
 

 

  

Abstract—LTE-eMBMS systems efficiently deliver 

multicast/broadcast services using Layered Division Multiplexing 

(LDM) technology. In a two-layer LDM system, Layer 1, with 

higher power allocation delivers mobile services, and Layer 2 in a 

Single Frequency Network scheme provides local content. The 

challenge is to reduce the gap in the layers’ coverage areas 

caused by the use of different constellations, and SFN gain for 

Layer 2.  Hence, the precision in the coverage area estimation is 

crucial for the successful planning and deployment, particularly 

regarding the SFN gain contribution in Layer 2. For this 

purpose, a real digital TV broadcasting SFN system was used as 

a model to design a method based on Machine Learning 

algorithms, aiming to enhance the coverage area precision for the 

Layer 2 in eMBMS. The method is able to estimate SFN gain 

value with a Mean Absolute Error (MAE) of 0.72 dB and 

certainty in positive or negative contribution in 93% of the cases. 

 
Index Terms—eMBMS, LTE, LDM, Layers’ Coverage Gap, 

Machine Learning, SFN.  

 

I. INTRODUCTION 

UE to the rapid increase in the number and type of 

mobile devices, the emerging mobile applications, and 

the demand for higher video service quality, mobile 

broadband systems are currently under great pressure to 

increase the service capacity to meet the fast-growing data 

traffic requirement, particularly on video services. 

Multimedia Broadcast Multicast Service (MBMS) is the 

point-to-multipoint transmission specification defined by the 

3rd Generation Partnership Project (3GPP) to provide efficient 

delivery of multicast and broadcast services in cellular 

networks[1]. An enhanced version (eMBMS) was defined for 

the Long-Term Evolution (LTE) network, which can provide 

higher throughputs, enhanced broadcasting services, and 

flexible carrier configuration [1]. In the LTE network, the 
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eMBMS are delivered in sub-frames of the available Physical 

Resource Blocks in TDM mode [2]. However, the inclusion of 

LDM in 5G-MBMS [3], enables the provision of unicast, 

multicast or broadcasting services, multiplexed across the 

multi-layer architecture. In [4], the authors proposed the 

application of Layered Division Multiplexing (LDM) 

technology to the LTE-eMBMS. LDM consists of a multi-

layer signal structure for providing different services 

simultaneously over the same frequency channel, with 

multiple signal layers and different transmission powers. 

LDM technology can efficiently deliver multiple 

broadcasting services with different bandwidth requirements 

[5]. Compared to traditional Timing Division Multiplexing 

(TDM) and Frequency Division Multiplexing (FDM) systems 

over an LTE-eMBMS network, the LDM can achieve higher 

capacity when delivering multiple services in the same 

channel. For instance, the authors demonstrated in terms of 

Spectral Efficiency that for the same Signal to Noise Ratio 

(SNR) value of 15 dB, LDM outperforms F/TDM by 1.6 

bps/Hz under the assumption of ideal channel coding [6]. In 

[6], the authors compare LDM and FDM/TDM in terms of the 

mobile service’s capacity-coverage tradeoff. Theoretically, it 

was demonstrated that, under the assumption of ideal channel 

coding, LDM outperforms FDM/TDM in both capacity and 

coverage.  

In a Single Frequency Network (SFN) system, the same 

signal is transmitted synchronously from all transmitters at the 

same channel [7][8]. A SFN allows achieving a higher 

spectrum utilization efficiency (only one instead of several 

channels), less total transmission power, and a more 

homogeneous distribution of electric-field (E) strength [9][10]. 

This technology optimizes the spectrum resources because it 

provides the required coverage through multiple transmitters 

operating at the same frequency and carrying the same 

content. It introduces a certain contribution to the reception 

signal level and can improve service availability and a more 

homogeneous E-strength distribution throughout its coverage 

area. These characteristics of a SFN enable a potential 

network gain [9].  

