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Abstract

In this paper, we present a novel technique to accurately model scattering phenomena at two-dimensional
circular and rectangular structures consisting of arbitrary homogeneous materials, including magnetic media
in particular. The proposed formalism utilizes a differential surface admittance operator, which invokes a
single source equivalence theorem to replace the inside material by its surrounding medium, while introducing
an equivalent surface current density. The arbitrary magnetic contrast can be combined with an arbitrary
electrical conductivity. As such, the skin effect is rigorously taken into account, making our method ideally
suited for broadband modeling of good conductors as well. It is demonstrated that an appropriate choice
of the basis functions for the discretized problem is critical to obtain a convergent result when magnetic
contrast is introduced. The method is analytically validated for the case of a circular cylinder and additional
numerical results illustrate the correctness of the technique for (combinations of) rectangular cylinders,
through comparison with a Poggio-Miller-Chan-Harrington-Wu-Tsai approach, a volume integral equation
method and a commercial solver.

Keywords: Differential surface admittance operator, magnetic materials, boundary integral equations,
electromagnetic scattering

1. Introduction

Electronic devices are prevalent in today’s information society and the ever more stringent demands in
terms of complexity, processing speed and compactness constitute considerable challenges for the design engi-
neers. On the hardware level, the increasing clock frequencies and the steady strive for miniaturization cause
concern when it comes to, e.g., electromagnetic compatibility (EMC) and signal and power integrity (SI/PI).
Consequently, accurate solvers are of paramount importance to provide reliable predictions during the devel-
opment of the next generation of technological appliances.

In this context, with structures that can no longer be regarded as electrically small, full-wave electro-
magnetic solvers are required. These models capture the wave nature of the pertinent fields and rigorously
solve Maxwell’s equations in a numerical fashion. One can distinguish various families of solvers, of which
the finite difference, finite element and integral equation methods are the most notable.

The discretization of the object under consideration can be performed by means of a volumetric scheme,
such as the finite element method (FEM) or a surface-based one, as applied in boundary integral equa-
tion (BIE) formulations. The latter group of methods allows to solely discretize the surface area. Conse-
quently, the number of unknowns in the system to be solved is greatly reduced, although a dense system
matrix must be tolerated. A well-known example, applicable to piecewise homogeneous scatterers, is the
Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) method [1].

When the scattering object is made of highly conductive materials, solving the problem remains, however,
quite challenging. These difficulties may be attributed to a particularly strenuous phenomenon to model, viz.,
the skin effect, which causes the fields in a good conductor to reside ever closer to its surface at increasing
frequencies. Various methods have been devised to tackle the skin effect, both in FEM [2, 3] and BIE [4, 5]
techniques. Often, they introduce additional relations between the tangential electric and magnetic fields
on the surface. The surface impedance is such a commonly used principle, specifying a local relationship
on the boundary of the considered object, thus eliminating the so-called ‘internal field problem’. A notable
example in this category is based on the Leontovich boundary condition [6]. A generalization to a more
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global relationship, using volume integral equations (VIE), was presented in [7]. However, these techniques
all suffer from inaccuracies and approximations that limit their applicability [8].

Another method, specifically tailored to this type of problems, employs the so-called differential surface
admittance (DSA) operator. It was first presented in [9] as a concept to accurately and efficiently characterize
circular and rectangular two-dimensional (2-D) good conductors over a wide frequency range, thus rigorously
capturing the skin effect. This is achieved by recasting the problem at hand into an equivalent one, where
the material of the conductor is replaced by its surrounding medium and an equivalent surface current
density is introduced to maintain the outside fields of the original configuration. Consequently, cumbersome
numerical integrations involving the Green’s function inside the good conductor are avoided [10]. After its
conception in 2005, the 2-D DSA formalism was utilized to effectively model scattering problems [11] and to
accurately determine transmission line parameters, also in the presence of semiconductors [12]. As relatively
high numbers of Dirichlet eigenfunctions in the conductor’s cross-section are required to construct the DSA
operator, a restriction to canonical shapes was preferred. However, this limitation was circumvented in [13],
presenting an alternative route that allowed to incorporate triangular structures. The technique was later
extended to three-dimensional electromagnetic scattering and interconnect modeling, including cylindrical
and cuboid structures [14, 15, 16]. Although the aforementioned incarnations of the DSA technique are
able to accurately and efficiently model a wide variety of homogeneous materials, they are all limited to
nonmagnetic media only.

Several formalisms invoking an equivalent surface current density for 2-D structures with, in principle,
arbitrary material properties have been proposed by Patel et al. The initial focus of their work was directed
toward the calculation of the series impedance of power cables with a circular cross-section embedded in
a homogeneous medium [17]. Subsequently, this method was extended to support tubular conductors [18],
multi-cable configurations in circular cavities [19] and layered background media [20]. A generalization to
conductors with arbitrary cross-section was presented in [21]. This later culminated in a method applicable
to 3-D scattering from dielectric objects [22]. However, in all of these formulations, numerical issues may
arise. It is well-known that modeling of penetrable objects with high magnetic or dielectric contrast is very
challenging [23]. Additionally, as stated before, dealing with the Green’s functions inside a conductive medium
is complicated, in particular in the case of a strongly developed skin effect [10]. Techniques to alleviate these
limitations, which are also present in traditional, well-established BIE methods, will inevitably lead to an
increased computational cost [24].

Here, we propose a novel, modified DSA approach that is able to tackle broadband 2-D scattering problems
involving dielectric, magnetic and highly conductive materials alike, without relying on Green’s functions
inside the considered objects. Moreover, this formulation does not break down for high magnetic contrasts,
since only the background medium is involved in the solution of the outside problem, while preconditioning
of the system matrix would otherwise be required [25].

