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Abstract— Charge trapping is arguably the most
important detrimental mechanism distorting the ideal
characteristics of MOS transistors, and nonradiative
multiphonon (NMP) models have been demonstrated to
provide a very accurate description. For the calculation
of the NMP rates at room temperature or above, simple
semiclassical approximations have been successfully
used to describe this intricate mechanism. However, for
the computation of charge transition rates at cryogenic
temperatures, it is necessary to use the full quantum
mechanical description based on Fermi’s golden rule.
Since this is computationally expensive and often not
feasible, we discuss an efficient method based on
the Wentzel–Kramers–Brillouin (WKB) approximation in
combination with the saddle point method and benchmark
this approximation against the full model. We show that the
approximation delivers excellent results and can, hence,
be used to model charge trapping behavior at cryogenic
temperatures.

Index Terms— Advanced CMOS, bias temperature insta-
bility (BTI), cryo-CMOS, cryogenic, physical modeling.

I. INTRODUCTION

ADVANCED CMOS technologies operated at cryogenic
temperatures provide the backbone of the space industry,
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Fig. 1. For the computation of the transition rates for SEPC between
two states represented by two PECs Vi and Vj, it is necessary to
find the vibrational wave functions occurring in Fermi’s golden rule
(dashed red/gray lines). These can be approximated using the WKB
approximation (solid red/gray lines) developed at the classical turning
points Qi and Qj.

astronomy, and high-precision metrology [1]. They are also
required to enable large-scale quantum computing, which has
to date an operation range of 4 K down to a few mK [2]–[4].
Currently, the scalability of the quantum-classical interface and
the corresponding readout and control units are the biggest
barrier to build quantum computers with a large number of
qubits, and it is likely that this challenge remains even when
it is possible to process physical qubits with sufficient fidelity
to construct logical qubits with low error rates [5].

Recent publications on cryo-CMOS technologies mainly
focus on the behavior of important time-zero device char-
acteristics, such as subthreshold swing, ON-state current,
and threshold voltage [6]–[8]. These time-zero characteristics
show that, at cryogenic temperatures, the electrical perfor-
mance of MOSFETs typically improves (higher ON-current
and transconductance, steeper subthreshold slope, lower leak
current, and so on). Consequently, MOSFETs can be oper-
ated using lower voltages compared to room temperature
applications, which partially mitigates the risk of reliability
issues. However, recent measurements show that, still, even at
cryogenic temperatures, reliability issues, such as hot carrier
degradation (HCD) [9], bias temperature instability (BTI) [10],
and random telegraph noise (RTN) [11], [12], play a role and
have to be carefully addressed for cryo-CMOS circuits.

The nonradiative multiphonon (NMP) theory has been used
successfully to explain charge trapping phenomena for a wide
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range of technologies and temperatures [13]. Hereby, charge
trapping occurs either in intrinsic defects, e.g., strained bonds
and oxygen vacancies in SiO2 [14] and HfO2 [15], or extrinsic
defects, e.g., hydrogen-related defects [16], [17]. For the
computation of the charge transition rates, approximations
are made, which typically hold true in the limit of high
temperatures, but are not valid at cryogenic temperatures
anymore. In a quantum mechanical picture, the nuclei wave
functions of the initial and final states overlap, which is
interpreted as nuclear tunneling process from one atomistic
configuration to another [18]. Thus, oxide defects can still be
active in a low-temperature regime, and the explicit calculation
of vibrational wave function overlaps becomes necessary [19].
Since this is computationally expensive, it is necessary to find
an approximation feasible for efficient TCAD modeling. In this
work, we present a computationally efficient model based on
the Wentzel–Kramers–Brillouin (WKB) approximation com-
bined with the saddle point method (SPM), which can be
used for the simulation of charge trapping down to cryogenic
temperatures.