The advantages of this broadcast network structure have 

enabled its introduction in recent broadband technologies for 

broadcast and multicast applications. For LTE and LTE-

Advanced services, SFN plays a key role. This was introduced 

in Release 9 of the 3GPP (3rd Generation Partnership Project) 
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as Multimedia Broadcast Single Frequency Network 

(MBSFN), where the same content is transmitted to a group of 

users in a cell using a subset of available resources [11]. 

Using SFN, a reduction in the transmitted power can be 

made, keeping the same coverage [12][13].  However, the 

SFN gain is not homogenous and might be even negative in 

some areas. In [14], the authors proposed a methodology to 

calculate the SFN gain (SFNG). The same article also proved 

that SFN gain is closely related to some of the measured 

parameters, i.e., received Electrical field (E), differences of E 

between the two strongest transmitters (Ediff), enabling its 

estimation. Also, in [15], the authors demonstrated that the 

transmission delay difference as a considerable impact on the 

SFNG. Using these parameters to train/validate a Machine 

learning (ML) model, the SFN gain can be estimated, and the 

results can be further applied in different scenarios.  

We analyze here Layer 2 of the LDM system. Layer 1 or the 

Upper Layer (with higher power allocation) is used to deliver 

mobile services (LTE). The Layer 2 or Lower Layer is 

designed to provide high data rate services (UHDTV or 

multiple HDTV services) to fixed reception terminals, where 

the operational SNR is usually high [5]. A relevant challenge 

in such approach is to reduce the gap in the layers’ coverage 

areas identified in [16]. Hence, the precision in the coverage 

area estimation is crucial for planning and deploying an 

eMBMS system, particularly regarding the SFN gain 

contribution in Layer 2.   

Our research's novelty is a method based on an Artificial 

Intelligence algorithm for accurately estimating the SFN gain 

for its further application in balancing the Layer 1 to Layer 2 

coverage ratio in LTE-eMBMS networks. The three 

significant contributions of this paper are as follow: (i) the 

feasibility of using ML to estimate the SFNG based on real 

data, (ii) a method based on ML to identify the SFNG with an 

error of 0.72 dB, and (iii) enhancing the coverage area 

precision for the SFN Layer 2 in eMBMS.  

The paper is organized as follows. Section II presents the 

scenarios and methods used in the research. Sections III 

describes the most relevant performance results. Finally, 

Section IV highlights the main conclusions of this work. 

II. SCENARIOS AND METHODS 

A. Measurement Area 

For estimating the SFN gain, the field measurements in [14] 

are considered. The transmitting network is located in Ghent 

(Belgium). The SFN consists of three transmitters operating at 

a frequency of 602 MHz [14].  

Fig. 1 shows a map of Ghent with the location of the three 

Transmitters (Tx) (black dot markers in Fig. 1) and the 50 km 

route (black line) where the measurement campaign was 

performed. The route starts from the center of Ghent to the 

surrounding municipalities. A total of 389 locations were 

measured, and the resulting dataset is used to train/validate the 

ML models. The work is focused on estimating the SFN gain 

value with six different ML models, with reference models 

and determine the best model to estimate the SFN gain, 

compared with the actual results from the measurement 

campaign. 

 

 
Fig. 1.  Map of Ghent (route inside the red line) with the three Transmitters 

(black dot markers) and the measurement route (black line). 

 

