
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

 Abstract—Trends in the automotive industry confirm that the
demand for testing of embedded systems, especially advanced
driver assistance systems (ADAS), will grow dramatically in the
near future. This paper proposes a new solution that automates
the detection of software defects in embedded systems. The
solution consists of a data-driven sampling algorithm to
intelligently sample the testing space by sequentially generating
test cases. Moreover, it segregates unique defects from each other
and identifies the signals that trigger each. The results are
compared against other automated methods for defect
identification and analysis, and it is found that this novel solution
is able to identify defects more rapidly. In addition, it correctly
separates defects and reliably reproduces each distinct defect.

Index Terms— Advanced driver assistance systems, automatic
test pattern generation, automotive electronics, embedded
software, machine learning, metamodeling, pattern clustering,
system verification

I. INTRODUCTION

ECENT studies have shown that prototype advanced driver
assistance systems (ADAS) are nearing or exceeding

human level performance [1]–[4]. As these ADAS systems
enter production vehicles, a great deal of new hardware and
software components are being introduced into customer hands.

Due to the safety sensitive nature of these new components,
test procedures must be developed to guarantee that a system is
free from defects. Traditional automotive verification ensures
that all functional requirements are met. However, this testing
is insufficient to validate the safe operation of embedded
systems in unforeseen, but possible, real world situations.

Software and electronic integration defects contribute to
recalls of millions of vehicles each year [5]. While various laws
and industry standards mandate testing to verify functionality
[6], [7], unexpected defects are still triggered when unforeseen
or untested input signals are received by an Electronic Control
Module (ECM). A huge time commitment is required in order
to obtain even minimal coverage of an embedded system’s
input space. As a result, full factorial testing becomes
unfeasible, and OEMs are forced to evaluate a subset of
possible test cases before production. This inevitably requires a
trade-off between test coverage and testing duration.

This work has been conducted within the ENABLE-S3 project that has
received funding from the ECSEL joint undertaking under grant agreement no
692455. This joint undertaking receives support from the European Union’s
Horizon 2020 Research and Innovation Program and Austria, Denmark,
Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland,
Belgium, France, Netherlands, United Kingdom, Slovakia, Norway.

 This paper introduces a novel data-driven method to
automate testing and analysis of such systems. This reduces the
test time and input required from OEM expert engineers. The
method consists of three phases: (1) defect detection, (2) defect
segregation, and (3) defect causal analysis. Phase 1 aims to
detect all distinct software defects within minimal testing time.
Phase 2 determines how many different defects were detected
and segregates test cases based on the defects detected in each.
Phase 3 determines the input signals that trigger each defect and
provides additional information to enable rapid repair. These
separate phases combine to form a cohesive path to eliminate
defects. The overall flow, and output from each phase, is
summarized in Figure 1.

Figure 1: Overall Solution Flow

These methods are validated on an isolated Electronic
Control Module (ECM) and its embedded software. Testing
was performed on several representative models at Toyota
Motor Europe’s Technical Center on a prototype road sign
recognition ADAS software. The techniques detailed in this
paper go beyond improving coverage of the input space. They
intelligently generate test cases based upon the system behavior
from past tests. These techniques have not been applied in the
automotive domain before and are shown to significantly
outperform the benchmark testing practices described later in
this paper.

In the forthcoming parts of this paper, the word defect will
be used to describe an unwanted behavior from the embedded
system. A correct identification of a vehicle problem which
triggers a diagnostic entry or Diagnostic Trouble Code (DTC)
will be referred to as an indicator.

K. Foss and I. Couckuyt are with IDLab, Department of Information
Technology at Ghent University – imec. UGent- IDLab, iGent,
Technologiepark Zwijnaarde 15, 9052 Gent, Belgium (e-
mail: kyle.foss@ugent.be, ivo.couckuyt@ugent.be,
dirk.deschrijver@ugent.be, tom.dhaene@ugent.be).

A. Baruta and C. Moussoux are with Toyota Motor Europe, Technical
Centre. Hoge Wei 33, 1930 Zaventem, Belgium (e-mail
adrian.baruta@toyota-europe.com, corentin.mossoux@toyota-europe.com).

Automated Software Defect Detection and
Identification in Vehicular Embedded Systems

Kyle Foss, Ivo Couckuyt, Adrian Baruta, and Corentin Mossoux

R

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. https://doi.org/10.1109/TITS.2021.3065940

https://doi.org/10.1109/TITS.2021.3065940

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

II. RELATED WORK

In the past decade, automotive development and testing has
come to rely heavily on model-based systems engineering and
model-based verification and validation (V&V) [8]–[11]. A key
part of V&V is test case generation, a task that is labor intensive
and prone to human error. A plethora of methods have been
proposed to automatically generate test cases [12]. Test cases
can be generated utilizing SysML/UML requirements [13],
[14]. Similarly, temporal logic [15] can be used to test boundary
regions based on operational requirements. These methods are
useful during early stage development, such as model-in-the-
loop (MIL) testing, and are necessary to ensure all requirements
are fulfilled [16]. These methods are based upon expert
knowledge of the internal structure of the System Under Test
(SUT), or are hand designed for requirement verification [17]–
[19]. However, these testing strategies do not specifically
address the problem of finding unknown defects.

In [20]–[22], statistics based machine learning techniques are
used to search for automotive software defects. Specifically, the
system is modeled as a Markov chain, and test cases are
generated using either Monte Carlo or Gibbs samplers. These
methods have been integrated into commercial tools and are
able to successfully detect defects. The downside to Markov
chains is that the system states and transitions must be
predefined by development engineers before any tests can
begin. These state and transition definitions are created solely
for testing and add significant work for development engineers.
Therefore, such a white box approach is not time efficient.

