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Abstract— Radar processing via spiking neural networks
(SNNs) has recently emerged as a solution in the field of
ultralow-power wireless human–computer interaction. Compared
to traditional energy- and area-hungry deep learning methods,
SNNs are significantly more energy-efficient and can be deployed
in the growing number of compact SNN accelerator chips,
making them a better solution for ubiquitous IoT applications.
We propose a novel SNN strategy for radar gesture recognition,
achieving more than 91% of accuracy on two different radar
datasets. Our work significantly differs from previous approaches
as: 1) we use a novel radar-SNN training strategy; 2) we use
quantized weights, enabling power-efficient implementation in
real-world SNN hardware; and 3) we report the SNN energy
consumption per classification, clearly demonstrating the real-
world feasibility and power savings induced by SNN-based radar
processing. We release an evaluation code to help future research.

Index Terms— Radar gesture recognition, spiking networks.

I. INTRODUCTION

W IRELESS human–computer interaction using radar-
based gesture recognition systems has attracted large

interest during the past decade, enabling applications such as
smart domotics, AR/VR headsets, and many other touchless
interfacing solutions that are key for a more hygienic, post-
COVID-19 world [1]. In order to embed radar sensing into
ubiquitous, ultralow-power IoT devices, research at the hard-
ware side has mainly been devoted to high-level integration
of radar transceivers [2] with a focus on energy and area
efficiency [3]. In contrast, research at the signal processing
side has mainly been devoted to the use of high-accuracy deep
neural networks (DNNs) known to be rather energy- and area-
hungry [4], [6]. State-of-the-art DNN-based techniques that
achieve high-class (>10), high-performance (>90%) gesture
recognition either rely on the use of an expensive desktop-
grade GPU [4] or either on the use of a lower power embedded
GPU [6]. A novel DNN targeting mobile phones has been
proposed in [5], trading a lower number of classes for lower
memory consumption, still unsuited for ultralow-power IoT.
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Fig. 1. µDoppler-based radar-SNN architecture proposed to solve the five-
class 8-GHz dataset of [7] with 93% of accuracy.

Very recently, the use of energy-efficient spiking neural
networks (SNNs) for radar processing has grown to become
an emerging topic in radar sensing and is currently being
investigated by many teams [7]–[10]. Algorithm-wise, SNNs
differ from DNNs as they communicate interneural informa-
tion asynchronously using binary spikes that are only emit-
ted when the neuron membrane potential reaches a specific
threshold. In contrast to DNNs, SNNs do not require expensive
multiply–accumulate operations at the input of each neuron but
make use of inexpensive add operations only. Hardware-wise,
SNNs can be integrated near the radar sensor (see Fig. 1) as
subthreshold analog circuits, reaching more than five orders of
magnitude lower power consumption compared to embedded
GPUs [6], [12], [13].

Still, the development of SNN-based radar processing is
at an early stage. In this letter, our aim is to propose a
novel SNN architecture for radar gesture recognition using a
different, surrogate gradient-based approach than the ones used
in previously presented radar-SNN systems [20]. Compared to
previous works [7], [9], [10], which either use the μDoppler
preprocessing [14] or the range-Doppler preprocessing [4],
we demonstrate that our novel radar-SNN approach is compati-
ble with both preprocessing techniques. In contrast to the work
in [8], our approach is purely SNN-based, while the system
of [8] uses an SNN followed by classical machine learning
techniques such as random forest, which cannot be deployed in
subthreshold analog SNN circuits. Compared to [8]–[10], our
system uses implementation-ready, quantized weights (typical
bit width in SNN hardware is < 8 bits [7], [11]), while
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none of the aforementioned works quantize their weights,
making their reported performances (85%–98%) unclear when
deployed in real-world hardware (12-class 91% with 6-bit
weights and 5-class 93% with 4-bit weights in our work).
Finally, in contrast to most previous works [8]–[10], we report
an estimate of our SNN energy consumption when deployed
in SNN hardware [7]. We assess our system on two radar
datasets: the 12-class Google Soli dataset of [4] and the 5-class
8-GHz dataset of [7] to enable comparison with the radar-SNN
system in [7].