The remainder of this paper is structured as follows. In Section 2, the DSA operator for circular and
rectangular cylinders is constructed using a Fourier series approach. The discretization scheme is conceived
such that the convergence of the solution is guaranteed and that the employed basis functions allow for a
convenient integration in the BIE formalism detailed in Section 3. In particular, it is shown that the choice
of piecewise linear basis functions for the tangential electric field is indispensable, while simple pulse-shaped
basis functions for the equivalent differential surface current density ensure a straightforward formulation
and solution of the BIE. Once the theoretical aspects of the proposed technique are fully developed, we
turn our attention to numerical results in Section 4. First, the numerical implementation is validated for
circular cylinders by comparison with the analytical solution. Next, we illustrate the proper convergence
of the technique for rectangular cylinders. To conclude the results section, the correctness, efficiency and
versatility of our method are further explored by comparing the results for scattering problems with the
solutions obtained by means of the PMCHWT method and a VIE approach, alongside the outcome of a
commercial solver.
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2. Construction of the Differential Surface Admittance Operator

Assume an ejωt dependence for time-harmonic transverse magnetic1 (TM) polarized electromagnetic
fields (einc,hinc) incident on a cylinder with cross section S, boundary C and outward pointing normal vec-
tor n̂, as shown in Fig. 1a. The longitudinal dimension of the cylinder is aligned along the z-direction.
Hence, in this TM context, the electric fields are z-oriented. The scatterer consists of an isotropic and homo-
geneous material characterized by its permittivity ϵi, permeability µi and conductivity σi, with corresponding
wavenumber ki. It is surrounded by a background medium with wavenumber ke and constitutive parameters
ϵe, µe and σe. A scattered electromagnetic field (esc,hsc) and fields (ei,hi) inside S ensue, satisfying the
boundary conditions imposed by Maxwell’s equations. Efficient numerical modeling of the scattered fields
originating from S is possible by first applying the single source equivalence theorem, i.e., we apply Love’s
theorem [26], where we choose the equivalent magnetic current density to vanish and allow arbitrary (nonzero)
fields (e′i,h

′
i) within the cylinder. This creates the situation depicted in Fig. 1b, where the inner medium of

S is replaced by the outside medium, provided an as yet unknown current density js is introduced on the
boundary C.

(einc,hinc)

(esc,hsc)

n̂

S

C
ϵi, µi, σi

ϵe, µe, σe

(ei,hi)z

y

x

(a) Original problem

(einc,hinc)

(esc,hsc)

n̂

S

C
ϵe, µe, σe

ϵe, µe, σe

js

(e′i,h
′
i)

(b) Equivalent problem

Figure 1: Illustration of the single source equivalence theorem.

At the boundary C, we can now state that:

js = n̂× (hi − h′
i), (1)

n̂× ei = n̂× e′i. (2)

It should be noted that the quantities (e′i,h
′
i) do not represent real physical fields inside S. Nonetheless, on

the boundary C, and only there, we have in our TM case that ei = e′i ≜ e = ezẑ, where, again, it should be
noted that ei and e′i are z-oriented.

To determine the unknown current density js we invoke the Poincaré-Steklov operator P, which expresses
the rotated tangential magnetic field n̂× h in any point on the circumference C in terms of the tangential
electric field e everywhere on C. For Fig. 1a, this yields

n̂× hi = Pe, (3)

while for the situation shown in Fig. 1b, we can write

n̂× h′
i = P ′e. (4)

By subtracting (4) from (3) and utilizing (1), we finally obtain the following result for js:

js = n̂× (hi − h′
i) = (P − P ′)e ≜ Ye, (5)

where Y is the sought-after DSA operator.

1We first consider the TM case as this proves to be the most problematic in terms of convergence when magnetic contrast
is present. Moreover, the transverse electric (TE) case can be solved by simply performing the appropriate substitutions and
considering it as the dual case, given the fact that dielectric and magnetic contrast are taken into account simultaneously by
our method.
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2.1. Circular Region

The DSA formalism is now applied to a circular cylinder of radius a aligned along the z-axis. For this
cylinder, the 2-D TM scattering of a plane wave can of course be solved entirely analytically. Hence, this
example is ideally suited not only to prove that the novel, modified DSA technique proposed in this paper
is correct, but also to demonstrate why a modification is needed in the presence of magnetic contrast. More
specifically, we will show that, when magnetic materials are present, a well-chosen set of basis functions for the
tangential electric field and the equivalent differential surface current density is critical for the convergence of
the discretized DSA operator. Although this transition to local basis functions is clearly not strictly necessary
for the case of the circular cylinder, we choose to adopt this approach to thoroughly validate the proposed
formalism and to provide insight into its properties.

The usual cylindrical coordinates (r, ϕ, z) are introduced. The tangential electric field ez is expanded into
piecewise linear (rooftop) basis functions, with center angles ϕp and opening angle δ:

ez ≈
P∑

p=1

vptp(ϕ), (6)

with

tp(ϕ) =



2

δ

[
ϕ−

(
ϕp −

δ

2

)]
, ϕp −

δ

2
⩽ ϕ ⩽ ϕp

2

δ

[(
ϕp +

δ

2

)
− ϕ

]
, ϕp ⩽ ϕ ⩽ ϕp +

δ

2

0, otherwise.

(7)

Note that this differs from the expansion into pulse basis functions as, e.g., used in [9]. For the surface current
density js = js,zẑ, on the other hand, we still resort to constant (pulse) basis functions of opening angle ∆,
centered around ϕm:

js,z ≈
M∑

m=1

imbm(ϕ), (8)

with

bm(ϕ) =

1, ϕm − ∆

2
⩽ ϕ ⩽ ϕm +

∆

2
0, otherwise.