Mutation-based test case generation is a relatively new
method for model based testing [23], [24]. This approach
utilizes a validated system model, mutates it in some way, and
then generates test cases to exploit this mutation. The method is
valuable as long as the mutations are representative of real
system defects, but provides no functionality during hardware-
in-the-loop (HIL) testing. The approach described in this paper
also utilizes a validated system model, but intelligently
generates test cases during HIL testing instead of beforehand.

Other approaches treat the SUT as a black box by only
evaluating its input and output signals [10], [25]. Black-box
testing has proven valuable in many fields of software testing,
and is particularly well suited for an automotive application
because it requires a minimal amount of input from the test
practitioner. By reducing the time required to set up test cases,
a much greater amount of time can be devoted to actual testing.
Although promising, little has been published in the last decade
to advance black box testing in the automotive domain.

The work discussed so far has focused primarily on defect
detection, under the assumption that engineers can determine
the root cause given one test case that triggered the defect.
While this is true in some cases, root cause identification is
separate from defect detection, and can be a complex and time-
consuming task. Existing works have treated identification and
causal analysis as separate topics; this paper combines them
within a streamlined process.

In [26], [27], genetic algorithms are implemented for root
cause analysis to determine input signal thresholds at which a

defect occurs. While useful, this method can only be applied to
a single defect that depends on a small number of input signals.
This is due to the slow convergence of genetic algorithms in
high dimensions. Often, multiple independent defects are
identified which depend on different input signals. Before using
a genetic algorithm, manual steps must be taken to separate the
unique defects as well as determine which signals trigger each.

This paper describes a new methodology for end-to-end
automotive black box testing. By automating a majority of work
required to test for defects, a thorough evaluation of the
software can be performed in a shorter time. The methodology
in this paper does not replace requirement verification, but is a
complementary procedure for defect elimination.

III. BLACK BOX REPRESENTATION

The individual techniques utilized in this paper have proven
effective in other fields[28]–[31]. They are introduced here
specifically for automotive defect detection. In order to
successfully describe these techniques, the System Under Test
(SUT) will be discussed first.

A. Real-Time Model Based Testing

Testing of the SUT should be performed in real-time in
order to provide a realistic evaluation for the automotive
hardware [32]. In this paper, requirements are incorporated
into a verified Simulink model. This verified model is used to
define a defect. Therefore, this paper does not specifically
evaluate system requirements as these are assumed to have
been verified during model-in-the-loop (MIL) testing of the
Simulink model. This approach has been shown to work well
in practical industry applications [32]–[34].

B. Input Signal Specification

All bus messages which the test ECM reads will be referred
to as the system input. Each input signal is a time series
discretized at the bus refresh rate. The system output is defined
as the set of all bus messages sent by the ECM under test. The
algorithm independently generates a test case for each test, as
shown in Figure 2. A test case is defined as the set of all input
signals evaluated on one test.

Figure 2: The SUT and ideal model are evaluated together simultaneously

C. Input Signal Generation

In the example software tested in this paper, there are 2 x 1013

possible input value combinations at any instant. With each
signal refreshing at 100 Hz, it is impossible to exhaustively
search the input space. This full input space is also not

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

representative of ECM behavior, since different locations in the
input space do not necessarily correspond to evaluating
different ECM functions. Therefore, the dimensionality of the
input space is reduced so that the algorithm has a lower-
dimensional, more meaningful, feature space to analyze. This is
achieved by describing the behavior of each signal with
qualitative features as opposed to strict quantitative definitions.
These features are shared by all input signals during phase 1.

Each multi-dimensional input signal is translated to a new
point in a 2D feature space. The two qualitative features
implemented are normalized to the interval [0, 1]:
 Complexity: the rate at which the signal changes. A zero

complexity signal is constant and a signal with complexity
of one will change at that signal’s bus refresh rate. The
timing of each change is sampled uniformly at random.

 Proportionality: defines which values the signal can take.
The possible values of each parameter are first divided
into two sets that correspond to changes in the system
state. The higher the proportionality of the signal, the
more of its values are chosen from the second set as
opposed to the first set.

The division into separate sets for proportionality is done by
OEM software experts based on domain knowledge of the
signal values; an example is shown in Appendix A. When a
signal transitions between set 1 and set 2 values, the system
state can be changed without directly defining it. By similarly
varying the complexity of each signal, the system state
transitions are controlled indirectly. Defining the signal
behavior with these features significantly reduces the input
space but still allows for control of the system states.

The qualitative feature extraction satisfies two properties:
1. Given fixed features, the algorithm should generate input

signals that evaluate similar ECM functions.
2. Given fixed features, each test case should be unique.

As seen in Figure 3, changing the features leads to the
generation of signals with different characteristics as desired by
property two. Property one is demonstrated in Figure 4;
showing different signals for a fixed complexity and
proportionality. The timing of changes, as well as the
instantaneous values, are random. However, the number of
change-points as well as the percentage of time spent in each
set are approximately constant in all plots of Figure 4.

Figure 3: Example of complexity and proportionality relationship for a

Boolean input signal

Figure 4: Example of three input signals generated with the same complexity

and proportionality with this algorithm

D. Output Signal Representation

The instantaneous outputs from both the system under test
and the ideal Simulink model are in the form of equal length
binary vectors. Each element of the vector is a Boolean
indicator corresponding to the status of a diagnostic entry. This
instantaneous output is sampled at 100 Hz, with the vectors
stacked in order to form two binary matrices of equal size, one
for the SUT and one for the ideal Simulink model. All phase 1
tests are run at a constant duration that is defined before testing.