II. RADAR-SNN PROCESSING PIPELINE

A. 5-Class 8-GHz Dataset and Preprocessing

The dataset of [7] contains radar ADC data with Nchirps =
192 chirps per frame and with a variable number of frames
per gesture acquisition Nframes (step 1 in Fig. 1). μDoppler
signatures [14] are acquired for each gesture acquisition in
the dataset by first computing the range profiles Rn[k] for
each chirp n = 1, . . . , Ntot (where Ntot is the total number
of chirps). Rn[k] is acquired by DFT using a Blackman
window [15] (step 2 in Fig. 1). Then, we apply the short-
time Fourier transform (STFT) to the sequence R̃n[k∗] =
Rn[k∗]− Rn−1[k∗] (step 3 in Fig. 1), which removes the strong
dc component during each analysis window [16] as follows:

�[m, f ] =
∞∑

n=−∞
R̃n[k∗]gs[n − m R]e− j2π f n (1)

where k∗ denotes the range bin where the gestures are exe-
cuted, gs denotes a Hanning window of length s, and R is the
hop size (s = 192 and R = 8 throughout this letter). k∗ is
known a priori as the gestures are executed at 2 m from the
radar. We define the μDoppler signature as |�[m, f ]|, which
is a matrix of size (NT × s) with NT given by [10]

NT =
⌊

Nframes Nchirps − Noverlap

R

⌋
(2)

where Noverlap = s − R is the number of overlapping bins
between successive windows. Radar maps to be fed to the
SNN are obtained by cutting |�[m, f ]| along dimension m
into images of 48 time samples. �(NT /48)� examples are thus
obtained for each acquisition. By balancing the dataset and by
removing the first and the last six example maps to remove
startup (when the human simply sits in front of the radar before
performing gestures) and ending artifacts (when the human
reaches out to the radar to stop it), we obtain a balanced dataset
with a total of 1695 μDoppler examples.

Each example map is then normalized between [0, 1].
Out-of-band noise is removed through the band-limiting of the
Doppler frequency axis by keeping the normalized frequency
range between [−0.26, 0.26] only. This frequency band was
identified visually by evaluating the maximal significant extent
of the Doppler spectra in the dataset, in order to reject
out-of-band noise. Then, we use soft thresholding [17] to
remove in-band noise in each Doppler spectrum (step 4 in
Fig. 1). The soft thresholding is performed by keeping the k
largest values and pad the remaining ones to 0. We choose k
heuristically by considering that more than half of the Doppler

Fig. 2. Range-Doppler radar-SNN architecture proposed to solve the 12-class
dataset of [4] with 91% of accuracy.

samples within the normalized frequencies [−0.26, 0.26] are
significant (i.e., not noise), which leads to the choice of
k = �((192 × (0.26 − (−0.26)))/2)�− 1 = 48 (we tried other
k values around 48, but did not observe any significant boost
in SNN accuracy). After step 4, Fig. 1 shows an example radar
map, resulting from the μDoppler preprocessing described
above.

The preprocessed radar μDoppler maps must then be con-
verted into event streams to be compatible with the spiking
nature of our SNN. Each pixel of the map is coded as a
spike train of length Tinf (number of time steps per inference).
We encode each pixel using time-to-first-spike (TTFS) encod-
ing [18] (step 5 in Fig. 1), where a normalized pixel of value
v ∈ [0, 1] is quantized into an event train containing only
one spike located at index Tinf − �vTinf�. Thus, the higher the
normalized pixel value, the smaller the time to first spike. If the
pixel is equal to 0, then no spikes are emitted. As we aim at
low-latency inference, we choose Tinf = 4 time steps.

