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 Abstract—Trends in the automotive industry confirm that the 
demand for testing of embedded systems, especially advanced 
driver assistance systems (ADAS), will grow dramatically in the 
near future. This paper proposes a new solution that automates 
the detection of software defects in embedded systems. The 
solution consists of a data-driven sampling algorithm to 
intelligently sample the testing space by sequentially generating 
test cases. Moreover, it segregates unique defects from each other 
and identifies the signals that trigger each. The results are 
compared against other automated methods for defect 
identification and analysis, and it is found that this novel solution 
is able to identify defects more rapidly. In addition, it correctly 
separates defects and reliably reproduces each distinct defect. 

Index Terms— Advanced driver assistance systems, automatic 
test pattern generation, automotive electronics, embedded 
software, machine learning, metamodeling, pattern clustering, 
system verification 

I. INTRODUCTION

ECENT studies have shown that prototype advanced driver 
assistance systems (ADAS) are nearing or exceeding 

human level performance [1]–[4]. As these ADAS systems 
enter production vehicles, a great deal of new hardware and 
software components are being introduced into customer hands. 

Due to the safety sensitive nature of these new components, 
test procedures must be developed to guarantee that a system is 
free from defects. Traditional automotive verification ensures 
that all functional requirements are met. However, this testing 
is insufficient to validate the safe operation of embedded 
systems in unforeseen, but possible, real world situations.  

Software and electronic integration defects contribute to 
recalls of millions of vehicles each year [5]. While various laws 
and industry standards mandate testing to verify functionality 
[6], [7], unexpected defects are still triggered when unforeseen 
or untested input signals are received by an Electronic Control 
Module (ECM). A huge time commitment is required in order 
to obtain even minimal coverage of an embedded system’s 
input space. As a result, full factorial testing becomes 
unfeasible, and OEMs are forced to evaluate a subset of 
possible test cases before production. This inevitably requires a 
trade-off between test coverage and testing duration.  

This work has been conducted within the ENABLE-S3 project that has 
received funding from the ECSEL joint undertaking under grant agreement no 
692455. This joint undertaking receives support from the European Union’s 
Horizon 2020 Research and Innovation Program and Austria, Denmark, 
Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, 
Belgium, France, Netherlands, United Kingdom, Slovakia, Norway. 

 This paper introduces a novel data-driven method to 
automate testing and analysis of such systems. This reduces the 
test time and input required from OEM expert engineers. The 
method consists of three phases: (1) defect detection, (2) defect 
segregation, and (3) defect causal analysis. Phase 1 aims to 
detect all distinct software defects within minimal testing time. 
Phase 2 determines how many different defects were detected 
and segregates test cases based on the defects detected in each. 
Phase 3 determines the input signals that trigger each defect and 
provides additional information to enable rapid repair. These 
separate phases combine to form a cohesive path to eliminate 
defects. The overall flow, and output from each phase, is 
summarized in Figure 1. 

Figure 1: Overall Solution Flow 

These methods are validated on an isolated Electronic 
Control Module (ECM) and its embedded software. Testing 
was performed on several representative models at Toyota 
Motor Europe’s Technical Center on a prototype road sign 
recognition ADAS software. The techniques detailed in this 
paper go beyond improving coverage of the input space. They 
intelligently generate test cases based upon the system behavior 
from past tests. These techniques have not been applied in the 
automotive domain before and are shown to significantly 
outperform the benchmark testing practices described later in 
this paper.  

In the forthcoming parts of this paper, the word defect will 
be used to describe an unwanted behavior from the embedded 
system. A correct identification of a vehicle problem which 
triggers a diagnostic entry or Diagnostic Trouble Code (DTC) 
will be referred to as an indicator.  
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II. RELATED WORK

In the past decade, automotive development and testing has 
come to rely heavily on model-based systems engineering and 
model-based verification and validation (V&V) [8]–[11]. A key 
part of V&V is test case generation, a task that is labor intensive 
and prone to human error. A plethora of methods have been 
proposed to automatically generate test cases [12]. Test cases 
can be generated utilizing SysML/UML requirements [13], 
[14]. Similarly, temporal logic [15] can be used to test boundary 
regions based on operational requirements. These methods are 
useful during early stage development, such as model-in-the-
loop (MIL) testing, and are necessary to ensure all requirements 
are fulfilled [16]. These methods are based upon expert 
knowledge of the internal structure of the System Under Test 
(SUT), or are hand designed for requirement verification [17]–
[19]. However, these testing strategies do not specifically 
address the problem of finding unknown defects. 