(9)

Now, we substitute (6) and (8) into (5) and test (5) with the constant basis functions bm′ as defined in (9),
yielding

M∑
m=1

im

∫
C

bm′(ϕ)bm(ϕ)a dϕ =

P∑
p=1

vp

∫
C

bm′(ϕ)Ytp(ϕ
′)adϕ , (10)

or, in matrix form:
G(2)i = Y v. (11)

The expansion coefficients vp are collected in the P × 1 column vector v, while the M × 1 column vector i
contains the expansion coefficients im. The elements of the M × M Gram matrix G(2) and the M × P
admittance matrix Y are given by

G
(2)
ij =

∫
C

bi(ϕ)bj(ϕ)adϕ , (12)

Yij =

∫
C

bi(ϕ)Ytj(ϕ
′)a dϕ . (13)

The circumference of the circle is subdivided into M equal intervals subtending an angle ∆ = 2π/M , such
that the constant basis functions have midpoints ϕm = ∆/2 + (m− 1)∆, with m ∈ {1, 2, . . . ,M}. Next, we
construct an equal number (i.e., P = M) of piecewise linear basis functions with span δ = 2∆ and midpoints

4



ϕp = p∆, where p ∈ {1, 2, . . . , P}. Remark that basis function tP wraps around to the first interval. The
elements of the Gram matrix in (12) are then evaluated as

G
(2)
ij =

{
a∆, i = j

0, i ̸= j.
(14)

To determine the elements of Y , an analytical Fourier series approach is utilized. Consequently, exact
results are obtained, apart from the discretization errors and the approximation introduced by truncation of
the Fourier series in the numerical implementation. First, the Fourier series expansions of the basis functions
bm and tp are required:

bm =
∑
n

βmne
jnϕ with βmn =

e−jnϕm
sin(n∆/2)

nπ
, n ̸= 0

∆

2π
, n = 0,

(15)

tp =
∑
n

τpne
jnϕ with τpn =

e−jnϕp
4 sin2(nδ/4)

n2πδ
, n ̸= 0

δ

4π
, n = 0.

(16)

Likewise, we introduce the Fourier series expansions of the tangential electric field ez and the differential
surface current density js,z:

ez =
∑
n

αne
jnϕ, (17)

js,z =
∑
n

ιne
jnϕ. (18)

In Appendix A.1, it is proven that a Fourier component αn of ez results in a corresponding differential surface
current density coefficient given by

ιn = Υnαn =

[
ki

jωµi

J ′
n(kia)

Jn(kia)
− ke

jωµe

J ′
n(kea)

Jn(kea)

]
αn, (19)

with Jn the n-th order Bessel function. To introduce the Fourier domain DSA operator Υn into (11), we
determine expressions relating the coefficients αn and vp, on the one hand, and ιn and im, on the other hand.
Starting from (6), we first determine the Fourier coefficients αn of ez:

1

2π

P∑
p=1

vp

2π∫
0

tp(ϕ)e
−jnϕ dϕ =

P∑
p=1

τpnvp = αn. (20)

Next, we test both expansions (8) and (18) with a constant basis function bm′ , to find

M∑
m=1

im

∫
C

bm′(ϕ)bm(ϕ)adϕ =
∑
n

ιn

∫
C

bm′(ϕ)ejnϕadϕ (21)

⇐⇒
M∑

m=1

G
(2)
m′mim = 2πa

∑
n

β∗
m′nιn. (22)

Subsequently, (19), (20) and (22) are combined, yielding

M∑
m=1

G
(2)
m′mim = 2πa

P∑
p=1

∑
n

β∗
m′nΥnτpnvp. (23)

Identifying with (11), we finally obtain a closed-form expression of the DSA matrix elements:

Yij = 2πa
∑
n

β∗
inΥnτjn. (24)
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We now investigate the convergence of the series (24) for magnetic media. In Appendix A.2, it is demon-
strated that the asymptotic behavior of the ratio between the Bessel function and its derivative for large
order n is given by

lim
n→∞

J ′
n(z)

Jn(z)
=

n

z
+O

(
1

n

)
. (25)

Employing (15), (16) and (19), we observe that the terms of (24) exhibit the following proportionality for
large values of |n|:

Yijn ∝ ejn(ϕj−ϕi)
1

|n|
1

n2
|n|

[(
1

µi
− 1

µe

)
+O

(
1

n2

)]
. (26)

Consequently, the absolute values of these terms decrease as 1/n2, and the sum in (24) converges. Note that
this behavior is a result of the presence of the Fourier coefficients of the piecewise linear basis function tp (7),
which decrease as 1/n2 (see (7)). If, instead, we had expanded the tangential electric field into constant basis
functions as well, as in the original approach in [9], then the factor 1/n2 in (26) would be replaced by 1/|n|.
In that case, the series would become divergent. It is important to note that in [9] no magnetic contrast
was included, and it can be seen from (26) that the convergence problem always disappears when µi = µe,
in which case employing constant pulse basis functions poses no issue. However, in the case with magnetic
contrast, the proposed modification with linear basis functions is essential.

2.2. Rectangular Region

The technique to construct the 2-D TM DSA operator for magnetic materials is now adopted for a
rectangular cylinder with its longitudinal dimension extending in the z-direction and its sides with lengths
lx and ly parallel to the other two coordinate axes, as illustrated in Fig. 2. The sides are numbered 1
through 4, counterclockwise, starting with the bottom one. Once more, the tangential electric field ez is
represented by piecewise linear basis functions and an equal number of constant basis functions models the
equivalent differential surface current density js,z. We again resort to a Fourier series approach and apply the
superposition principle, i.e., we set ez equal to zero on all but one of the sides of the rectangle and determine
the corresponding tangential magnetic field. By reiterating this approach for each of the four sides and
summing the resulting contributions, we obtain the complete picture. This way, a Poincaré-Steklov operator
is determined for both situations in Fig. 1, and their difference eventually constitutes the DSA operator for
rectangular cylinders.

x

y

z

A B

CD

lx

ly

1O

2O

3O

4O

C

Figure 2: Rectangular cylinder extending along the z-axis with transversal dimensions lx × ly .