B. Data recording and processing 

The field tests were based on mobile Digital Video 

Broadcasting (DVB) measurements along a 50 km route. The 

exact same measurement route was repeated four times, each 

time with a different transmitter configuration (Transmitters 1, 

2, 3 and SFN scenario). In order to properly compare the 

recorded measurements along each route, a synchronization 

procedure is required, in both time and space. Compared to 

[14], an improvement in the spatial synchronization is applied 

in this work, based on [17]. Using the algorithm from [17], the 

four trajectories were first map matched, meaning that all GPS 

location sequences were mapped to the most likely trajectory 

on road segments, accounting for the instantaneous velocities, 

speed limits, one-way streets, road type and location. It was 

visually confirmed that this procedure resulted in the four 

same routes. The remainder of the synchronization process 

consists of time synchronization of the samples along the route 

and remains unchanged compared to [14]. This time 

synchronization consists of a division of one of the four routes 

into smaller segments of a fixed segment length, determining 

the sample at the end of each segment and determining the 

matching border samples of the other three trajectories, 

resulting in a set of corresponding road segments for all four 

routes. Similarly to [14], due to statistical relevance, data were 

discarded where the SFN or MFN trajectory did not contain 

more than 5 samples. Also, segments are discarded for which 

the resulting actual segment length of the SFN and MFN 

trajectories differ more than 20%. Using a similar reasoning as 

in [14], a segment length of 100 m was chosen. Once the 

segment lengths are chosen, a database is created which for 

each segment contains all the information required for training 

and validating the neural network. A total of 21 variables in 

389 points, related to SFN and MFN parameters as well as 

geographical information were obtained. 

 Before starting with the training and validating process, we 

must analyze the available data to avoid outliers associated 

with possible measurement errors. All the values out of the 

range median ± 9.6 dB (highest possible contribution of an 



 

 

SFN with three transmitters) were removed. Fig. 2 shows a 

histogram of the measured SFNG. Among the 367 samples, 

316 (86%) samples are between -5 dB and 5 dB (inside the 

blue rectangle). For having a better understanding of the 

SFNG, some other metrics need to be highlighted. For 

instance, the average of the samples is 3.16 dB, with a 

standard deviation of 3.96 dB, and the median value is 0.22 

dB.   

 
Fig. 2. Histogram of the SFNG measured values. The image highlights the 

SFNG values below to 6 dB (blue rectangle) and 9.6 dB (green rectangle). 

 

Among all the measured parameters, we want to highlight 

Ediff because of its influence in the SFNG estimation. In [14], 

the authors defined this parameter as the difference between 

the dominant transmitter and the second strongest transmitter 

(1).  

  

𝐸𝑑𝑖𝑓𝑓 =  𝐸𝑚𝑒𝑑𝑖𝑎𝑛
𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑇𝑥 − 𝐸𝑚𝑒𝑑𝑖𝑎𝑛

𝑆𝑒𝑐𝑜𝑛𝑑𝑆𝑡𝑟𝑜𝑛𝑔𝑒𝑠𝑡𝑇𝑥
    [dB] (1) 

 

Another parameter to highlight is the SFNG. It is close related 

to some measured parameters. In [14] and [10] the SFNG is 

define as: 

 

𝑆𝐹𝑁𝐺 = 𝑀𝐸𝑅𝑆𝐹𝑁 − 𝑀𝐸𝑅𝑀𝐹𝑁        [𝑑𝐵] (2) 

 

where in the particular case of [14], the MERSFN is the median 

MER in a segment when all the three transmitters are active 

and MERMFN is the maximum of the median MER values with 

only one transmitter active. 

C. Proposed Machine Learning Algorithms 

Artificial intelligence and Machine Learning (ML) 

algorithms are inexpensive and powerful tools, widely used to 

learn data patterns by exploiting vast relevant information 

from a previously collected dataset [18]. These algorithms 

have recently been applied to plan and optimize multiple kinds 

of telecommunication networks and services [18][19][20], 

proving their advantage over theoretical and/or empirical 

propagation models. 

For designing the model, we use the WEKA tool [21]. It is a 

collection of machine learning algorithms and data 

preprocessing tools [21]. We use the algorithms with the best 

performance for our dataset in the training/validation process. 

Those algorithms are Gaussian Process (GPs), Linear 

Regression (LR), Instance-Based Learning (IBK- commonly 

known as a k-nearest neighbour algorithm), SMOreg, KStar, 

and Multilayer Perceptron (MLP). 