B. 12-Class Soli Dataset and Preprocessing

The soli dataset [4] has been acquired using a 60-GHz
FMCW radar and is composed of 12 classes with a total
of 5500 CFAR-processed range-Doppler magnitude acqui-
sitions. Each gesture acquisition is a collection of maps
RD[t, l, m], where t is the frame index, l is the range index,
and m is the Doppler index (see step 1 in Fig. 2), with a
varying number of time steps t ∈ [1, Tfr] per acquisition. First,
we average and subsample each gesture acquisition RD[t, l, m]
(with varying Tfr) along t (step 2 in Fig. 2) to a fixed number
Tinf < Tfr ∀Tfr of frames per acquisition as follows:

RD[n, l, m] = Tinf

Tfr

n+ Tfr
Tinf∑

t=n

RD[t, l, m] (3)

where n is the subsampled time index. Then, the resulting
frames are converted to binary images RDb[n, l, m] by thresh-
olding against 0 (step 3 in Fig. 2). Therefore, for any pixel
coordinate (l∗, m∗), RDb[n, l∗, m∗] represents a spike train of
length Tinf, set to 28 (minimum Tfr in the dataset). It must
be noted that the use of each preprocessing methods is highly
dependent on the radar used. In the 8-GHz case, the range
resolution is low and the gestures remain in the same range bin.
In this case, we experimentally observed that μDoppler pre-
processing was systematically outperforming range-Doppler.
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Fig. 3. SNN architecture used for radar processing. Each spiking map slice corresponding to each time step is fed one by one to the network and the IF
neurons change state according to their self-recurrence (as denoted by the recurrence arrows).

C. Spiking Neural Network for Classification

To classify the spiking radar tensors, we use the architecture
shown in Fig. 3 with integrate and fire (IF) neurons{

V k+1 = V k + Jin and S = 0, if V k < 1

V k+1 = 0 and S = 1, if V k ≥ 1
(4)

where V k ≥ 0 is the neural membrane potential at time
step k, Jin is the neuron input, and S is the spiking output.
As the derivative of spikes as a function of the membrane
potential is ill-defined, we create a custom neuron model
using the pyTorch framework [19], which behaves as (4) in
forward pass. For the backward pass, we approximate the
derivative using a Gaussian function (5) as the surrogate
derivative [20]. In contrast to previous works, this enables
the use of quantization-aware backpropagation in the spiking
domain

σ 	(V ) ≈ 1√
2π

e−2V 2
. (5)

The layer-by-layer description of our SNN architecture
(Fig. 3) is the following. After the spike train encoding
of the radar maps, we use a (5, 5, 12) convolutional layer.
At each time step, the convolution result is fed to the IF
neuron layer σ1. Then, the spiking tensor at the output of σ1

is downsampled via MaxPooling and the resulting tensor is
flattened to a 1-D spiking vector. Then, two fully connected
spiking layers are used and the 12-D or 5-D output of σ3

(corresponding to the 12 or 5 gesture classes) is accumulated
over time in a vector A. Finally, A is transformed via SoftMax
into class probabilities. Our network architecture search was
conducted with the objective of achieving a >90% accuracy
with heavily quantized weights (at most 6-bit) and a small
network size. For training, we use the Adam optimizer [21]
with a learning rate of 10−3. The batch size is 128 and the
SNN is first trained for 14 epochs with full-bit weights and
1 epoch with quantized weights in the forward pass and full-
bit weights in the backward pass (found through validation
procedure). The accuracy of our SNN is assessed using the
sixfold cross validation.

III. EXPERIMENTAL RESULTS

Table I reports the performance of our proposed system
(entry 6 for the 8-GHz dataset and entry 7 for the Soli
dataset) against the state of the art. We evaluate the energy
per classification Ec of our SNN using the hardware metrics
of the μBrain SNN chip, as described in [7]

Ec = Nspikes × Edyn + δT × Pstat (6)

TABLE I

OUR PROPOSED SYSTEM COMPARED TO THE STATE OF THE ART. Nc IS

THE NUMBER OF CLASSES, Ec IS THE ENERGY CONSUMPTION PER

CLASSIFICATION (NOT REPORTED FOR ENTRIES 2–4) AND NBITS

IS THE NUMBER OF BITS FOR THE NETWORK WEIGHTS

(F: FLOAT AND I: INTEGER)

where Nspikes is the maximum number of spikes during classi-
fication, Edyn = 2.1 pJ is the energy per spike, Pstat = 73 μW
is the static leakage power, and δT is the inference time.
Even though a smaller δT can be reached by adjusting the
bias voltages that control the delay cells in [7], we assume
δT = 4 ms for the 8-GHz dataset (Tinf = 4) and δT = 28 ms
for Soli (Tinf = 28) to provide an upper bound on Ec.