In [20]–[22], statistics based machine learning techniques are 
used to search for automotive software defects. Specifically, the 
system is modeled as a Markov chain, and test cases are 
generated using either Monte Carlo or Gibbs samplers. These 
methods have been integrated into commercial tools and are 
able to successfully detect defects. The downside to Markov 
chains is that the system states and transitions must be 
predefined by development engineers before any tests can 
begin. These state and transition definitions are created solely 
for testing and add significant work for development engineers. 
Therefore, such a white box approach is not time efficient.  

Mutation-based test case generation is a relatively new 
method for model based testing [23], [24]. This approach 
utilizes a validated system model, mutates it in some way, and 
then generates test cases to exploit this mutation. The method is 
valuable as long as the mutations are representative of real 
system defects, but provides no functionality during hardware-
in-the-loop (HIL) testing. The approach described in this paper 
also utilizes a validated system model, but intelligently 
generates test cases during HIL testing instead of beforehand.  

Other approaches treat the SUT as a black box by only 
evaluating its input and output signals [10], [25]. Black-box 
testing has proven valuable in many fields of software testing, 
and is particularly well suited for an automotive application 
because it requires a minimal amount of input from the test 
practitioner. By reducing the time required to set up test cases, 
a much greater amount of time can be devoted to actual testing. 
Although promising, little has been published in the last decade 
to advance black box testing in the automotive domain. 

The work discussed so far has focused primarily on defect 
detection, under the assumption that engineers can determine 
the root cause given one test case that triggered the defect. 
While this is true in some cases, root cause identification is 
separate from defect detection, and can be a complex and time-
consuming task. Existing works have treated identification and 
causal analysis as separate topics; this paper combines them 
within a streamlined process. 

In [26], [27], genetic algorithms are implemented for root 
cause analysis to determine input signal thresholds at which a 

defect occurs. While useful, this method can only be applied to 
a single defect that depends on a small number of input signals. 
This is due to the slow convergence of genetic algorithms in 
high dimensions. Often, multiple independent defects are 
identified which depend on different input signals. Before using 
a genetic algorithm, manual steps must be taken to separate the 
unique defects as well as determine which signals trigger each.  

This paper describes a new methodology for end-to-end 
automotive black box testing. By automating a majority of work 
required to test for defects, a thorough evaluation of the 
software can be performed in a shorter time. The methodology 
in this paper does not replace requirement verification, but is a 
complementary procedure for defect elimination. 

III. BLACK BOX REPRESENTATION

The individual techniques utilized in this paper have proven 
effective in other fields[28]–[31]. They are introduced here 
specifically for automotive defect detection. In order to 
successfully describe these techniques, the System Under Test 
(SUT) will be discussed first. 

A. Real-Time Model Based Testing

Testing of the SUT should be performed in real-time in
order to provide a realistic evaluation for the automotive 
hardware [32]. In this paper, requirements are incorporated 
into a verified Simulink model. This verified model is used to 
define a defect. Therefore, this paper does not specifically 
evaluate system requirements as these are assumed to have 
been verified during model-in-the-loop (MIL) testing of the 
Simulink model. This approach has been shown to work well 
in practical industry applications [32]–[34].  

B. Input Signal Specification

All bus messages which the test ECM reads will be referred
to as the system input. Each input signal is a time series 
discretized at the bus refresh rate. The system output is defined 
as the set of all bus messages sent by the ECM under test. The 
algorithm independently generates a test case for each test, as 
shown in  Figure 2. A test case is defined as the set of all input 
signals evaluated on one test.  

Figure 2: The SUT and ideal model are evaluated together simultaneously 

C. Input Signal Generation

In the example software tested in this paper, there are 2 x 1013

possible input value combinations at any instant. With each 
signal refreshing at 100 Hz, it is impossible to exhaustively 
search the input space. This full input space is also not 
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representative of ECM behavior, since different locations in the 
input space do not necessarily correspond to evaluating 
different ECM functions. Therefore, the dimensionality of the 
input space is reduced so that the algorithm has a lower-
dimensional, more meaningful, feature space to analyze. This is 
achieved by describing the behavior of each signal with 
qualitative features as opposed to strict quantitative definitions. 
These features are shared by all input signals during phase 1. 

Each multi-dimensional input signal is translated to a new 
point in a 2D feature space. The two qualitative features 
implemented are normalized to the interval [0, 1]: 
 Complexity: the rate at which the signal changes. A zero 

complexity signal is constant and a signal with complexity 
of one will change at that signal’s bus refresh rate. The 
timing of each change is sampled uniformly at random. 

 Proportionality: defines which values the signal can take. 
The possible values of each parameter are first divided 
into two sets that correspond to changes in the system 
state. The higher the proportionality of the signal, the 
more of its values are chosen from the second set as 
opposed to the first set. 