 The GPs are a nonparametric classification method based on 

a Bayesian methodology [21]. It is a powerful algorithm for 

both regression and classification. LR is a classical statistical 

method that computes the coefficients or “weights” of linear 

expression, and the predicted (“class”) value is the sum of 

each attribute value multiplied by its weight [22]. k-Nearest 

Neighbor (kNN) is one of the most popular data classification 

algorithms [23] because it is easy to implement. There are 

only two parameters to implement, the value of k (number of 

neighbors), and the distance function (Euclidean or 

Manhattan) [23][24]. SMOreg implements the support vector 

machine for regression. The parameters can be learned using 

various algorithms by setting the RegOptimizer [25]. KStar is 

an instance-based classifier based upon the class of those 

training instances similar to it, as determined by some 

similarity function. It differs from other instance-based 

learners in that it uses an entropy-based distance function [26]. 

MLP can model non-linear problems and map sets of input 

data into a set of appropriate outputs using a supervised 

algorithm called Levenberg-Marquardt [27]. The activation 

function and the number of hidden layers can be changed 

directly on the Weka tool. 

D. Methods and Reference Models   

To know how accurate the proposed ML models are, we 

compare the obtained results with different benchmarking 

models.  

• “Ideal Reference Model” (IRM), where we added all 

possible inputs (20) to estimate one output (SFNG). This 

model will help deciding whether the SFN gain could be 

estimated using an ML algorithm trained with the 

available dataset. After the comparison with the field 

measurement, the inputs highly correlated to the SFNG 

will be removed and the final model will be compared 

with the following two models.    

• “Basic Reference Model” (BRM), by predicting the SFN 

gain as training dataset average. Each error in the 

validation set will be the average in the training dataset 

minus the actual measured SFN gain.  

• “Linear Ediff Model” (LEM). It is based on [14] and 

estimates the SFNG based on a linear relationship with 

the recorded Ediff values. In [14], a correlation of -0.48 

was obtained for the entire dataset. In this paper, the 

linear relationship will be determined based on the 

training set to ensure a fair comparison with the ML 

model. 

E. Dataset Inputs and Output 

The whole dataset consists in 20 Inputs (distances from the 

Tx, Electrical Field (E) values for every steady point with the 

Tx working on MFN mode and SFN mode, delta distances 

between the two strongest transmitters, and so on) related to 

each measured point and one Output (SFNG) (See Fig. 3). 

Initially, the whole dataset is assessed to verify if the SFN 

gain can be estimated using ML. Finally, we find which inputs 

have more influence on the SFN gain estimation. We use the k 

cross-validation algorithm [28], where the best performance 

was obtained with k = 20.  For k = 20, it has 19/20 (349 



 

 

samples for training) of the data for learning. In contrast, for k 

= 5, it has only 4/5 (294 samples for training) of the data.  

 

 
Fig. 3. Representation of the ML with twenty inputs and one output.              

E = Electrical field, MFN = Multi Frequency Network, SFN = Single 

Frequency Network, MER = Modulation Error Rate, Ediff = Electrical field 

difference.  

F. Model Evaluation 

The Mean Absolute Error (MAE) is used to control the 

training process and have a result in the validation process. 

This value is calculated by employing (3). 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑇𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 
(3) 

Where n is the total number of samples within the samples 

population, Ti and Oi are the ith values of the target SFNG 

inside the training/validation dataset and output (estimated 

SFN gain value by the ML), respectively [29]. One way to 

avoid overfitting [30] the system is to split the whole dataset 

in different configurations to have a number of samples for 

training (i.e., 70%, 75%, or 80%) and the rest for validation 

(respectively 30%, 25% or 20%). However, the MAE value 

does not show the points where the error was higher than the 

MAE, being a problem in the SFN design. This uncertainty can 

be solved by calculating the standard deviation of the error 

over the whole validation set.  

The next step is to investigate the six algorithms (Section II-

C) to estimate the SFN gain and compare their results. The 

machine learning is based on updating the weights and bias 

from randomly chosen values every time the system is started 

up. During the training process, these values are updated to 

reduce the MAE and finally having an output closer to the 

target (measured) value. Hence, in every iteration, we will 

have a different result of the MAE. For validation, the 

algorithm does not choose the best data combination only. We 

divided the 367 samples in ten different datasets with the 

proposed combinations for calculating the Progressive 

Average (PAVE) of the MAE value. It should be pointed out 

that each output is considered after the whole process is 

completed (load the proper dataset among the ten available, 

training/validating, and calculate the MAE value). At the end 

of the process, the PAVE should lead to an approximately 

constant value (low standard deviation), or more simulations 

are needed to obtain the MAE value with its respective 

standard deviation.  