II. NONRADIATIVE MULTIPHONON MODEL

Simple and efficient two-state NMP models have been
regularly used to describe the dynamics of charging and
discharging of oxide defects at room temperature and
above [13], [20]. Within the Born–Oppenheimer approxi-
mation, both the neutral and charged defect states can be
described by separate potential energy curves (PECs), which
are typically approximated as harmonic oscillators. Fig. 1
shows the charge state i described by the potential energy
Vi and the neutral state j described by the potential energy
Vj . In the limit of high temperatures, a transition between the
charge states is possible by overcoming the classical barrier,
which is determined by the intersection point (IP) of the PECs.
Within this approximation, the transition rates take the simple
analytical form [13]

ki j = nvthϑWKBσ exp

(
− �i j

kBT

)
(1)

with the channel carrier concentration n, the thermal velocity
vth, the tunneling factor ϑWKB, which can be computed using
WKB approximation [21], the capture cross section σ [22],
and the barrier �i j . The latter can be computed using the
Huang–Rhys parameters [23]: relaxation energy ER, trap level
ET, and the ratio R of the curvatures of the two PECs. The
trap level ET is used to compute the energetic offset �E to
the band edges at a given gate bias VG.

In the quantum mechanical picture, the transition rate from
charge state i to state j has to be computed using Fermi’s
golden rule

ki j(T ) = 2π

h̄

|θi j |2
Z

∑
αβ

|Iiα, jβ |2δ(Eiα − E jβ)e−Eiα/kB T (2)

where θi j is the electronic matrix element, and Eiα and E jβ

are the vibrational eigenenergies of charge state i and j , while
α and β are the indices of the eigenenergies. ηiα and η jβ are
the corresponding vibrational wave functions, and Iiα, jβ is the

overlap integral of these vibrational wave functions [19]. Z is
the canonical partition function defined by

Z =
∑

γ

e−Eiγ /kB T (3)

where γ runs over all accessible states.
The idea of (2) is to sum over all combinations of eigen-

states α and β and compute the overlap of the wave functions
in Iiα, jβ . These overlaps are then multiplied by the probability
e−Eiα /Z of the initial state being occupied. For this, it is
assumed that the defect can exchange energy with the channel,
and they are in thermal equilibrium.

Compared to the simple semiclassical expression (1),
the full quantum mechanical summation (2) is computationally
expensive because, first, it is necessary to compute the overlap
integrals with the given eigenfunctions and eigenenergies, and
afterward, the summation over all α and β needs to be per-
formed. Even if optimized schemes for the computation of the
overlap integrals are used, as, e.g., proposed by Schmidt [24],
the full quantum mechanical summation is still computation-
ally expensive compared to the WKB approximation.

A. Derivation of the WKB Approximation

An approximation for the quantum mechanical rate
equation (2) was proposed by Holstein [25] and further dis-
cussed by Markvart [26]. Since these papers were restricted to
weak-electron–phonon coupling, while a lot of experimental
data require strong-electron–phonon coupling, a more general
formulation is developed in the following. For that, we look
at a single transition α −→ β from Fermi’s golden rule (2) and
introduce the line shape function

ξiα, jβ = e−β�iα |Iiα, jβ |2δ(Eiα − E jβ) (4)

where the vibrational overlap integral Iiα, jβ is given by

Iiα, jβ =
∣∣∣∣
∫ ∞

−∞
ηiα(Q)η jβ(Q)dQ

∣∣∣∣
2

. (5)

In order to solve (5), the wave function ηiα(Q) will be
approximated using the WKB approximation [21]. The WKB
approximation is a semiclassical series expansion of a corre-
sponding action with respect to h̄ and, thus, needs to be carried
out at a certain point, typically done at the classical turning
point Qi , as compared in Fig. 1. The expansion inside the
classically allowed regions gives an oscillating function, which
cancels when integrated and, thus, can be neglected [27].
Therefore, the WKB wave function reduces to an exponentially
decaying function in the classically prohibited region

ηiα(Q) = (−1)αCi√|kiα(Q, Eiα)|e
1
h̄

∫ Q
Qi

kiα (Q�,Eiα )dQ�
(6)

with kiα(Q, Eiα) = (2m(Ui (Q) − Eiα))
1/2 being the classical

momentum of the particle. The constant Ci can be computed
by normalizing ηiα(Q) giving Ci = (miωi/8π2)(1/4), with ωi

being the oscillator frequency [27].
Fig. 1 shows that, in the case of strong-electron–phonon

coupling, the classically prohibited parts of the wave functions
between Qi and Q j dominate. An overview of all occurring
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Fig. 2. There are eight different relative positions of the PECs that need to be examined separately. (a)–(d) Defining the minimum of PEC i (red) to
be at Q = 0

