Because each
selection method only selects individuals with a high GEBV, selecting individuals
with the highest GEBV in the TP had no negative repercussions on the genetic
gain. Randomly selecting individuals in the TP results in an overall good prediction
accuracy over the whole breeding population and will therefore, also result in a
similar long-term genetic value as observed for the top and tails update methods.
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Figure 5.14: Effect of the TP update method on the genetic value using the scoping method over fifty
breeding cycles. Only a small difference is observed between the top, bottom, tails and random update
methods. The no change update method, which does not update the TP, rapidly converges to a low
mean genetic value and several favorable QTL alleles are eliminated from the breeding population, thus
reducing the maximum reachable genetic value.

5.4.8 Cost analysis

The influence of a parental selection method on the profit margin of a breeding
program is difficult to assess. Different factors are often in play, influencing the
market price, and costs. Therefore, assessing the marginal profit between using
the scoping method instead of truncation selection is difficult.

Assuming that each method is performed under the same conditions and with the
same resources, then the cost for each method should also be the same. Only
the backcrossing method and combined method will deviate, as they require the
use of F1-hybrids from the first breeding cycle. The backcrossing method was an
interesting case study, but was only a theoretical concept. Therefore, both the
backcrossing method and the combined method will not be considered during this
analysis.

The scoping, population merit and MVT methods all uses the same settings as
truncation selection. Only the parental selection is different. Truncation selection
uses the GEBV, whereas the scoping method also uses marker information. The
population merit requires the genetic relationship matrix and the MVT requires the
degree of inbreeding. All the required information is already available and does
not increase the financial cost.

The scoping method gains a 15 percentage points higher genetic value compared
to the baseline method. Therefore, we can assume that using the scoping method
will deliver a financial advantage after 8 breeding cycles. At that point, a breeding
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population using the scoping method will yield improved breeding lines compared
to a breeding population using truncation selection. The effect of these breeding
lines on the marginal profit are difficult to predict. Probably, due to the superior-
ity of these breeding lines, the market share of the breeding company will grow
resulting in a higher profit.

5.5 Conclusion

In our simulation study, we demonstrated the need for an alternative parental se-
lection method to prevent the convergence of the genetic value of the breeding
population to a local optimum caused by the loss of favorable QTL alleles. Trun-
cation parental selection leads to a rapid fixation, but also to the loss of several
favorable QTL alleles, causing the convergence of the genetic values to a subop-
timal value and reducing the possibility to reach the global optimum in the long
term. Consistently preserving the genetic variation (scoping method) leads to
higher genetic values in the long term and only a slightly lower genetic value in
the short term. We conclude that preserving the genetic variation by means of
the scoping method is more beneficial than periodically reintroducing new genetic
information into the breeding population.
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6
The adaptive scoping method

Truncation selection is often used to rapidly achieve short-term genetic gain within
a breeding program. Unfortunately, it is also associated with the loss of favorable
QTL alleles in the breeding population, causing a premature convergence to sub-
optimal genetic values. Parental selection strategies such as the scoping method
have been proposed to preserve genetic variation in the breeding population and
thus maximize genetic gain in the long term. Nevertheless, for economic rea-
sons, breeders are often interested to maximize the genetic gain in a shorter time
frame. We propose a new selection strategy, named the adaptive scoping method,
that aims at maximizing the genetic gain within a specific, predefined time frame.
Throughout this time frame, the adaptive scoping method progressively changes
its selection strategy: during the initial breeding cycles, it attempts to maximally
preserve genetic variation, whereas in later breeding cycles, it prioritizes the in-
crease of the genetic value. We demonstrate through simulation studies that the
adaptive scoping method is able to maximize the genetic gain for a wide range of
time frames and that it outperforms the original scoping method, both in the short
and in the long term.
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The material of this chapter is based on the following publication:
Vanavermaete, D., Fostier, J., Maenhout, S., De Baets, B., 2021. Adaptive scoping:
balancing short- and long-term genetic gain in plant breeding. (under review).

6.1 Introduction

From an economic point of view, breeders aim to maximize the genetic gain as
quickly as possible. To this end, they often resort to the use of truncation selec-
tion: every generation, individuals that rank highest according to certain traits
of interest are selected for breeding. When such parental selection is guided by
pedigree information, the reduction in genetic variation is limited (Piepho et al.,
2008). However, when truncation selection is based on genotypic data (i.e., ge-
nomic selection), a rapid fixation of large-effect quantitative trait loci (QTLs) has
been observed (Clark et al., 2011; Pszczola et al., 2012; Jannink, 2010). The loss of
favorable QTL alleles in the breeding population reduces the maximum reachable
genetic value, ultimately resulting in a premature convergence to a sub-optimal
genetic value. Therefore, a successful breeding program should find a balance
between genetic gain on the one hand and the preservation of genetic variation in
the breeding population on the other hand (Jannink, 2010).

Different methods have been proposed in literature to maximize long-term ge-
netic gain by controlling the average inbreeding coefficient of a population (Wray
and Goddard, 1994; Brisbane and Gibson, 1995; Meuwissen, 1997). The inbreed-
ing coefficient of a diploid individual is the probability that, at any given locus,
the two alleles are identical by descent (i.e., originate from the same ancestor).
It is important to manage the rate at which the average inbreeding coefficient
changes between consecutive breeding cycles (Woolliams et al., 2015). A high
rate of inbreeding results in a quick, short-term genetic gain but a rapid loss of
genetic variation, whereas a low rate of inbreeding yields a better preservation of
the genetic variation at the expense of a slower genetic progress. Unfortunately,
estimating the rate of inbreeding for the next generation solely based on informa-
tion of the parents remains difficult. Different methods to predict and control the
rate of inbreeding have been proposed. Wray and Thompson (1990) propose the
use of the long-term genetic contribution metric, i.e., the proportion of the genes
of an individual that will be passed to its descendants in the long term. Meuwis-
sen (1997) proposed to limit the rate of inbreeding by restricting the coancestry
between parents using the optimal contribution selection (OCS) method. In similar
approaches, the rate of inbreeding was controlled by ensuring a sufficient genetic
distance between parents, thus limiting within-family selection (Sonesson et al.,
2012; Allier et al., 2020b). Gorjanc et al. (2018) use the OCS method in a two-part
breeding program to maximize the long-term genetic gain. Akdemir and Sánchez
(2016) propose an optimal mating plan, taking into account the risk of inbreeding,
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the allele heterozygosity and allele diversity. Unfortunately, none of these meth-
ods allow for the direct construction of the optimal set of parents to be used for
breeding and thus, different combinations should be evaluated. Because it is not
computationally feasible to enumerate and evaluate all possible combinations of
parent individuals, optimization techniques such as genetic algorithms are often
used to find a good parental population (Allier et al., 2020b; Gorjanc et al., 2018).
However, such techniques tend to converge to local optima, which implies that the
optimal parental population may not be found.

In Chapter 5, the scoping method is proposed as an alternative strategy to pre-
serve the genetic variation in a breeding population and thus maximize the long-
term genetic gain. The selection of parental individuals is performed in a compu-
tationally efficient manner and consists of two steps: pre-selection followed by ac-
tual parental selection. First, a certain fraction of the individuals with the highest
genomic estimated breeding values (GEBVs) are pre-selected from the breeding
population. This fraction is referred to as the scoping rate (SR). A low scoping rate
results in the pre-selection of a small set of individuals with only the highest GEBVs,
whereas a high scoping rate yields a larger, more diverse set of candidate parents.
From this set, parents are selected and coupled aiming for genetic progress as well
as the preservation of genetic variation. The scoping method was demonstrated
to outperform parental selection methods such as truncation selection, the popu-
lation merit method (Lindgren and Mullin, 1997) and the maximum variance total
method (Cervantes et al., 2016), with a more pronounced superiority in the long
term.

For economic reasons, breeders are often interested in the maximization of ge-
netic gain in a shorter time frame. To this end, we propose a modification of the
scoping method that aims at optimizing the genetic gain of a breeding population
within a predefined number of breeding cycles. This method, referred to as the
adaptive scoping method, dynamically changes the scoping rate throughout the
different breeding cycles: initially, high scoping rates are considered such that the
preservation of genetic variation is emphasized, whereas during later breeding
cycles, increasing the genetic value is gradually prioritized through lower scop-
ing rates. The adaptive scoping method takes only a single parameter, namely
the time frame t (expressed through the number of breeding cycles) during which
the genetic gain should be maximized. This unique feature enables breeders to
balance exploration and exploitation of their breeding population.

6.2 Materials and methods

The base population and breeding scheme are adopted from Neyhart et al. (2017).
The base population is constructed with two datasets of North American barley
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(Hordeum vulgare) from the University of Minnesota (UMN) and the University of
North Dakota (NDSU), counting respectively 384 and 380 six-row spring inbred
lines with 1590 biallelic SNP loci. The simulation study was constructed in a similar
way as described in Chapter 4, ensuring that the performance of the adaptive
scoping method can be compared with that of the original scoping method.

Figure 6.1: Overview of the recurrent breeding scheme. First, 50 couples of parents (P1, P2) each produce
20 offspring, yielding a total of 1000 F1 hybrids. After two generations of single-seed descent, 1000 F3
individuals are obtained. From those F3 individuals, new parental lines are selected.

6.2.1 Breeding scheme

The recurrent breeding scheme is depicted in Figure 6.1 and has been described in
Chapter 4. In the initial breeding cycle, 50 individuals with the highest phenotypic
values of the NDSU dataset are coupled with 50 individuals with the highest phe-
notypic values of the UMN dataset. Each couple produces 20 offspring and after
2 generations of single-seed descent, the base population is obtained containing
1000 individuals. From this point onward, the parents are selected solely based
on the genomic estimated breeding values (GEBVs) to reduce the financial cost
of phenotyping. The GEBVs are predicted using a linear mixed effects model that
has been fitted using the base population, which contains both phenotypic and
genotypic information.

In each subsequent breeding cycle, 100 parents are selected and coupled accord-
ing to one of the parental selection methods considered to construct a crossing
block. Each couple produces 20 offspring resulting in a total of 1000 F1 hybrids.
After two generations of single-seed descent, 1000 F3 individuals are obtained.
These individuals represent the new breeding population from which parents can
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again be selected. Each simulation run consists of 50 breeding cycles and all re-
sults are averaged over 100 simulation runs.

6.2.2 The scoping method

In Chapter 5, the scoping method is proposed to preserve genetic variation in a
breeding population and thus maximize genetic gain in the long term. The scoping
method consists of two steps: pre-selection followed by parental selection. During
pre-selection, individuals with the highest GEBVs are chosen. This ensures that
genetic progress can be made over the next breeding cycles. The fraction of indi-
viduals that is pre-selected is controlled by the scoping rate which ranges between
a minimum value SRmin and a maximum value SRmx. Here, SRmx = 1 (pre-select
100% of the individuals), while SRmin = ns/nt, with ns the number of parent indi-
viduals to be selected for breeding and nt the total population size. For example,
if ns = 100 parents are to be selected from a population size nt = 1000, then a
fraction of at least 10% (SRmin = 0.1) of the individuals must be pre-selected.

Next, from these pre-selected individuals, ns/2 parental pairs are consecutively
chosen as follows: the individual with the highest GEBV is selected as the P1 par-
ent, whereas the P2 parent is taken such that the genetic variation of all selected
parents thus far is maximized over all markers. Mathematically speaking, the
Fscore is maximized:

Fscore =
k
∑

=1

var(Z)p , (6.1)

with k the number of genetic markers, Z the -th column of the n × k matrix
Z containing the genotypes (coded as −1, 0 and 1) of the n already selected
individuals and p a Boolean vector of length k. Initially, p is set to 1 for all marker
positions. When both alleles at marker  are present, p is set to 0. This way,
the Fscore takes into account only those markers for which both alleles are not yet
present in the selected population. Once both alleles are present for all marker
positions, all p are again set to 1 such that the variance is again maximized over
all markers.

The core idea is that the P1 parents drive the genetic progress of the offspring,
whereas the P2 parents ensure the preservation of genetic variation. Clearly, the
scoping rate controls the trade-off between the degree in which genetic variation
can be preserved on the one hand, and the rate at which genetic gain can be made
on the other hand.
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6.2.3 The adaptive scoping method

The scoping method uses a single, fixed value for the scoping rate across different
breeding cycles. In contrast, the adaptive scoping method gradually decreases
the scoping rate from its maximum value SRmx to its minimum value SRmin. The
adaptive scoping method takes a single parameter t, expressed through the num-
ber of breeding cycles over which the scoping rate is varied. Specifically, at breed-
ing cycle , the scoping rate takes the value:

SR() =







SRmin − 1

t − 1
 +

t − SRmin
t − 1

, if 1 ≤  ≤ t

SRmin , if  > t
. (6.2)

In other words, the scoping rate decreases linearly over t breeding cycles from
SRmx = 1 at breeding cycle 1 to SRmin at breeding cycle t (and later cycles). As a
consequence, during the first breeding cycles, the adaptive scoping method pre-
selects a larger number individuals, focusing on the preservation of the genetic
variation (exploration). In contrast, at breeding cycles t and later, only elite in-
dividuals are pre-selected, maximizing the genetic progress (exploitation). From
this set of pre-selected candidate parents, parent pairs are chosen in an identical
manner as in the scoping method.

6.2.4 Prediction model

The GEBVs are predicted by fitting a linear mixed effects model:

y = 1nβ + Z + ε , (6.3)

with y a vector of phenotypic values, 1n a vector of size n containing ones, n the
number of individuals in the training panel, β the fixed effect (phenotypic mean),
Z the incidence matrix of the training panel with marker information,  the marker
effects following a normal distribution N (0,G) with G = σ2


k (with k the identity

matrix of dimension k), k the number of markers and ε the residual effects follow-
ing a normal distribution N (0,R) with R = σ2

e
n. Both variance components σ2


and

σ2
e

are estimated by means of restricted maximum likelihood (REML). The GEBVs
of the individuals are calculated as:

ĝ = Ẑ , (6.4)

with ĝ the GEBVs, Z the marker information and ̂ the predicted marker effects.
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At the start of the simulation study, both the UMN and NDSU datasets are used
as training population. In the subsequent breeding cycles, 150 new individuals
are phenotyped and added to the training panel according to the ‘tails’ method,
selecting 75 individuals with the highest GEBVs and 75 individuals with the lowest
GEBVs (Neyhart et al., 2017). According to Neyhart et al. (2017), this results in
a (non-significantly) higher genetic gain compared to other update methods. Be-
fore updating the training panel, 150 individuals that have been the longest in the
training panel are removed from the training population. This reduces the compu-
tational time without reducing the prediction accuracy (Neyhart et al., 2017).

The linear mixed effects model in Eq. (6.3) is fitted using the package rrBLUP in
R (Endelman, 2011). Even though it has been recommended to remove markers
with low levels of polymorphism from the training panel (Chang et al., 2018), we
kept all markers as this resulted in a higher prediction accuracy.

6.2.5 Simulation of the population

The simulation study was built upon the work of Neyhart et al. (2017), using the
packages GSSimTPUpdate and hypred in R (version 3.6.3). First, the genome of
barley is constructed based on marker position, allele, and chromosomal informa-
tion. One hundred QTLs (L = 100) are selected randomly from the available 1590
biallelic SNP loci. The remaining 1490 biallelic SNP loci are available as markers
for prediction and selection purposes. The QTL effects are calculated according to
a geometric series. At the k-th QTL, the favorable homozygote will have a value
k, the heterozygote a value zero, and the unfavorable homozygote a value −k

with  = (L − 1)/(L + 1). Dominance and epistatic effects were assumed to be ab-
sent. The phenotypic value is calculated over three different environments, each
drawn from a normal distribution with mean 0 and a variance component σ2

E
which

is defined as eight times the genetic variance (Bernardo, 2014). The phenotypic
value of the -th individual in the j-th environment (yj) is calculated as follows:

yj = g + ej + εj , (6.5)

with g the genetic value of the -th individual, ej the j-th environmental effect and
εj the residual effect of the -th individual and the j-th environment. The residual
effect is drawn from a normal distribution with mean 0 and a variance component
σ2
R
, with σ2

R
scaled to simulate a population with a heritability (h2) of 0.5. The

phenotypic value of an individual is the averaged value over the three environ-
ments. A comprehensive overview of the simulation study has been described in
Chapter 4.

To track the fixation of unfavorable QTL alleles, the maximum reachable genetic
value is calculating as the sum of the QTL effects that are fixed (both favorable
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and unfavorable) and the sum of the favorable QTL effects that are not yet fixed.
It represents the maximum genetic value that could still be reached, taking into
account the fixation of unfavorable QTL alleles. The maximum reachable genetic
value and the mean genetic value are rescaled such that the maximum reachable
genetic value has a value of 1. As in Chapter 5, the mean genetic value of the
top-10 individuals is reported. These individuals represent the superior lines that
are prime candidates for commercialization.

6.3 Results

6.3.1 Performance of the adaptive scoping method

The adaptive scoping method is designed to maximize the preservation of genetic
variation over the first breeding cycles and maximize the genetic progress over
later cycles. This is achieved by linearly decreasing the scoping rate over the
course of t breeding cycles. Figure 6.2 shows the mean genetic value of the top-
10 individuals of the population for different values of t = 10, 20, 30, 40 and 50
breeding cycles. For a value of t = 10, the preservation of variation is quickly
traded off for a rapid genetic gain: from breeding cycle 10 onward, only the indi-
viduals with the highest GEBVs are considered as parents. At breeding cycle 15,
this manifests itself in an at least 4 percentage points higher mean genetic value
compared with the other values of t. Nevertheless, due to the rapid reduction of
genetic variation, the adaptive scoping method with t = 10 quickly loses its ability
to drive genetic progress further, yielding the worst genetic values beyond about
30 breeding cycles. The adaptive scoping method with t = 20 preserves the ge-
netic variation somewhat longer before focusing on genetic gain. Around breeding
cycle 25, this yields the highest mean genetic value compared with other values
of t. Again, this advantage quickly degrades throughout later breeding cycles.