The division into separate sets for proportionality is done by 
OEM software experts based on domain knowledge of the 
signal values; an example is shown in Appendix A. When a 
signal transitions between set 1 and set 2 values, the system 
state can be changed without directly defining it. By similarly 
varying the complexity of each signal, the system state 
transitions are controlled indirectly. Defining the signal 
behavior with these features significantly reduces the input 
space but still allows for control of the system states.  

The qualitative feature extraction satisfies two properties: 
1. Given fixed features, the algorithm should generate input 

signals that evaluate similar ECM functions. 
2. Given fixed features, each test case should be unique. 

As seen in Figure 3, changing the features leads to the 
generation of signals with different characteristics as desired by 
property two. Property one is demonstrated in Figure 4; 
showing different signals for a fixed complexity and 
proportionality. The timing of changes, as well as the 
instantaneous values, are random. However, the number of 
change-points as well as the percentage of time spent in each 
set are approximately constant in all plots of Figure 4.  

 
Figure 3: Example of complexity and proportionality relationship for a 

Boolean input signal 

 
Figure 4: Example of three input signals generated with the same complexity 

and proportionality with this algorithm 

D. Output Signal Representation 

The instantaneous outputs from both the system under test 
and the ideal Simulink model are in the form of equal length 
binary vectors. Each element of the vector is a Boolean 
indicator corresponding to the status of a diagnostic entry. This 
instantaneous output is sampled at 100 Hz, with the vectors 
stacked in order to form two binary matrices of equal size, one 
for the SUT and one for the ideal Simulink model. All phase 1 
tests are run at a constant duration that is defined before testing. 

The output from the SUT is subtracted from the ideal model 
to yield one matrix which defines defects. 𝐴 is the output from 
the validated model, 𝐵 is the output from the SUT, and 𝐶 is the 
combined representation; each of these is a matrix of size 
(𝑇 x 𝑛) where 𝑇 is the number of time steps and n is the number 
of indicators in the output. For every time step 𝑡: 

𝐴 =  [𝐴  𝐴  𝐴  … 𝐴 ] 
𝐵 =  [𝐵  𝐵  𝐵  … 𝐵 ] 

 

𝐶𝑡𝑖  =  

   1       𝑖𝑓 𝐴𝑡𝑖 = 1 𝑎𝑛𝑑 𝐵𝑡𝑖 = 0

−1       𝑖𝑓 𝐴𝑡𝑖 = 0 𝑎𝑛𝑑 𝐵𝑡𝑖 = 1

   0       𝑖𝑓 𝐴𝑡𝑖 =  𝐵𝑡𝑖

              (1) 

Given this representation, there is a distinction between defects 
with a false positive (𝐶𝑡𝑖 = -1) and a false negative (𝐶𝑡𝑖 = 1), but 
no defect (𝐶𝑡𝑖 = 0) if the software and ideal model agree. This 
output matrix 𝐶 is saved for all test cases. Any deviation 
between the ideal model and SUT constitutes a defect, 
regardless of duration. In other words, a test case detects a 
defect if matrix 𝐶 contains any nonzero elements.  

IV. PHASE 1: DEFECT DETECTION ALGORITHM 

In order to evaluate the SUT in an efficient manner, this 
paper introduces an algorithm to identify regions of the input 
space containing defects. Test cases are generated using the 
adaptive sampling algorithm FLOLA-Voronoi (FV), applied to 
the 2-dimensional feature space [28], [29].  

A. FLOLA-Voronoi 

The FV strategy is based upon two separate components: 
Fuzzy LOcal Linear Approximation (FLOLA) and Voronoi 
tessellation. It balances exploitation and exploration by scoring 
all locations in the feature space according to the number of 
samples nearby, as well as the defect detection rate.  

Exploitation assigns high scores to regions where the defect 
detection rate behaves nonlinearly. These regions have already 
identified a defect. Adding additional samples in nonlinear 
regions will help define boundaries in the 2D feature space 
where a defect stops occurring. Exploration assigns higher 
scores to regions which have been sampled sparsely, calculated 
with a Voronoi tessellation where a cell is drawn around each 
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previously sampled point.  
These two components of the FV algorithm are combined to 

assign a score to each location in the input space, and the 
coordinates with the best score are selected as the next sample 
point for testing. FV analyzes the results from all past test cases 
on each iteration, then chooses the next optimal point in the 
feature space. The balance between exploitation and 
exploration ensures that multiple examples of each defect are 
obtained, while also continuing to search for new defects.  