Out of the implementation-ready SNNs using quantized
weights only (entries 5–7 in Table I), our work outperforms
entry 5 by +1 Nc versus 6) up to ×3 higher number of
gesture classes while not compromising much on accuracy,
Nbits and Ec. All other entries in Table I either rely on DNNs
(entry 1) and RF (entry 4), being ill-suited for ultralow-power
IoT, or do not quantize their weights (entries 2 and 3, giving
unclear performance in real-world SNN hardware). In addition,
our work achieves a recognition accuracy within 1%–3% of the
DNN in entry 1 [6] while consuming more than two orders of
magnitude less energy per inference. Entries 6 and 7 show how
our system trades off Nc, Ec, and Nbits for a target accuracy of
>90%. Finally, recent work sheds light on the efficacy of low-
power empirical feature-based approaches [22], motivating the
need for comparative investigations in future work.

IV. CONCLUSION

This letter has presented a novel radar-SNN architecture
for ultralow-power radar gesture recognition, outperforming
existing implementation-ready SNNs in terms of classification,
energy, and bit-width tradeoff. The presented approach has
reported several key innovations compared to previous radar-
SNN systems, such as a novel radar-SNN training strategy
and radar to spike encoding approaches. In order to explore
further generalization of our methods, radar-SNN evaluation
code has also been provided, which helps lighting the way for
the emerging area of SNN-based radar processing.

Authorized licensed use limited to: IMEC. Downloaded on January 05,2022 at 11:38:25 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS

REFERENCES

[1] A. Chin et al., “Stability of SARS-CoV-2 in different environmental
conditions,” Lancet Microbe, vol. 1, no. 1, p. e10, 2020, doi: 10.1016/
S2666-5247(20)30003-3.

[2] J. Rimmelspacher, R. Ciocoveanu, G. Steffan, M. Bassi, and V. Issakov,
“Low power low phase noise 60 GHz multichannel transceiver
in 28 nm CMOS for radar applications,” in Proc. IEEE Radio
Freq. Integr. Circuits Symp. (RFIC), Aug. 2020, pp. 19–22, doi:
10.1109/RFIC49505.2020.9218297.

[3] Y.-H. Liu et al., “A 680 μW burst-chirp UWB radar transceiver for
vital signs and occupancy sensing up to 15 m distance,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Fran-
cisco, CA, USA, Feb. 2019, pp. 166–168, doi: 10.1109/ISSCC.2019.
8662536.

[4] S. Wang, J. Song, J. Lien, I. Poupyrev, and O. Hilliges, “Interacting with
soli: Exploring fine-grained dynamic gesture recognition in the radio-
frequency spectrum,” in Proc. 29th Annu. Symp. User Interface Softw.
Technol., 2016, pp. 851–860.

[5] E. Hayashi et al., “RadarNet: Efficient gesture recognition technique
utilizing a miniature radar sensor,” in Proc. CHI Conf. Hum. Factors
Comput. Syst., May 2021, pp. 1–14.

[6] Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz, and N. Pohl,
“Real-time radar-based gesture detection and recognition built
in an edge-computing platform,” IEEE Sensors J., vol. 20,
no. 18, pp. 10706–10716, May 2020, doi: 10.1109/JSEN.2020.
2994292.

[7] J. Stuijt, M. Sifalakis, A. Yousefzadeh, and F. Corradi,
“μBrain: An event-driven and fully synthesizable architecture for
spiking neural networks,” Frontiers Neurosci., vol. 15, p. 538,
May 2021.

[8] I. J. Tsang, F. Corradi, M. Sifalakis, W. Van Leekwijck, and S. Latré,
“Radar-based hand gesture recognition using spiking neural networks,”
Electronics, vol. 10, no. 12, p. 1405, Jun. 2021.