In general, the behavior of the adaptive scoping method can be understood as
follows: the higher the value of t, the longer genetic variation is preserved before
genetic gain is prioritized. As soon as t breeding cycles are completed, the adap-
tive scoping method resembles the behavior of truncation selection (although the
pairing of parents is not random). Therefore, the adaptive scoping method will
yield the highest genetic gains shortly after t breeding cycles. This is indicated in
the middle panels of Figure 6.2, where the results for different values of t are com-
pared at different breeding cycles: the adaptive scoping method with t = 10 yields
the highest gain at cycle 15, the adaptive scoping method with t = 20 yields the
highest gain at cycle 25, etc. The only exception is the adaptive scoping method
with t = 50. In that case, the adaptive scoping method is not able to outperform
the adaptive scoping method with t = 40 at breeding cycle 55 but converges to
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the same value (see Table 10.6). Clearly, by choosing a particular value for t, a
breeder can expect the highest gains during the breeding cycles that immediate
follow t, outperforming the adaptive scoping method with different values of t.

We also compare the adaptive scoping method with the original scoping method
for a fixed scoping rate across the breeding cycles. In Chapter 5, a scoping rate
of 0.3 was suggested to maximize the genetic gain in the short as well as in the
long term and is hence also used here. Compared with the scoping method, the
adaptive scoping method uses a higher scoping rate and hence pre-selects more
individuals during the first breeding cycles, allowing for a better preservation of
the available genetic variation. As a consequence, during those initial breeding
cycles, the adaptive scoping method suffers less from the loss of favorable QTL
alleles and hence preserves a higher maximum reachable genetic value at the
expense of a lower mean genetic value of its top-10 individuals (see Figure 6.3).

The short-term sacrifice in genetic gain pays off in the long term. The adaptive
scoping method with t = 10 outperforms the scoping method after 13 breeding
cycles and yields higher genetic values up to breeding cycle 20. At that point, the
adaptive scoping method has exploited the remaining genetic variation, quickly
leading to the convergence of the genetic value from that point onward. Similarly,
the adaptive scoping method with t = 20 outperforms the scoping method after
20 breeding cycles. Finally, the adaptive scoping method with t = 50 surpasses
the scoping method at breeding cycle 30 and yields the highest long-term gain
(a 4 percentage point increase compared to the scoping method at breeding cycle
50). At that point, the genetic value of the adaptive scoping method is even higher
than the maximum reachable genetic value of the scoping method. This means
that the loss of favorable QTL alleles from the population during the initial breeding
cycles of the scoping method has caused an insurmountable disadvantage in the
long term. We conclude that the adaptive scoping method is able to outperform
the original scoping method, both in the short term (when low values of t are used)
and in the long term (for high values of t).

The mean genetic value of the top-10 individuals and the maximum reachable ge-
netic value of the adaptive scoping method and the scoping method are reported
in Tables 10.6 and 10.7, respectively.

6.3.2 Robustness of the adaptive scoping method

The original scoping method and the adaptive scoping method have been eval-
uated in different simulation settings. In each experiment, these methods were
assessed using 100 different genomes such that the effects of different QTL and
marker positions are averaged. The effects of the heritability and the number of
QTLs on the genetic gain using both methods have also been tested: simulation
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Figure 6.2: Top panel: the mean genetic value of the top-10 individuals and the maximum reachable
genetic value for the adaptive scoping method with a value for t of respectively 10, 20, 30, 40 and 50
breeding cycles. Middle panels: the mean genetic values for the different parental selection methods
at breeding cycles 15, 25, 35, 45 and 55. Bottom left panel: the SR for the different parental selection
methods. Bottom right panel: the genetic variation for the different parental selection methods.
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Figure 6.3: Mean genetic values of the top-10 individuals using the scoping method (SR = 0.3) and the
adaptive scoping method for t = 10, t = 20 and t = 50. In the short term, the scoping method yields the
highest genetic gains. Over time, t = 10 will result in higher genetic gains followed by t = 20, and t = 50.

studies were performed using a heritability of 0.2 and 0.8 using 100 QTLs, and a
heritability of 0.5 using 50 and 200 QTLs (see Figure 6.4).

In each case, shortly after t breeding cycles, the adaptive scoping method resulted
in the highest genetic value throughout a certain number of breeding cycles. For
t = 50, the adaptive scoping method always yielded the highest long-term ge-
netic gain. Increasing the heritability improves the prediction accuracy, resulting
in higher genetic gains for all methods. Similarly, the GEBVs can be more accu-
rately predicted when fewer QTLs are present. For lower values of the heritability,
the effect of the environment becomes more pronounced, making it more chal-
lenging to select parents based on the GEBVs. As the adaptive scoping method is
better at preserving the genetic variation over the first breeding cycles, a slower
but more accurate fixation of the QTL alleles is observed, resulting in higher long-
term genetic gains compared to the scoping method.
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Figure 6.4: Simulation results of the original and adaptive scoping methods (using t = 10, 20 and 50)
for a heritability of 0.2 and 0.8 using 100 QTLs (top) and for a heritability of 0.5 using 50 and 200 QTLs
(bottom). The impact of both methods on the genetic value and on the maximum reachable genetic value
is reported. In each case, shortly after t breeding cycles, the adaptive scoping method results in the
highest genetic value throughout a certain number of breeding cycles.
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6.4 Discussion

6.4.1 The effect of a variable scoping rate on the ge-
netic gain

The loss in genetic variation and the resulting risk associated with truncation se-
lection are well known (Jannink, 2010; Meuwissen et al., 2001). In response to
this, parental selection techniques such as the scoping method were developed
to better preserve genetic variation and thus maximize genetic gain in the long
term. To achieve this, individuals with a lower GEBV can also be considered as a
parent when they contribute to the genetic diversity. To avoid an adverse effect
on the rate of genetic progress, a fraction of individuals with the highest GEBVs
in the breeding population is pre-selected. This fraction is controlled by the scop-
ing rate. The (original) scoping method relied on a fixed scoping rate throughout
the different breeding cycles. For a scoping rate of 0.3, the maximum reachable
genetic value decreases significantly over the first breeding cycles, indicating that
several favorable QTL alleles are lost from the population at the early stages of
the breeding program. In principle, this could be avoided by increasing the scop-
ing rate (and thus pre-selecting more parents), but this would unavoidably slow
down the genetic progress and, hence, require a very large number of breeding
cycles to outperform the truncation selection method.

By introducing a variable scoping rate, the trade-off between genetic gain and ge-
netic variation can be controlled during the breeding process itself. Over the first
breeding cycles, a high value for the scoping rate prevents the loss of favorable
QTL alleles. The scoping rate is decreased linearly, gradually prioritizing genetic
progress over preserving genetic variation. This leads to a slower, but more ac-
curate fixation of the QTL alleles, translating into lower short-term, but higher
long-term genetic gains. The parameter t represents the number of breeding cy-
cles over which the scoping rate is varied, and can thus be used to control the time
frame over which the genetic value is to be optimized. After t breeding cycles, the
adaptive scoping method fully prioritizes the increase of the genetic gain, and a
rapid fixation of QTL alleles is observed.

6.4.2 Optimizing the breeding population within a pre-
defined time frame

The key advantage of the adaptive scoping method is that it can be used to op-
timize the genetic gain of a breeding population within a predefined time frame.
Depending on the goals of the breeder, an appropriate choice for t can be made:
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a low value of t will provide fair genetic values in the short term, whereas higher
values of t will lead to higher genetic values in the long term. Once t breeding cy-
cles have been completed, genetic gain is fully prioritized and the highest genetic
values will quickly be reached during the next few breeding cycles. Irrespective
of the choice of t, the breeder can expect the adaptive scoping method to yield
superior genetic values during a short time window that follows breeding cycle t.
This is shown in Figure 6.5 where at each breeding cycle, the results of the method
that yields the highest genetic values are shown.

The adaptive scoping method proves robust even when the prediction accuracy is
low. This was demonstrated in Figure 6.4 by decreasing the heritability or increas-
ing the number of QTLs. In both cases, selecting the best parents based on the
GEBVs becomes more tedious.

6.4.3 Comparison of the scoping and adaptive scop-
ing methods

Compared to the (original) scoping method which uses a fixed scoping rate, the
adaptive scoping method has two important advantages.

First, during the initial breeding cycles, the adaptive scoping method uses a higher
scoping rate and thus better prevents the loss of favorable QTL alleles. The effect
of the loss of favorable QTL alleles is clearly observed in Figures 6.3 and 6.4: during
the first few breeding cycles, the maximum reachable genetic value of the scoping
method decreases significantly whereas this is less pronounced for the adaptive
scoping method.

Second, after t breeding cycles have been completed, the adaptive scoping method
relies on a low scoping rate to efficiently convert the remaining genetic variation
into genetic gain. From breeding cycle t onward, the scoping rate reaches its min-
imum value and the pre-selection procedure yields the same parental population
as truncation selection (i.e., the individuals with the highest GEBVs). However,
whereas truncation selection relies on a random crossing of parents, the adaptive
scoping method constructs the crossing block using an identical procedure as the
scoping method. The latter was demonstrated to result in an overall higher genetic
gain (see Figure 5.5). As such, the adaptive scoping method allows for a better and
more accurate exploitation of the remaining genetic variation toward the end of
the pre-defined time window.

Except for the case where the optimization of a breeding population in a very
short period of time is desired, the adaptive scoping method outperforms the
(original) scoping method. In turn, the scoping method was demonstrated to out-
perform parental selection methods such as truncation selection, the population
merit method and the maximum variance total method in simulation studies (see
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Figure 6.5: Simulation results of the scoping and adaptive scoping methods. At each breeding cycle, the
mean genetic value of the top-10 individuals and the maximum reachable genetic value is depicted for
the method and/or value of t that yields the highest genetic value. The adaptive scoping method yields
superior genetic values during a short time window that follows breeding cycle t.

Figure 5.7). As such, the adaptive scoping method appears to be an attractive
parental selection method.

6.5 Conclusion

We proposed the adaptive scoping method as an enhanced version of the original
scoping method. By dynamically balancing genetic progress and genetic variation,
we demonstrated its ability to maximize the genetic gain of a breeding population
within a specific, predefined time frame of interest. This unique ability enables
breeders to balance between exploration and exploitation of their breeding popu-
lation: they can obtain fair genetic values in a relatively short term, or they can
aim for the highest genetic values in the longer term. Regardless of this choice
of time frame, the adaptive scoping method was shown to outperform the original
scoping method.
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7
The deep scoping method

Genomic prediction is often combined with truncation selection to identify superior
parental individuals that can pass on favorable quantitative trait locus (QTL) alleles
to their offspring. However, truncation selection reduces genetic variation within
the breeding population, causing a premature convergence to a sub-optimal ge-
netic value. In order to also increase genetic gain in the long term, different meth-
ods have been proposed that better preserve genetic variation. However, when
the genetic variation of the breeding population has already been reduced as a
result of prior intensive selection, even those methods will not be able to avert
such premature convergence. Pre-breeding provides a solution for this problem
by reintroducing genetic variation into the breeding population. Unfortunately, as
pre-breeding often relies on a separate breeding population to increase the ge-
netic value of wild specimens before introducing them in the elite population, it
comes with an increased financial cost. In this chapter, on the basis of a simula-
tion study, we propose a new method that reintroduces genetic variation in the
breeding population on a continuous basis without the need for a separate pre-
breeding program or a larger population size. This way, we are able to introduce
favorable QTL alleles into an elite population and maximize the genetic gain in the
short as well as in the long term without increasing the financial cost.
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The material of this chapter is based on the following publication:
Vanavermaete, D., Fostier, J., Maenhout, S., De Baets, B., 2021. Deep scoping:
a breeding strategy to preserve, reintroduce and exploit genetic variation. Theor
Appl Genet, 1–17.

7.1 Introduction

Truncation selection is often used in genomic selection to rapidly increase the
short-term genetic gain of a breeding population. By selecting individuals with
the highest genomic estimated breeding values (GEBVs), breeders hope to maxi-
mally pass favorable properties to their offspring. The underlying idea is easy to
understand and matches the gut feeling of most breeders, making it one of the
most popular strategies in plant breeding. Unfortunately, truncation selection is
also associated with a loss in genetic variation (Jannink, 2010). Besides entailing
the loss of favorable QTL alleles from the breeding population, truncation selec-
tion causes a premature convergence of the genetic value, reducing the long-term
genetic gain (see Figure 5.2). Therefore, truncation selection can only promise a
temporary, short-term increase of the genetic gain. To ensure a continuous in-
crease of the genetic value, new selection methods are needed that maximize
both the short-term and the long-term genetic gains.

Different variants of truncation selection that try to remedy the loss in genetic
variation have already been proposed in the literature. One way to achieve this is
by weighting the marker effects of favorable or low-frequency marker alleles and
thus reducing the risk of eliminating important QTL alleles during breeding (Jan-
nink, 2010; Liu et al., 2015). The genetic variation can also be preserved by
avoiding the selection of closely related individuals (as in the population merit

method (Lindgren and Mullin, 1997)) or by penalizing the GEBV when two parents
with high coancestry are selected (as in the maximum variance total method (Cer-
vantes et al., 2016)). The latter was further improved upon by also minimizing
the rate of inbreeding, thus controlling the allele heterozygosity as well as the
allele diversity (Brisbane and Gibson, 1995; Akdemir and Sánchez, 2016). In an-
other strategy, the GEBV was replaced by the criterion of usefulness (UC), which
not only takes into account the mean predicted genetic value of the offspring,
but also the selection intensity, prediction accuracy and genetic variation of the
offspring (Lehermeier et al., 2017). The scoping method combines pre-selection
with a score function to avoid the selection of individuals with a too low GEBV
while preserving genetic variation of the breeding population, thus maximizing
the long-term genetic gain (as observed in Figure 5.5). Whereas the GEBV is based
on the total sum of the additive marker effects, the optimal haploid value (OHV)
scores individuals based on their haplotypes, and can therefore better preserve
favorable QTL alleles in the breeding population, increasing the long-term genetic
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gain (Daetwyler et al., 2015). Müller et al. (2018) propose the expected maximum
haploid breeding value (EMBV) to evaluate the potential of a candidate by mea-
suring a limited number of gametes of each parent. The optimal cross selection
(OCS) scores a crossing block based on the mean predicted genetic value of the
offspring, but also constrains the loss in genetic diversity of the offspring (Akdemir
and Sánchez, 2016; Gorjanc et al., 2018).

Unfortunately, the aforementioned methods are generally tested on breeding pop-
ulations that demonstrate a broad genetic variation. In reality, however, the ge-
netic variation present in most breeding populations has been eroded to some
extent by years of consecutive truncation selection. In such cases, the options to
further increase the genetic value in the breeding population are strongly reduced.
To demonstrate this, we simulate three breeding populations that suffer, to a vary-
ing degree, from reduced genetic variation by applying respectively 0, 5, and 20
breeding cycles of truncation selection. Next, using these three breeding popula-
tions as a starting point, the performances of the population merit method (Lind-
gren and Mullin, 1997) and the scoping method (see Chapter 5) are compared.
When these methods are initiated at a later point, the maximum reachable ge-
netic value of the breeding population is lower, indicating that during truncation
selection, favorable QTL alleles have been eliminated from the breeding popula-
tion (see Figure 7.1). Both methods will only be able to preserve a fraction of the
genetic variation that is still present in the breeding population. Therefore, the
added value of these methods is dramatically reduced when the genetic variation
in the breeding population is limited.

When the genetic variation has already been substantially reduced, a gene bank
could be used to (re)introduce alleles and haplotypes into the breeding popula-
tion, resulting in an increase of the maximum reachable genetic value. A gene
bank is an (inter)national collection of different plants ranging from wild speci-
mens to different crop varieties at different stages of selection. To optimally rein-
troduce genetic variation into a breeding population and thus increase the genetic
gain in the long term, the gene bank must show a broad genetic variation (Sim-
monds, 1993; Salhuana and Pollak, 2006). The introduction of gene bank acces-
sions into the breeding population generally implies a reduction in short-term ge-
netic gain. Depending on the available germplasm collection of the gene bank,
different methods have been proposed to introduce such individuals into an elite
breeding population. When a phenotypic trait is controlled by only a few genes
with large effects, the favorable genes can be introgressed in the breeding pop-
ulation using marker-assisted backcrossing (Han et al., 2017; Smith and Beavis,
1996). However, this proved unsuccessful when the phenotypic trait is controlled
by many genes of small effect, which is the case for quantitative traits such as
grain yield (Bouchez et al., 2002). In this setting, genomic selection (GS) can be
used to rapidly introduce (new) QTL alleles from a gene bank into the breeding
population (Bernardo, 2009). Different mating designs use multi-parental crosses
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Figure 7.1: Mean genetic value (GV) of the top-10 individuals in the breeding population using the
population merit method (left) and the scoping method (right) after first applying 0, 5, or 20 breeding
cycles (BC) of truncation selection (black line). When the genetic variation of the breeding population
is already reduced by means of truncation selection, both the population merit method and the scoping
method result in a lower genetic value.

to combine elite individuals with donor individuals selected from a gene bank (Al-
lier et al., 2019; Schopp et al., 2017). Gene bank accessions are first intercrossed
to increase the frequency of favorable alleles before they are introduced into the
breeding population. Cramer and Kannenberg (1992) proposed a five-year open-
ended hierarchical breeding program (HOPE) to introduce new wild specimens into
the breeding population using three consecutive gene pools. The HOPE method
allows to effectively pass on favorable QTL alleles from the gene bank to the elite
breeding population, but the need for additional pre-breeding populations drives
up the total cost of the breeding program.