For employing ML as a solution to estimate the SFN gain, 

some elements have to be considered. The “Ideal Reference 

Model” (IRM) performance needs to be close to the 

measurement campaign’s available data. Hence, the expected 

MAE between the target (measured data) and the predicted 

data (estimated values by the ML) we propose it to be below 

0.5 dB.  Second, the MAE of the proposed model in this 

research has to be lower than the MAE of the “BRM” and 

“LEM”. Otherwise, the better solution to estimate the SFN 

gain could be one of these options. Then, to consider our 

model as a better solution for SFN gain estimation, we 

propose that the MAE should be equal or less than the MAE of 

the IRM plus its standard deviation (MAE proposed model ≤ MAE 

IRM + Standard Deviation IRM).  

G. LDM performance in LTE-eMBMS 

A critical problem in LTE-eMBMS networks is the 

coverage gap between Layer 1 (delivering mobile services, 

LTE) and Layer 2 (delivering TV, using SFN) in the LDM 

system. The main problems are, i) comparing with ATSC 3.0 

the cell of the LTE-eMBMS network is significantly reduced 

and, as a consequence of that, ii) the co-channel interference is 

a more severe issue comparing with Digital TV system. 

Hence, the difference in SNR plays an important role in the 

coverage parity [31]. Therefore, to estimate the Layer 2 

coverage, an improved SFNG prediction model has been 

proposed in this paper to bridge the gap.  

In [31], the authors made a simulation-based analysis with 

different configurations. They established different SNR 

thresholds with different injection levels for Layer 2. In [14], 

the authors used for the measurements a DVB-T network 

where the constellation used for the tests was 16- Quadrature 

Amplitude Modulation (QAM), by using the rate-1/2 TC and 

MPE-FEC (Multi-Protocol Encapsulation-Forward Error 

Correction). This configuration has a similarity with one used 

in [31]. Then, starting with the hypothesis that in the Layer 2 

we have the same configurations used in [31], it might be 

valid to use the SFNG estimation model to analyze the 

coverage area in Layer 2 of LTE-eMBMS. For the 

propagation path loss, we use the model described in [32], 

adjusted for the city of Ghent, Belgium.  

III. RESULTS AND DISCUSSION 

A. Neural Network accuracy 

In Section II-B (Fig. 2), the resulting dataset from the 

measurement campaign was analyzed. It contains 21 

parameters, 20 inputs, and one output. The dataset was divided 

into ten different datasets for every setup (70/30, 75/25, 80/20) 

and evaluated for every algorithm using k-cross validation 

with k = 20. TABLE I shows the MAE for every algorithm 

with 80% training/20% validation setup. It is equal to 311 

(295 samples using k-cross validation with k = 20) samples for 

training and 78 samples for validating every one of the ten 

different datasets. 

 

 

 
 



 

 

TABLE I. MAE OF THE TRAINING/VALIDATION PROCESS AND THE STANDARD 

DEVIATION FOR THE IDEAL REFERENCE MODEL. 80% TRAINING/20% 

VALIDATION. STD = STANDARD DEVIATION   

Algorithm 
Training 80% Validation 20% 

MAE [dB] StD [dB] MAE [dB] StD [dB] 

GPs 0.64 0.79 0.64 0.78 

LR 1.12 1.50 1.10 1.38 

MLP 0.58 0.73 0.49 0.56 

SMOreg 0.79 0.85 0.82 1.06 

IBK 0.86 0.87 0.80 0.83 

KStar 0.90 1.12 0.94 0.99 

 

The algorithm with the best performance for this dataset is 

MLP with a MAE of 0.49 dB (lower than 0.5 dB) and a 

standard deviation of 0.56 dB. The MLP uses a supervised 

learning technique called feedforward, widely used in datasets 

where training with known data an/several output(s) can be 

estimated. The LR has the worst performance where the MAE 

and the standard deviations are 1.10 dB and 1.38 dB, 

respectively. Every input has its contribution (wide dispersion 

of the values), and finding an approximation for all the inputs 

is difficult.  The algorithms based on k-nearest neighbor (IBK 

and KStar) have a modest performance compared with MLP. 