B. Sequential Sampling Loop 

Sample points are chosen sequentially to maximize the 
efficiency of each point. This drastically reduces the number of 
test cases, as well as test time, required to identify the same 
number of defects. Since this method seeks to identify an 
unknown number of defects that depend on unknown input 
parameters, no region of the input space is excluded by FV. 
Each chosen location in the feature space is evaluated according 
to the following pseudo code: 

Generate 20 test cases using highest scored feature values 
Evaluate SUT and Simulink model once for each test case 
Compare SUT and Simulink outputs to determine defect rate 
Score all regions of the feature space according to FV 
FV measures the ratio of test cases at the selected location 

that detected a defect, yielding a result between 0 and 1. After 
all tests are performed at the location, FV reevaluates the 
feature space and the location with the best score is chosen next. 

Since the algorithm has no knowledge of the system before 
the sequential sampling loop begins, it requires a small number 
of initial points. Eleven initial points are chosen using a Latin 
hypercube space-filling design [35].  

V. PHASE 2: DEFECT SEGREGATION ALGORITHM 

After phase 1, numerous test cases have been identified that 
contain defects. Phase 2 determines the number of unique 
defects. Clustering is performed in order to group test cases 
caused by the same defect into homogeneous clusters.  

For each test case, the output 𝐶 is a (𝑇 x 𝑛) matrix which 
contains many repeated rows. Each 𝐶 matrix is reduced to a set 
of 𝑛 dimensional vectors, where 𝑛 is the number of indicators. 
Rows of all zeros are removed since they represent instances of 
no defect detected. Second, all rows which are identical to the 
previous row are removed since they represent the same output 
sequence occurring for an extended time. This results in a set of 
vectors for each 𝐶 matrix. Due to interaction noise, the number 
of unique vectors is typically much greater than the number of 
true system defects. A novel clustering approach is 
implemented to determine the true number of unique defects. 

The standard algorithm for clustering categorical vectors is 
k-modes [30]; a modified version is utilized here. After 
clustering, each cluster is assumed to correspond to a unique 
defect. The phase 2 result is a set of test cases for each cluster.  

A. Weighted dissimilarity metric 

The goal of a clustering algorithm is to minimize intra-cluster 
distances while maximizing inter-cluster distances. A 

dissimilarity metric must be used which appropriately fits the 
unique structure of automotive bus signals. 

In the standard k-modes categorical clustering application, 
the value of each attribute is compared to the corresponding 
cluster centroid to determine equality. In other words, the 
dissimilarity metric does not distinguish among values for each 
attribute. This metric is shown below, where 𝑋 and 𝑌 are two 
categorical vectors [30]: 

𝑑(𝑋, 𝑌) =  𝛿(𝑥 , 𝑦 )                            (2) 

where 

𝛿(𝑥 , 𝑦 ) =  
0    𝑖𝑓 𝑥 =  𝑦  
1    𝑖𝑓 𝑥 ≠  𝑦

                      (3) 

Given the representation in matrix 𝐶, this metric does not 
fully capture the information contained in the vectors. For each 
categorical attribute from phase 1, there are three possible 
categories [-1, 0, 1]. Category 0 can be viewed as a special 
default case since it represents “no detected defect”. Since most 
defects manifest on only a few output attributes, the majority of 
vectors will be a sparse representation of primarily zeros. If all 
attributes are equally weighted, there are many situations where 
a vector is equidistant from several cluster centroids.  

This paper introduces a modified dissimilarity metric which 
adjusts the weight on specific attributes when calculating 
distance. This dissimilarity metric adds an additional weight 
where both the centroid and sample are default (value 0). The 
new metric serves to distance examples which agree on default 
indicators (correct operation) from those that agree on defect 
indicators.  

This can be seen as a special case of the solution proposed in 
[36]. The new metric corresponds to replacing 𝛿(𝑥 , 𝑦 ) in (3) 
with that shown in (4), where ϵ is a value between 0 and 1. 

𝛿(𝑥 , 𝑦 ) =  

0     𝑖𝑓 𝑥 =  𝑦  ≠ 0 
𝜖     𝑖𝑓 𝑥 =  𝑦 = 0

 1     𝑖𝑓 𝑥 ≠  𝑦
               (4) 

In this implementation, the value of ϵ was made dependent 
on vector length, 𝜖 =  3 / 𝑛. The value of 3 is the median of 
the number of nonzero elements from all vectors from phase 1. 
This new dissimilarity metric is used within the standard k-
modes clustering algorithm.  