Allier et al. (2020a) recently proposed a new selection method, combining the
haploid estimated breeding value (HEBV) and the UC to select and cross elite indi-
viduals with donor individuals. However, the calculation of the UC requires the con-
struction of a covariance matrix, which considerably increases the computational
requirements of the simulation while the bridging population can only reintroduce
a fraction of the genetic variation into the breeding population. The parental selec-
tion can also be guided using genotyping-by-sequencing or related techniques, in
which the relatedness of germplasm collections and elite individuals in the breed-
ing population can be quantified and used to preserve the genetic variation in the
breeding population (Glaubitz et al., 2014; Gouesnard et al., 2017). The genetic
variation of a breeding population can also be increased by using exotic material,
but a higher investment is needed to successfully incorporate those alleles in an
elite breeding population (Salhuana and Pollak, 2006; Wu et al., 2016).

We propose a new method that incorporates the use of a gene bank to reintroduce
genetic variation into the breeding population, maximizing the long-term genetic
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gain without reducing the short-term genetic gain. By using a fraction of the breed-
ing population for pre-breeding, the sizes of both the breeding population and the
parental population remain unchanged, avoiding additional costs. This method,
coined deep scoping, divides the breeding population into an elite population and
different layers of pre-breeding individuals. The elite population contains the ac-
cessions that have the highest GEBVs and delivers high short-term genetic gain. In
the first layer (Layer 0), individuals from a gene bank are crossed with individuals
of the elite population, reintroducing genetic variation in the breeding population.
Next, different layers are added, allowing for a gradual flow of favorable QTL alleles
from the first layer to the elite population. Over each layer, the genetic variation
is exploited, increasing the genetic gain and maximizing the transition of pre-bred
individuals into the elite population.

7.2 Materials and methods

We adopt the base population and breeding scheme of Neyhart et al. (2017). The
base population consists of two datasets of North American barley (Hordeum vul-

gare) from the University of Minnesota (UMN) and the University of North Dakota
(NDSU), counting respectively 384 and 380 six-row spring inbred lines with 1590
biallelic SNP loci. The same base population was also used in Chapter 5, ensur-
ing that the performance of the deep scoping method can be compared with that
of the scoping method. The parental selection methods are compared using four
base populations that differ in their available genetic variation for a single trait of
interest. These four base populations (referred to as Population BC05, Population
BC10, Population BC15 and Population BC20) are created by reducing the genetic
variation using truncation selection in a recurrent breeding scheme for respectively
5, 10, 15, and 20 breeding cycles.

7.2.1 Breeding scheme

The recurrent breeding scheme depicted in Figure 7.2 has been described in Chap-
ter 4. In this chapter, minor modifications are made to this scheme. Over the first
breeding cycles, the recurrent breeding scheme is used to decrease the genetic
variation of the breeding population. Starting at breeding cycle 0, based on pheno-
typic data, the top-50 individuals of the NDSU dataset are crossed with the top-50
individuals of the UMN dataset. In the subsequent breeding cycles, the parental
selection is completely based on GEBVs, reducing the financial cost of phenotyp-
ing. The GEBVs are predicted based on a linear mixed effects model (see Subsec-
tion 7.2.6). In the recurrent breeding scheme, each parental couple is crossed 20
times, creating in total 1000 F1-hybrids. The F3-individuals are obtained after two
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Figure 7.2: Overview of the recurrent breeding scheme. First, 50 couples of parents (P1, P2) each produce
20 offspring yielding a total of 1000 F1-hybrids. Then, after two generations of single-seed descent, 1000
F3-individuals are obtained. From those F3-individuals, new parental lines are selected. Three different
parental selection methods are considered: i) Truncation selection selects 100 parents with the highest
GEBVs and crosses them randomly; ii) The deep scoping method introduces new genetic information into
the breeding population while maximizing the short- and the long-term genetic gain; iii) The HUC method
with bridging introduces new genetic information into the breeding population by means of a bridging
population.
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cycles of single-seed descent. The recurrent breeding scheme is used to reduce
the genetic variation of the breeding population by using truncation selection over
5, 10, 15 or 20 breeding cycles, selecting 100 parents with the highest GEBVs and
crossing them at random. In the subsequent breeding cycles, the parents can be
selected according to the deep scoping method or the HUC method with bridging.
Additionally, both methods will also be able to select parents from a gene bank.
Each simulation consists of 50 breeding cycles and all results are averaged over
100 simulation runs.

7.2.2 Truncation selection

Truncation selection selects 100 individuals with the highest GEBVs and couples
them randomly. Breeders have been using truncation selection for centuries in
the hope to pass favorable properties to the next generation. Unfortunately, this
method also causes a strong reduction of the genetic variation. Therefore, trun-
cation selection is an ideal and realistic method to simulate the loss of genetic
variation in a breeding population as a result of selection.

7.2.3 Haploid estimated breeding values

In plant breeding, GEBVs are commonly used to select the parental population.
Daetwyler et al. (2015) proposed the OHV as an alternative selection metric in
which the highest genetic value of each haplotype segment is used instead of the
marker effects. In theory, a haplotype segment contains several alleles and mark-
ers that are always inherited together, but in the OHV approach, each chromosome
is divided into different haplotype segments containing an equal number of mark-
ers. A diploid individual contains nH different haplotype segments and will have
two haplotype values per segment representing the sum of the additive marker
effects that are present in that segment on each homologous chromosome. The
OHV is obtained by taking the sum of the highest haploid values per segment.
In contrast to the GEBV, the OHV is better able to capture the potential benefits
of heterozygous states in the breeding population. The HEBV proposed by Allier
et al. (2020a) is similar to the OHV but allows for an overlap between the different
haplotype segments. In this simulation study, the genotype is split into differ-
ent haplotype segments containing 20 markers (window size) with an overlap of
five markers (step size) (see Figure 7.3). The same simulation parameters were
adopted as reported by Allier et al. (2020a) and remained unchanged during the
whole simulation study to allow for a fair comparison between the different meth-
ods. A matrixM of size k×nH, with k the number of markers, is constructed to keep
track of the selected markers per haplotype segment, such that Mj = 1 if marker
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 is part of the j-th haplotype segment and Mj = 0 otherwise. Mathematically, the
HEBV matrix H can be written as:

H = (X ◦ 12nβT )M , (7.1)

with X a matrix of size 2n × k containing the haplotype of n different individuals
and k different markers coded as 0 and 1 (such that the haplotype of individual  is
represented at rows 2− 1 and 2), ◦ the Hadamard product operator, 12n a vector
of size 2n containing ones and β a vector of size k with estimated marker effects.
Similar to the OHV, the HEBV between two individuals  and j is calculated as:

HEBV(, j) = λ
nH
∑

h=1

mx
�

H2−1,h,H2,h,H2j−1,h,H2j,h
�

, (7.2)

with λ a scaling parameter defined as the ratio between the step size and the
window size. If the step size and window size are equal, then λ = 1 and the HEBV
reduces to the OHV.

In a breeding population, an elite subpopulation (denoted E), containing individ-
uals with high GEBVs, can be distinguished. The H-score H() of an individual 
represents the maximal HEBV between this individual and any member of the elite
subpopulation E (Allier et al., 2020a):

H() =mx
j∈E

HEBV(, j) . (7.3)

In other words, an individual with a high H-score contains different favorable hap-
lotype segments that are not available in the elite subpopulation (E) and should
thus be selected as a parent.

7.2.4 The deep scoping method

The deep scoping method combines truncation selection with the (re)introduction
of (new) QTL alleles in the breeding population with the aim of maximizing both
the short- and long-term genetic gain. To introduce new QTL alleles, a gene bank
is used, containing a population with a high genetic variation, but lower mean ge-
netic value. When individuals of the gene bank are introduced into the breeding
population, their lower genetic value prevents them from being selected during
truncation selection. This will create a gap between the genetic value of the elite
individuals and the rest of the breeding population, isolating them from one an-
other. Although both QTL alleles will still be present in the breeding population,
the QTL alleles of the individuals in the elite population will still be fixed causing
a premature convergence of the genetic value. Therefore, a three-step selection
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Figure 7.3: The haplotype is split into different haplotype segments containing an equal number of
markers. Next, the HEBV is calculated per segment by summing up the marker effects of each segment
separately.
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procedure was designed to not only introduce QTL alleles into the breeding popu-
lation but also in the elite population. To do so, the breeding population is divided
into two subpopulations: the elite population and the pre-breeding population (see
Figure 7.4). Individuals of the elite population are selected based on the highest
GEBVs and are crossed to maximize short-term genetic gain. The selection of the
pre-breeding population is divided into two steps: the selection for Layer 0 and
the selection for Layers 1–4. For Layer 0, elite individuals are crossed with indi-
viduals from the gene bank to maximally introduce QTL alleles into the breeding
population. The parental selection for the subsequent layers maximizes the flow of
individuals between the pre-breeding population and the elite population, exploit-
ing the genetic variation such that (new) favorable QTL alleles can be introduced
into the elite population. Loosely inspired by deep learning (Ivakhnenko, 1971),
the deep scoping method uses different layers in which individuals flow from one
layer to the next, in the hope that the information that was once present in the first
layer can be useful in the future and thus be transferred to the elite population.

The breeding population consists of an elite (sub)population containing 500 indi-
viduals and a pre-breeding (sub)population containing five different layers with
each 100 individuals. In order to create the elite population, 50 individuals with
the highest GEBVs are selected. In contrast to truncation selection, the parents
are not crossed at random. The individual with the highest GEBV is selected as
the P1 parent and is coupled with a P2 parent that minimizes the genetic relation-
ship between both parents. Other crossing block designs have been considered as
well, such as crossing the two individuals with the highest GEBVs with each other
or crossing the top-50 individuals with the top 51-100 individuals, but both designs
resulted in a significantly lower long-term genetic gain.

The pre-breeding population tries to introduce favorable marker alleles into the
breeding population and ultimately in the elite population. To select the first par-
ents for Layer 0, the HEBVs for the individuals of the gene bank are calculated.
Next, the H-score is calculated for each individual of the gene bank. The five indi-
viduals with the highest H-score and thus containing the most favorable haplotype
segments are selected as P1 parents. The five P2 parents are selected from the
elite population to maximize the genetic value of the offspring. To maximize the
genetic variation of the offspring, the scoping method is used instead of truncation
selection. The scoping method has been proposed in Chapter 5 and consists of two
important steps: the pre-selection and the parental selection. The pre-selection
will select a fraction of the breeding population containing individuals with the
highest GEBVs. Next, each selected P1 parent is crossed with a pre-selected in-
dividual that maximizes the S-score between both parents. The S-score between
two individuals  and j is computed as:

S(, j) =
k
∑

m=1
var{Zm, Zjm}pm , (7.4)
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with k the number of markers, Z a matrix of size n × k containing the genotype of
n selected individuals and k different markers coded as -1, 0, or 1 and p a vector
of size k with pm = 0 if both alleles of marker m have been selected in the parental
population or pm = 1 otherwise. An individual with a high S-score contains different
marker alleles that are not yet present in the parental population and should thus
be selected as a parent. In contrast to the Fscore that maximizes the genetic
variation of a parental population, the S-score maximizes the genetic variation
between two parents. It is possible that an individual of Layer 0 is selected as an
elite P2 parent as long as it maximizes the genetic variation of the offspring.

The subsequent layers of the pre-breeding population gradually increase the ge-
netic value of the Layer 0 individuals, while the genetic variation is slowly de-
creased such that favorable QTL alleles can be passed to the elite population. To
allow for a continuous flow of favorable QTL alleles into the elite population, four
additional layers are used. The effect of using a different number of layers will be
discussed later (see Subsection 7.4.5). In the subsequent layers, the P1 parents
are selected from the previous layer, selecting individuals with the highest H-score.
This ensures that individuals with favorable haplotype segments can flow to the
next layer. The P2 parents are selected such that the genetic value of the offspring
is maximized while preserving the genetic variation as much as possible. Individ-
uals of previous layers are not considered as potential parents because they could
reduce the genetic value of the offspring and thus interrupt the flow of QTL alleles
in the breeding population. Both pre-selection and the S-score are used to select
the P2 parent. First, based on the GEBV, candidate parents are pre-selected. Next,
P2 parents are selected such that the S-score is maximized between both parents.
In the parental selection for Layer 1, the top-400 individuals are pre-selected and
can thus be used to select the P2 parents. In the parental selection for the sub-
sequent layers, the number of individuals that are pre-selected decreases over
each layer to increase the genetic gain. The parental selection for Layer 2 only
pre-selects 300 individuals, followed by 200 and 100 individuals for the selection
for Layer 3 and Layer 4, respectively. Again, it is possible that an elite parent is
also selected as a pre-breeding parent as long as it maximizes the genetic varia-
tion of the offspring. The use of the scoping method during the parental selection
helps to preserve the genetic variation, allowing for a slower but more accurate
fixation of the QTL alleles. Individuals of the fourth and last layer should have the
highest genetic values and could therefore be selected during truncation selec-
tion, finally introducing favorable QTL alleles into the elite population. Note that
the elite population selects the individuals with the highest GEBVs over the entire
breeding population, making it possible to select individuals of any layer into the
elite population as long as the GEBV is high enough.

The implementation of the deep scoping method will require several breeding cy-
cles. Starting with a truncation-selected breeding population, when the deep scop-
ing method is used for the first time, the parental selection for Layer 0 crosses in-
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dividuals of the elite population with individuals of the gene bank, but the parents
of the subsequent layers will still be selected from truncation-selected individuals.
In the next breeding cycle, the parental selection for Layer 1 crosses individuals of
Layer 0 with individuals of the elite population, but the parents for Layers 2–4 will
be selected from the offspring of truncation-selected individuals. For each layer
that is used in the deep scoping method, one additional breeding cycle will be
required before the deep scoping method becomes fully operational.

7.2.5 The HUC method with bridging

The HUC method combines the HEBV and the UC to select the parental population.
A full description of the HUC method has been reported by Allier et al. (2020a). The
HUC method combines an elite population (PopE) with a second donor population
(PopD). The donor population is selected from a gene bank containing 500 different
individuals. First, individuals with the highest GEBVs are selected as elite parents.
Next, the individuals in the donor population with the highest H-scores are selected
as donor parents. Next, a crossing block between the selected parents from the
elite population and the donor population is built by maximizing the UC, which is
calculated as:

U = μ̂p + ρσ̂p , (7.5)

with U the UC, μ̂p the predicted mean genetic value of the progeny,  the selection
intensity, ρ the model performance and σ̂p the predicted genetic variance of the
progeny. Both parameters  and ρ are kept constant during the entire simulation.
The UC was calculated using the implementation and parameter settings as pub-
lished by Allier et al. (2020a) with  = 2.06 representing a selection intensity of 5%
and ρ = 1.

In our simulation study, the genetic value of the individuals of the gene bank is
low. In such case, to allow for a fair comparison between the HUC method and
the deep scoping method, the HUC method should be extended with a bridging
population to assist the introduction of the individuals of the gene bank into the
elite population (Allier et al., 2020b). This means that the breeding population is
split into two parts: an elite population and a pre-breeding population. According
to Allier et al. (2020b), 75% of the parental population is used to select the elite
population, while the remaining 25% is used to select the pre-breeding individuals.
Because the recurrent breeding scheme used in our simulation study requires the
selection of an even number of parents, 80% of the parental population is used
to select the elite population and the remaining 20% is used to select the pre-
breeding population. In the elite population, 80 individuals with the highest GEBVs
are selected and crossed using truncation selection as described in the deep scop-
ing method. In the pre-breeding population, 10 elite individuals are crossed with
10 individuals of the gene bank (donors) according to the HUC method.
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Figure 7.4: Left panel: overview of the deep scoping method. First, the individuals with the highest
GEBVs are selected as elite parents. Next, for each layer, individuals from the elite population and the
previous layer are selected. For Layer 0 elite individuals are combined with individuals of the gene bank.
For each of the subsequent layers, the individuals can mature in the breeding population, increasing
their genetic value, while the genetic variation is gradually decreased. Right panel: overview of the HUC
method with bridging. First, the individuals with the highest GEBVs are selected as elite parents. Next,
individuals of the gene bank with the highest H-scores are selected and crossed with individuals of the
elite population containing the highest GEBVs.

7.2.6 Prediction model

The GEBVs are predicted by fitting a linear mixed effects model:

y = 1nβ + Z + ε , (7.6)

with y a vector of phenotypic values, 1n a vector of size n containing ones, n the
number of individuals in the training panel, β the fixed effect (phenotypic mean),
Z the incidence matrix of the training panel with marker information,  the marker
effects following a normal distribution N (0,G) with G = σ2


k (with k the identity

matrix of dimension k), k the number of markers and ε the residual effects follow-
ing a normal distribution N (0,R) with R = σ2

e
n. Both variance components σ2


and

σ2
e

are estimated by means of Restricted Maximum Likelihood using the rrBLUP
package (Endelman, 2011). The GEBVs of the individuals are calculated as:

ĝ = Ẑ , (7.7)

with ĝ the GEBVs, Z the marker information and ̂ the predicted marker effects.