Those algorithms find the neighbor based on the distance 

locations, and the rest of the parameters have a significant 

dispersion making the estimation difficult. 

B. Proposed model 

Section III-A demonstrated that the SFNG could be 

estimated using ML with a MAE lower than 0.5 dB (estimated 

value in TABLE I). Hence, due to the high correlation 

between the SFNG and the MER inputs, and the need of 

especial equipment to measure the MER the next step was to 

remove the MER inputs. The MAE for the resulting 17 inputs 

and one output is 0.86 dB and 0.62 dB of standard deviation. 

The next step is to decide the inputs with a higher contribution 

to the SFNG. Using the algorithm “ClassifierAttributeEval” in 

the Weka tool [33], we obtain the inputs that contribute 

positively to every algorithm under test. After applying the 

algorithm, the input with the highest contribution (ranked by 

Weka with 0.634) to the SFNG is Ediff in agreement to the 

results found in [15]. Despite the strong relationship between 

the SFNG and the Ediff parameter, other parameters contribute 

to the SFNG (i.e., Ediff between strongest and weakest 

transmitters (ranked by Weka with 0.515), E in MFN mode 

(ranked by Weka with 0.495) and the distance difference 

between closest and farthest transmitters).   In contrary, the 

input with less contribution to the SFNG the received 

electrical field in SFN mode (ranked by Weka with 0.187).  

To improve the results, some parameters were modified in 

the IBK algorithm to minimize the MAE. The first modified 

parameter is k (number of neighbors), with the best 

performance for k = 4. The second parameter is the distance 

weighting. To improve the results, some parameters were 

modified in the IBK algorithm to minimize the MAE. The first 

modified parameter is k (number of neighbors), with the best 

performance for k = 4. The second parameter is distance 

weighting, which is set to 1/distance. The last parameter is the 

algorithm to search the neighbor where the best performance 

was achieved with the Cover Tree algorithm using a Euclidean 

function. Therefore, the IBK algorithm performs better than 

the rest of the algorithms in the proposed model. The main 

difference between IBK and the other evaluated algorithms is 

the ability to work with smaller datasets (in our case, the 

dataset is considered as a relatively small dataset). The IBK 

algorithm works better with a small dataset because it learns 

from the dataset only at the time of making the real time 

prediction. This makes the IBK converge faster to the final 

result. It means a shorter calculation time and best algorithm's 

performance to achieve a similar or better accuracy. The 

opposite occurs with the rest of the algorithms, which require 

a large dataset.  

Choosing the best data combination by the algorithm might 

lead to overfitting [30]. This phenomenon appears if the MAE 

in the training process decreases, while the MAE in the 

validation process increases. A balance between the MAE 

values, both in training and validation processes, should be 

found to avoid this situation. TABLE II shows the results of 

the six algorithms with the three chosen setups after ten times 

running. The best performance was obtained with the IBK 

algorithm that is proposed, where the MAE = 0.72 dB < 1.3 

(MAE IRM + Standard Deviation IRM) dB in the 80% 

training/20% validating. 
 

TABLE II. MAE OF THE VALIDATION DATASET BASED ON THE 

PROGRESSIVE AVERAGE AFTER TEN SIMULATIONS. THE STANDARD DEVIATION 

SHOWS HOW THE MAE HAS CHANGED THROUGH THE TEN SIMULATIONS. 