Let e
(2)
z = e

(3)
z = e

(4)
z = 0, while e

(1)
z ̸= 0, with the superindex referring to the sides. We expand the

z-oriented electric field on side 1 (or, more specifically, its odd periodic extension) in a Fourier series, taking

the boundary conditions imposed by e
(2)
z = e

(4)
z = 0 into account:

e(1)z =
∑
n

αn(y) sinλxx, with λx =
nπ

lx
. (27)

6



For the original problem of Fig. 1a, this electric field inside the medium satisfies the Helmholtz equation:

∇2e(1)z + k2i e
(1)
z = 0, (28)

which evaluates to ∑
n

[
d2αn

dy2
+

(
k2i − λ2

x

)
αn

]
sinλxx = 0. (29)

To obtain (29), we interchanged the summation over n and the differentiation with respect to x and y, which

is allowed, as shown in Appendix C. Taking into account that e
(3)
z = 0 on side 3 (y = ly), we then find

αn = pn sinκx,i(y − ly) with κ2
x,i = k2i − λ2

x. (30)

Now, we derive the corresponding tangential magnetic fields through

jωµiht = ẑ ×∇ez, (31)

or

jωµihx = −∂e
(1)
z

∂y
on sides 1 and 3, (32)

jωµihy =
∂e

(1)
z

∂x
on sides 2 and 4. (33)

We substitute (30) into (27) and, using the above expressions (32) and (33) for hx and hy, we find

hx = − 1

jωµi

∑
n

pnκx,i cosκx,i(y − ly) sinλxx on sides 1 and 3, (34)

hy =
1

jωµi

∑
n

pnλx sinκx,i(y − ly) cosλxx on sides 2 and 4. (35)

On side 1 (y = 0), we have that e
(1)
z = −

∑
n pn sinκx,ily sinλxx. We choose pn such that −pn sinκx,ily = 1

and, elaborating (34) and (35), we determine the contribution of each individual Fourier basis function

e
(1)
zn = sinλxx on side 1 to the tangential magnetic field on each of the four sides, leading to

h(1)
xn =

κx,i

jωµi
cotκx,ily sinλxx, for side 1 (y = 0), (36)

h(3)
xn =

κx,i

jωµi
cscκx,ily sinλxx, for side 3 (y = ly), (37)

h(2)
yn = − 1

jωµi
(−1)nλx

sinκx,i(y − ly)

sinκx,ily
, for side 2 (x = lx), (38)

h(4)
yn = − 1

jωµi
λx

sinκx,i(y − ly)

sinκx,ily
, for side 4 (x = 0). (39)

Repeating the above calculations for the equivalent problem of Fig. 1b and using (5), the final contributions
of a unit Fourier component of the tangential electric field on side 1 to the equivalent differential surface
current density on all four sides can now be summarized as

j(1)s,z =
1

jω

(
κx,i

µi
cotκx,ily −

κx,e

µe
cotκx,ely

)
sinλxx = Υ11 sinλxx, (40)

j(3)s,z = − 1

jω

(
κx,i

µi
cscκx,ily −

κx,e

µe
cscκx,ely

)
sinλxx = Υ31 sinλxx, (41)

j(2)s,z = − 1

jω
(−1)nλx

(
sinκx,i(y − ly)

µi sinκx,ily
− sinκx,e(y − ly)

µe sinκx,ely

)
= Υi

21 sinκx,i(y − ly)−Υe
21 sinκx,e(y − ly), (42)

j(4)s,z =
1

jω
λx

(
sinκx,i(y − ly)

µi sinκx,ily
− sinκx,e(y − ly)

µe sinκx,ely

)
= Υi

41 sinκx,i(y − ly)−Υe
41 sinκx,e(y − ly). (43)
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Above, we expanded e
(1)
z into the Fourier functions sinλxx. We repeat this for e

(3)
z , while for e

(2)
z and e

(4)
z

we use the corresponding Fourier functions sinλyy (with λy = nπ/ly). This procedure can be summarized
symbolically as

ez =
∑
ν

ανfν(c), (44)

where ν represents the Fourier index on either of the four sides and fν(c) is one of the Fourier basis func-
tions, corresponding to the considered side. For each Fourier function, a differential surface current density
contribution similar to (40)–(43) arises. We represent all of these contributions symbolically as

js,z =
∑
ν

ινgν(c). (45)

For e
(1)
z , the gν(c) functions are sinλxx on sides 1 and 3 (see (40) and (41)). For sides 2 and 4 we need

two functions, viz., sinκx,i(y − ly) and sinκx,e(y − ly) (see (42) and (43)). Of course, similar contributions

arise for e
(2)
z , e

(3)
z and e

(4)
z . By collecting the expansion coefficients αν and ιν in vectors α and ι, and the

admittances Υa
ij (with i, j ∈ {1, 2, 3, 4} and a ∈ {i, e,∅}) in matrix Υ, we can write

ι = Υα. (46)

As for the circular cylinder, we represent ez and js,z as

ez ≈
P∑

p=1

vptp(c), (47)

js,z ≈
M∑

m=1

imbm(c), (48)

where tp(c) and bm(c) are again linear rooftop and constant pulse basis functions, resp. For the rectangular
cylinder, the former are defined as

tp(c) =



2

δ

[
c−

(
cp −

δ

2

)]
, cp −

δ

2
⩽ c ⩽ cp

2

δ

[(
cp +

δ

2

)
− c

]
, cp ⩽ c ⩽ cp +

δ

2

0, otherwise,

(49)

while the latter are now given by

bm(c) =

1, cm − ∆

2
⩽ c ⩽ cm +

∆

2
0, otherwise.

(50)

The width and midpoints of the pulse basis functions (50) become ∆ = lc/Mc and cm = ∆/2 + (m − 1)∆,
with m ∈ {1, 2, . . . ,Mc}. In these expressions c represents x on the horizontal sides and y on the vertical
ones, supporting Mx and My pulse basis functions, resp. For the definition (49) of the piecewise linear basis
functions, we obtain δ = 2lc/(Mc + 1) and cp = pδ/2, with p ∈ {1, 2, . . . , Pc}. We choose Mc = Pc, with
c ∈ {x, y}, such that M = 2(Mx +My) = 2(Px + Py) = P .