The output from the SUT is subtracted from the ideal model
to yield one matrix which defines defects. 𝐴 is the output from
the validated model, 𝐵 is the output from the SUT, and 𝐶 is the
combined representation; each of these is a matrix of size
(𝑇 x 𝑛) where 𝑇 is the number of time steps and n is the number
of indicators in the output. For every time step 𝑡:

𝐴 = [𝐴 𝐴 𝐴 … 𝐴]
𝐵 = [𝐵 𝐵 𝐵 … 𝐵]

𝐶𝑡𝑖 =

 1 𝑖𝑓 𝐴𝑡𝑖 = 1 𝑎𝑛𝑑 𝐵𝑡𝑖 = 0

−1 𝑖𝑓 𝐴𝑡𝑖 = 0 𝑎𝑛𝑑 𝐵𝑡𝑖 = 1

 0 𝑖𝑓 𝐴𝑡𝑖 = 𝐵𝑡𝑖

 (1)

Given this representation, there is a distinction between defects
with a false positive (𝐶𝑡𝑖 = -1) and a false negative (𝐶𝑡𝑖 = 1), but
no defect (𝐶𝑡𝑖 = 0) if the software and ideal model agree. This
output matrix 𝐶 is saved for all test cases. Any deviation
between the ideal model and SUT constitutes a defect,
regardless of duration. In other words, a test case detects a
defect if matrix 𝐶 contains any nonzero elements.

IV. PHASE 1: DEFECT DETECTION ALGORITHM

In order to evaluate the SUT in an efficient manner, this
paper introduces an algorithm to identify regions of the input
space containing defects. Test cases are generated using the
adaptive sampling algorithm FLOLA-Voronoi (FV), applied to
the 2-dimensional feature space [28], [29].

A. FLOLA-Voronoi

The FV strategy is based upon two separate components:
Fuzzy LOcal Linear Approximation (FLOLA) and Voronoi
tessellation. It balances exploitation and exploration by scoring
all locations in the feature space according to the number of
samples nearby, as well as the defect detection rate.

Exploitation assigns high scores to regions where the defect
detection rate behaves nonlinearly. These regions have already
identified a defect. Adding additional samples in nonlinear
regions will help define boundaries in the 2D feature space
where a defect stops occurring. Exploration assigns higher
scores to regions which have been sampled sparsely, calculated
with a Voronoi tessellation where a cell is drawn around each

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

previously sampled point.
These two components of the FV algorithm are combined to

assign a score to each location in the input space, and the
coordinates with the best score are selected as the next sample
point for testing. FV analyzes the results from all past test cases
on each iteration, then chooses the next optimal point in the
feature space. The balance between exploitation and
exploration ensures that multiple examples of each defect are
obtained, while also continuing to search for new defects.

B. Sequential Sampling Loop

Sample points are chosen sequentially to maximize the
efficiency of each point. This drastically reduces the number of
test cases, as well as test time, required to identify the same
number of defects. Since this method seeks to identify an
unknown number of defects that depend on unknown input
parameters, no region of the input space is excluded by FV.
Each chosen location in the feature space is evaluated according
to the following pseudo code:

Generate 20 test cases using highest scored feature values
Evaluate SUT and Simulink model once for each test case
Compare SUT and Simulink outputs to determine defect rate
Score all regions of the feature space according to FV
FV measures the ratio of test cases at the selected location

that detected a defect, yielding a result between 0 and 1. After
all tests are performed at the location, FV reevaluates the
feature space and the location with the best score is chosen next.

Since the algorithm has no knowledge of the system before
the sequential sampling loop begins, it requires a small number
of initial points. Eleven initial points are chosen using a Latin
hypercube space-filling design [35].

V. PHASE 2: DEFECT SEGREGATION ALGORITHM

After phase 1, numerous test cases have been identified that
contain defects. Phase 2 determines the number of unique
defects. Clustering is performed in order to group test cases
caused by the same defect into homogeneous clusters.

For each test case, the output 𝐶 is a (𝑇 x 𝑛) matrix which
contains many repeated rows. Each 𝐶 matrix is reduced to a set
of 𝑛 dimensional vectors, where 𝑛 is the number of indicators.
Rows of all zeros are removed since they represent instances of
no defect detected. Second, all rows which are identical to the
previous row are removed since they represent the same output
sequence occurring for an extended time. This results in a set of
vectors for each 𝐶 matrix. Due to interaction noise, the number
of unique vectors is typically much greater than the number of
true system defects. A novel clustering approach is
implemented to determine the true number of unique defects.

The standard algorithm for clustering categorical vectors is
k-modes [30]; a modified version is utilized here. After
clustering, each cluster is assumed to correspond to a unique
defect. The phase 2 result is a set of test cases for each cluster.

A. Weighted dissimilarity metric

The goal of a clustering algorithm is to minimize intra-cluster
distances while maximizing inter-cluster distances. A

dissimilarity metric must be used which appropriately fits the
unique structure of automotive bus signals.

In the standard k-modes categorical clustering application,
the value of each attribute is compared to the corresponding
cluster centroid to determine equality. In other words, the
dissimilarity metric does not distinguish among values for each
attribute. This metric is shown below, where 𝑋 and 𝑌 are two
categorical vectors [30]:

𝑑(𝑋, 𝑌) = 𝛿(𝑥 , 𝑦) (2)

where

𝛿(𝑥 , 𝑦) =
0 𝑖𝑓 𝑥 = 𝑦
1 𝑖𝑓 𝑥 ≠ 𝑦

 (3)

Given the representation in matrix 𝐶, this metric does not
fully capture the information contained in the vectors. For each
categorical attribute from phase 1, there are three possible
categories [-1, 0, 1]. Category 0 can be viewed as a special
default case since it represents “no detected defect”. Since most
defects manifest on only a few output attributes, the majority of
vectors will be a sparse representation of primarily zeros. If all
attributes are equally weighted, there are many situations where
a vector is equidistant from several cluster centroids.

This paper introduces a modified dissimilarity metric which
adjusts the weight on specific attributes when calculating
distance. This dissimilarity metric adds an additional weight
where both the centroid and sample are default (value 0). The
new metric serves to distance examples which agree on default
indicators (correct operation) from those that agree on defect
indicators.