In the first breeding cycle, the complete base population is used as a training
panel. In the subsequent breeding cycles, 150 individuals are phenotyped and
added to the training panel according to the tails method, selecting 75 individuals
based on the tails of the normally distributed GEBVs (Neyhart et al., 2017). Ac-
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cording to Neyhart et al. (2017), the tails method delivers a non-significant higher
genetic gain compared to other update methods. In the case of the deep scop-
ing method, the tails method builds a training panel with elite individuals and
pre-breeding individuals improving the prediction of GEBVs of the whole breeding
population without the need for two separate prediction models. Each time the
training panel is updated, 150 individuals that have been longest in the training
panel are removed from the training panel to reduce computational time without
reducing the prediction accuracy (Neyhart et al., 2017). To calculate the UC, the
Markov chain Monte Carlo (MCMC) samples of the marker effects are required. This
matrix is obtained by estimating the GEBVs that are used in the HUC method via
the BGLR package using a Gibbs sampler with Gaussian prior (BRR) (Allier et al.,
2020a; Pérez and de los Campos, 2014).

7.2.7 Simulation of the population

The simulation is built upon the work of Neyhart et al. (2017), using the packages
GSSimTPUpdate and hypred in R (version 3.6.3). The dataset contains 1590 bial-
lelic SNP markers from which 100 are selected as QTLs (L = 100) and 1490 are
used as markers to predict the genetic value. The true phenotypic value of the -th
individual (y) is calculated over three different environments:

y =
1

3

3
∑

j=1

g + ej + εj , (7.8)

with g the genetic value of the -th individual, ej the j-th environmental effect, and
εj the residual effect of the -th individual and the j-th environment. The genetic
value is calculated by taking the sum of the QTL effects. The QTL effects are sam-
pled from a geometric series such that at the k-th QTL, the favorable homozygote
has a value of k, the unfavorable homozygote has a value of −k and the het-
erozygote has a value of zero with  = (L− 1)/(L+ 1). Both the environmental and
residual effects are drawn from a normal distribution with mean 0 and a variance
component σ2

E
and σ2

e
, respectively. The variance component of the environmental

effect is defined as eight times the genetic variance, while the variance component
of the residual effect is scaled to simulate a heritability of 0.5 (Bernardo, 2014).

The simulation of the different breeding cycles is described in Chapter 4. In this
chapter, a gene bank is added to the simulation. The gene bank is created by
crossing individuals of the UMN population with individuals of the NDSU population.
First, individuals of the UMN dataset are selected at random. For each parent, an
individual of the NDSU dataset is selected that maximizes the S-score between
both parents. The size of the gene bank is set at 500 individuals delivering a good
balance between the preservation of the genetic variation of the base population
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and keeping the simulation time low.

7.3 Results

7.3.1 Truncation selection

To simulate a realistic initial breeding population, truncation selection is used to
reduce the genetic variation. At breeding cycle zero, both alleles are present in the
breeding population at 92% of the marker sites (see Figure 7.5). Using truncation
selection, the average genetic value of the breeding population increases while
QTL alleles get fixed. The maximum reachable genetic value represents the sum
of the QTL effects that are fixed (both favorable and unfavorable) and the sum of
the favorable QTL effects that are not yet fixed. In other words, it represents the
maximum genetic value that could still be reached, taking into account the fixation
of unfavorable QTL alleles that has already occurred. A decrease in the maximum
reachable genetic value, as observed in Figure 7.5, indicates that favorable QTL
alleles are eliminated from the breeding population. This causes a convergence to
sub-optimal genetic values.

To assess different selection strategies, we consider the mean genetic value of only
the top-10 individuals in the breeding population. This reflects the genetic value
of the elite individuals that are candidates for commercialization. It allows for a
better comparison between the different methods because the mean genetic value
of the entire breeding population will be negatively influenced when individuals
of a gene bank are introduced even if the genetic value of the elite individuals
remains unchanged.

7.3.2 The deep scoping method

The deep scoping method relies on a gene bank to introduce new genetic material
into the breeding population. Next, the genetic value of the pre-breeding individu-
als is increased facilitating their transition into the elite population. In the first sce-
nario, the deep scoping method is used after five breeding cycles of truncation se-
lection (Population BC05). Once the gene bank is available, the newly-introduced
marker alleles lead to an increase of the maximum reachable genetic value (see
Figure 7.6). In the short term, the deep scoping method reaches the same genetic
values as truncation selection. However, truncation selection result in a prema-
ture convergence, while the genetic value of the deep scoping method continues
to increase, resulting in an 18% points higher genetic value in the long term (see
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Figure 7.5: Simulation results of truncation selection over 20 breeding cycles. When truncation selection
is used, the mean genetic gain of the top-10 individuals increases rapidly. Unfortunately, truncation
selection also causes fixation of unfavorable QTL alleles, leading to a decrease in maximum reachable
genetic value and causing a premature convergence of the mean genetic value of the top-10 individuals.

Tables 10.1 and 10.8). In the other scenarios, truncation selection is used for 10,
15, or even 20 breeding cycles, resulting in a breeding population with a higher
number of fixed QTL alleles. Again, when the deep scoping method is used, the
maximum reachable genetic value increases rapidly. The genetic value differs ac-
cording to the starting point at which the deep scoping method is first invoked. The
longer truncation selection is used, the longer it takes before a breeding population
reaches a certain genetic value. Certainly, when 20 breeding cycles of truncation
selection have been used, several breeding cycles of the deep scoping method are
needed before the genetic value can escape from the local optimum. In the (very)
long term, the four different scenarios will converge to the same value.

In Figure 7.7, the flow of individuals between the different layers of the deep scop-
ing method after five initial breeding cycles of truncation selection is illustrated.
The genetic value of the individuals over the first two layers is still too low, limiting
their selection into the elite population. The individuals of Layers 3–4 have a higher
genetic value, allowing for the transition of approximately one to two individuals
into the elite population over each breeding cycle.
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Figure 7.6: Simulation results of the deep scoping method and the HUC method with bridging starting
at breeding cycles 5, 10, 15, and 20. Prior to the selection methods, truncation selection is used to
reduce the genetic variation of the breeding population (black line). By deploying a gene bank, new QTL
alleles are introduced into the breeding population, increasing the maximum reachable genetic value and
avoiding a premature convergence of the genetic value. Compared to the HUC method with bridging, the
deep scoping method can introduce more QTL alleles into the breeding population leading to a higher
maximum reachable genetic value. The deep scoping method reaches a higher mean genetic values of
the top-10 individuals in the long term compared to the HUC method with bridging.

7.3.3 The HUC method with bridging

The HUC method with bridging combines two different parental selection schemes.
On the one hand, elite individuals with the highest GEBVs are selected and crossed
with each other, maximizing the short-term genetic gain. On the other hand, indi-
viduals of the gene bank are crossed with elite individuals to introduce QTL alleles
into the breeding population. By crossing the individuals of the gene bank with an
elite individual, the GEBVs of the offspring increase such that they can be selected
as an elite parent in the next breeding cycle, maximizing the long-term genetic
gain. However, as individuals of the gene bank generally have a lower mean ge-
netic value compared to the elite individuals, crossing individuals of the gene bank
with elite individuals will mostly yield offspring with mediocre genetic values. This
will prevent the selection of these pre-breeding individuals into the elite popula-
tion, disrupting the introduction of genetic variation, thus resulting in a premature
convergence of the genetic value of the elite population. Increasing the number of
initial breeding cycles using truncation selection (e.g. Population BC20) increases
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Figure 7.7: Overview of how individuals flow between the different subpopulations when the deep scop-
ing method is applied on a breeding population after five initial breeding cycles of truncation selection. A
color scheme is used to indicate the change in genetic value and genetic variation of the different sub-
populations. The black and dark red arrows represent the selection of respectively the first and second
parent. From the first two layers, very few individuals are selected into the elite population. After pro-
gressing over three to four layers, an average of one to two parents per breeding cycle is accepted into
the elite population.



7.4 DISCUSSION 123

the gap between the genetic value of the breeding population and the gene bank,
resulting in the convergence to even lower genetic values (see Figure 7.6).

The mean genetic values of the top-10 individuals of the proposed methods are
reported in Tables 10.1 and 10.8.

7.3.4 Robustness of the deep scoping method

The deep scoping method has been tested in different simulation settings. Each
experiment consists of testing 100 different genomes such that the effects of using
the deep scoping method or the HUC method with bridging can be studied using
different QTL and marker positions. The effect of the heritability and of the number
of QTLs on the genetic gain of both methods have also been tested and are shown
in Figure 7.8. Simulation studies were performed using a heritability of 0.2, 0.5,
and 0.8 using 100 different QTLs, and a heritability of 0.5 using 50, 100, and 200
QTLs. In all six cases, the deep scoping method resulted in higher genetic values
in the long term compared with the HUC method with bridging. Regardless of the
heritability, number of QTLs, or the QTL and marker positions, the deep scoping
method outperformed the HUC method with bridging in the long term.

7.4 Discussion

7.4.1 Introducing and preserving the genetic varia-
tion in the breeding population

The primary goal of the deep scoping method is to preserve newly-introduced
marker alleles in the breeding population by allowing for a gradual flow of genetic
material from the pre-breeding population into the elite population. To achieve
this, the scoping method has been redesigned. In the original scoping method,
the first parent was greedily selected to prioritize the genetic progress, while the
second parent was selected by maximizing the S-score between both parents,
preserving the genetic variation of the breeding population. In the deep scop-
ing method, the individuals with the highest H-scores are selected as P1 parents,
prioritizing the preservation of favorable marker alleles in the breeding population.
Similar to the scoping method, the second parent is selected by maximizing the
S-score between both parents. Since both the H-score and the S-score quantify
genetic variation, the second parent is taken from a pre-selected population that
contains individuals with the highest GEBVs. This way, genetic progress is maxi-
mized as well, facilitating the transition of pre-breeding individuals into the elite
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Figure 7.8: Simulation results of the deep scoping method and the HUC method with bridging for a
heritability of 0.2 and 0.8 using 100 QTLs (top) and for a heritability of 0.5 using 50 and 200 QTLs (bottom
line). The impact of both methods on the genetic value and on the maximum reachable genetic value
is shown after 5 (left) and 20 (right) breeding cycles of truncation selection. In all six cases, the deep
scoping method resulted in higher genetic values in the long term compared with the HUC method with
bridging.
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population. Moreover, by using the S-score, both alleles of each marker will be
preserved in the breeding population to the extent possible, thus minimizing the
loss of (favorable) QTL alleles. By decreasing the size of the pre-selection fraction
over each layer, the genetic variation will gradually decrease over each layer while
the average genetic value increases.

The deep scoping method continuously introduces genetic material into the breed-
ing population and therefore, the loss of genetic variation of the elite population is
not an issue. In the case of the scoping method, when an unfavorable QTL allele
was fixed in the breeding population, the maximum reachable genetic value was
reduced causing a lower genetic value in the long term. In the case of the deep
scoping method, the different QTL alleles are still preserved in the pre-breeding
population or the gene bank, and when an unfavorable QTL allele is fixed in the
elite population, it is thus still possible to introduce the corresponding favorable
QTL allele into the next breeding cycles. Nevertheless, enforcing the preservation
of genetic variation remains important to maximize the genetic gain over each
breeding cycle.

7.4.2 Population size and required resources

The deep scoping method does not require a separate pre-breeding program and
is able to improve the individuals of the gene bank with the same resources as a
breeding program without pre-breeding, minimizing the cost of the deep scoping
method. This means that with the same population size (and resources) as trun-
cation selection, the deep scoping method reintroduces genetic variation into the
breeding population and maximizes the genetic gain thereof. Only the gene bank
could be seen as an additional investment. The gene bank contains 500 individu-
als that are created by crossing individuals of both the UMN and the NDSU dataset
by maximizing the genetic variation between both crosses. This means that the
individuals of the gene bank will have different heterozygous markers and low ge-
netic values. This way, the ability to include low-GEBV individuals of both the deep
scoping method and the HUC method with bridging was studied. Including more
exotic germplasm could require more layers, whereas the inclusion of individuals
with a higher genetic value could also be done with a lower number of layers.

7.4.3 GEBVs versus HEBVs

In genomic selection, GEBVs are often used to select the parental population. To
do so, a mixed effects model is used to predict the marker effects, which are used
to calculate the GEBVs according to Eq. (4.6). The genotype of an individual is
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often represented by bi-allelic markers coded as -1, 0, or 1. Assuming a posi-
tive marker effect m, the m-th marker of an homozygous individual  will yield
a positive contribution if the individual carries the reference allele (Zm = 1) or a
negative contribution if the alternative allele (Zm = −1) is present. If the indi-
vidual is heterozygous (Zm = 0), meaning that both alleles are present once, the
marker does not affect the GEBV despite the fact that it still has a 50% probability
to pass the favorable marker allele to the next generation. In other words, the
GEBVs penalize heterozygous markers despite the fact that they contain favorable
marker alleles. Taking into account that the genetic information of thousands of
markers is reduced to a single value, unfavorable QTL alleles could be fixed into
the breeding population when their negative marker effect is masked by many
other positive QTL effects, or favorable QTL alleles could be eliminated from the
breeding population when their QTL effects are masked by many other negative
QTL effects.

A parental selection based on GEBVs could also lead to the selection of closely
related individuals, fixating several favorable and unfavorable QTL alleles in the
breeding population. This could be avoided by penalizing the GEBVs to minimize
the rate of inbreeding and reducing the loss in genetic variation (Cervantes et al.,
2016; Akdemir and Sánchez, 2016). Nevertheless, reducing the genetic informa-
tion of thousands of markers into a single value remains a major disadvantage
of the GEBVs and therefore, the HEBVs are used instead. In contrast to GEBVs,
HEBVs split the genotype into different haplotypes and each haplotype is com-
pared among the selected individuals. The available genotypic information is no
longer reduced into a single value, lowering the probability to mask certain QTL
effects and thus avoiding the elimination of one or more favorable QTL alleles. The
HEBV score is calculated by taking the maximum genetic value between the hap-
lotype segments of different individuals, which means that heterozygous alleles
could have the same contribution as the favorable homozygous marker, preserv-
ing all the favorable QTL alleles in the breeding population. The H-score is an ex-
tension of the HEBV and scores the ability of an individual to bring new favorable
haplotype segments into the elite population, maximizing the genetic preservation
by both the HUC method with bridging and the deep scoping method.

Replacing the GEBVs with the HEBVs in the deep scoping method made it possible
to reach higher long-term genetic gains. Until now, only GEBVs were used to pre-
select the individuals in the deep scoping method. We could assume that the
HEBVs could further maximize the long-term genetic gain of the scoping method.
Unfortunately, as depicted in Figure 7.9, using the HEBVs reduces the genetic gain
while the maximum reachable genetic value slightly increases. In the deep scoping
method, the HEBVs were only used to preserve the genetic gain of the different
layers. The elite population was still selected based on GEBVs, resulting in these
high genetic gains. Using the HEBVs in the scoping method will allow for the pre-
selection of individuals with a lower genetic value, decreasing the genetic progress
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Figure 7.9: Genetic values of the scoping method (SR=0.3) using the GEBVs and the HEBVs as a selection
criterion. Replacing the GEBVs with HEBVs resulted in a lower genetic value in the short as well as in the
long term.

of the population. We can conclude that the HEBVs allow for a better preservation
of the genetic variation, but with a lower genetic progress. Combining the HEBVs
and GEBVs therefore seems the best solution, maximizing both the genetic gain
and the genetic variation of the breeding population.

7.4.4 Comparison of the HUC method and the deep
scoping method

As both the HUC method and the deep scoping method rely on the use of a gene
bank, it is possible to make a fair comparison between these methods. The HUC
method with bridging is a combination of, on the one hand, the HUC method and,
on the other hand, a breeding scheme with a bridging population (Allier et al.,
2020a,b). Originally, the HUC method selects individuals based on the H-score
in order to cross elite individuals with a donor population. The donor population
contains all the individuals of the breeding population that are not selected in the
elite population and the individuals of the gene bank. The elite population often
contains closely related individuals with low genetic variation; therefore, individ-
uals of the gene bank will have a high H-score and will be selected as a parent,
reducing the genetic value of the offspring. Originally, the HUC method was de-
signed to introduce individuals with a similar or slightly lower genetic value than
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the elite population. However, when a gene bank is used containing individuals
with low GEBVs, the HUC method fails to increase the genetic value of the breed-
ing population. For this case, Allier et al. (2020b) designed a new breeding scheme
that incorporates a bridging population. However, this breeding scheme uses the
GEBVs to select the parental population. By using the HUC method in a breeding
scheme with bridging, we were able to compare the deep scoping method with the
HUC method, both using the HEBVs as selection criterion.

Both the HUC method with bridging and the deep scoping method use trunca-
tion selection to maximize the short-term genetic gain. The deep scoping method
consists of two different populations: the elite population and the pre-breeding
population, which is built up out of five different layers. The size of the elite pop-
ulation will be smaller compared to that of the HUC method with bridging, which
only contains two populations: the elite population and the bridging population. In
the HUC method with bridging, 10 individuals of the gene bank and 10 individuals
of the elite population are crossed. The deep scoping method only selects five in-
dividuals of the gene bank and crosses them with the elite individuals. Therefore,
the HUC method with bridging will be able to reintroduce more genetic variation
into the breeding population after one breeding cycle. The deep scoping method
will need several breeding cycles before reaching the same maximum reachable
genetic value as the HUC method with bridging. As long as pre-breeding individu-
als are not selected in the elite population, the same individuals of the gene bank
will be selected into Layer 0, therefore, two breeding cycles of deep scoping will
not result in the same amount of genetic variation as observed after one breeding
cycle using the HUC method with bridging. This also explains why, when the deep
scoping method starts at breeding cycle five, a higher increase in the maximum
reachable genetic value is observed for the HUC method with bridging. Increas-
ing the size of Layer 0 in the deep scoping method may increase the maximum
reachable genetic value in a similar way as in the HUC method with bridging, but
because it does not influence the genetic gain in the short or the long term, in-
creasing the size of Layer 0 is not necessary.