B. Initial cluster centroid selection 

A key input to clustering algorithms is the initial cluster 
centroids. A heuristic is introduced to determine the initial 
centroids by making use of the specific structure of data from 
phase 1. First, the test cases where the 𝐶 matrix contains only 
one vector are retained. It is assumed these vectors correspond 
to a single defect. From these vectors, those which deviated on 
one indicator become the initial categorical cluster centroids. 

This heuristic tends to overestimate the number of defects, 
which is preferred instead of an underestimate. If two separate 
defects are clustered together and reported as one, then most 
likely one defect will not be repaired. If, however, one defect is 
reported as multiple, it will merely take some additional time to 
determine they are the same defect, at a small cost to efficiency. 
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VI. PHASE 3: DEFECT REPRODUCTION ALGORITHM 

Taking the clustered results from phase 2, the goal of phase 
3 is to determine the cause of each unique defect. Treating the 
embedded system as a black box renders true root cause 
analysis unfeasible. The goal of causal analysis is defined in this 
paper as the ability of the algorithm to reliably reproduce a 
defect using different test cases. In other words, it should be 
able to reproduce each defect by specifying the behavior of only 
the input signals upon which the defect depends.  

Almost all software implementation errors in embedded 
systems can be detected by evaluating the interactions among 
4-6 parameters [31], [37]. This technique, called combinatorial 
or t-way testing, creates test cases that include all possible 
combinations among a subset of the n input parameters. Testing 
only these t-way interactions aims to provide coverage similar 
to that of full factorial design with only a small fraction of the 
test cases. For this paper, t was set at 5 to cover the most 
interactions without an excessive number of tests. 

For each cluster, a small number of additional tests will be 
performed in order to isolate the signals relevant to each defect. 
The values for complexity and proportionality define the 
behavior of one signal. This will be utilized in order to “switch 
off” signals by setting each to a baseline. Baseline for 
complexity is 0, meaning the parameter will remain constant 
during the entire simulation. For proportionality, since the 
boundary values 0 and 1 actually choose between two groups 
of values, the baseline value will be the boundary further away 
from the feature value used in the original test case. 

The minimum test time is determined from all test cases in 
each cluster from phase 2. This will be a different value for each 
cluster. The minimum test time is the earliest time at which the 
defect occurred, and will be used for the duration of the phase 
3 tests for each cluster. Since all tests are performed in real-
time, this significantly reduces the time required for phase 3 as 
well as ensures simple test cases.  

For each cluster, the centroid is the most common output 
vector. From all test cases which generated this output vector, 
the one which triggered the defect quickest is used as the initial 
input for phase 3. The algorithm will now evaluate the possible 
input parameter interactions using this test case. This is 
accomplished with binary combinatorial test design, using the 
5-way interactions. 

For each parameter, the signal will be either the baseline or 
identical to the initial test case. The baseline will be a constant 
value selected from the proportionality set opposite to that used 
in the initial test case. In this sense, t-way testing can be seen as 
switching on and off specific input parameters, and evaluating 
every t-way combination of switches. Based on the switch 
combinations that still trigger the defect, the causal signals are 
determined. 

VII. EXPERIMENTAL SETUP AND RESULTS 

The methods outlined in this paper are validated by tests on 
a portion of the On Board Diagnostic functions of Toyota’s 
Road Sign Assistance (RSA), a component of the Toyota Safety 
Sense 2.0 system currently under development [38]. The 

control module is treated as a black box which receives and 
sends messages over the vehicle bus. This test software has 32 
input parameters, as shown in Appendix A, and 43 output 
indicators. A fixed test time of 15 seconds was used for phase 
1, resulting in a 𝐶 matrix of size 1500 x 43 before post 
processing. Each of the input parameters has between 2 and 94 
possible discrete values. 

The methods described in this paper were developed in 
MATLAB and integrated with a Simulink system model, the 
industry standard used during development of control module 
software. The experimental set up communicated with the ECM 
via Vector hardware and software (CANoe). Although tests 
were performed with Controller Area Network (CAN) protocol 
signals, the solution presented is designed to interface readily 
with standard communications tools, allowing for 
communication via more advanced protocols (Ethernet, 
FlexRay, etc.). The ECM under test controls the Road Sign 
Assistance feature, which functions to identify traffic signs 
adjacent to roads and display them to the driver. This system 
will be utilized for logical decision making in future generations 
of driver assistance systems. This same technique can readily 
be applied to model-based software-in-the-loop (SIL), 
processor-in-the-loop (PIL), and hardware-in-the-loop (HIL) 
testing for any embedded system. All tests were performed at 
the Toyota Technical Center in Zaventem, Belgium.  