This can be seen as a special case of the solution proposed in
[36]. The new metric corresponds to replacing 𝛿(𝑥 , 𝑦) in (3)
with that shown in (4), where ϵ is a value between 0 and 1.

𝛿(𝑥 , 𝑦) =

0 𝑖𝑓 𝑥 = 𝑦 ≠ 0
𝜖 𝑖𝑓 𝑥 = 𝑦 = 0

 1 𝑖𝑓 𝑥 ≠ 𝑦
 (4)

In this implementation, the value of ϵ was made dependent
on vector length, 𝜖 = 3 / 𝑛. The value of 3 is the median of
the number of nonzero elements from all vectors from phase 1.
This new dissimilarity metric is used within the standard k-
modes clustering algorithm.

B. Initial cluster centroid selection

A key input to clustering algorithms is the initial cluster
centroids. A heuristic is introduced to determine the initial
centroids by making use of the specific structure of data from
phase 1. First, the test cases where the 𝐶 matrix contains only
one vector are retained. It is assumed these vectors correspond
to a single defect. From these vectors, those which deviated on
one indicator become the initial categorical cluster centroids.

This heuristic tends to overestimate the number of defects,
which is preferred instead of an underestimate. If two separate
defects are clustered together and reported as one, then most
likely one defect will not be repaired. If, however, one defect is
reported as multiple, it will merely take some additional time to
determine they are the same defect, at a small cost to efficiency.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

VI. PHASE 3: DEFECT REPRODUCTION ALGORITHM

Taking the clustered results from phase 2, the goal of phase
3 is to determine the cause of each unique defect. Treating the
embedded system as a black box renders true root cause
analysis unfeasible. The goal of causal analysis is defined in this
paper as the ability of the algorithm to reliably reproduce a
defect using different test cases. In other words, it should be
able to reproduce each defect by specifying the behavior of only
the input signals upon which the defect depends.

Almost all software implementation errors in embedded
systems can be detected by evaluating the interactions among
4-6 parameters [31], [37]. This technique, called combinatorial
or t-way testing, creates test cases that include all possible
combinations among a subset of the n input parameters. Testing
only these t-way interactions aims to provide coverage similar
to that of full factorial design with only a small fraction of the
test cases. For this paper, t was set at 5 to cover the most
interactions without an excessive number of tests.

For each cluster, a small number of additional tests will be
performed in order to isolate the signals relevant to each defect.
The values for complexity and proportionality define the
behavior of one signal. This will be utilized in order to “switch
off” signals by setting each to a baseline. Baseline for
complexity is 0, meaning the parameter will remain constant
during the entire simulation. For proportionality, since the
boundary values 0 and 1 actually choose between two groups
of values, the baseline value will be the boundary further away
from the feature value used in the original test case.

The minimum test time is determined from all test cases in
each cluster from phase 2. This will be a different value for each
cluster. The minimum test time is the earliest time at which the
defect occurred, and will be used for the duration of the phase
3 tests for each cluster. Since all tests are performed in real-
time, this significantly reduces the time required for phase 3 as
well as ensures simple test cases.

For each cluster, the centroid is the most common output
vector. From all test cases which generated this output vector,
the one which triggered the defect quickest is used as the initial
input for phase 3. The algorithm will now evaluate the possible
input parameter interactions using this test case. This is
accomplished with binary combinatorial test design, using the
5-way interactions.

For each parameter, the signal will be either the baseline or
identical to the initial test case. The baseline will be a constant
value selected from the proportionality set opposite to that used
in the initial test case. In this sense, t-way testing can be seen as
switching on and off specific input parameters, and evaluating
every t-way combination of switches. Based on the switch
combinations that still trigger the defect, the causal signals are
determined.

VII. EXPERIMENTAL SETUP AND RESULTS

The methods outlined in this paper are validated by tests on
a portion of the On Board Diagnostic functions of Toyota’s
Road Sign Assistance (RSA), a component of the Toyota Safety
Sense 2.0 system currently under development [38]. The

control module is treated as a black box which receives and
sends messages over the vehicle bus. This test software has 32
input parameters, as shown in Appendix A, and 43 output
indicators. A fixed test time of 15 seconds was used for phase
1, resulting in a 𝐶 matrix of size 1500 x 43 before post
processing. Each of the input parameters has between 2 and 94
possible discrete values.

The methods described in this paper were developed in
MATLAB and integrated with a Simulink system model, the
industry standard used during development of control module
software. The experimental set up communicated with the ECM
via Vector hardware and software (CANoe). Although tests
were performed with Controller Area Network (CAN) protocol
signals, the solution presented is designed to interface readily
with standard communications tools, allowing for
communication via more advanced protocols (Ethernet,
FlexRay, etc.). The ECM under test controls the Road Sign
Assistance feature, which functions to identify traffic signs
adjacent to roads and display them to the driver. This system
will be utilized for logical decision making in future generations
of driver assistance systems. This same technique can readily
be applied to model-based software-in-the-loop (SIL),
processor-in-the-loop (PIL), and hardware-in-the-loop (HIL)
testing for any embedded system. All tests were performed at
the Toyota Technical Center in Zaventem, Belgium.

For validation, the algorithm was evaluated on known
software defects that were injected into the validated Simulink
model. These defective models replaced the SUT in the test
setup shown in Figure 2. Eight separate representative defects
were introduced, and various scenarios are covered where
defects may occur either individually or simultaneously (e.g. 2
and 3 at a time). These injected defects were created by Toyota
Motor Europe based upon real defects in similar systems. A
summary of the 8 defects are shown in Table 1.
Table 1: Defect Descriptions

A. Defect detection

Phase 1, defect detection, was performed until 100 points in
the complexity and proportionality feature space had been
evaluated. At each point, 20 stochastic test cases were
generated, resulting in a total number of 2000 evaluations.