The pre-breeding is similar in both methods, however, the HUC method with bridg-
ing builds a crossing block by maximizing the UC, whereas the deep scoping
method does this by using the S-score. In other words, the HUC method pairs
up parents to maximize the genetic gain of the offspring, while the deep scoping
method pairs up parents to maximize the genetic variation of the offspring. The
deep scoping method also introduces four additional layers that are used to guide
the development of pre-breeding individuals into elite individuals and thus to facili-
tate the flow of (favorable) QTL alleles into the elite population. In the HUC method
with bridging, the selected individuals of the gene bank only have one breeding
cycle to be selected as elite individuals. Therefore, when the difference in ge-
netic value between the gene bank and the breeding population increases, the
transition of pre-breeding individuals into the elite population degrades, causing a
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Figure 7.10: Mean genetic value of the top-10 individuals is compared between the deep scoping method
and the HUC method with bridging using a paired sampled t-test, for two scenarios with respectively 5
and 20 initial breeding cycles of truncation selection. The difference in mean genetic value with a 95%
confidence interval is reported. The color of each dot indicates whether the difference in genetic value
between both methods is significant (p < 0.05).

premature convergence of the genetic value.

Although the deep scoping method results in a 4–6% points higher long-term ge-
netic gain compared with the HUC method with bridging, in the short term, a
slightly lower genetic value is observed (see Figure 7.10). The elite population of
the HUC method represents 80% of the breeding population, whereas in the deep
scoping method only 50% of the breeding population is used. Therefore, when
both methods are used after five breeding cycles of truncation selection, the HUC
method will be able to select more elite individuals to convert the remaining ge-
netic variation of the breeding population into genetic gain resulting in significantly
higher genetic values in the short term compared with the deep scoping method.
The HUC method with bridging also selects more individuals from the gene bank,
increasing the genetic variation in the breeding population, which also contributes
to the maximization of the short-term genetic gain. However, when both the HUC
method with bridging and the deep scoping method are used after 20 breeding
cycles of truncation selection, the genetic variation of the breeding population has
been reduced and the HUC method with bridging will be unable to gain higher
short-term genetic values compared with the deep scoping method.

7.4.5 Flow from the pre-breeding population into the
elite population

The deep scoping method uses different layers to guide the genetic progress of
the pre-breeding individuals and to facilitate their transition into the elite popula-
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tion. Each layer selects parents from the previous layer and couples them with
an individual of the elite population, maximizing the genetic gain of the offspring.
Prior to the deep scoping method, truncation selection is used to simulate a re-
alistic breeding population. When the deep scoping method is introduced in the
breeding program, an additional breeding cycle per layer will be required before
the deep scoping method becomes fully operational. Once that is done, the num-
ber of layers represents the number of breeding cycles a pre-breeding individual is
allowed to be crossed with an elite individual to increase the genetic value of their
offspring and thus to pass on their genotypic information into the elite population.
Individuals that are not selected in Layer 4 will be eliminated from the breeding
population.

Figure 7.11 illustrates the flow of pre-breeding individuals into the elite population.
In the first layer, individuals are rarely accepted into the elite population, except
for the first breeding cycle after the introduction of the deep scoping method. This
indicates that the use of a single layer (like in the HUC method with bridging)
is insufficient to properly introduce pre-breeding individuals into the elite popula-
tion. In the second layer, the transition of individuals into the elite population is
still limited and it is only after progressing over three or four layers that a more
substantial flow of pre-breeding individuals into the elite population can be ob-
served. Each layer that is added to the deep scoping method allows for a better
development of the pre-breeding individuals, which will facilitate their transition
into the elite population. However, to avoid additional financial costs, the parental
population size is kept constant, meaning that increasing the number of layers
in a breeding population will also decrease the number of parents per layer and
could therefore reduce the flow of QTL alleles from the pre-breeding population
into the elite population. When the number of individuals per layer decreases, the
probability to develop potentially interesting individuals also decreases causing
lower genetic gains in the long term. This can be avoided by increasing the size
of the parental population, but that will increase the total financial cost. There-
fore, we recommend the use of four layers, allowing for enough time to develop
pre-breeding individuals in the breeding population.

In Figure 7.12, the genetic value is shown for a population size of 500, 1000, and
2000 individuals using a different number of layers. Increasing the number of
layers in a breeding population will decrease the number of individuals (and par-
ents) per layer, but will allow for more time to increase the genetic value of the
pre-breeding individuals increasing the flow of individuals from the gene bank to
the elite population. Therefore, increasing the number of layers will often result in
higher long-term genetic gains. Nevertheless, when the number of individuals per
layer becomes too small, the probability to develop potentially interesting individ-
uals is reduced, causing a lower long-term genetic gain. This can be avoided by
increasing the size of the parental population, but that will also increase the total
financial cost.
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Figure 7.11: Left: an overview of the mean number of individuals that are selected in the elite population
for each subpopulation. Right: the maximum reachable genetic value of the elite population for the first
ten breeding cycles of the deep scoping method after 5, 10, 15 and 20 breeding cycles of truncation
selection.

7.4.6 Applying the deep scoping method

Regardless of the fact whether the breeding population underwent 5, 10, 15, or 20
breeding cycles of truncation selection, when the deep scoping method is used,
for each layer, a similar flow of individuals to the elite population is observed (see
Figure 7.11). The longer truncation selection is used prior to the deep scoping
method, the longer it will take to reach the same long-term genetic gain (see Fig-
ure 7.14). When the deep scoping method is initiated after only five breeding
cycles of truncation selection, the different layers, still filled with the offspring of
truncation-selected individuals, will be able to maximize the genetic value in the
short term until the pre-breeding individuals are introduced to maximize the long-
term genetic gain in the elite population. However, when the genetic variation
of the breeding population is reduced after e.g. 20 breeding cycles of truncation
selection, the genetic value of the base population has already converged. At that
point, at least five breeding cycles will be required before individuals of the pre-
breeding population will be accepted in the elite population, reintroducing genetic
variation in the elite population that will allow the breeding population to escape
from the local optimum (see Figure 7.11 right). If the deep scoping method would
have been invoked after only five breeding cycles of truncation selection, the mean
genetic value of the top-10 individuals would have been 8% points higher at breed-
ing cycle 25 (see Figure 7.14). In other words, the sooner the deep scoping method
is adopted in a breeding program, the sooner the breeding population will produce
higher genetic gains compared with the same breeding population using trunca-
tion selection (see Figure 7.14).



7 THE DEEP SCOPING METHOD 132

Figure 7.12: Simulation results of the deep scoping method using 1 to 10 different layers for a population
size of 500, 1000, and 2000 individuals. Increasing the number of layers often results in higher long-term
genetic gains. However, if the number of individuals per layer is too low, the long-term genetic gain is
reduced.
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Even compared with the scoping method, using the deep scoping method after
five breeding cycles of truncation selection will result in a 3% points higher genetic
value in the long term (see see Table 10.1). While the scoping method is able to
reach high long-term genetic gains, the method is not perfect and allows for the
fixation of a few unfavorable QTL alleles. Therefore, methods like deep scoping
that can reintroduce genetic variation into the breeding population are important
to maximize the genetic gain and avoid a premature convergence of the genetic
value.

7.4.7 Designing the elite population

To maximize the genetic gain of the elite population, truncation selection is used.
However, different crossing block designs were considered. Crossing individuals
with the highest GEBVs resulted in a lower genetic gain compared with random
crossing. Individuals with a high GEBV are often closely related, limiting the ge-
netic variation that can be passed to the offspring and resulting in a rapid fixa-
tion of the QTL alleles and a premature convergence of the genetic value (see
Figure 7.15). Minimizing the genetic relationship between both parents resulted
in higher genetic gains compared with random crossing. This design avoids the
coupling of closely related parents, minimizing the loss in genetic variation while
preserving the genetic progress and thus maximizing the short- and long-term ge-
netic gain.

7.4.8 The size of the gene bank

Both the deep scoping method and the HUC method with bridging use a gene bank
to reintroduce genetic variation into the breeding population. Increasing the size
of the gene bank had almost no effect on the mean genetic value of the top-10
individuals. Only when the size of the gene bank was reduced to 200 individuals,
a reduction of the genetic value in the long term was observed. At that point,
the gene bank was too small to contain both alleles of each QTL, reducing the
introduction of genetic variation into the breeding population. In this simulation
setting, a gene bank is essential to maximize the genetic gain in the long term,
but it is not necessary to collect thousands of different individuals. As long as all
the QTL alleles are present in the gene bank, the deep scoping method will be able
to maximize the long-term genetic gain.
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Figure 7.13: Simulation results of the deep scoping method and the scoping method over 50 breeding
cycles. When the scoping method is used from the first breeding cycle, an overall higher genetic gain is
observed in the short and long term.

Figure 7.14: Difference in genetic value between the deep scoping method using two different breeding
populations. The sooner truncation selection is replaced by the deep scoping method, the sooner the
genetic gain of the top-10 individuals will increase until the breeding value converges to the same value
in the long term.
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Figure 7.15: Simulation results of truncation selection using different crossing block designs. Three
crossing block designs were considered: i) crossing the individuals with the highest GEBVs, ii) crossing the
individuals with the highest GEBV with an individual that minimizes the genetic relationship between both
parents and iii) random crossing.

7.4.9 Updating the training population

The deep scoping method uses different layers, each containing individuals at a
different stage of development. Similar to Chapter 5, different methods to update
the training population are considered. Normally, as long as the training popula-
tion is updated, the genetic value will converge to the same genetic value (Ney-
hart et al., 2017). This is not the case when the deep scoping method is used.
The top update method results in the lowest long-term genetic gains whereas the
tails method results in the highest long-term genetic gains (see Figure 7.16). To
understand this phenomenon, the Pearson correlation between the GEBVs and the
genetic values is calculated for the three subpopulations (Layer 0, Layers 1–4 and
the elite population). The results are shown in Figure 7.17. The Pearson correlation
of the elite population is relatively lower compared to the Pearson correlation of
Layer 0 or Layers 1–4. Because the elite population only selects individuals with a
high GEBV, the genetic variation of these individuals will be low, resulting in a low
prediction accuracy (or Pearson correlation).

As expected, the top update method results in the highest prediction accuracy for
the elite population but it fails to predict the GEBVs of the pre-breeding population
(Layer 0) and Layers 1–4. The bottom update method results in a low prediction
accuracy of the elite population but is able to accurately predict the GEBVs of
Layer 0 and Layers 1–4. Because the top update method results in a lower long-
term genetic gain, it is clearly more important to accurately predict pre-breeding
individuals than to predict the genetic value of elite individuals. Moreover, the top
update method only select individuals with a high GEBV that are often closely re-
lated, resulting in a training population that only covers a small fraction of genetic
variation. The bottom update method, on the other hand, will contain individu-
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Figure 7.16: Simulation results of truncation selection using the top, bottom, random, tails, CDmean
and PEVmean methods to update the training panel. Each update method results in a similar long-term
genetic gain with the exception of the top update method that results in a lower long-term genetic gain.

als with a broad genetic variation in the training population resulting in a more
accurate estimate of the marker effects.

The tails update method is a combination of the top and bottom update methods,
selecting individuals with the highest and lowest GEBVs to update the training pop-
ulation. This update method results in the highest Pearson correlation for the three
subpopulations. The random, PEVmean and CDmean update methods also result
in a similar, but slightly lower Pearson correlation for the three subpopulations.
Each of these methods is able to select individuals in the TP that maximizes the
prediction accuracy.

7.4.10 Influence of the prediction model

In Subsection 5.4.6 we demonstrated that removing low-frequency marker alleles
decreases the genetic value in the long term. The removal of low-frequency alle-
les could in certain cases increase the prediction accuracy of a trait (Edriss et al.,
2013), but according to VanRaden et al. (2009), removing these markers is un-
necessary. It could lead to the loss of important information resulting in a lower
short-term genetic gain. Therefore, all the available markers are used to fit the
different prediction models. Only a small non-significant (p < 0.05) difference is
observed between the Bayesian models and rr-gBLUP (see Figure 7.18).

Both rr-gBLUP and BRR uses a similar strategy to estimate the marker effects and
variance components of a linear mixed effects model. Therefore, the estimate
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Figure 7.17: Overview of the prediction accuracy of the elite population, the different layers (Layer 1–
4) and the pre-breeding population (Layer 0) using truncation selection. The training panel is updated
according to the top, bottom, tails, random, CDmean or PEVmean method.
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Figure 7.18: Effect of rr-gBLUP and Bayesian models on the genetic gain of a breeding population using
the deep scoping method. A slightly lower, but non significant long-term genetic gain is observed for the
rr-gBLUP model.
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of both models should converge to the same values. The estimated values of
both variance components and the Pearson correlation for rr-gBLUP and BRR are
shown in Figure 7.19. Two scenarios were considered. In the first scenario, all the
1490 available biallelic markers were used, whereas, in the second scenario, the
markers with a low allele frequency were removed. Compared to BRR, rr-gBLUP
results in a lower value for σ2

e
and a slightly higher prediction accuracy (Pearson

correlation). The BRR model estimates the variance components using a Gibbs
sampler. Compared to BRR, the rr-gblup results in a slightly lower genetic value.
This result was also reported by Sayfzadeh et al. (2013).

In contrast to the deep scoping method, when truncation selection is used, a sim-
ilar long-term genetic gain was observed for both rr-gBLUP and BRR. The vari-
ance components and prediction accuracy for both scenarios and both models
are shown in Figure 7.20. Over the different breeding cycles, the predicted vari-
ance component of the residual errors quickly stabilizes to a fixed value. This
indicates that over each breeding cycle, both variance components are accurately
estimated. As discussed before, by removing the low-frequency markers, a lower
prediction accuracy and a slightly different estimate of the variance components
are observed.

When truncation selection is used, the estimate of the variance component vr()
will become unstable in the long term, resulting in a high standard deviation be-
tween the different experiments. This is caused by the fixation of most markers,
resulting in a problem of rank deficiency. Because the deep scoping method in-
troduces genetic variation in the breeding population, instability of the predicted
variance components is avoided. Although rr-gBLUP still succeeds to estimate
a value for both variance components, BRR often estimates an infinite variance
component when the low-frequency markers are removed from the training popu-
lation. Therefore, all the available markers should be used to fit the mixed effects
model.

7.4.11 Cost analysis

Compared to the scoping method, the deep scoping method uses a gene bank
to introduce genetic variation into the breeding population. Therefore, if such a
gene bank is not yet available, a certain investment will be required. Although
the size of the gene bank remains unchanged during the whole simulation study,
the germinative power of the seeds that are stored in a gene bank decreases
and should be renewed after a certain timestamp. The deep scoping method was
developed to combine the pre-breeding and elite population into a single breeding
population using the same resources as a classical breeding program. Therefore,
using the deep scoping method will not increase the costs or required resources
of the breeding program. Moreover, based on the results illustrated in Figure 7.12,
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Figure 7.19: Simulation results of the deep scoping method using rr-gBLUP and BRR. Top left, the pre-
dicted variance component of the residuals errors. Right top, the predicted variance component of the
additive marker effects, and left bottom, the prediction accuracy. The model is fitted using the available
markers or after first removing the low-frequency marker alleles.
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Figure 7.20: Simulation results of truncation selection using rr-gBLUP and BRR. Top left, the predicted
variance component of the residuals errors. Right top, the predicted variance component of the additive
marker effects, and left bottom, the prediction accuracy. The model is fitted using the available markers
or after first removing the low-frequency marker alleles.
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the population size could be reduced, without reducing the long- or short-term
genetic gain. This could thus even decrease the cost and required resources of a
breeding program.

Once the deep scoping method is used, the genetic gain is rapidly increased com-
pared to a breeding population in which truncation selection is still used. In other
words, when the deep scoping method is applied, the breeding population will
deliver individuals with a superior phenotype compared to competitive breeding
programs that still use truncation selection. Depending on the strategy of the
breeding company, these lines could increase the market share of that breeding
company. The costs to maintain a gene bank will probably only be a fraction of the
gained profits that could be achieved using the deep scoping method.

According to Figure 7.14, when the genetic variation is low due to years of intensive
selection, the earlier the deep scoping method is deployed, the faster high genetic
gains will be obtained. Therefore, using the truncation selection instead of the
deep scoping method will only increase the marginal cost.

7.5 Conclusion

Truncation selection often reduces the genetic variation of the breeding population
in its striving for a maximal genetic value of the breeding population, to the extent
that the adoption of variation-preserving methods such as the population merit
and scoping methods is rather pointless. To increase the genetic variation of the
breeding population, a gene bank containing a broad genetic variation is needed.
However, when the gap between the genetic value of the breeding population and
the gene bank increases, the transition of pre-breeding individuals into the elite
population becomes difficult. The deep scoping method uses different layers of
pre-breeding individuals to maximize the flow of pre-breeding individuals into the
elite population, thereby introducing (favorable) QTL alleles into the elite popula-
tion. Replacing the frequently used GEBVs by HEBVs allows for a more accurate
selection of individuals containing favorable QTL alleles, maximizing the long-term
genetic gain. In summary, the deep scoping method combines an elite population
with different layers using the HEBVs, H-score, and S-score, resulting in higher ge-
netic gains compared to truncation selection and the HUC method with bridging in
the short as well as in the long term without the need of a separate pre-breeding
population.