To retrieve the relations between the tangential electric field expressed in piecewise linear basis functions
and the equivalent differential surface current density expanded into constant basis functions, we proceed in
a similar manner as for the circular cylinder. First, we equate both expansions of ez, i.e., (44) and (47), and
test both sides with the Fourier basis functions fν′(c):

N∑
ν=1

αν

∫
C

fν′(c)fν(c) dc =

P∑
p=1

vp

∫
C

fν′(c)tp(c) dc , (51)
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or, in matrix form:
Dα = M (1)v, (52)

where D is a diagonal scaling matrix and M (1) is a transformation matrix linking the two types of expansions
for ez. For the equivalent differential surface current density, we equate (45) and (48), and test both sides of
the equation with a constant pulse basis function:

N∑
ν=1

ιν

∫
C

bm′(c)gν(c) dc =

M∑
p=1

im

∫
C

bm′(c)bm(c) dc , (53)

yielding the following matrix equation:
M (2)ι = G(2)i, (54)

where M (2) is similar to M (1), but now for js,z, and G(2) is a Gram matrix. Collecting the results of (46),
(52) and (54), we finally obtain

G(2)i = M (2)ΥD−1M (1)v = Y v. (55)

Comparing this result to (11) and (24) for a circular cylinder, we observe a very similar structure, where
the transformation matrices M (1) and M (2) assume the role of the basis function Fourier coefficients τ and
β, resp., while the scaling matrix D−1 corresponds to the factor 2πa.

For the cylinder, the behavior of Yijn for large n (26) clearly shows why rooftop expansion functions for
the tangential electric field are required to ensure convergence in the case of magnetic contrast. Let us now,
e.g., take a look at Υ11 in (40) for n → +∞. It is easily shown that

lim
n→+∞

Υ11 =
1

jω

[(
1

µi
− 1

µe

)
+O

(
1

n2

)]
nπ

lx
. (56)

This is precisely the same behavior as Υn in (19), with a replaced by lx/π. Consequently, the factors 1/|n|
and 1/n2 appearing in (26), stemming from the Fourier transforms of bm and tp, resp., are needed again to
make the series convergent. These factors are incorporated in M (2) and M (1).

3. Boundary Integral Equation Formulation

Equipped with expressions for the DSA operator, we are now ready to tackle the outside problem. In
a 2-D TM plane wave scattering context, the longitudinal electric field induced by a longitudinal current
density (here, the equivalent differential surface current density) in a homogeneous medium, as depicted in
Fig. 1b, can be expressed as

ez,sc(r) = jωµe

∫
C

G(ke|r − r′|)js,z(r′) dc(r′) , (57)

where the 2-D Green’s function is given by

G(ke|r − r′|) = j

4
H

(2)
0 (ke|r − r′|) (58)

and H
(2)
0 is the zeroth-order Hankel function of the second kind. The total electric field is found by summing

the incident and scattered electric fields:

ez = ez,inc + ez,sc, (59)

which, on the boundary of the cylinder, can be linked to the equivalent differential surface current density
by invoking the DSA operator.
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3.1. Circular Region

Keeping in mind the discretization we introduced for circular cylinders, in (6) and (8), we test (59) with
the piecewise constant basis functions bm′ to obtain

P∑
p=1

vp

∫
C

bm′(ϕ)tp(ϕ)adϕ =

∫
C

bm′(ϕ)ez,inc(r)a dϕ+ jωµe

M∑
m=1

im

∫
C

∫
C′

G(ke|r − r′|)bm′(ϕ)bm(ϕ′)a2 dϕ′ dϕ ,

(60)
yielding the following matrix equation:

G(1)v = p+ jωµeAi. (61)

Substituting (11) into (61) gives
G(1)Y −1G(2)i = p+ jωµeAi, (62)

which we solve for the unknown expansion coefficients i. Given the particular basis function configuration
we introduced earlier, the elements of the M × P Gram matrix G(1) are

G
(1)
ij =

∫
C

bi(ϕ)tj(ϕ)adϕ =


a∆

2
, j = i− 1 or j = i

0, otherwise.
(63)

For the elements of A, the double integral is transformed by expanding the Green’s function along the
circumference r = a as follows:

j

4
H

(2)
0 (ke|r − r′|) = j

4

∑
n

Jn(kea)H
(2)
n (kea)e

jn(ϕ−ϕ′). (64)

Since the Hankel function is piecewise smooth, it is allowed to perform term-by-term integration, such that

Aij =
ja2

4

∑
n

Jn(kea)H
(2)
n (kea)

∫
C

bi(ϕ)e
jnϕ dϕ

∫
C′

bj(ϕ
′)e−jnϕ′

dϕ′ = jπ2a2
∑
n

Jn(kea)H
(2)
n (kea)β

∗
inβjn.

(65)
Finally, for an excitation by a unit TM polarized plane wave incident along ûi = x̂, using Bessel’s integral,
we find the following Fourier expansion:

ez,inc = e−jkeûi·r = e−jkex = e−jker cosϕ =
∑
n

j−nJn(ker)e
jnϕ, (66)

such that, along the circumference (for r = a), the elements of the excitation vector p read

pi = a
∑
n

j−nJn(kea)

∫
C

bi(ϕ)e
jnϕ dϕ = 2πa

∑
n

j−nJn(kea)β
∗
in. (67)

3.2. Rectangular Region

For a rectangular cylinder, we proceed in a very similar fashion, yet the elements ofA and p are determined
by numerical integration, rather than via a Fourier series expansion. In our numerical implementation, special
care has been taken to properly evaluate the (nearly-singular) integrals corresponding to the self- and neighbor
patch cases [27]. We find

Aij =

∫
C

∫
C′

G(ke|r − r′|)bi(c)bj(c′) dc′ dc ≈
K∑

k=1

L∑
l=1

wkw
′
lG (ke|rk − r′l|) , (68)

pi =

∫
C

bi(c)ez,inc(r) dc ≈
K∑

k=1

wkez,inc(rk), (69)
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where (rk, wk) and (r′l, w
′
l) are the nodes and weights of two K- and L-point Gauss-Legendre quadrature

rules, resp.
Similarly to (63) and (12), the elements of the Gram matrices G(1) and G(2) for the rectangular cylinder

are given by

G
(1)
ij =

∫
C

bi(c)tj(c) dc and G
(2)
ij =

∫
C

bi(c)bj(c) dc . (70)