*DISTANCE WEIGHTING SET TO 1/DISTANCE  

Algorithm 

training/ validation (%) 

70/30 75/25 80/20 

MAE 
[dB] 

StD 
[dB] 

MAE 
[dB] 

StD 
[dB] 

MAE [dB] StD [dB] 

GPs 2.03 1.78 1.93 1.84 1.83 1.90 

LR 2.12 1.56 1.95 1.49 1.93 1.78 

MLP 1.78 1.35 1.82 1.35 1.60 1.48 

SMOreg 1.91 1.57 1.90 1.51 1.81 1.69 

IBK 0.98 0.61 0.89 0.70 0.86/0.72* 0.62/0.58* 

KStar 1.23 0.99 1.14 0.94 1.12 0.77 

BRM - - - - 3.17 2.17 

LEM - - - - 2.98 4.00 

 

C. Proposed model versus Reference Models 

Section II-D proposed two basic reference models (BRM and 

LEM). The BRM assumed an area where the SFNG was the 

average of the training set, and each error in the validation 

dataset was the average minus the measured SFNG. Compared 

with the average of the measured data, the resulting MAE is 

3.17 dB, with a standard deviation of 2.37 dB.  The second 

one was based on a linear equation (Y = Mx + N) with the 

form    𝑌 =  −0.275𝑥 + 2.0353. Where Y is the SFNG, and x 

refers to Ediff values. We previously mentioned that the dataset 

was divided in ten different datasets. This means that we have 

10 different values of M and N. To have the final values we 

apply the PAVE technique. The resulting MAE for this model 

is 2.98 dB, and the standard deviation is 4.00 dB. TABLE II 

summarizes the MAE values and standard deviations for the 

two models compared with ML models. The IBK model has a 



 

 

better performance than the two reference models because 

some parameters were modified, the number of neighbors, and 

the function to calculate the distance among neighbors. Hence, 

the IBK model can estimate values of SFNG with a 0.72 dB 

accuracy. Fig. 4 shows a scatter plot with measured and 

estimated SFNG values. In 73 of the 78 samples (93%) the 

estimate was correct as to whether or not there is a positive 

contribution to the SFNG.  

 
Fig. 4. Scatter plot of the measured SFNG and the estimated SFNG value. The 

represented values correspond to the validation dataset with a distribution of 

80% training/20% validation.  

D. SFNG and Covered area in L2 of LDM network 

1) SFNG estimation 

Section II assessed the performance of the six algorithms 

under test. The IBK achieved the best performance (lowest 

MAE and Standard Deviation) among the six, for our dataset. 

The dataset was built with the measured data along the route 

represented in Fig. 1. Fig. 5 shows the predicted SFNG with 

the newly developed model, applied to the city center of Ghent 

and the measured values. The area highlighted with the red 

line in Fig. 1 (Ghent city) was selected to generate a color-

based map of the SFNG. A total of 102 points were chosen to 

cover the entire area. Using the model described in [32] the 

values of E were calculated. Finally, the E in SFN mode and 

the SFNG was estimated using the IBK model.  

The estimated values are similar to the measured ones in the 

area near the map’s pixels corresponding to a measured 

location (i.e., Zone 1, Fig. 5). The obtained values for the 102 

locations using the IBK algorithm have a similar SFNG value 

as those obtained in training/validating process. Zone 1 is 

located in the middle of the three transmitters, where all of 

them contribute to the received signal level and to the SFNG 

(lower Ediff value). However, in this area the average of the 

estimated SFNG values is 0.29 dB. On the contrary, in Zone 2, 

Fig. 5, we can notice an area with negative values of the 

SFNG. The area is close to the transmitter M (downtown of 

Ghent city). In this zone the Ediff has a lower value (ES_Tx – 

EM_Tx ~ 7 dB), causing that there is not a significant influence 

on the SFNG. Furthermore, the influence of two of the three 

transmitters to the received signal level compared with the 

strongest one, it is not significant to contribute the SFNG. In 

Zone 3, the SFNG is around 6 dB. The zone is out of the city 

center in a less populated area, and the three transmitters 

contribute to the received signal level. To conclude, in 74 

(72.5%) of the 102 points, the SFNG is near zero dB or 

positive. In this way, the improvement made when using SFN 

over MFN is demonstrated.   

 

 
Fig. 5. Estimated SFNG in Ghent city (the area inside the black border and 

measured values (along the 50 km of route highlighted with the red line). 