8
Oracle methods

8.1 Introduction

Different methods to maximize the long-term genetic gain have been proposed in
the previous chapters. In theory, according to Eq. (2.6), the genetic gain can be
maximized by reducing the time per breeding cycle and by increasing the selection
intensity, the prediction accuracy, and the genetic variation. The genetic gain rep-
resents the change in genetic value that can be achieved in a breeding population
per unit of time. By reducing the time per breeding cycle, the same change in ge-
netic value can be obtained in a shorter time frame, increasing the genetic gain.
This can be achieved for example, by means of rapid generation advancement

(RGA) methods in which homozygous lines are rapidly generated by using specific
semi-controlled greenhouse conditions. These conditions result in an early flower
induction, and accelerate the breeding process (Srinivasan et al., 2020). The re-
duction in breeding time does not rely on a specific selection strategy. Therefore,
this approach is beyond the scope of this dissertation.

In a second approach, the genetic gain is maximized by increasing the selection
intensity, for example, by only selecting the most superior lines as a parent (like
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truncation selection). This often results in the selection of closely related individ-
uals, reducing the genetic variation of the offspring and causing a lower genetic
gain in subsequent breeding cycles. To avoid the loss of genetic variation, the
scoping and deep scoping methods were proposed. Compared to truncation se-
lection, by slightly decreasing the selection intensity, both methods were able to
better preserve the genetic variation (see Figure 5.10), increase the prediction ac-
curacy (see Figure 5.11) and maximize the long-term genetic gain (see Figure 5.5).
Although the scoping and deep scoping methods were able to outperform different
existing methods (see Chapters 5 and 7), it is difficult to measure to which extent
these breeding methods really maximize the long-term genetic gain.

An oracle method is a theoretical concept in which a value of interest (e.g. the
genetic gain) is maximized using the ground truth. It can be used to select an
optimal parental population or an optimal training population. This way, the char-
acteristics of such an optimized population can be studied and could be used to
develop new (non-oracle) selection methods. The true selection method selects
individuals based on their QTL effects to rapidly fixate the favorable QTL alleles in
the breeding population. By comparing the true selection method with the scop-
ing and deep scoping methods, we can assess to which extent these methods
really maximize the genetic gain and whether further optimization of these meth-
ods is required. The forward selection method and stepwise selection method
use an iterative algorithm to select an optimal training population that maximizes
the prediction accuracy (Pearson correlation) of the breeding population. Differ-
ent approaches to update a training population have been proposed but according
to Neyhart et al. (2017), all these methods result in the same long-term genetic
gain. The idea is that by studying the training population of both the forward and
stepwise selection methods, a new approach to update the training population can
be found that maximizes both the prediction accuracy and the long-term genetic
gain of a breeding population.

8.2 Material and methods

A complete overview of the breeding population is described in Chapter 4.

8.2.1 The true selection method

The true selection method is a theoretical concept that reveals the full potential of
the parental selection. The scoping method is constrained to use the information of
molecular markers that are linked to the QTL that underlie the trait of interest. The
true selection method, in contrast, is allowed to use the actual QTL effects to guide
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the parental selection process. It attributes a score to each individual, expressing
the number of favorable QTL alleles. Intuitively, the method selects individuals
with the highest number of favorable QTL alleles, giving priority to QTL positions
that have not yet been selected in the parental population, thus preventing the
loss of these rare favorable QTL alleles. Formally, each individual has a score
between 0 and L (number of QTLs), representing the number of favorable QTL
alleles that are present in its genome. The individual with the highest score is
selected as a first parent. The remaining individuals are scored again, this time
only taking into account QTL positions whose favorable alleles have not yet been
selected in the parental population. After recalculating the score, the individual
with the highest score is selected. This is repeated until all the required parents
are selected. As soon as all the favorable QTL alleles are present in at least one of
the selected parents, the score is again calculated over all the QTLs. The parents
are then randomly crossed with each other using a recurrent breeding scheme
(see Chapter 4). The true selection method should maximize the genetic progress
while avoiding the loss of favorable QTL alleles.

8.2.2 Selection of an optimal training population

We propose two selection methods to construct an optimal training population that
maximizes the prediction accuracy of the genomic prediction model. Originally,
we proposed three selection methods: namely the forward selection method, the
backward selection method and the stepwise selection method. The backward
selection method requires fitting a linear mixed effects model using a large training
dataset in an iterative scheme, resulting in a high computation time. Therefore,
the backward selection method was no longer considered as a selection method
but was instead integrated into the stepwise selection method. Similar to the
true selection method, the forward and stepwise selection methods are theoretical
concepts to study the characteristics of an optimal training population. In the next
step, these characteristics can be used to develop a new (non-oracle) selection
method.

The oracle selection methods use truncation selection (baseline method) to sim-
ulate a breeding population over 15 breeding cycles. The training population is
constructed by randomly selecting 100 individuals from the base population. In
contrast to previous methods, only part of the base population is used as a train-
ing population to limit the simulation time of both selection methods. Over each
breeding cycle, with the exception of the first breeding cycle, the 50 oldest indi-
viduals are removed from the training population. Next, the training population is
updated by selecting 50 new individuals from the breeding population according
to one of the candidate selection methods. The size of the training population
remains constant at 150 individuals and limits the simulation time while avoiding
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the problem of rank deficiency of the matrices involved in fitting the mixed model
equations by means of the rrBLUP package in R (Endelman, 2011). In each se-
lection strategy, the Pearson correlation between the GEBVs and the true genetic
values is used to select individuals in the training population. Once an optimal
training population is obtained, 100 individuals with the highest GEBVs are se-
lected as a parent and crossed randomly.

Both the forward and stepwise selection methods are compared to the top, bot-
tom, random, tails, CDmean, and PEVmean update methods (Neyhart et al., 2017;
Rincent et al., 2012). A full description of these methods was already given in
Subsection 4.6. To allow for a fair comparison between the different update meth-
ods, only 100 individuals are selected from the base population and a training
population size of 150 individuals is used, removing and adding 50 individuals per
breeding cycle with the exception of the first breeding cycle. By comparing these
methods with the oracle methods, we can assess to which extent current meth-
ods are able to select an optimal training population. Because these methods do
not use the true genetic values, we do not benchmark them against the oracle
methods.

8.2.3 The forward selection method

The forward selection method updates the training population by adding 50 new
individuals using a greedy algorithm. Starting with an existing training population,
the contribution of each individual to the training population is evaluated. This
is done by adding each individual separately to the training population. The con-
tribution of each individual can then be evaluated by recalculating the prediction
accuracy (Pearson correlation) after refitting the linear mixed effects model using
the new training population. The individual that maximizes the prediction accuracy
after its addition to the training population is accepted. The remaining individuals
are reevaluated before selecting the next individual. In total, 50 individuals will
be selected in the training population unless the addition of an individual cannot
increase the prediction accuracy anymore.

8.2.4 The backward selection method

Although the backward selection method is not considered as a selection method,
a short description of the method is given to facilitate the introduction of the step-
wise selection method in the next subsection.

In contrast to the forward selection method, the whole breeding population is used
as training population. The backward selection method then removes individuals



8.2 MATERIAL AND METHODS 147

from the training population that have a negative impact on the prediction accu-
racy. Starting with an existing training population, the impact of removing each in-
dividual separately from the training population is assessed and the individual that
maximizes the prediction accuracy after its removal is eliminated from the training
population. This is repeated until the removal of any individual does not increase
the prediction accuracy anymore. Similar to the forward selection method, after
each iteration, each individual needs to be reevaluated before removing the next
individual from the training population.

8.2.5 The stepwise selection method

The stepwise selection method is a combination of the forward and backward se-
lection methods. Individuals are added and removed from the training population
iteratively. Therefore, it is not necessary to remove 50 individuals from the training
population at the start of each breeding cycle (as described in Subsection 8.2.2).
First, an individual of the breeding population is added to the training population
using the forward selection method. Next, each individual of the training popu-
lation is evaluated using the backward selection method. Both the forward and
backward selection methods will always reevaluate the individuals based on the
last update of the training population, taking into account all the previous changes.
In total, 50 individuals can be added and removed from the training population.
An individual will only be added to or removed from the training population if that
action maximizes the prediction accuracy. It is, however, possible that each indi-
vidual in the training population has a positive contribution towards the prediction
accuracy and that no individual is removed. Therefore, the size of the training
population could vary, depending on the addition and removal of individuals.

8.2.6 Prediction model

For the true selection method, at the first breeding cycle, the complete base pop-
ulation is used as training population. In the subsequent breeding cycles, 150
individuals are phenotyped and added to the training population according to the
tails method, selecting 75 individuals with the highest and 75 individuals with the
lowest GEBVs (Neyhart et al., 2017). In the case of the forward and stepwise se-
lection methods, only 100 randomly selected individuals of the base population
are used as training population. In the subsequent breeding cycles, 50 individuals
are added to and removed from the training population as described in Subsec-
tion 8.2.2.
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8.3 Results

8.3.1 The true selection method

The true selection method is a hypothetical concept that uses the knowledge
of QTL positions and QTL effects to demonstrate the effect of an almost perfect
parental selection on the genetic value. In the initial population, 10% of the QTLs
are already fixed for one of the two possible alleles. Some of these alleles have
a negative contribution to the genetic value. This explains why the maximum
reachable genetic value is slightly lower than 1 for the initial population (see Fig-
ure 8.1). Over the subsequent breeding cycles, the maximum reachable genetic
value remains constant, indicating that no favorable QTL alleles are eliminated
during breeding. Over the different breeding cycles, the frequency of favorable
QTL alleles in the breeding population increases, leading to a strong increase in
the mean genetic value. Finally, unfavorable QTL alleles are lost from the breed-
ing population, leading to the fixation of favorable QTL alleles. The mean genetic
value of the top-10 individuals, the maximum reachable genetic value, and the
fixed genetic value are listed in Table 10.9.

Figure 8.1: Mean genetic value of the top-10 individuals and maximum reachable genetic value of a
breeding population using the true selection method, scoping method (SR = 0.3), deep scoping method
(BC05), and truncation selection over 50 breeding cycles. The true selection method leads to a high
increase of the mean genetic value over the first breeding cycles while the maximum reachable genetic
value remains constant, indicating that no favorable QTL alleles are lost. The difference in genetic value
between the true selection method and the other methods indicates that further improvements of the
parental selection methods could increase the genetic value up to 14 percentage points.
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The true selection method reaches higher genetic values in the short as well as
in the long term. The scoping method (SR = 0.3) and the deep scoping method
(BC05) are able to increase the long-term genetic gain but according to the true
selection method, the genetic value could still be increased up to 14 percentage
points in the long term. This indicates that even with the scoping and deep scop-
ing methods, further improvements of the parental selection could significantly
increase the short- as well as the long-term genetic gain.

8.3.2 Optimizing the training population

The forward and stepwise selection methods are compared to different update
methods proposed by Neyhart et al. (2017) and Rincent et al. (2012). The mean
genetic values of the top-10 individuals and the maximum reachable genetic val-
ues are shown in Figure 8.2 for the different update methods. At the start of the
simulation, each method results in the same mean genetic value of the top-10 in-
dividuals. After two breeding cycles, the forward and stepwise selection methods
result in a higher long-term genetic gain compared to the other update methods.
At breeding cycle 15, a difference of 19 percentage points is observed between the
stepwise selection method and the top method. The different methods proposed
by Neyhart et al. (2017) and Rincent et al. (2012) converge to approximately the
same genetic value. It is clear that the forward and stepwise selection methods re-
sult in a better prediction of the GEBVs, leading to higher long-term genetic gains.
The maximum reachable genetic value and the mean genetic value of the top-10
individuals using different update methods are listed in Tables 10.10 and 10.11,
respectively.

While both the forward and stepwise selection methods aim to optimize the train-
ing population, they generally do not converge to the same result. The forward
selection starts with 50 randomly chosen individuals. Over the next iterations, the
forward selection method will maximize the prediction accuracy of the population.
However, the forward selection method is not able to remove individuals from the
training population. This is in contrast to the stepwise selection method, which
can further optimize the training population by removing superfluous individuals.
Nevertheless, the forward and stepwise selection methods resulted in a similar
breeding value in the long term indicating that removing superfluous individuals
only has a minor effect on the genetic value of the breeding population.
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Figure 8.2: Simulation results of the forward and stepwise selection methods compared to truncation
selection. Both the forward and stepwise selection methods have a higher genetic value in the long
term compared to truncation selection using the top, bottom, tails, random, PEVmean or CDmean update
methods.

8.4 Discussion

8.4.1 The greedy selection of QTL alleles

The true selection method was developed to study the effects of using a modified
truncation selection scheme in which the frequency of all favorable QTL alleles is
maximized. The true selection method assumes knowledge of the actual QTL ef-
fects and is therefore only of theoretical interest; in vivo, only genetic markers are
available to guide parental selection. Although the true selection method is able
to maximize the genetic gain by greedily selecting the favorable QTL alleles in the
parental population, when the parental selection process relies on genetic markers
that are putatively linked to the casual QTL effects, greedily selecting individuals
(as observed for truncation selection) often result in a premature convergence of
the genetic value. In other words, by only preserving the marker alleles that have
a positive estimated marker effect, the loss of favorable QTL alleles cannot be pre-
vented. Preserving both marker alleles in the breeding population prevents the
elimination of poorly estimated QTL alleles resulting in a higher long-term genetic
gain compared to a greedy strategy like truncation selection.
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Figure 8.3: Simulation results using the true selection method over 50 breeding cycles. The true se-
lection method leads to a high increase of the mean genetic value over the first breeding cycles. The
maximum reachable genetic value remains constant, indicating that no favorable QTL alleles are lost.
Due to selection, the frequency of the favorable QTL alleles increases, finally leading to the loss of unfa-
vorable QTL alleles. This eventually results in high genetic values.

8.4.2 Reaching the theoretical maximum genetic value

The favorable QTL alleles are not always abundantly present in the initial pop-
ulation and many breeding cycles may be needed before fixation occurs. This
explains the relatively slower increase of the fixed genetic value compared to the
mean genetic value of the top-10 individuals (see Figure 8.3). In a standard set-
ting, the fixed genetic value represents the overall effect of all the QTL alleles that
are fixed in the breeding population. As the true selection method avoids the fix-
ation of all QTL alleles, favorable and unfavorable, the fixed genetic value can, in
this case, be used to monitor the fixation of favorable QTL alleles. After almost
30 breeding cycles, the genetic value and the fixed genetic value converge to a
slightly lower value than the maximum reachable genetic value. The true selection
method, which was designed to prevent the loss of favorable QTL alleles, should
make it possible to reach the maximum genetic value of 1. However, when two
or more QTL alleles are in strong linkage disequilibrium (LD) w.r.t. one another,
linking a favorable QTL allele to an unfavorable QTL allele, fixation of both QTL
alleles becomes difficult. This was the case for five percent of the QTLs, prevent-
ing the genetic value from reaching its absolute maximum and explaining why the
genetic value and the fixed genetic value did not converge to the same value. The
oracle method demonstrates that, even in an ideal situation, at least 30 breeding
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cycles are needed to obtain the maximum reachable genetic value in the breeding
population for the base population and simulation settings used in this study.

8.4.3 Genetic values, phenotypic values, and genomic
estimated breeding values

The main goal of breeding is to maximize the genetic value of various traits of
interest and this both in the short and long term. Unfortunately, the genetic value
cannot be measured, and thus selection is often based on the phenotype. Because
the phenotype is influenced by the environment, compared to genetic values, us-
ing the phenotype to select the parental population will result in a lower genetic
gain. This is shown in Figure 8.4. Measuring the phenotype is a time-consuming
and expensive process, therefore, GEBVs are often used instead, predicting the
genetic values using a linear mixed effects model. The selection of superior indi-
viduals using GEBVs hinges on the prediction accuracy of the underlying genomic
prediction model. The construction of a genomic prediction model requires a train-
ing population for which phenotypic and genotypic data of the breeding population
is required. Due to prediction errors, selecting parents based on the GEBVs results
in a lower genetic gain compared to a parental selection based on phenotypic or
genetic values (see Figure 8.4). The difference in the genetic value obtained by
selecting the parents based on the GEBVs and phenotypic values could be reduced
by using a more accurate prediction model and a better training population design.
However, in genomic selection, the linear mixed effects model in combination with
rr-gBLUP often results in a high performance (Moser et al., 2009), and according
to Neyhart et al. (2017), as long as the training population is updated, the genetic
value converges to the same long-term value.

8.4.4 The size of the training population

The stepwise selection method can select and remove 50 individuals from the
training population. An individual can only be added to or removed from the train-
ing population if a higher prediction accuracy can be obtained. At the start of
the simulation, the training population is constructed from a random selection of
100 individuals from the base population. At the first breeding cycle, the step-
wise selection method adds 50 individuals to and removes 50 individuals from
the breeding population, replacing on by on the randomly chosen individuals in
the training population (see Figure 8.5). In the subsequent breeding cycles, the
number of individuals that are removed from the training population is reduced,
allowing for an increase in the size of the training population. Over time, more
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Figure 8.4: Mean genetic value of a breeding population using truncation selection. The parents are
selected based on the GEBV, GV, or phenotypic values. Selecting parents based on the GV will result in
high genetic values, followed by phenotypic values and GEBVs (using the tails method).

individuals will be removed from the training population, while the number of indi-
viduals that are added to the training population will decrease. This means that by
removing superfluous individuals, a lower number of individuals should be added
to the training population to maximize the prediction accuracy.

The size of the training population starts to converge at breeding cycle 15. At
that point, less than 50 individuals are added to the training population. This
observation seems to indicate that using huge datasets to fit a prediction model
may not be the best strategy.