Different approaches are benchmarked against each other for
generating these test cases:
 FLOLA: the feature space transform followed by

FLOLA-Voronoi, as detailed in Section IV. This forms the
base of the method described in this paper.

 Random Parameter (RP): values are chosen at
uniformly random for the 2D feature space transform of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

complexity and proportionality. These values are then
used to generate new input signals for each test.

 Random: generates input signals from randomly chosen
values (from all values for each parameter). The time and
number of transitions are also chosen uniformly at
random. 2000 random test cases were generated.

These two randomized benchmarks allow for comparison of
both aspects of the sequential sampling algorithm: the input
signal parameterization and FLOLA-Voronoi sampling. The
Random approach chooses from all possible signal values and
therefore does not utilize the signal parameterization method.
The RP generation does utilize the signal parameterization
techniques, but does not intelligently sample the 2D design
space. With these benchmarks, it is expected for the random
parameter generation to outperform the random generation, and
both of these to be outperformed by the FLOLA algorithm.
1) Single Defects

The algorithm developed in this paper was tested on 8
synthetic defects with the percentage of defect detections
recorded. Initially, only one defect at a time was considered.
The results are summarized below in Table 2 and Figure 5.
Table 2: Phase 1 percentage detection results for defects occurring individually

Figure 5: Detection percentage for the three generation methods - single defects

Table 2 shows that FLOLA sampling performs best on seven
out of the eight defects. On these seven defects, the RP
sampling also outperformed the completely random generation,
as expected. On defect #8, FLOLA performs worse than RP
sampling, and Random generation significantly outperforms
both of the more advanced methods. Since this defect is easy to
trigger (it is the only one with a detection rate above 80%), the
signal parameterization and feature space exploration reduce
detections slightly. Regardless, FLOLA still captures the defect
a significant portion of the time at 69%. In cases with multiple
defects appearing simultaneously, it will be shown that having
a lower detection rate is beneficial on common defects once the
algorithm needs to separate one defect from another.

In addition to the detection rate, it is also beneficial to
evaluate which method detects each defect first. To measure
this, twelve tests were performed with each method for each
defect. The test case to first detect each defect was recorded.
The mean and standard deviation of these first identifications
have been calculated. A standard deviation of 0 means that
defect was first detected at the same time on all 12 tests. This
only occurs using FLOLA due to the structured generation of
the initial Latin hypercube test cases. Recorded in Table 3 are

the mean and standard deviation values, as well as 1-way
ANOVA results. If the ANOVA p-value is less than 0.05, it can
be said with 95% confidence that the results for the different
methods come from different distributions.
Table 3: First test case to detect each individual defect, based on 12 tests each

FLOLA outperforms RP and Random generation with

statistical significance on five of the eight defects. These five
defects are those where the RP and Random methods struggle
to locate the detect. On the other three defects, FLOLA still
performs very well, but it is also the case that the RP and
Random methods quickly detect these common defects. The
performance of FLOLA is especially visible on defects #2 and
#3, which occur more rarely and are difficult for all methods to
detect. Defects #2 and #3 are both related to the diagnosis of the
ambient air sensor, which requires a very particular signal
sequence to execute.
2) Multiple Simultaneous Defects

In order to evaluate more complex scenarios, the same
procedure was performed where multiple defects were
simultaneously present in the same model. Two defect
scenarios were tested: defects #1 and #7 (scenario 10) and
defects #6, #7, and #8 (scenario 11). Segregation for scenario
11 will be especially challenging due to the presence of a rare
defect (#6) mixed with a common defect (#8). The total
percentage of defects detected is recorded in Table 3,
disregarding which defect is occurring.
Table 4: Phase 1 percentage detection results for multiple simultaneous defects

The results show that FLOLA outperformed RP and Random

for scenario 10, but not scenario 11. The Random generation
result from scenario 11 is nearly identical to that from defect 8
(while FLOLA’s has increased), hinting that the majority of
Random detections are of defect 8. When evaluating detections
with multiple defects, it is insufficient to view the total
detection rate. Since the goal is to detect all defects, it is much
more important to evaluate which defects were detected. The
number of test cases which triggered each unique defect are
summarized in Table 5 below. For each scenario, 2000 tests
were performed; however, the results do not sum to 2000 due
to the fact that many test cases triggered more than 1 defect.
Table 5: Number of test cases to detection for multiple simultaneous defects

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

D
et

ec
ti

on
 R

at
e

Defect Number

FV
RP
Random

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Viewing these detailed results clarifies that FLOLA
outperforms both other methods in detecting defects. The
FLOLA result provides a much more balanced detection of
defects due to the exploitation – exploration tradeoff. It is also
clear that the feature transform aids in balancing the defect
detections, as RP outperforms the pure random generation. The
result from scenario 11 using random generation is especially
skewed toward only detecting defect 8. Although its overall
detection rate was highest, this skew would prove problematic
during phase 2. The random detection of defect 6 is only 33, the
majority of which occurred simultaneously with defects 7 or 8.
Segregating defect 6 from the 1822 detections of defect 8 is
analogous to finding a needle in a haystack. With FLOLA-
Voronoi, defect 8 is still detected at a higher rate but the results
are closer in magnitude, which will allow clustering to
successfully identify these defects as separate.