Zones 1 and 3 represent areas where the SFNG is positive, and in Zone 2, the 

SFNG is negative. S = Strongest transmitter, M = Middle transmitter, and W = 

Weakest transmitter in terms of transmitted power.  

 

2) Covered area in LDM network 

When planning a wireless network, the major question is 

the service area and the population covered (i.e., 95% of 

locations covered, 99% of the time at the cell edge). The main 

problem using an LDM over an LTE eMBMS network is the 

coverage gap between Layer 1 (LTE) and Layer 2 

(LTE+SFN).  

Section III-C, demonstrated that the IBK model could estimate 

the SFNG. Based on the hypothesis assumed and described in 

Section II-G, we analyzed and compared the coverage area 

working in MFN and SFN. The goal is to manage the 

coverage area of Layer 2 in LDM. By varying the injection 

level, the coverage area can be modified, and the gap between 

layers could be reduced. TABLE III shows how the coverage 

area varies either for MFN or SFN. Moreover, TABLE III 

shows that by adding the SFNG, the coverage area can be 

increased. 

 
TABLE III: LAYER 2 COVERAGE AREA MANAGEMENT USING THE INJECTION 

LEVEL AND ADDING THE SFNG. 

Injection 

Level 
4 dB 5 dB 6 dB 7 dB 

Covered Area 

MFN 5.44 km 5.67 km 5.75 km 5.8 km 

SFN 7.65 km 7.86 km 8.03 km 8.17 km 

 

 We show in Fig. 6 the Layer 2 coverage area for the three 

transmitters working in MFN and SFN mode to have a better 

understanding. Using 23 dBm as transmitted power, 7 dB of 

injection level for the Layer 2, and the rest of the 

configuration described in Section II-G, the maximum 

coverage distance is 5.8 km for every transmitter in MFN 

mode. On the other hand, based on the maximum estimated 

value of the SFNG (6 dB) in in the entire area, the maximum 

coverage distance is 8.17 km. Hence, the coverage distance 

difference between both technologies is 2.37 km. This 

demonstrates that using SFN in Layer 2 of the LDM, the 

coverage area can be improved by 41%.  
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Fig. 6. The coverage area for each transmitter in MFN and in SFN mode. Red 

circles correspond to each transmitter's coverage area working in MFN mode 

and the Blue circles correspond to SFN mode. 

 

3) Multimedia Broadcast SNR  

Until this point, our research focused on working with only 

three transmitters in an SFN configuration. However, it would 

be valuable to evaluate our model over Low-Power Low 

Tower-based MBSFN, describing the delivery of MBMS 

(Multimedia Broadcast Multicast Services) over a radio 

network which is synchronized in order to minimize 

interference. The technique allows a group of cells to transmit 

the same multicast content utilizing the same radio sub-

carriers, which essentially means that a group of cells all 

appear as one large cell since the content transmitted from 

each individual cell is identical (and synchronized). This 

makes the MBSFN transmission appear to a user equipment as 

a transmission from a single large cell, increasing the Signal-

to-Interference Ratio due to the absence of inter-cell 

interference. Our proposed model can here be used to estimate 

the MBSFN gain and make a trade-off between the coverage 

area, the required number of Base Stations, and the power 

consumption.   

IV. CONCLUSION 

This paper studied the coverage gap between Layer 1 and 

Layer 2 in an LDM system of the LTE eMBMS network. Six 

ML algorithms’ performance was compared with the available 

dataset from a field measurement. The IBK model was the 

algorithm with the best performance for our dataset with a  

MAE = 0.72 dB and a standard deviation of 0.58 dB.  In 73 of 

the 78 samples (93%) the estimation was correct as to whether 

or not there is a contribution to the SFNG. The contribution of 

using our AI-driven prediction method to manage the Layer 2 

coverage area on an SFN network configuration in an LTE 

eMBMS was demonstrated. 

Feature work will consist in update the existing dataset with 

field measurements and use the proposed model to make a 

network planning.  
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