We could expect that if the number of individuals that can be added to the training
population was not limited to 50, a higher number of individuals would have been
selected over the first breeding cycles, increasing the prediction accuracy and the
genetic gain. Unfortunately, this would also increase the simulation time.

8.4.5 The genetic relationship between the training
population and the breeding population

A training population should contain individuals that represent the genetic diver-
sity of the current breeding population, allowing for an accurate prediction of each
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Figure 8.5: Overview of the number of individuals that are added to and removed from the training pop-
ulation using the stepwise selection method. Over the first breeding cycles, a lower number of individuals
are removed from the breeding population, allowing for an increase in the size of the training population.

individual. The genetic relationship can be calculated based on the genotype us-
ing Eq. (4.3). A high genetic relationship between two individuals indicates that
both individuals are closely related. It is expected that if the training population is
a good representation of the genetic diversity of the current breeding population,
the mean genetic relationship between the breeding population and the training
population will be maximized. This mean genetic relationship for the different se-
lection methods is shown in Figure 8.6.

The top and tails update methods result in a training population with a high ge-
netic relationship. Both update methods select individuals with a high GEBV that
are also selected as a parent. Therefore, the training population will be a good
representation of the individuals in the subsequent breeding cycles. The tails up-
date method also selects individuals with a low GEBV, hence the lower genetic
relationship compared to the top update method over the first breeding cycles.
At breeding cycle 10, due to the loss of genetic variation, the prediction accuracy
is almost reduced to zero. At that point, the GEBVs do not represent the genetic
value of each individual correctly, resulting in an almost random selection. There-
fore, a training population that was selected by means of the tails update method
will result in a higher mean genetic relationship with the current breeding popula-
tion compared to the top update method. The bottom update method only selects
individuals with the lowest GEBVs, and will thus have a low genetic relationship
towards the breeding population. However, when the prediction accuracy and ge-
netic variation decrease, the bottom update method results in a higher genetic
relationship.

The forward and stepwise selection methods result in a similar low mean genetic
relationship between breeding cycles 5 and 10. Both selection methods were
developed to maximize the prediction accuracy, therefore, based on the results



8.4 DISCUSSION 155

Figure 8.6: Mean genetic relationship between individuals of the training population and the individuals
of the breeding population. The top and tails update methods result in a training population with a high
mean genetic relationship, whereas the forward selection, stepwise selection, and bottom update methods
result in a lower mean genetic relationship.

presented in Figure 8.6, maximizing the genetic relationship between the train-
ing population and the breeding population does not seem to be the best strat-
egy. According to the oracle methods, a selection algorithm to update the training
population should aim to minimize the genetic relationship between the breeding
population and the training population.

8.4.6 Studying the optimal training population

To understand how the oracle methods optimize a training population, the mean
marker variance, mean genetic value of the training population, and the mean
absolute residual error of the individuals in the training population have been an-
alyzed. The results are shown in Figure 8.7.

When a training population is updated with individuals with a high or low GEBV, the
mean genetic value of the training population will be respectively higher or lower
compared to the breeding population. This is observed for the top and bottom
update methods. In the case of the forward and stepwise selection methods, the
same mean genetic value is observed between the training population and the
breeding population indicating that the selection is not based on the genetic value
of the individuals.
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Figure 8.7: Top left, the mean genetic value of the training population, top right, the mean genetic value
of the breeding population, bottom left, the mean marker variance, and bottom right the absolute residual
error. Both the forward and stepwise selection methods select individuals that minimize the residual error,
preserves the genetic variation in the training population, while preserving the same mean genetic value
as observed in the breeding population.



8.5 CONCLUSION 157

Similar to the Fscore, the mean marker variance summarizes the variance of the
marker alleles in the training population. Both oracle methods generally demon-
strate higher mean marker variances compared to the other methods although
the bottom method seems to favor marker variance as well. The bottom method
selects individuals with the lowest GEBVs. These individuals are often unrelated
and contain a high level of heterozygosity, maximizing the genetic variation of the
training population. Taking into account that by using truncation selection, after
each breeding cycle, the genetic variation will decrease in the breeding population.
By consequence, the genetic variation will also be reduced in the training popu-
lation, as observed in Figure 8.6 for each update method. Because the stepwise
selection method eliminates individuals in a more efficient manner, a slower de-
crease in the mean marker variance is observed compared to other update meth-
ods.

The residual error is the absolute difference between the genetic value and the
phenotypic value of an individual. Over the first breeding cycles, both the forward
and stepwise selection methods select individuals with a lower residual error. In
vivo, the residual error is unknown, and thus selecting individuals that minimize
the residual error cannot be achieved. The PEVmean update method (Rincent
et al., 2012) selects individuals by minimizing the prediction error variance using
the mixed model equations, but according to Neyhart et al. (2017) it was not able
to outperform other update methods in the long term. Therefore, non-oracle up-
date methods will probably not be able to reach the same long-term genetic gain
as the oracle method as long as the residual error cannot be measured or predicted
more accurately.

8.5 Conclusion

The results obtained by means of the oracle methods indicate that current meth-
ods to update the parental population or the training population are far from op-
timal. Although the scoping method increased the long-term genetic gain consid-
erably compared to truncation selection, the optimal breeding population is not
yet reached, opening the door for future work. The training population update
methods were also not able to maximize the genetic gain compared to the or-
acle methods. Unfortunately, these oracle methods selected individuals with a
lower residual error, which cannot be achieved in vivo. Therefore, more research
is needed to assess to which extent an optimal breeding population can maximize
the genetic gain when the residual error is taken out of the equation. According
to both the forward and stepwise selection methods, maximizing the genetic vari-
ation of the training population could result in an optimal training population and
should be further investigated.
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9
Discussion and future work

9.1 Genomic estimated breeding values and
their limitations

GEBVs are generally calculated as the sum of the estimated effects of genetic
markers across the genome of an individual, and are often used in GS as a selec-
tion criterion. Because the GEBVs reduce the genotypic information of an individ-
ual into a single value, important information that was available in the genotype
may be lost. Truncation selection only selects individuals with the highest GEBVs
as a parent. This often results in the selection of closely related individuals, caus-
ing a rapid fixation of the QTL alleles. Unfortunately, unfavorable QTL alleles are
also getting fixed in the breeding population, reducing the long-term genetic gain.
Selecting parents solely based on GEBVs cannot ensure that all the favorable QTL
alleles will be passed to the next generation.

The loss of favorable QTL alleles could be reduced by preserving the genetic vari-
ation of the breeding population. The preservation of the genetic variation will,
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however, also preserve unfavorable QTL alleles in the population. The parental
selection should, therefore, also try to maximize the GEBVs, allowing for a slower,
yet more accurate fixation of the favorable QTL alleles. To do so, different meth-
ods to preserve genetic variation have been discussed in this dissertation. The
population merit method (Lindgren and Mullin, 1997) and the maximum variance

total method (Cervantes et al., 2016) penalize the selection of closely related par-
ents by using respectively the genetic relationship and the averaged inbreeding
coefficient. The population merit method is able to preserve the genetic variation
and to reduce the loss of favorable QTL alleles. This results in a higher long-term
genetic gain compared to truncation selection, indicating that the use of genotypic
information is crucial to optimize the parental selection. Nevertheless, both meth-
ods only use the genetic relationship matrix to penalize the GEBVs. However, this
does not enforce the preservation of each marker (and QTL) allele.

The scoping method uses the genotypic information to ensure the selection of each
marker allele to the extent possible. To do so, the Fscore uses a Boolean variable
that tracks if both alleles of a marker have already been selected in the parental
population. The scoping method also uses a pre-selection that selects the fraction
of the breeding population having the highest GEBVs. This fraction, controlled by
the scoping rate, avoids the selection of individuals with a lower GEBV as a parent,
which could decrease the genetic progress of the breeding population. This also
means that if certain marker alleles are not present in the pre-selected population,
these marker alleles will be eliminated from the breeding population. Even if all the
marker alleles are present in the pre-selected population, the number of parents
that can be selected may also be insufficient to select both alleles at each marker
locus. Especially over the first breeding cycles, the scoping method was not able
to preserve all the marker alleles by selecting only 100 parents, resulting in the
loss of favorable QTL alleles. Hence, we observe a decrease in the maximum
reachable genetic value. This could be avoided by using a different strategy to
pre-select individuals (e.g. adaptive scoping method), by using a different crossing
block design (see Section 9.3), or by selecting more parents (see Section 9.2).
Nevertheless, the scoping method is still able to maximize the long-term genetic
gain, outperforming truncation selection, the population merit method, and the
maximum variance total method.

The HEBVs have been proposed as an alternative selection criterion to replace the
GEBVs (Allier et al., 2020a). The HEBVs are based on the OHVs (Daetwyler et al.,
2015), in which the marker effects of the best haploid segments are used to score
an individual. If a heterozygous individual contains the favorable marker alleles
on the same haploid segment, that individual will have a high HEBV and could
thus be selected as a parent whereas his GEBV will have a lower value due to the
presence of these heterozygous markers. The H-score evaluates individuals by
calculating the HEBV between the haploid segments of that individual and an elite
population. During the design of the deep scoping method, both the H-score and
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the GEBVs were considered, but because the H-score resulted in the highest long-
term genetic gains, the HEBVs were used to select the parents for the different
layers. The H-score has also been considered in the scoping method to pre-select
individuals, but a reduction of the genetic value was observed in the short as
well as in the long term. The H-score results in the selection of heterozygous
individuals with a lower GEBV, decreasing the genetic progress of the breeding
population. Therefore, the H-score should only be used in combination with a
greedy component. Allier et al. (2020a) combined the H-score with the selection of
elite individuals based on GEBVs. In the deep scoping method, the H-score is only
used to select the parents for the different layers, maximizing the preservation
of the genetic variation while elite individuals are selected based on the GEBVs,
ensuring the genetic progress.

9.2 Capacity required to preserve the genetic
variation

As stated in the previous section, the loss of favorable QTL alleles over the first
breeding cycles as observed for the scoping method could be reduced by selecting
more parents. The effect of the parental selection intensity (PSI) is shown in Fig-
ure 9.1 for both truncation selection and the scoping method. Increasing the size
of the parental population will result in higher genetic values and a higher maxi-
mum reachable genetic value, indicating that the favorable QTL alleles are better
preserved in the breeding population. Further increasing the size of the parental
population will only result in a smaller increase of the genetic value. Therefore, we
could assume that for a certain parental population size, including more parents
will no longer affect the long-term genetic gain. A breeder should, however, never
aim for that point as it would increase the financial costs and required resources.
The size of the breeding population is in most breeding programs limited by the
available funds and resources, making it difficult to increase the population size.
Based on the results illustrated in Figure 9.1, we can conclude that increasing the
size of the breeding population will increase the long-term genetic gain. However,
the breeder should find a good balance between the costs and profits of increasing
the population size.

Increasing the population size will also allow for a better preservation of the ge-
netic variation when truncation selection is used (baseline method). Because the
scoping method can preserve the genetic variation more efficiently, according to
Figure 9.1, truncation selection requires 10 times more parents to reach the same
long-term genetic value as the scoping method (PS = 50). This means that by
using the scoping method with only 50 parents (and a population size of 500 indi-
viduals) the same long-term genetic gains can be obtained as observed for trunca-
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Figure 9.1: Simulation overview of truncation selection and the scoping method for different parental
selection intensities (PSI).

tion selection using 500 parents (and a population size of 5000 individuals). This
only emphasizes the importance of replacing truncation selection by the scoping
method (or the deep scoping method).

The deep scoping method introduces genetic variation in the breeding popula-
tion and will thus be less affected by the size of the parental population (see Fig-
ure 7.12). When a smaller population size is used, the number of layers should
be reconsidered, but the long-term genetic gain will remain the same. Normally,
when the number of parents is reduced, the genetic variation that can be passed
to the next generation is limited, resulting in a rapid fixation of the QTL alleles.
When genetic variation is introduced in the breeding cycle using the deep scoping
method, the flow of favorable QTL alleles from the gene bank to the elite popu-
lation is ensured. As long as the number of parents allows for a continuous flow
of the genetic variation from the gene bank into the elite population, the parental
population size will not affect the long-term genetic gain.
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9.3 An alternative crossing block design

The loss of favorable QTL alleles could be reduced by further modifying the cross-
ing block design. Although the scoping method was able to preserve a certain frac-
tion of the genetic variation, by selecting only 50 parents based on the Fscore (and
50 based on the GEBVs), not all the available marker alleles of the pre-selected
population can be selected in the parental population. Therefore, new crossing
block designs are needed.

In an attempt to maximize the genetic gain, the crossing block of the adaptive
scoping method was redesigned. Therefore, the crossing block was split into two
parts: the first part is selected according to the scoping method, whereas the
second part is selected by maximizing the Fscore between each parent and the
already selected parents. In other words, in the second part, the P1 parent is not
selected based on its GEBV, but is also selected to maximize the genetic varia-
tion of the parental population. When both parents are selected solely on their
genetic variation (Fscore), a low genetic gain would be observed in the next gen-
eration. Therefore, similar to the scoping rate, the fraction of the crossing block
that is selected solely based on the Fscore is decreased from 1 to 0 in t breeding
cycles. At breeding cycle 1, all parents are selected based on the Fscore. In the
subsequent breeding cycles, a fraction of the parents will be selected according
to the scoping method. This will increase the genetic progress at the expense of
preservation of the genetic variation. At breeding cycle t and all the subsequent
breeding cycles, all the parents are selected according to the scoping method,
maximizing the genetic progress of the breeding population. The initial results are
shown in Figure 9.2. By using an alternative crossing block design, the loss in fa-
vorable QTL alleles was avoided and high long-term genetic gains were observed,
reaching values up to 0.80. Therefore, we believe that methods like this should be
further investigated as they hold great promise for maximising genetic gain.

9.4 Using a high marker density in the scop-
ing method

The number of available markers also plays a crucial role in the preservation of ge-
netic variation. A low number of markers cannot always accurately grasp the QTL
effects, resulting in poorly estimated GEBVs. Increasing the number of markers al-
lows for a more accurate estimation of the QTL effects which in turn facilitates the
identification and preservation of favorable QTL alleles in the population. However,
a high number of markers might make it more challenging for the scoping method
to preserve both alleles of each marker locus in the breeding population. Dedi-
cated selection strategies are likely required to preserve the full genetic variation
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Figure 9.2: Mean genetic values of the top-10 individuals and maximum reachable genetic values for
the scoping method and the adaptive scoping method using an alternative crossing block design (Maxvar
Scoping).

in this setting. One way to achieve this is for example by optimizing the crossing
block, allowing for a better preservation of rare marker alleles in the breeding pop-
ulation. This strategy could open new important opportunities for the use of the
scoping method in different plant breeding applications.

9.5 Preserving the genetic variation in the long
term

The deep scoping method was proposed as a new method that could replace the
scoping method when the genetic variation of the breeding population has been
reduced due to years of consecutive breeding. The deep scoping method was
evaluated after 5, 10, 15, and 20 breeding cycles of truncation selection in which
it consistently outperformed the scoping method. However, if the breeding pop-
ulation still contains a broad genetic variation as observed at the first breeding
cycle, the scoping method can obtain a higher genetic gain. In Figure 9.3 the re-
sults of the scoping and deep scoping methods are shown after 1 and 3 breeding
cycles of truncation selection. After three breeding cycles of truncation selection,
the genetic variation is reduced to such an extent that the scoping method yields
a lower long-term genetic gain compared to the deep scoping method. Although
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the scoping method is still able to obtain higher short-term genetic gains, the point
at which the deep scoping method will outperform the scoping method will be ob-
served at an earlier point in time when the genetic variation of the base population
is further reduced.

The loss of genetic variation has led to different bottlenecks in plant breeding.
Therefore, breeders should make considerable efforts to reintroduce and preserve
genetic variation in their breeding pools. Unfortunately, this remains difficult in
crops with a low margin profit. Different techniques such as gene editing can help
to increase the genetic variation in commercial breeding lines, but today’s policies
complicate the application of such methods (Louwaars, 2018).

9.6 Balance between the short- and long-term
genetic gain

Different methods have been proposed to maximize the long-term genetic vari-
ation of the breeding population. The scoping method uses the scoping rate, a
parameter that controls the number of individuals that will be pre-selected, and
thus be available as a potential parent. The scoping rate can thus be used as a
parameter to find the desired balance between the short- and long-term genetic
gain. A scoping rate of 1, will use the whole breeding population to maximize the
Fscore, resulting in a high long-term, but a lower short-term genetic gain. By de-
creasing the scoping rate, the pre-selection of an individual with a lower GEBV is
avoided. On the one hand, a lower scoping rate will result in higher short-term
genetic gains while on the other hand, it will also expedite the loss in genetic vari-
ation, resulting in lower long-term genetic gains. In theory, the scoping rate could
thus be used to maximize the genetic gain at a certain point in time.

In Chapter 6, the scoping rate is varied from SRmx to SRmin over t breeding cycles.
Over the first breeding cycles, the preservation of genetic variation is prioritized,
whereas over the later breeding cycles, when the scoping rate is decreased to
SRmin, the genetic progress is maximized. The parameter t allows to maximize the
genetic value after a certain number of breeding cycles, allowing the breeder to
choose between short- or long-term genetic gains. For the deep scoping method,
the short- and long-term genetic gains can be controlled by the size of the different
layers and the size of the elite population, as well as the size of the pre-selection.