Again, twelve tests were performed for each scenario in order
to record how quickly each method first detected each defect.
The results are shown below in Table 5, with each defect listed
individually for both scenarios, as well as the overall results for
each scenario. As expected, FLOLA outperforms the other two
methods on all defects except #8, where it performs slightly
worse than Random. This minor difference is strongly
outweighed by the statistically significant improvement in
detection of defects #6 and #7, even when occurring
simultaneously with #8. Defect #7 is also detected at a
significantly faster pace when occurring alongside defect #1 in
scenario 10.
Table 6: First test case to detect each simultaneous defect, based on 12 tests

B. Defect segregation

The results from phase 1 are all randomized and grouped
together to form the inputs to phase 2, where the test cases are
segregated into unique defects. As discussed earlier, this
clustering must be performed to eliminate interference noise
from multiple examples of the same defect. For example, in
testing the injection of one defect (defect 5) was expected to
impact 4 different indicators; actual results yielded created 400
unique output vectors with an average of 13 output vectors on
each 20 second simulation. Using the heuristic described to
choose initial cluster centroids, this method will tend to
overestimate the number of unique defects.
1) Single Defects

The clustering is initially performed on the results from all
tests where only one defect was active. There are known to be
8 unique defects, which are automatically grouped into 19
clusters using the methods described in Section V. The
composition of all 19 clusters is summarized in the Figure 6 pie
charts below. These can be interpreted as the purity of each

cluster; the percentage of the largest component is shown next
to each chart and the number of vectors in each is shown below.

Figure 6: Distribution of single defects within clusters. The percentage of the
largest constituent is shown, plus the total number of vectors in the cluster

The goal is to obtain one cluster composed primarily of each
separate defect, knowing that there will be additional clusters
containing heterogeneous mixtures of defects. This goal is
clearly accomplished as there is a cluster with at least 81% of
each unique defect; in fact, 7 of the 8 defects have clusters with
concentration greater than 90%. Having one defect constitute
the significant majority of a cluster guarantees its identification
by OEM engineers.

Although there are over double the number of clusters as
defects, 19 is still a relatively manageable number. There were
a total of 39,085 vectors used as input to the clustering
algorithm, of which there were 537 unique configurations.
Therefore, the clustering reduced the number of potential
defects from 537 to 19. Although it is possible to further reduce
the number of clusters, the heuristic developed was capable of
regularly guaranteeing that each defect contained a cluster
where it was a significant majority. The challenge of this
problem is clearly seen in the defects that occurred rarely.
Defect 2 only generated 79 vectors, of which 69 were clustered
together; similarly, 64 out of the 69 vectors generated by defect
3 were clustered correctly. For comparison, defect 5 generated
16,403 vectors with 400 unique vectors.
2) Multiple Simultaneous Defects

The same clustering algorithm is also applied to the test cases
where multiple defects were active at the same time. These are
the same test cases (scenarios 10 and 11) from phase 1,
randomized and grouped together. The clustering is initiated
from the beginning; the clusters and centroids determined
during clustering of single defects are not used on the multiple
defect data.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Using scenarios 10 and 11, there are 4 distinct defects. They
were clustered by the algorithm into 9 groups as shown in
Figure 9. In these tests, there were actually a greater number of
unique vector combinations (703) than there were with single
defects. This is due to interaction noise among defects when
they occur simultaneously. The fact that this method clustered
the results into a smaller number of clusters reinforces the
heuristic used to determine initial cluster centroids. The
heuristic was able to determine that, despite having a larger
number of unique vectors, the number of true defects is less.
The number of clusters is approximately twice the number of
true defects, but is two orders of magnitude less than the number
of unique vectors. This result gives phase 3 a reasonable
number of clusters to evaluate. Again, it can be clearly seen that
each defect has one cluster where it comprises a strong majority
(greater than 80%), even with rare defects such as defect #6.
Clustering was performed with all vectors, but the plots were
generated using only the vectors where one defect was active at
a time to prevent double or triple counting some vectors.

Figure 7: Distribution of multiple defects within clusters

C. Defect reproduction

The algorithm extracts the minimum test time at which each
cluster occurred. For most clusters, this time is significantly less
than the 15 seconds used in phase 1. The clusters with majority
of the same defect share the same minimum time.

Table 7: Minimum test time for individual defect clusters

The 5-way interactions for 32 input parameters result in an

additional 214 tests to be performed at minimum test time for
each cluster. The t-way switches for each parameter are
recorded on each test, as well as if the defect was triggered. It
is expected that a defect will only trigger for each cluster if
several signals are in a specific switch position. To determine

this, the standard deviation and mean of the proportionality for
each input signal are calculated for the test cases which
triggered the defect and those which did not trigger it.

The results identify the parameters that trigger each defect,
as well as what value each should take. Any parameter with a
standard deviation value below a threshold of 0.25 is
determined to trigger the defect. A low standard deviation on
that particular parameter means it favors one value set
whenever a defect triggered. From these selected parameters,
the mean proportionality value is measured in order to find the
values it should take; this is based upon the two sets of values
supplied by development engineers before testing begins. This
information, combined with the minimum test time, places
constraints on certain input parameters so that each defect can
be easily reproduced. The output information from phase 3, and
the overall method, is a list of defects where each is defined by
its minimum test time, a set of input signals that trigger it, and
the value set that each trigger input should be drawn from.

A graphical representation of phase 3 results for two different
clusters is shown in Appendix B. These two defects both
depend upon three input parameters, two of which are the same.
This is determined using the standard deviation, where three
parameters have a standard deviation value of 0. Every time
these defects triggered, those parameters were chosen from the
same value set. The 0.25 threshold on standard deviation
cleanly separates these trigger signals from the signals that are
independent of the defect. Viewing the plots of mean
proportionality, it can be seen that the signals take different
values for the different defects. This provides a different set of
criteria for the two different defects. This allows for the two
defects to be confirmed by engineers as distinct, and also
provides the information needed to reliably reproduce each.

VIII. CONCLUSION

It has been shown that this method is able to detect defects
much more rapidly and reliably than the benchmark methods.
This method requires as input only the simply parameter
definitions shown in Appendix A, plus the validated Simulink
model (which is often already available to development
engineers). In addition to identifying defects, it is able to
determine how many unique defects and separate all test cases
into clusters that correspond to these unique defects. This
information is invaluable to engineers while they try to
determine the root cause of each defect. In addition to
providing these examples, the solution also analyzes the input
signals in order to identify the causal signals; furthermore, it
places constraints on the input values as well as the test time.