√
uÅ, there are four cases with ΔE < 0 eV. (a) and (b) Weak electron–phonon coupling (WEPC), with the difference that, in (a), the IP

is above the ground state Ei 0 and, in (b) it is below. (c) and (d) SEPC, with IP (c) below and (d) above ground state of Vi. The lower row describes
the relative positions with ΔE > 0 eV. (e) and (f) SEPC with IP above and below the ground state of Vj, respectively. (g) and (h) WEPC case.

relative positions of the parabolas, where an IP occurs, can be
seen in Fig. 2.

The evaluation of the overlap integrals (5) is performed
using the SPM [28]. For that, we express the overlap integral
using the WKB functions

Iiα, jβ =
∣∣∣∣∣ Ci C j√|kiα(Q, Eiα)|√|k jβ(Q, E jβ)|e

ϕiα jβ(Q,Eiα ,E jβ)

2

∣∣∣∣∣
2

(7)

with the phase ϕiα jβ(Q, Eiα, E jβ) given by

ϕiα jβ(Q, Eiα, E jβ) = 2

h̄

∫ Q

Qi

kiα(Q�, Eiα)dQ�

− 2

h̄

∫ Q

Q j

k jβ(Q�, E jβ)dQ�. (8)

The SPM exploits the fact that the main contribution to the
integral stems from the region near the point of stationary
phase, which is given by Qc, as can be easily verified by
solving for dϕiα jβ(Q)/dQ = 0. Neglecting the Q dependence
of the nonexponential prefactor, this results in

Iiα, jβ(Eiα, E jβ) =
∣∣∣∣∣ Ci C j√|kiα(Qc, Eiα)|√|k jβ(Qc, E jβ)|

× e
ϕiα jβ (Qc ,Eiα ,E jβ)

2

√
π

ϕ ��
iα jβ(Qc, Eiα, E jβ)

∣∣∣∣∣
2

.

(9)

After the simplification of the overlap matrix via (9),
the quantized line shape function (4) can be converted to

ξi, j (E, E �) = e−βEi |Ii, j (E, E �)|2δ(E − E �) (10)

using Eiα −→ E and E jβ −→ E �. Next the summation over the
eigenenergies in (2) is converted to a continuous form using

∞∑
α=0

f (Eα) −→
∫ ∞

E0

f (E)
dnα

dE
dE (11)

where dα/dE is the density of states of the quantum mechan-
ical harmonic oscillator

dα

dE
= d

dE

(
E

h̄ω
− 1

2

)
= 1

h̄ω
. (12)

With the approximated line shape function (10), the rate
equation (2) can be expressed as

ki j(T ) = 2π

h̄

|θi j |2
Z

∫∫
e−E/kB T |Ii, j (E, E �)|2

δ(E − E �)
1

h̄ωi

1

h̄ω j
dEdE �. (13)

Here, Z now denotes the partition function of the quantum
harmonic oscillator Z = exp(h̄ωi/2kBT )/(1−exp(h̄ωi/kBT )).
Evaluating the Dirac delta distribution and using (9), (13)
simplifies to

ki j(T ) =
∫

C2(E)e−E/kB T +ϕ(E,Qc)dE (14)

with ϕ(E, Qc) being the continuous form of ϕαβ(Qc). C2(E)
contains all nonexponential terms depending on E

C2(E) = 2π

h̄

|θi j |2
Z

1

h̄ωi

1

h̄ω j

∣∣∣∣ Ci C j√
2m(Ec − E)

∣∣∣∣
2 2π

ϕ ��(Qc)
. (15)

The integral (14) can be evaluated using the SPM after
finding the extremum E∗

dϕ(E)

dE

∣∣∣∣
E=E∗

= 1

kBT
(16)

leading to the result

ki j(T ) = C2(E∗)e−E∗/kB T +ϕ(E∗)

√
2π

ϕ ��(E∗)
(17)

which, after insertion of all terms, yields the final result

ki j(T ) = 2π

h̄

|θi j |2
Z

1

h̄ωi

1

h̄ω j

∣∣∣∣ Ci C j√
2m(Ec − E∗)

∣∣∣∣
2

×e−E∗/kB T +ϕ(E∗,Qc)

√
2π

ϕ ��(E∗)
2π

d2ϕ/dQ2(Qc)
. (18)

Authorized licensed use limited to: IMEC. Downloaded on May 30,2022 at 09:16:46 UTC from IEEE Xplore.  Restrictions apply. 