The effect of using a specific value for the scoping rate or t on the genetic value
in the short as well as in the long term will depend on the characteristics of the
current breeding population. To that end, a simulation study is required. By us-
ing phenotypic and genotypic data of the last breeding cycles, the effects of a
parental selection method on the genetic gain of a specific breeding population
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Figure 9.3: Simulation results of the deep scoping method and the scoping method starting after 1 (left),
and 3 (right) breeding cycles of truncation selection. The scoping method can gain the highest long-term
genetic values. However, if truncation selection is used prior to the scoping method, the long-term genetic
gain decreases, and the deep scoping method can gain higher genetic gains.

can be assessed in the short and the long term. Unfortunately, the simulation of
such a breeding population is difficult as it requires QTL information to predict the
genetic values of future generations. In my opinion, further research is needed to
study to which extent a simulator can be used to study the possible future out-
comes of a specific breeding population. Taking into account that crossing overs
occur at random, it will not be possible to perfectly predict the offspring of het-
erozygous parents. This implies that at each consecutive breeding cycle, one or
more corrective measures should be considered. Nevertheless, such a simulator
could advance the current genetic progress in different breeding programs.

9.7 Combining truncation selection and the scop-
ing method

To maximize the short-term genetic gain, we have considered using truncation se-
lection and the scoping method together to combine the advantages of both meth-
ods. To do so, the breeding population was split into two subpopulations: a greedy
population and a scoping population. The idea was that the scoping method would
preserve the genetic variation, ensuring high long-term genetic gains, whereas
truncation selection would maximize the short-term genetic gains. Unfortunately,
by combining truncation selection with the scoping method, a lower genetic gain
was observed. Using truncation selection to select a fraction of the parental pop-
ulation resulted in a high selection intensity, decreasing the genetic variation of
its offspring. In the next generation, the offspring of the truncated selected par-
ents had a high GEBV and were thus pre-selected by the scoping method, reducing
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the genetic variation in the pre-selected population. In other words, the scoping
method was not able to preserve the genetic variation because truncation selec-
tion already reduced the genetic variation of the individuals that would be pre-
selected. By selecting only 10 out of the 100 parents with truncation selection,
the long-term genetic gain was significantly reduced without increasing the short-
term genetic gain. This clearly indicates that the preservation of genetic variation
is important to reach high long-term genetic gains.

In the deep scoping method, a variant of the scoping method was successfully
combined with truncation selection. The deep scoping method uses different lay-
ers, restraining the individuals that can be selected as a parent. By also using a
gene bank, genetic variation is constantly reintroduced in the breeding population,
avoiding the permanent loss of favorable QTL alleles.

9.8 Pearson correlation versus mean genetic
value of the top-10 individuals

In genomic selection, the Pearson correlation is often used to evaluate the pre-
diction accuracy of the GEBVs. In Chapter 5, we proposed to only use the mean
genetic value of the top-10 individuals to evaluate the performance of the differ-
ent selection methods. The Pearson correlation is sensitive to outliers and can
be misleading when a breeding population contains individuals with low and high
genetic values. Starting at the first breeding cycle, the scoping and deep scop-
ing methods are able to reach high long-term genetic gains (see Figure 9.4). As
the deep scoping method constantly reintroduces individuals with a lower GEBV
from the gene bank into the first layer, a high Pearson correlation is observed be-
tween the GEBVs and the genetic values of the whole breeding population. In the
case of the scoping method, only the available genetic variation is preserved, and
thus over time, the Pearson correlation degrades. When the deep scoping method
is used, the Pearson correlation is overestimated, giving the impression that the
GEBVs are better estimated compared to the scoping method while, at that point,
the scoping method yields higher genetic values. On the one hand, in the deep
scoping method, a cross between an elite individual and an individual of the gene
bank can result in an outlier causing an overestimation of the prediction accuracy.
On the other hand, the deep scoping method contains a high amount of genetic
variation, resulting in a higher Pearson correlation compared to a similar breeding
population that contains a lower amount of genetic variation (Glass and Hopkins,
1996; Goodwin and Leech, 2006). This is also shown in Figure 7.17 in which the
Pearson correlation for each subpopulation of the deep scoping method is lower
compared to the Pearson correlation of the whole breeding population. Therefore,
we advise not to use the Pearson correlation when the breeding population con-
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tains individuals with extreme breeding values or to compare the performance of
two breeding populations that differentiate in terms of genetic variation.

9.9 Limitations of the simulation study

The simulation of a breeding population played a central role in this dissertation
and made it possible to study the evolution of a breeding population under dif-
ferent circumstances. The development of a simulator can be time-consuming,
especially when it is built from scratch. First, the biological aspects of a breed-
ing population need to be translated into different mathematical equations that
can, in the next step, be implemented into an application. Different assumptions
and design choices (e.g. the distributions of the QTLs) are required. Finally, the
simulation results should be validated using different datasets.

The number of simulators that are available to simulate a breeding population is
rather limited. Faux et al. (2016) proposed Alphasim, a software package that can
simulate a breeding population over different breeding cycles. Unfortunately, due
to the closed-source nature of the software at that time, it was not possible to cus-
tomize each aspect of the simulator, limiting its applicability in this dissertation.
Moreover, as Alphasim was only made available as a pre-built binary, it was not
possible to determine the exact implementation of various steps in the simulation
process, making it difficult to fully understand the obtained results. Recently, the
source code of Alphasim has been made publicly available, opening new perspec-
tives for research studies that require simulated breeding data.

The simulator that was used in this dissertation was built upon the work of Neyhart
et al. (2017). This simulator was written in R, allowing for the modification of each
aspect of the implementation. In vivo, there can be so many interactions between
the genes and the environment which makes it more difficult, if not impossible,
to study the effect of a single, isolated parameter. In silico, however, one can
choose to simplify various aspects of the underlying genetic model, for example,
assuming the absence of dominance, epistatis and mutation. This simplifies the
simulation, but still grasps the fundamentals of genetics. In a later stage, it can
be interesting to also study the different parental selection methods under more
realistic conditions. Therefore, each of these interactions should be implemented
in the simulator.

The simulator can be extended to account for heterotic effects, such that the scop-
ing and deep scoping methods can be evaluated in hybrid breeding. The simula-
tion of the gametes can be improved by adding recombination hot spots and muta-
tions and the QTL effects could be simulated based on a dataset, better reflecting
the behavior of an actual breeding population.
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Figure 9.4: Mean genetic value of the top-10 individuals and Pearson correlation of a breeding population
using the scoping and deep scoping methods. Both methods are used to select the parents over 50
breeding cycles.

9.10 Future work

In this dissertation, different parental selection methods were proposed. These
methods were only studied in a recurrent breeding scheme. It could be interesting
to alter our methods such that they can be used in other settings as well. For
hybrid breeding, after taking into account the heterosis effect, the scoping and
deep scoping methods could be used on the one hand to preserve the genetic
variation of both heterotic groups and on the other hand, both methods could be
used to guide the parental selection of the hybrids. Both selection methods could
require a different approach and therefore require further investigation.

In Subsection 9.3, an alternative method was proposed. Although the initial results
were promising, the robustness of the method should be further investigated, but
this alternative method could in time replace the adaptive scoping method.

In this dissertation, we have demonstrated the importance of preserving genetic
variation within a breeding population to maximize the long-term genetic gain of a
trait. Often, crops are selected on more than one trait. Each trait is then controlled
by a different number of QTLs. One QTL can control more than one trait, and
thus if a QTL has a positive effect on one trait and a negative effect on another
trait, it is less obvious which parents should be selected to maximize all the traits.
Once again, a method using the core idea of the scoping method could assist the
parental selection. The genetic gain can be maximized by finding which genotype
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optimizes all the traits. By preserving both QTL alleles in the population, each QTL
allele can still be reintroduced in an elite individual if necessary.

Hopefully, our proposed methods can also be evaluated in field tests and be used
to improve current breeding populations. Both the scoping and deep scoping meth-
ods have been developed to maximize the long-term genetic gain while preserving
the short-term genetic gain such that both methods can be used in a competitive
setting.



10
Conclusion

Truncation selection is often used in GS and plant breeding to maximize the short-
term genetic gain, but it also reduces the maximum reachable genetic value, caus-
ing a premature convergence of the genetic value to a local optimum. Although
a greedy component is important to ensure genetic progress, the preservation of
genetic variation is paramount to avoid a premature convergence of the genetic
value. Both the scoping method and deep scoping method confirm our hypothe-
sis: preserving genetic variation increases the long-term genetic gain. The Fscore
combines the genetic variation of each marker into a score that can be used to
maximize the genetic variation of the offspring. The scoping method successfully
selects parents based on the Fscore and GEBVs, maximizing the genetic gain in the
long term. The scoping rate, a parameter that controls the fraction of the breeding
population that will be pre-selected, can be used to prioritize the preservation of
genetic variation or to maximize the genetic progress. When the genetic variation
of the breeding population has already been reduced due to years of consecutive
breeding, a gene bank should be used to reintroduce the genetic variation in the
breeding population. The deep scoping method uses different layers to increase
the genetic values of the pre-breeding individuals before introducing them into the
elite population. By doing so, the genetic gain is maximized in the short as well as
in the long term.
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Table 10.4: The mean genetic value and the standard deviation of the top-10 individuals for the back-
crossing and combined methods over 250 experiments.

BC Backcrossing Combined Method Combined Method Combined Method
Method (SR = 0.1) (SR = 0.2) (SR = 0.3)

1 0.23 ± 0.09 0.23 ± 0.08 0.23 ± 0.08 0.23 ± 0.08
3 0.34 ± 0.08 0.34 ± 0.08 0.34 ± 0.07 0.34 ± 0.08
5 0.41 ± 0.08 0.42 ± 0.07 0.41 ± 0.07 0.40 ± 0.08
7 0.46 ± 0.08 0.47 ± 0.08 0.47 ± 0.07 0.45 ± 0.07
9 0.49 ± 0.08 0.51 ± 0.08 0.51 ± 0.07 0.50 ± 0.07

11 0.45 ± 0.08 0.54 ± 0.08 0.55 ± 0.07 0.53 ± 0.07
13 0.50 ± 0.08 0.56 ± 0.08 0.57 ± 0.07 0.56 ± 0.07
15 0.53 ± 0.08 0.57 ± 0.08 0.60 ± 0.07 0.58 ± 0.06
17 0.55 ± 0.08 0.58 ± 0.08 0.62 ± 0.07 0.60 ± 0.07
19 0.56 ± 0.08 0.59 ± 0.08 0.63 ± 0.07 0.62 ± 0.07
21 0.49 ± 0.08 0.59 ± 0.08 0.65 ± 0.07 0.63 ± 0.07
23 0.55 ± 0.08 0.59 ± 0.08 0.66 ± 0.07 0.65 ± 0.07
25 0.57 ± 0.09 0.60 ± 0.08 0.66 ± 0.07 0.66 ± 0.07
27 0.59 ± 0.08 0.60 ± 0.08 0.67 ± 0.07 0.67 ± 0.07
29 0.59 ± 0.08 0.60 ± 0.08 0.68 ± 0.07 0.68 ± 0.06
31 0.51 ± 0.08 0.60 ± 0.08 0.68 ± 0.07 0.68 ± 0.06
33 0.57 ± 0.08 0.60 ± 0.08 0.69 ± 0.07 0.69 ± 0.06
35 0.60 ± 0.09 0.60 ± 0.08 0.69 ± 0.07 0.70 ± 0.06
37 0.61 ± 0.09 0.60 ± 0.08 0.70 ± 0.07 0.70 ± 0.06
39 0.61 ± 0.09 0.60 ± 0.08 0.70 ± 0.07 0.71 ± 0.06
41 0.53 ± 0.08 0.60 ± 0.08 0.70 ± 0.07 0.71 ± 0.06
43 0.59 ± 0.08 0.60 ± 0.08 0.71 ± 0.07 0.71 ± 0.06
45 0.61 ± 0.08 0.60 ± 0.08 0.71 ± 0.07 0.72 ± 0.06
47 0.62 ± 0.08 0.60 ± 0.08 0.71 ± 0.07 0.72 ± 0.06
49 0.63 ± 0.08 0.60 ± 0.08 0.71 ± 0.07 0.73 ± 0.06
50 0.63 ± 0.08 0.60 ± 0.08 0.71 ± 0.07 0.73 ± 0.06
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Table 10.5: The maximum reachable genetic value and the standard deviation of the breeding population
for the backcrossing and combined methods over 250 experiments.

BC Backcrossing Combined Method Combined Method Combined Method
Method (SR = 0.1) (SR = 0.2) (SR = 0.3)

1 0.90 ± 0.05 0.90 ± 0.05 0.90 ± 0.05 0.90 ± 0.05
3 0.77 ± 0.08 0.78 ± 0.08 0.86 ± 0.06 0.88 ± 0.05
5 0.71 ± 0.09 0.74 ± 0.08 0.84 ± 0.06 0.86 ± 0.06
7 0.67 ± 0.09 0.71 ± 0.08 0.82 ± 0.07 0.85 ± 0.06
9 0.64 ± 0.09 0.69 ± 0.09 0.81 ± 0.07 0.85 ± 0.06

11 0.79 ± 0.08 0.67 ± 0.09 0.80 ± 0.07 0.84 ± 0.06
13 0.71 ± 0.08 0.65 ± 0.08 0.79 ± 0.07 0.84 ± 0.06
15 0.66 ± 0.09 0.64 ± 0.08 0.79 ± 0.07 0.84 ± 0.06
17 0.64 ± 0.09 0.63 ± 0.08 0.78 ± 0.07 0.83 ± 0.06
19 0.63 ± 0.09 0.63 ± 0.08 0.78 ± 0.07 0.83 ± 0.06
21 0.80 ± 0.07 0.62 ± 0.08 0.77 ± 0.07 0.82 ± 0.06
23 0.71 ± 0.08 0.62 ± 0.08 0.77 ± 0.07 0.82 ± 0.06
25 0.67 ± 0.08 0.61 ± 0.08 0.76 ± 0.07 0.82 ± 0.06
27 0.65 ± 0.08 0.61 ± 0.08 0.76 ± 0.07 0.82 ± 0.06
29 0.64 ± 0.09 0.61 ± 0.08 0.76 ± 0.07 0.81 ± 0.06
31 0.80 ± 0.08 0.61 ± 0.08 0.76 ± 0.07 0.81 ± 0.06
33 0.73 ± 0.08 0.61 ± 0.08 0.75 ± 0.07 0.81 ± 0.06
35 0.69 ± 0.08 0.61 ± 0.08 0.75 ± 0.07 0.81 ± 0.06
37 0.67 ± 0.08 0.60 ± 0.08 0.75 ± 0.07 0.81 ± 0.06
39 0.66 ± 0.08 0.60 ± 0.08 0.75 ± 0.07 0.80 ± 0.06
41 0.80 ± 0.07 0.60 ± 0.08 0.75 ± 0.07 0.80 ± 0.06
43 0.73 ± 0.08 0.60 ± 0.08 0.75 ± 0.07 0.80 ± 0.06
45 0.70 ± 0.08 0.60 ± 0.08 0.75 ± 0.07 0.80 ± 0.06
47 0.68 ± 0.08 0.60 ± 0.08 0.74 ± 0.07 0.80 ± 0.06
49 0.67 ± 0.08 0.60 ± 0.08 0.74 ± 0.07 0.80 ± 0.06
50 0.66 ± 0.08 0.60 ± 0.08 0.74 ± 0.07 0.80 ± 0.06
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Table 10.9: The maximum reachable genetic value, the genetic value of the fixed QTL alleles, the mean
genetic value of the top-10 individuals and the standard deviation using the true selection method. The
genetic values are averaged over 100 different experiments.

BC Maximum Reachable GV Fixed GV Top-10 GV
1 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
3 0.91 ± 0.05 0.09 ± 0.05 0.30 ± 0.09
5 0.91 ± 0.05 0.16 ± 0.06 0.42 ± 0.09
7 0.91 ± 0.05 0.24 ± 0.07 0.52 ± 0.09
9 0.91 ± 0.05 0.32 ± 0.08 0.61 ± 0.08

11 0.91 ± 0.05 0.42 ± 0.08 0.68 ± 0.08
13 0.91 ± 0.05 0.52 ± 0.09 0.73 ± 0.07
15 0.91 ± 0.05 0.61 ± 0.08 0.77 ± 0.07
17 0.91 ± 0.05 0.69 ± 0.08 0.79 ± 0.06
19 0.91 ± 0.05 0.73 ± 0.07 0.81 ± 0.06
21 0.91 ± 0.05 0.77 ± 0.07 0.83 ± 0.06
23 0.91 ± 0.05 0.79 ± 0.06 0.84 ± 0.06
25 0.91 ± 0.05 0.80 ± 0.06 0.84 ± 0.06
27 0.91 ± 0.05 0.81 ± 0.07 0.85 ± 0.06
29 0.91 ± 0.05 0.82 ± 0.07 0.86 ± 0.06
31 0.91 ± 0.05 0.83 ± 0.06 0.86 ± 0.06
33 0.91 ± 0.05 0.84 ± 0.06 0.87 ± 0.06
35 0.91 ± 0.05 0.84 ± 0.06 0.87 ± 0.06
37 0.91 ± 0.05 0.85 ± 0.06 0.87 ± 0.06
39 0.91 ± 0.05 0.85 ± 0.06 0.87 ± 0.06
41 0.91 ± 0.05 0.85 ± 0.06 0.87 ± 0.06
43 0.91 ± 0.05 0.86 ± 0.06 0.87 ± 0.06
45 0.91 ± 0.05 0.86 ± 0.06 0.87 ± 0.06
47 0.91 ± 0.05 0.86 ± 0.06 0.88 ± 0.06
49 0.91 ± 0.05 0.86 ± 0.06 0.88 ± 0.06
50 0.91 ± 0.05 0.86 ± 0.06 0.88 ± 0.06
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