The overall testing approach described in this paper has
been tailored for the automotive use case and specifically
testing of embedded ADAS system software. Multiple
components of the method have been previously proven in
different fields. Due to this, as well as general similarities
among embedded software, it is expected that this solution
could be easily generalized to various other software testing
scenarios within and outside the automotive domain.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

APPENDICES

Appendix A: Input parameters for example software

The Type column defines the overall behavior of a signal, e.g. it will pulse from one value to be temporarily at another, or
will step from one value to adjacent values. Refresh is the bus refresh rate for each signal. ValueSet 1 and 2 are the two
sets of possible signal values.

Appendix B: Phase 3 example, proportionality standard deviation and mean plots for two defects

Standard deviation (left) and mean (right) plots for two separate defects. Trigger signals are circled in green.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

ACKNOWLEDGMENT

This work has been conducted within the ENABLE-S3
project that has received funding from the ECSEL Joint
Undertaking under grant agreement No 692455. This Joint
Undertaking receives support from the European Union’s
Horizon 2020 research and innovation program and Austria,
Denmark, Germany, Finland, Czech Republic, Italy, Spain,
Portugal, Poland, Ireland, Belgium, France, Netherlands,
United Kingdom, Slovakia, and Norway. The authors would
also like to thank the contributions of Professors Tom Dhaene
and Dirk Deschrijver from the Department of Information
Technology at Ghent University – imec.

REFERENCES

[1] A. Broggi et al., “Extensive tests of autonomous
driving technologies,” IEEE Trans. Intell. Transp.
Syst., vol. 14, no. 3, pp. 1403–1415, 2013.

[2] Waymo, “On the road to Fully Self-driving,” 2017.
[3] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel,

“Man vs. Computer: Benchmarking Machine Learning
Algorithms for Traffic Sign Recognition,” Neural
Networks, vol. 32, pp. 323–332, 2012.

[4] H. Zhu, K. V. Yuen, L. Mihaylova, and H. Leung,
“Overview of Environment Perception for Intelligent
Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 10, pp. 2584–2601, 2017.

[5] N. Steinkamp and R. Levine, “2017 Automotive
Warranty & Recall Report,” 2017.

[6] M. McCarthy, “Update on Light Duty OBD II,”
Pasadenca, CA, 2005.

[7] S.-H. Jeon, J.-H. Cho, Y. Jung, S. Park, and T.-M.
Han, “Automotive hardware development according to
ISO 26262,” 13th Int. Conf. Adv. Commun. Technol.,
pp. 588–592, 2011.

[8] C. Wewetzer, K. Lamberg, and R. Otterbach,
“Creating Test Patterns for Model-Based
Development of Automotive Software,” SAE Tech.
Pap., vol. 1598, no. 01, 2006.

[9] Y. Y. Wang, Y. Sun, C. F. Chang, and Y. Hu, “Model-
based fault detection and fault-tolerant control of SCR
urea injection systems,” IEEE Trans. Veh. Technol.,
vol. 65, no. 6, pp. 4645–4654, 2016.

[10] M. Conrad, I. Fey, and S. Sadeghipour, “Systematic
Model-Based Testing of Embedded Automotive
Software,” Electron. Notes Theor. Comput. Sci., vol.
111, no. SPEC. ISS., pp. 13–26, 2005.

[11] E. Bringmann and A. Krämer, “Model-Based Testing
of Automotive Systems,” 2008 1st Int. Conf. Softw.
Testing, Verif. Valid., pp. 485–493, 2008.

[12] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts,
“Simulation-guided approaches for verification of
automotive powertrain control systems,” Proc. Am.
Control Conf., vol. 2015–July, pp. 4086–4095, 2015.

[13] J. L. Boulanger and V. Q. Dao, “Requirements
engineering in a model-based methodology for
embedded automotive software,” RIVF 2008 - 2008
IEEE Int. Conf. Res. Innov. Vis. Futur. Comput.

Commun. Technol., vol. 00, no. c, pp. 263–268, 2008.
[14] G. Bahig and A. El-Kadi, “Formal Verification of

Automotive Design in Compliance with ISO 26262
Design Verification Guidelines,” IEEE Access, vol. 5,
pp. 4505–4516, 2017.

[15] G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H.
Yazarel, “Verification of automotive control
applications using S-TaLiRo,” Am. Control Conf.
(ACC), 2012, pp. 3567–3572, 2012.

[16] T. Schmidt, S. Jin, J. Rogalli, T. Rogier, H. Pohlheim,
and I. Stürmer, “Efficient Testing Framework for
Simulink Models with MTCD and Automated Test
Assessments in the Context of ISO 26262,” SAE Int. J.
Passeng. Cars - Electron. Electr. Syst., vol. 7, no. 1,
pp. 2014-01–0306, 2014.

[17] I. Arsie, G. Betta, D. Capriglione, A. Pietrosanto, and
P. Sommella, “Functional testing of measurement-
based control systems: An application to automotive,”
Meas. J. Int. Meas. Confed., vol. 54, pp. 222–233,
2014.

[18] M. Lochau and U. Goltz, “Feature interaction aware
test case generation for embedded control systems,”
Electron. Notes Theor. Comput. Sci., vol. 264, no. 3,
pp. 37–52, 2010.

[19] R. Parker, A. Mouzakitis, S. Puthiyapurayil, and N.
Muniyappa, “Advanced Automated Onboard Vehicle
Diagnostics Testing,” UKACC Int. Conf. Control
2010, vol. 44, no. 0, pp. 757–762, 2010.

[20] M. Tatar and J. Mauss, “Systematic Test and
Validation of Complex Embedded Systems,” Embed.
Real Time Softw. Syst., pp. 5–7, 2014.

[21] A. Feliachi and H. Le Guen, “Generating transition
probabilities for automatic model-based test
generation,” ICST 2010 - 3rd Int. Conf. Softw. Testing,
Verif. Valid., no. X, pp. 99–102, 2010.