4. Numerical Results

4.1. Circular Region

From (6), (8), (15)–(18) we easily derive the following numerical approximations for the Fourier coefficients
of the tangential electric field and the equivalent differential surface current density:

αn ≈
P∑

p=1

τpnvp and ιn ≈
M∑

m=1

βmnim, (71)

while their analytical counterparts α̃n and ι̃n are derived in Appendix B. A comparison between both sets
for an example configuration is provided in Fig. 3, where a circular cylinder with radius a = 3 cm, exhibiting
material properties ϵr = 5, µr = 10 and σ = 0 at a frequency of 10GHz is considered. The cylinder is
illuminated by a plane wave of the form (66). The number of basis functions was set to M = P = 201 and
only the Fourier coefficients with positive indices are shown because of symmetry. It can be observed that
the numerical results match the analytical prediction very well up to Fourier index n = 27, beyond which the
magnitude of the analytically determined coefficients continues to decrease, while their numerically calculated
counterparts reach a plateau, owing to the limited machine precision and rounding errors. Nonetheless, given
the very low magnitude of these Fourier coefficients with n > 27, the overall accuracy of the method is not
adversely affected, as can be observed from the corresponding plots of the tangential electric field ez (at
r = a) and equivalent differential surface current density js,z in Fig. 4. As a final validation, we change the
material properties of the cylinder to those of a carbon steel with ϵr = 1, µr = 1000 and σ = 5.8× 106 S/m.
In this case with a highly conductive medium and elevated magnetic contrast, the numerically calculated and
analytically determined results for ez and js,z agree very well once more, as demonstrated in Fig. 5.
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(a) Tangential electric field Fourier coefficients
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Figure 3: Numerically calculated and analytically determined magnitude of the Fourier coefficients of the tangential electric
field and the equivalent differential surface current density for a circular cylinder with radius a = 3 cm and material properties
ϵr = 5, µr = 10 and σ = 0, at a frequency of 10GHz.
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Figure 4: Numerically calculated and analytically determined magnitudes of the tangential electric field and the equivalent
differential surface current density at the boundary of a circular cylinder with radius a = 3 cm and material properties ϵr = 5,
µr = 10 and σ = 0, at a frequency of 10GHz.
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Figure 5: Numerically calculated and analytically determined magnitudes of the tangential electric field and the equivalent
differential surface current density at the boundary of a circular cylinder with radius a = 3 cm and material properties ϵr = 1,
µr = 1000 and σ = 5.8× 106 S/m, at a frequency of 10GHz.

4.2. Rectangular Region

We consider a 3 cm × 2 cm rectangular cylinder at 10GHz, with its horizontal and vertical sides dis-
cretized into 45 and 30 segments, resp., relative permittivity ϵr = 5 and varying relative permeability
µr ∈ {1, 10, 100, 1000}. To support our statements on the criticality of selecting appropriate basis func-
tions, we study two basis function configurations: expanding both the equivalent differential surface current
density js,z and the tangential electric field ez in pulse basis functions, or invoking rooftop basis functions
for ez, as proposed in this paper. The absolute values of three elements of the admittance matrix Y are pre-
sented in Fig. 6, as a function of the number of sine functions in the Fourier series expansion of the tangential
electric field. These three elements Yii are situated on the diagonal of Y and correspond to the bottom left
corner (i = 1), the middle of side 1 (i = 23) and the middle of side 2 (i = 61), resp. In absence of magnetic
contrast (µr = 1), the values of the admittance matrix elements converge for either of the two considered
basis function configurations. One can, however, clearly observe the divergent behavior when magnetic con-
trast is introduced, in case the method employing pulse basis functions for ez is selected (Fig. 6a), while the
formalism presented in this paper still produces correct results (Fig. 6b).

12



101 102 103

0

2

4

·10−5

number of sines

|Y
i
i
|

µr = 1

µr = 10

µr = 100

µr = 1000

(a) Pulse basis functions

101 102 103

0

0.5

1

·10−5

number of sines

|Y
i
i
|

(b) Rooftop basis functions

Figure 6: Convergence of three diagonal admittance matrix elements corresponding to the bottom left corner (solid line), the
middle of side 1 (dashed) and the middle of side 2 (dotted) for a 3 cm × 2 cm rectangular cylinder at 10GHz, with relative
permittivity ϵr = 5, varying relative permeability µr, and two basis function configurations for the tangential electric field.

In Fig. 7, we compare the echo width or backscattering cross-section of two rectangular cylinders under
illumination by a TM polarized plane wave as determined by means of two techniques: the proposed method
and a volume integral equation (VIE) approach [28]. For a unit amplitude incident plane wave propagating
along ûi, the echo width is defined as

σ(−ûi, ûi) = 2π|F (ϕ)|2 (72)

with ϕ the angle between the x-axis and −ûi, and F (ϕ) the far field pattern, given by

F (ϕ) = −ωµe

4

√
2j

πke

∫
c

ejkeûi·r′
js,z(r

′)dc. (73)

The results in Fig. 7 are normalized with respect to the wavelength λ0 in the outside medium and plotted
on a dB scale, i.e., we show the following quantity: 10 log10 [σ(−ûi, ûi)/λ0]. The first rectangular cylinder
measures 1.8λ0×0.7λ0 and has material properties ϵr = 2−j, µr = 3−0.5j. The horizontal and vertical sides
of the rectangle are subdivided in 72 and 28 segments, resp., while 150 Fourier basis functions are considered
in each direction. Its echo width is shown in Fig. 7a. The results in Fig. 7b belong to a 1.3λ0 × 0.03λ0

rectangular cylinder with relative permittivity ϵr = 1.5 − 2j and relative permeability µr = 5 − 3j. The
discretization is now performed using 130 and 3 segments on the horizontal and vertical sides, resp., again
taking 150 Fourier basis functions into account. A very good agreement between the two methods is achieved,
for both cases.