For validation, the algorithm was evaluated on known 
software defects that were injected into the validated Simulink 
model. These defective models replaced the SUT in the test 
setup shown in Figure 2. Eight separate representative defects 
were introduced, and various scenarios are covered where 
defects may occur either individually or simultaneously (e.g. 2 
and 3 at a time). These injected defects were created by Toyota 
Motor Europe based upon real defects in similar systems. A 
summary of the 8 defects are shown in Table 1.  
Table 1: Defect Descriptions 

 

A. Defect detection 

Phase 1, defect detection, was performed until 100 points in 
the complexity and proportionality feature space had been 
evaluated. At each point, 20 stochastic test cases were 
generated, resulting in a total number of 2000 evaluations.  

Different approaches are benchmarked against each other for 
generating these test cases: 
 FLOLA: the feature space transform followed by 

FLOLA-Voronoi, as detailed in Section IV. This forms the 
base of the method described in this paper.  

 Random Parameter (RP): values are chosen at 
uniformly random for the 2D feature space transform of 
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complexity and proportionality. These values are then 
used to generate new input signals for each test. 

 Random: generates input signals from randomly chosen 
values (from all values for each parameter). The time and 
number of transitions are also chosen uniformly at 
random. 2000 random test cases were generated. 

These two randomized benchmarks allow for comparison of 
both aspects of the sequential sampling algorithm: the input 
signal parameterization and FLOLA-Voronoi sampling. The 
Random approach chooses from all possible signal values and 
therefore does not utilize the signal parameterization method. 
The RP generation does utilize the signal parameterization 
techniques, but does not intelligently sample the 2D design 
space. With these benchmarks, it is expected for the random 
parameter generation to outperform the random generation, and 
both of these to be outperformed by the FLOLA algorithm. 
1) Single Defects 

The algorithm developed in this paper was tested on 8 
synthetic defects with the percentage of defect detections 
recorded. Initially, only one defect at a time was considered. 
The results are summarized below in Table 2 and Figure 5. 
Table 2: Phase 1 percentage detection results for defects occurring individually 

 

 
Figure 5: Detection percentage for the three generation methods - single defects 

Table 2 shows that FLOLA sampling performs best on seven 
out of the eight defects. On these seven defects, the RP 
sampling also outperformed the completely random generation, 
as expected. On defect #8, FLOLA performs worse than RP 
sampling, and Random generation significantly outperforms 
both of the more advanced methods. Since this defect is easy to 
trigger (it is the only one with a detection rate above 80%), the 
signal parameterization and feature space exploration reduce 
detections slightly. Regardless, FLOLA still captures the defect 
a significant portion of the time at 69%. In cases with multiple 
defects appearing simultaneously, it will be shown that having 
a lower detection rate is beneficial on common defects once the 
algorithm needs to separate one defect from another. 

In addition to the detection rate, it is also beneficial to 
evaluate which method detects each defect first. To measure 
this, twelve tests were performed with each method for each 
defect. The test case to first detect each defect was recorded. 
The mean and standard deviation of these first identifications 
have been calculated. A standard deviation of 0 means that 
defect was first detected at the same time on all 12 tests. This 
only occurs using FLOLA due to the structured generation of 
the initial Latin hypercube test cases.  Recorded in Table 3 are 

the mean and standard deviation values, as well as 1-way 
ANOVA results. If the ANOVA p-value is less than 0.05, it can 
be said with 95% confidence that the results for the different 
methods come from different distributions. 
Table 3: First test case to detect each individual defect, based on 12 tests each 

 
FLOLA outperforms RP and Random generation with 

statistical significance on five of the eight defects. These five 
defects are those where the RP and Random methods struggle 
to locate the detect. On the other three defects, FLOLA still 
performs very well, but it is also the case that the RP and 
Random methods quickly detect these common defects. The 
performance of FLOLA is especially visible on defects #2 and 
#3, which occur more rarely and are difficult for all methods to 
detect. Defects #2 and #3 are both related to the diagnosis of the 
ambient air sensor, which requires a very particular signal 
sequence to execute. 
2) Multiple Simultaneous Defects 

In order to evaluate more complex scenarios, the same 
procedure was performed where multiple defects were 
simultaneously present in the same model. Two defect 
scenarios were tested: defects #1 and #7 (scenario 10) and 
defects #6, #7, and #8 (scenario 11). Segregation for scenario 
11 will be especially challenging due to the presence of a rare 
defect (#6) mixed with a common defect (#8). The total 
percentage of defects detected is recorded in Table 3, 
disregarding which defect is occurring. 
Table 4: Phase 1 percentage detection results for multiple simultaneous defects 