[9] M. Arsalan, M. Chmurski, A. Santra, M. El-Masry, R. Weigel, and
V. Issakov, “Resource efficient gesture sensing based on FMCW radar
using spiking neural networks,” in IEEE MTT-S Int. Microw. Symp. Dig.,
Jun. 2021, pp. 78–81.

[10] D. Banerjee et al., “Application of spiking neural networks for
action recognition from radar data,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Glasgow, U.K., Jul. 2020, pp. 1–10, doi:
10.1109/IJCNN48605.2020.9206853.

[11] C. Frenkel, M. Lefebvre, J. Legat, and D. Bol, “A 0.086-mm2

12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spik-
ing neuromorphic processor in 28-nm CMOS,” IEEE Trans. Bio-
med. Circuits Syst., vol. 13, no. 1, pp. 145–158, Feb. 2019, doi:
10.1109/TBCAS.2018.2880425.

[12] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multi-
core architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (DYNAPs),” IEEE Trans. Bio-
med. Circuits Syst., vol. 12, no. 1, pp. 106–122, Feb. 2018, doi:
10.1109/TBCAS.2017.2759700.

[13] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018, doi:
10.1109/MM.2018.112130359.

[14] C. V. Chen, Radar Micro-Doppler Signatures: Processing and Applica-
tions. Edison, NJ, USA: IET, 2014.

[15] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete Fourier transform,” Proc. IEEE, vol. 66, no. 1, pp. 51–83,
Jan. 1978, doi: 10.1109/PROC.1978.10837.

[16] J. B. Allen, “Short term spectral analysis, synthesis, and modifi-
cation by discrete Fourier transform,” IEEE Trans. Acoust., Speech
Signal Process., vol. ASSP-25, no. 3, pp. 235–238, Jun. 1977, doi:
10.1109/TASSP.1977.1162950.

[17] H. Xu, Z. Wang, H. Yang, D. Liu, and J. Liu, “Learning simple
thresholded features with sparse support recovery,” IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 4, pp. 970–982, Apr. 2020, doi:
10.1109/TCSVT.2019.2901713.

[18] B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural
networks using sparse temporal coding,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Florence, Italy, May 2018, pp. 1–5, doi:
10.1109/ISCAS.2018.8351295.

[19] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. NIPS,
2017, pp. 1–4.

[20] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks,” IEEE Signal Process. Mag.,
vol. 36, no. 6, pp. 51–63, Nov. 2019, doi: 10.1109/MSP.2019.2931595.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2014, pp. 1–15.

[22] A. Ninos, J. Hasch, and T. Zwick, “Real-time macro gesture recognition
using efficient empirical feature extraction with millimeter-wave tech-
nology,” IEEE Sensors J., vol. 21, no. 13, pp. 15161–15170, Jul. 2021,
doi: 10.1109/JSEN.2021.3072680.

Authorized licensed use limited to: IMEC. Downloaded on January 05,2022 at 11:38:25 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/RFIC49505.2020.9218297
http://dx.doi.org/10.1109/IJCNN48605.2020.9206853
http://dx.doi.org/10.1109/TBCAS.2018.2880425
http://dx.doi.org/10.1109/TBCAS.2017.2759700
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/PROC.1978.10837
http://dx.doi.org/10.1109/TASSP.1977.1162950
http://dx.doi.org/10.1109/TCSVT.2019.2901713
http://dx.doi.org/10.1109/ISCAS.2018.8351295
http://dx.doi.org/10.1109/MSP.2019.2931595
http://dx.doi.org/10.1109/JSEN.2021.3072680
http://dx.doi.org/10.1016/S2666-5247(20)30003-3
http://dx.doi.org/10.1016/S2666-5247(20)30003-3
http://dx.doi.org/10.1109/ISSCC.2019.8662536
http://dx.doi.org/10.1109/ISSCC.2019.8662536
http://dx.doi.org/10.1109/JSEN.2020.2994292
http://dx.doi.org/10.1109/JSEN.2020.2994292