6368 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 68, NO. 12, DECEMBER 2021

TABLE I
SIGNS IN ANALYTIC EXPRESSION OF THE OVERLAP INTEGRAL

For the calculation of the dynamic response of MOSFETs
to changing bias conditions, (18) will have to be repeatedly
evaluated for every single defect at every single time step. It is
possible to find analytic expressions for the integrals occurring
in (8)

ϕiα jβ(Qc, Eα, Eβ)

= −√
2

h̄

(
r1

(√
Ec

√
Ec − Eα√
ci

− Eα√
ci

ln

√
Ec − Eα + r2

√
Ec

r2
√

Eα

)

+s1

(√
Ec − �E

√
Ec − Eβ√

c j

− Eβ − �E√
c j

ln

√
Ec − Eβ + s2

√
Ec − �E

s2
√

Eβ − �E

))

(19)

which then allows to find analytic expressions for the first
and second derivatives in direction Q. Here, the signs r1, r2,
s1, and s2 differ depending on weak or strong electron–phonon
coupling (SEPC) and are listed in Table I. Furthermore,
the second derivative in direction of E can be found, which is
needed in (16). Thus, the computational bottleneck is finding
the minimum of (16), which needs to be done numerically, for
example, by applying Newton’s method.

B. Defining the Minimal Barrier

At cryogenic temperatures, the transition rate is dominated
by the ground state wave function ηi/j0 and becomes tem-
perature independent. For the simulation of this effect using
the WKB approximation, it is necessary to define a minimal
barrier. This can be seen by taking the limit T −→ 0 K of
the partition function Z . At this limit, the only occupied
state is the ground state, and thus, the sum in Z reduces
to exp(−Ei0/kBT ). In order for the transition rate to stay
nonzero, the partition function needs to cancel out with the
term exp(−E∗/kBT ) of the WKB approximation. To guaran-
tee this, E∗ must lie above the higher of the two ground states;
otherwise, Z would diverge in the limit. For Ec > Ei/j0,
as shown in Fig. 2(a), (d), (e), and (h), E∗ can be directly
computed using (16). For the case Ec < Ei/j0, E∗ is fixed to
the ground state with the higher energy. For the applied SPM
for the integration over dQ, we still use the extremum Qc.
Only for the second use of the SPM, Ei/j0 is used instead of
E�, as shown in (18).

C. Discontinuity at the Turning Point
To guarantee a broad region in which the WKB approxima-

tion is valid, it is necessary to consider another special case.
The WKB approximation is developed at the turning points

Qi and Q j in Fig. 1, but, at these turning points, the wave
functions diverge. In most cases, the IP Ec is far away from
the turning point; however, in the special case E∗ = Ec, this
would lead to infinite transition rates, as can be seen in (18).
This occurs when Ec = Ei0: in this case, E∗ < Ei0 would
hold, and due to section II-B, E∗ = Ei0 is fixed, which would
lead to the divergence.

To avoid this, the diverging terms of the form
1/(Ec − E∗)1/2, where Ec −→ Ei0 and E∗ = Ei0, can
be substituted by

1√|Ec − E∗| = 1√|Ec − Ei0|
≈ 1

4
√|Ec − Ei0 + �| 4

√|Ec − Ei0 − �| . (20)

The value of � should be chosen in a way that Ei0+� < Ei1.
In this work, we chose � = h̄ωi/2.

III. COMPARISON FULL QM MODEL

VERSUS WKB/SPM MODEL

In the following, we compare our WKB approximation
derived above to the full quantum mechanical model presented
in [19]. The sensitivity to the NMP parameters is investigated
by spanning a grid of ER, R, �E , and �Q values and
observing the resulting error distributions. We show that the
approximation error is negligible throughout the entire relevant
parameter space.