 
The results show that FLOLA outperformed RP and Random 

for scenario 10, but not scenario 11. The Random generation 
result from scenario 11 is nearly identical to that from defect 8 
(while FLOLA’s has increased), hinting that the majority of 
Random detections are of defect 8. When evaluating detections 
with multiple defects, it is insufficient to view the total 
detection rate. Since the goal is to detect all defects, it is much 
more important to evaluate which defects were detected. The 
number of test cases which triggered each unique defect are 
summarized in Table 5 below. For each scenario, 2000 tests 
were performed; however, the results do not sum to 2000 due 
to the fact that many test cases triggered more than 1 defect. 
Table 5: Number of test cases to detection for multiple simultaneous defects 
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Viewing these detailed results clarifies that FLOLA 
outperforms both other methods in detecting defects. The 
FLOLA result provides a much more balanced detection of 
defects due to the exploitation – exploration tradeoff. It is also 
clear that the feature transform aids in balancing the defect 
detections, as RP outperforms the pure random generation. The 
result from scenario 11 using random generation is especially 
skewed toward only detecting defect 8. Although its overall 
detection rate was highest, this skew would prove problematic 
during phase 2. The random detection of defect 6 is only 33, the 
majority of which occurred simultaneously with defects 7 or 8. 
Segregating defect 6 from the 1822 detections of defect 8 is 
analogous to finding a needle in a haystack. With FLOLA-
Voronoi, defect 8 is still detected at a higher rate but the results 
are closer in magnitude, which will allow clustering to 
successfully identify these defects as separate.  

Again, twelve tests were performed for each scenario in order 
to record how quickly each method first detected each defect. 
The results are shown below in Table 5, with each defect listed 
individually for both scenarios, as well as the overall results for 
each scenario. As expected, FLOLA outperforms the other two 
methods on all defects except #8, where it performs slightly 
worse than Random. This minor difference is strongly 
outweighed by the statistically significant improvement in 
detection of defects #6 and #7, even when occurring 
simultaneously with #8. Defect #7 is also detected at a 
significantly faster pace when occurring alongside defect #1 in 
scenario 10. 
Table 6: First test case to detect each simultaneous defect, based on 12 tests 

  

B. Defect segregation 

The results from phase 1 are all randomized and grouped 
together to form the inputs to phase 2, where the test cases are 
segregated into unique defects. As discussed earlier, this 
clustering must be performed to eliminate interference noise 
from multiple examples of the same defect. For example, in 
testing the injection of one defect (defect 5) was expected to 
impact 4 different indicators; actual results yielded created 400 
unique output vectors with an average of 13 output vectors on 
each 20 second simulation. Using the heuristic described to 
choose initial cluster centroids, this method will tend to 
overestimate the number of unique defects. 
1) Single Defects 

The clustering is initially performed on the results from all 
tests where only one defect was active. There are known to be 
8 unique defects, which are automatically grouped into 19 
clusters using the methods described in Section V. The 
composition of all 19 clusters is summarized in the Figure 6 pie 
charts below. These can be interpreted as the purity of each 

cluster; the percentage of the largest component is shown next 
to each chart and the number of vectors in each is shown below. 

 
Figure 6: Distribution of single defects within clusters. The percentage of the 
largest constituent is shown, plus the total number of vectors in the cluster 

The goal is to obtain one cluster composed primarily of each 
separate defect, knowing that there will be additional clusters 
containing heterogeneous mixtures of defects. This goal is 
clearly accomplished as there is a cluster with at least 81% of 
each unique defect; in fact, 7 of the 8 defects have clusters with 
concentration greater than 90%. Having one defect constitute 
the significant majority of a cluster guarantees its identification 
by OEM engineers.  

Although there are over double the number of clusters as 
defects, 19 is still a relatively manageable number. There were 
a total of 39,085 vectors used as input to the clustering 
algorithm, of which there were 537 unique configurations. 
Therefore, the clustering reduced the number of potential 
defects from 537 to 19. Although it is possible to further reduce 
the number of clusters, the heuristic developed was capable of 
regularly guaranteeing that each defect contained a cluster 
where it was a significant majority. The challenge of this 
problem is clearly seen in the defects that occurred rarely. 
Defect 2 only generated 79 vectors, of which 69 were clustered 
together; similarly, 64 out of the 69 vectors generated by defect 
3 were clustered correctly. For comparison, defect 5 generated 
16,403 vectors with 400 unique vectors.  
2) Multiple Simultaneous Defects 