[22] A. L. Raffaëlli et al., “Facing ADAS Validation
Complexity with Usage Oriented Testing,” in
Embedded Real Time Software and Systems, 2016.

[23] K. G. Larsen, F. Lorber, B. Nielsen, and U. M.
Nyman, “Mutation-Based Test-Case Generation with
Ecdar,” in 2017 IEEE International Conference on
Software Testing, Verification and Validation
Workshops (ICSTW), 2017.

[24] A. Fellner, W. Krenn, R. Schlick, T. Tarrach, and G.
Weissenbacher, “Model-based , mutation-driven test
case generation via heuristic-guided branching
search,” in MEMOCODE ’17 Proceedings of the 15th
ACM-IEEE International Conference on Formal
Methods and Models for System Design, 2017, pp. 56–
66.

[25] G. Betta, D. Capriglione, A. Pietrosanto, and P.
Sommella, “A methodology to test instrument
software: An automotive diagnostic system
application,” IEEE Trans. Instrum. Meas., vol. 57, no.
12, pp. 2733–2741, 2008.

[26] H. Pohlheim, M. Conrad, and A. Griep, “Evolutionary
Safety Testing of Embedded Control Software by
Automatically Generating Compact Test Data
Sequences,” Analysis, no. 724, pp. 804--814, 2005.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

[27] T. E. J. Vos, F. F. Lindlar, B. Wilmes, H. Gross, and J.
Wegener, “Evolutionary functional black-box testing
in an industrial setting,” Softw. Qual. J., no. 21, pp.
259–288, 2013.

[28] D. Gorissen DIRKGORISSEN, U. Ivo Couckuyt, P.
Demeester, T. Dhaene TOMDHAENE, and K.
Crombecq KARELCROMBECQ, “A Surrogate
Modeling and Adaptive Sampling Toolbox for
Computer Based Design,” J. Mach. Learn. Res., vol.
11, pp. 2051–2055, 2010.

[29] J. van der Herten, I. Couckuyt, D. Deschrijver, and T.
Dhaene, “A Fuzzy Hybrid Sequential Design Strategy
for Global Surrogate Modeling of High-Dimensional
Computer Experiments,” SIAM J. Sci. Comput., vol.
37, no. 2, pp. A1020–A1039, 2015.

[30] Z. Huang, “Extensions to the k-Means Algorithm for
Clustering Large Data Sets with Categorical Values,”
Data Min. Knowl. Discov., vol. 2, no. 3, pp. 283–304,
1998.

[31] D. R. (NIST) Kuhn, R. N. (NIST) Kacker, and Y.
(NIST) Lei, “Practical Combinatorial Testing,” 2010.

[32] P. Skruch and G. Buchala, “Model-Based Real-Time
Testing of Embedded Automotive Systems,” SAE Int.
J. Passeng. Cars - Electron. Electr. Syst., vol. 7, no. 2,
2014.

[33] H. Shokry and M. Hinchey, “Model-Based
Verification of Embedded Software,” Computer
(Long. Beach. Calif)., vol. 42, no. 4, pp. 53–59, 2009.

[34] B. Murphy, A. Wakefield, and J. Friedman, “Best
Practices for Verification, Validation, and Test in
Model- Based Design,” SAE Tech. Pap., vol. 1469, no.
01, 2008.

[35] T. W. Simpson, D. K. J. Lin, and W. Chen, “Sampling
Strategies for Computer Experiments: Design and
Analysis,” Int. J. Reliab. Appl., vol. 2, no. 3, pp. 209–
240, 2001.

[36] L. Bai, J. Liang, C. Dang, and F. Cao, “A novel
attribute weighting algorithm for clustering high-
dimensional categorical data,” Pattern Recognit., vol.
44, no. 12, pp. 2843–2861, 2011.

[37] A. Survey and J. Offutt, “Combination Testing
Strategies :,” Softw. Testing, Verif. Reliab., vol. 15, no.
3, pp. 1–32, 2004.

[38] Toyota Europe, “Toyota Safety Sense.” .

Kyle Foss obtained his M.S. degree in
engineering from the University of
California, Los Angeles in 2016. He
received his B.S. in mechanical
engineering from California State
University, Long Beach in 2013. In
2017, he became a researcher with the
IDLab, Department of Information
Technology, Faculty of Engineering,
Ghent University. He previously

worked as a test engineer for Volkswagen Group of America.

Ivo Couckuyt received the M.Sc.
degree in computer science from the
University of Antwerp, Antwerp,
Belgium, in 2007, and the Ph.D.
degree from IDLab, Ghent University,
Ghent, Belgium, in 2013. In 2007, he
joined the research group Computer
Modeling and Simulation (now
merged with CoMP) supported by a
research project of the Fund for

Scientific Research Flanders (FWO-Vlaanderen). He is
currently an FWO Post-Doctoral Research Fellow with the
IDLab, Department of Information Technology, Faculty of
Engineering, Ghent University.

Adrian Baruta is a - Dipl. Engineer in Automation and
Computer Science (2001 – 2006 University “Politehnica”
Timisoara). From 2005 until 2014 he worked as an engineer in
the design, development and testing of safety critical
automotive electronic control units for Continental
Automotive. He joined Toyota Motor Europe in 2014 as a
senior engineer working for the process development for the
validation of Advanced Driving Assistant Systems and
development of cybersecurity requirements for in vehicle
networks, and is active member in AUTOSAR consortium for
the development of standard security requirements.

Corentin Mossoux is a - Dipl. Engineer in Electromechanical
Engineering (2014 – 2016 University of Antwerp, Belgium).
Since September 2017 he joined Toyota Motor Europe as a
junior engineer, working for the process development for the
validation of Advanced Driving Assistant Systems and
development of cybersecurity requirements for in vehicle
networks.