A. Lifetime Broadening
Within the full QM model, it is necessary to intro-

duce a lifetime broadening of the Dirac delta distribution
δ(Eiα − E jβ) in (2) [29]. Without this broadening, there would
be only a nonzero result for a perfect energetic alignment
Eiα = E jβ , which, in general, is not the case. Therefore,
the delta distribution is replaced by a Gaussian distribution

δ(Eiα − E jβ) ≈ 1√
2πσ

e
−(Eiα −E jβ)2

2σ2 . (21)

It is obvious that the choice of the width σ of the dis-
tribution is crucial. Since the broadening is a thermal effect,
a temperature-dependent σ of the form σ = kBT would appear
reasonable. However, even at low temperatures, the excited
states show a finite lifetime due to phonon emission and are,
thus, affected by lifetime broadening at cryogenic tempera-
tures. We, therefore, introduce a sigma in the form of

σ = max(σch̄ωi , kBT ) (22)

where σc is a constant.
Fig. 3 shows the variation of σc between 1/5 and 3. For this

work, σc = 1/3 was chosen because, then, in a range of 3σ
at low temperature, each vibrational function ηiα can interact
with at least one η jβ .

B. Temperature Dependence
One main feature of the full quantum mechanical model

compared to the classical model is its validity at low
temperatures [10], [19].
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Fig. 3. For comparing the full QM model and the WKB/SPM approxima-
tion, it is necessary to expand the Dirac delta distribution δ(Eiα − Ejβ)
in (2) to a Gaussian function. The choice of the width of the function is
crucial. The impact of the minimal width σ = σc(Ei 1 − Ei 0) is shown in
the figure for different constants σc.

Fig. 4. Line shape function ξij in the classical approximation (dotted
black) is independent of the configurational coordinate ΔQ, while there
is a strong ΔQ dependence in the full QM model and the WKB approx-
imation using ER = 2.5 eV, Rij = 1, and ΔE = 0 eV. Due to nuclear
tunneling, for small ΔQ values, the line shape function does not freeze
out toward low temperatures as the classical approximation does but
stays constant instead.

This can be seen in Fig. 4, where the line shape function,
which is proportional to the classical transition rate (dashed
black line), freezes out for T −→ 0 K, whereas the transition
rates correctly remain constant below a certain temperature
due to nuclear tunneling when using the full QM model.
The transition rate within the QM model depends on the
configurational coordinate, which was varied between 2 and
8

√
uÅ, a typical range for oxide defects obtained in density

functional theory (DFT) calculations [19]. The WKB model
can reproduce the convergence of the full QM model very
precisely, as can be seen in the dashed lines in the plot.

The convergence to a constant line shape function at cryo-
genic temperatures can be expressed as an effective barrier
lowering. This can be done by using the relation

Eeff = −kB
∂ ln(ξ(T ))

∂(1/T )
(23)

to compute effective barriers from the corresponding line
shape functions shown in Fig. 4. Note that, with this definition,
the barrier of the classical model becomes slightly temperature

Fig. 5. Using the computed line shape functions in Fig. 4 an effective
barrier for ΔQ = 2

√
uÅ to 8

√
uÅ can be calculated using (23).

The classical approximation strongly overestimates the effective energy
barrier for low temperatures.

Fig. 6. Behavior of the line shape function ξij (left) and ξji (right) at T =
4 K (blue), T = 100 K (violet), T = 200 K (magenta), and T = 400 K (red)
is shown for different energetic displacements ΔE. While the classical
line shape function freezes out except in a very small region with a barrier
close to �ij = 0 eV, the WKB line shape function and the full quantum
mechanical line shape function deliver large values even at T = 4 K.

dependent and deviates from �i j due to the temperature depen-
dence of the carrier concentration and thermal velocity in (1).

As can be seen in Fig. 5, at low temperatures,
the effective barrier approaches 0 eV, which implies a
temperature-independent rate according to the Arrhenius law.
Toward high temperatures, the quantum mechanical transi-
tion rates approach the classical barrier. However, at 300 K,
the effective barrier is essentially lower for small �Q, which
implies an underestimation of the line shape function for
certain defect configurations.