The same clustering algorithm is also applied to the test cases 
where multiple defects were active at the same time. These are 
the same test cases (scenarios 10 and 11) from phase 1, 
randomized and grouped together. The clustering is initiated 
from the beginning; the clusters and centroids determined 
during clustering of single defects are not used on the multiple 
defect data. 
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Using scenarios 10 and 11, there are 4 distinct defects. They 
were clustered by the algorithm into 9 groups as shown in 
Figure 9. In these tests, there were actually a greater number of 
unique vector combinations (703) than there were with single 
defects. This is due to interaction noise among defects when 
they occur simultaneously. The fact that this method clustered 
the results into a smaller number of clusters reinforces the 
heuristic used to determine initial cluster centroids. The 
heuristic was able to determine that, despite having a larger 
number of unique vectors, the number of true defects is less. 
The number of clusters is approximately twice the number of 
true defects, but is two orders of magnitude less than the number 
of unique vectors. This result gives phase 3 a reasonable 
number of clusters to evaluate. Again, it can be clearly seen that 
each defect has one cluster where it comprises a strong majority 
(greater than 80%), even with rare defects such as defect #6. 
Clustering was performed with all vectors, but the plots were 
generated using only the vectors where one defect was active at 
a time to prevent double or triple counting some vectors. 

 
Figure 7: Distribution of multiple defects within clusters  

C. Defect reproduction 

The algorithm extracts the minimum test time at which each 
cluster occurred. For most clusters, this time is significantly less 
than the 15 seconds used in phase 1. The clusters with majority 
of the same defect share the same minimum time.  

Table 7: Minimum test time for individual defect clusters 

 
The 5-way interactions for 32 input parameters result in an 

additional 214 tests to be performed at minimum test time for 
each cluster. The t-way switches for each parameter are 
recorded on each test, as well as if the defect was triggered. It 
is expected that a defect will only trigger for each cluster if 
several signals are in a specific switch position. To determine 

this, the standard deviation and mean of the proportionality for 
each input signal are calculated for the test cases which 
triggered the defect and those which did not trigger it.  

The results identify the parameters that trigger each defect, 
as well as what value each should take. Any parameter with a 
standard deviation value below a threshold of 0.25 is 
determined to trigger the defect. A low standard deviation on 
that particular parameter means it favors one value set 
whenever a defect triggered. From these selected parameters, 
the mean proportionality value is measured in order to find the 
values it should take; this is based upon the two sets of values 
supplied by development engineers before testing begins. This 
information, combined with the minimum test time, places 
constraints on certain input parameters so that each defect can 
be easily reproduced. The output information from phase 3, and 
the overall method, is a list of defects where each is defined by 
its minimum test time, a set of input signals that trigger it, and 
the value set that each trigger input should be drawn from. 

A graphical representation of phase 3 results for two different 
clusters is shown in Appendix B. These two defects both 
depend upon three input parameters, two of which are the same. 
This is determined using the standard deviation, where three 
parameters have a standard deviation value of 0. Every time 
these defects triggered, those parameters were chosen from the 
same value set. The 0.25 threshold on standard deviation 
cleanly separates these trigger signals from the signals that are 
independent of the defect. Viewing the plots of mean 
proportionality, it can be seen that the signals take different 
values for the different defects. This provides a different set of 
criteria for the two different defects. This allows for the two 
defects to be confirmed by engineers as distinct, and also 
provides the information needed to reliably reproduce each.  

VIII. CONCLUSION 

It has been shown that this method is able to detect defects 
much more rapidly and reliably than the benchmark methods. 
This method requires as input only the simply parameter 
definitions shown in Appendix A, plus the validated Simulink 
model (which is often already available to development 
engineers). In addition to identifying defects, it is able to 
determine how many unique defects and separate all test cases 
into clusters that correspond to these unique defects. This 
information is invaluable to engineers while they try to 
determine the root cause of each defect. In addition to 
providing these examples, the solution also analyzes the input 
signals in order to identify the causal signals; furthermore, it 
places constraints on the input values as well as the test time.  

The overall testing approach described in this paper has 
been tailored for the automotive use case and specifically 
testing of embedded ADAS system software. Multiple 
components of the method have been previously proven in 
different fields. Due to this, as well as general similarities 
among embedded software, it is expected that this solution 
could be easily generalized to various other software testing 
scenarios within and outside the automotive domain.  
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APPENDICES 

Appendix A: Input parameters for example software 
 
 

  

The Type column defines the overall behavior of a signal, e.g. it will pulse from one value to be temporarily at another, or 
will step from one value to adjacent values. Refresh is the bus refresh rate for each signal. ValueSet 1 and 2 are the two 
sets of possible signal values.  

Appendix B: Phase 3 example, proportionality standard deviation and mean plots for two defects 

Standard deviation (left) and mean (right) plots for two separate defects. Trigger signals are circled in green.  
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