Next, we observe the tangential electric field and the radar cross-section (RCS), defined as σ(û, ûi), where
ϕ in (72) is now the angle between the x-axis and the direction of observation û, for a 1.5m×1m rectangular
cylinder. The object has material properties ϵr = 7, µr = 13 and σ = 0, and is illuminated by a TM polarized

plane wave at a frequency of 100MHz, incident under a fixed angle of 30◦ with the x-axis, i.e., ûi =
√
3
2 x̂+ 1

2 ŷ
in (66). In this case, 200 sine functions are taken into account and the horizontal and vertical sides of the
rectangle are discretized in 75 and 50 segments, resp. The results obtained by means of the proposed method
are compared to a reference technique that employs a PMCHWT approach, with the same discretization.
Fig. 8 shows a close agreement between both solutions. The position along the circumference of the rectangle
is measured counterclockwise, starting from the bottom left corner.

In the above sections, we derived a DSA operator and BIE formalism for 2-D TM problems. Nonetheless,
it should be remarked that we are also able to solve 2-D transverse electric (TE) problems, as the dielectric
and magnetic contrast are both taken into account. It suffices to perform the appropriate substitutions:

ez → hz ht → −et ϵr → µr µr → ϵr. (74)
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Figure 7: Echo width of a rectangular cylinder illuminated by a TM polarized plane wave. The reference solution is found by
means of a VIE method [28].
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Figure 8: Magnitude of the tangential electric field at the boundary and radar cross-section of a 1.5m×1m rectangular cylinder
with material properties ϵr = 7, µr = 13 and σ = 0, illuminated by a TM polarized plane wave at a frequency of 100MHz,
incident under an angle of 30◦ with the x-axis. The reference solution is found by means of a PMCHWT method.

Subsequently, we apply this strategy to study the echo width of the structure shown in Fig. 9: a thin
perfectly electrically conducting (PEC) strip, covered by a layer of a lossless material exhibiting both dielectric
(ϵr = 2) and magnetic (µr = 2) contrast, illuminated by a TE polarized plane wave. The results from our
method are compared to those obtained via the coupled integral equations formulation in [29] and CST
Studio Suite [30], again validating our advocated technique. When configuring CST’s 3-D integral equations
solver, the considered structure was modeled as a cuboid with an identical cross-section and a length ℓ = 2λ0.
Thus, due care was taken to make the longitudinal dimension sufficiently long, limiting the effects of the end
caps in the 3-D scenario. The results are therefore applicable to this 2-D example, provided an appropriate
scaling factor is taken into account: σ3-D ≈ σ2-D · 2ℓ2/λ0 [31].

Finally, we introduce the structure in Fig. 10a, which consists of a 0.75λ0 × 0.02λ0 PEC strip loaded
by a 0.15λ0 × 0.15λ0 square with relative permittivity ϵr = 4 − 4j and various relative permeabilities
µr ∈ {1, 2, 5, 10}. The echo widths of this object under illumination by a TM polarized plane wave are
shown in Fig. 10b. For the nonmagnetic case, the result is compared to the curve reported in [29].

To conclude this section, the required CPU time and memory usage of the Python implementation to
determine the admittance matrix are reported in Table 1 for the example structures studied in this section,
including the total number of edges involved in the discretization and the number of Fourier basis functions
taken into account. Clearly, the computational requirements are very low and thus, the overall CPU time
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Figure 9: Echo width of a perfectly electrically conducting strip with dimensions 2.2λ0 × 0.04λ0 covered by a lossless medium
with properties ϵr = 2 and µr = 2, resulting in total dimensions 2.3λ0 × 0.08λ0, under illumination by a TE polarized plane
wave.
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Figure 10: Echo width of a perfectly electrically conducting strip with dimensions 0.75λ0 × 0.02λ0 loaded by a square with side
0.15λ0 and material properties ϵr = 4 − 4j and µr ∈ {1, 2, 5, 10} (represented by solid, dashed, dash-dotted and dotted lines,
resp.), under illumination by a TM polarized plane wave.

and memory usage are dominated by the implementation scheme of the BIE, which is a topic that has been
abundantly treated in literature, e.g., [32].

5. Conclusion

In this paper, we presented a 2-D differential surface admittance technique to model electromagnetic
scattering at circular and (combinations of) rectangular cylinders. In both cases, a Fourier series approach
was used to construct the pertinent operator. The formulation in the Fourier domain was recast in a more
appropriate form using constant and piecewise linear basis functions, allowing convenient combination with a
boundary integral equations formalism. It was shown that special care needs to be taken to select this appro-
priate set of basis functions for the equivalent differential surface current density and tangential electric field,
to obtain a fully convergent result for situations involving magnetic contrast. An analytical validation was
performed for the case of circular cylinders and various numerical results further corroborated the precision
and applicability of our method, both for circular and rectangular cylinders.
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Example # edges # Fourier basis functions CPU time [s] Memory usage [MiB]

Fig. 7a 200 150 0.2 5.5
Fig. 7b 266 150 0.2 7.8
Fig. 8 250 200 0.3 7.7
Fig. 9 952 250 4.1 43.1
Fig. 10 484 250 2.6 12.2

Table 1: CPU timings and memory usage for the determination of the admittance matrix for the example structures studied in
this section.