The behavior of the line shape function for different energy
offsets is shown in Fig. 6 for the temperatures 400 K, 200 K,
100 K, and 4 K (red to blue). Even in the worst case, in the
tail of the line shape function, the difference between the
full QM model and the WKB approximation remains within
one order of magnitude, which we consider reasonable for
a quantity extending over 30 orders of magnitude, as can
be seen in Fig. 6. At low temperatures, the classical barrier
freezes out except for very small barriers on the order of kBT ,
which corresponds to the maxima of the line shape functions
in Fig. 6. The rates at 100 K and 4 K lie on top of each other
for the displacement �Q = 2

√
uÅ, as can be expected from

Fig. 4, where, for an energetic displacement �E = 0 eV,
the transition rates at both temperatures are identical.
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TABLE II
SAMPLING PARAMETER SPACE

Fig. 7. Huang–Rhys parameters ER, ΔE, Rij, and ΔQ and the temper-
ature are varied, as shown in Table II. For each variation, the relative
error (24) is computed and plotted against the permutation number.
The relative error of more than 97� of the permutations is in the gray
interval [−1,1].

C. Relative Error of the WKB Approximation

For a comparison of the full quantum mechanical model and
the WKB approximation, the parameters ER, Ri j ,�Q,�E ,
and T , are varied, as shown in Table II. For comparing the
WKB approximation and the full QM model, the relative error
of the logarithmic line shape functions is computed because
the rates vary over at least 30 orders of magnitude

δrel = ln(ξWKB) − ln(ξFQM)

ln(ξFQM)
. (24)

For more than 97% of the parameter variations within the
defined parameter space, the relative errors lie in the interval
[−1, 1]. This can be seen in Fig. 7 for different temperatures.
The largest relative errors arise from large positive �E . In this
parameter range, both the classical barrier and the quantum
mechanical barriers are very high, which leads to very low
transition rates. Thus, we consider an error of one to two
orders of magnitude in this range as acceptable. Furthermore,
at cryogenic temperatures, transition rates with a positive �E
do not contribute because only the ground state is occupied,
as can be seen in Fig. 2.

IV. BENCHMARK

In device simulations, typically thousands of defects have to
be considered, and the transition rate of each defect needs to
be computed for every timestep; therefore, a computationally
efficient charge transition model is necessary. For a given
bias condition, the time to compute the transition rates in the
classical model is independent of the relative position of the
two potential energy surfaces (PECs).

The full quantum mechanical summation (2) on the other
hand depends on the relative position of the PECs in several

Fig. 8. Computation time using the full quantum mechanical transition
rate scales quadratically with the number of overlapping eigenstates
(and, therefore, with the elements in the overlapmatrix shown in black)
and, hence, with energetic distance ΔE. Using the WKB approximation,
the time limiting step is finding the extremum E�, which is independent
of the number of eigenstates.

ways. First, it is necessary to compute all occurring overlap
terms (5); this can be done efficiently with the recurrence
relations derived by Schmidt [24]. However, computing the
overlap matrix still scales with O(n2), where n is the index of
the highest occurring vibrational wave function. The summa-
tion of the overlaps multiplied with the occupancy also scales
with n though the scaling of the full quantum mechanical
transition rate is dominated by the scaling of the overlap
matrix. This can be seen in Fig. 8, where the size of the
overlap matrix scales in the same way as the computation
time of the full quantum mechanical model (blue).

The computation of the transition rate using the WKB
approximation (see Fig. 8, in red), on the other hand, is inde-
pendent of the relative position of the PECs because it is
only necessary to compute the extrema E∗ and Qc and
perform some algebraic operations with them. Thus, the cal-
culation time of the transition rate is constant, and for
�E = 0 eV, the computation is approximately faster by a
factor of 100 using the parameters given in the figure caption.

V. CONCLUSION

For the computation of NMP charge transition rates at
cryogenic temperatures, it is necessary to use a full quantum
mechanical description based on Fermi’s golden rule. Since
such calculations are computationally expensive and, thus,
not feasible for efficient TCAD modeling, we propose a
computationally efficient WKB approximation. We benchmark
the approximation with the full quantum mechanical model
and show that the approximation delivers excellent results for
a wide range of input parameters.
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