Appendix A. The Differential Surface Admittance Operator in the Fourier Domain

Appendix A.1. General Expression

We start from the general expression (B.1) and (B.2) for the longitudinal electric and azimuthal magnetic
fields inside a circular cylinder. When we replace the material of the cylinder by the outside medium, i.e.,
we recreate the equivalent situation of Fig. 1b, these fields are given by

ez0 =
∑
n

CnJn(ker)e
jnϕ, (A.1)

hϕ0 =
1

jωµe

d

dr
ez0 =

ke
jωµe

∑
n

CnJ
′
n(ker)e

jnϕ. (A.2)

For the tangential electric field and the differential surface current density, we introduced Fourier series
expansions (17) and (18), which we repeat here for convenience:

ez =
∑
n

αne
jnϕ and js,z =

∑
n

ιne
jnϕ. (A.3)

Now, we invoke the relations (1) and (2). In other words, we require that the electric field is identical at
r = a in both the original and equivalent situation and the surface current density is chosen such that the
tangential magnetic field outside the cylinder remains unchanged. Imposing these conditions for each Fourier
mode separately, leads to

αn = AnJn(kia) = CnJn(kea), (A.4)

ιn =
ki

jωµi
AnJ

′
n(kia)−

ke
jωµe

CnJ
′
n(kea). (A.5)

This finally results in an expression for the differential surface admittance operator Υ in the Fourier domain:

ιn =

(
ki

jωµi

J ′
n(kia)

Jn(kia)
− ke

jωµe

J ′
n(kea)

Jn(kea)

)
αn ≜ Υnαn. (A.6)

Appendix A.2. Limit for Large Values of n

The ratio between the Bessel function of order n and its derivative can be expressed as

J ′
n(z)

Jn(z)
=

nJn(z)/z − Jn+1(z)

Jn(z)
=

n

z
− Jn+1(z)

Jn(z)
. (A.7)

Assuming Jn(z) ̸= 0, we write the second term in (A.7) as a continued fraction [33]:

Jn+1(z)

Jn(z)
=

1

2(n+ 1)z−1 − 1

2(n+ 2)z−1 − 1

2(n+ 3)z−1 − . . .

for z ̸= 0, (A.8)
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such that

lim
n→∞

Jn+1(z)

Jn(z)
≈ z

2(n+ 1)
(A.9)

and therefore

lim
n→∞

J ′
n(z)

Jn(z)
=

n

z
+O

(
1

n

)
. (A.10)

Appendix B. Analytical Solution of the 2-D TM Plane Wave Scattering Problem for Circular
Cylinders

In a 2-D TM context, the longitudinal electric field and the azimuthal magnetic field inside a cylinder can
be represented in their most general form as

ez =
∑
n

AnJn(kir)e
jnϕ, (B.1)

hϕ =
1

jωµi

d

dr
ez =

ki
jωµi

∑
n

AnJ
′
n(kir)e

jnϕ. (B.2)

Outside the cylinder, on the other hand, we find the following expressions for the scattered fields:

ez,sc =
∑
n

BnH
(2)
n (ker)e

jnϕ, (B.3)

hϕ,sc =
1

jωµe

d

dr
ez,sc =

ke
jωµe

∑
n

BnH
′(2)
n (ker)e

jnϕ, (B.4)

where H
(2)
n is the n-th order Hankel function of the second kind. As stated before, in (66), the incident fields

are given by

ez,inc =
∑
n

j−nJn(ker)e
jnϕ, (B.5)

hϕ,inc =
1

jωµe

d

dr
ez,inc =

ke
jωµe

∑
n

j−nJ ′
n(ker)e

jnϕ. (B.6)

Imposing the continuity of the total tangential electric and magnetic fields for every mode at the boundary C
of the cylinder, i.e., ez = ez,inc + ez,sc and hϕ = hϕ,inc + hϕ,sc for r = a, finally leads to

An =
1

ξ

(
j−n ke

jωµe

2j

πkea

)
, (B.7)

Bn =
j−n

ξ

(
ke

jωµe
J ′
n(kea)Jn(kia)−

ki
jωµi

Jn(kea)J
′
n(kia)

)
, (B.8)

with

ξ = − ke
jωµe

Jn(kia)H
′(2)
n (kea) +

ki
jωµi

J ′
n(kia)H

(2)
n (kea). (B.9)

By means of these results, we can directly compare the numerically calculated Fourier coefficients to their
analytical counterparts, which we will denote with a tilde (̃·): α̃n = AnJn(kia) and ι̃n = Υnα̃n (A.6).

Appendix C. Term-by-Term Differentiation

We assume that the total tangential electric field ez(x, y) is at least twice continuously differentiable with
respect to y for all y ∈ [0, ly], with x fixed to 0 or lx, and expand its odd periodic extension in a Fourier sine
series:

ez(x, y) =
∑
n

αn(y) sin
nπx

lx
with αn(y) =

1

lx

lx∫
−lx

ez(x, y) sin
nπx

lx
dx . (C.1)
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Now, we calculate the second-order derivative of the Fourier coefficients with respect to y. Given the afore-
mentioned differentiability properties of ez, we can invoke Leibniz’ integral rule and find

d2αn

dy2
=

d2

dy2

 1

lx

lx∫
−lx

ez(x, y) sin
nπx

lx
dx

 =
1

lx

lx∫
−lx

∂2ez
∂y2

sin
nπx

lx
dx , (C.2)

which is the expression for the Fourier sine coefficients of ∂2ez
∂y2 . Imposing ∂2ez

∂y2

∣∣∣
x=0

= ∂2ez
∂y2

∣∣∣
x=lx

= 0, we can

state that
∂2ez
∂y2

=
∑
n

d2αn

dy2
sin

nπx

lx
, (C.3)

or, the second order partial derivative of the total tangential electric field Fourier series with respect to y can
be evaluated term by term.

Now, we assume that the total tangential electric field ez(x, y) is at least twice continuously differentiable
with respect to x as well, for all x ∈ [0, lx], with y fixed to 0 or ly, and invoke a combination of the following
theorems [34]:

Theorem 1. Suppose f(x) is a continuous function, its derivative f ′(x) is piecewise smooth and f(0) = f(L) = 0,
then the Fourier sine series can be differentiated term by term and the result is the Fourier cosine series of
the derivative.

Theorem 2. Suppose f(x) is a continuous function and its derivative f ′(x) is piecewise smooth, then the
Fourier cosine series can be differentiated term by term and the result is the Fourier sine series of the
derivative.

We then find that the second order partial derivative of the total tangential electric field Fourier series with
respect to x can also be evaluated term by term.
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