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Abstract: Wireless power transfer (WPT) is an essential enabler for novel sensor networks such as the
wireless powered communication network (WPCN). The efficiency of an energy rectifier is dependent
on both input power and loading condition. In this work, to maximize the rectifier efficiency, we
present a low-complexity numerical method based on an analytical rectifier model to calculate the
optimal load for different rectifier topologies, including half-wave and voltage-multipliers, without
needing time-consuming simulations. The method is based on a simplified analytical rectifier
model based on the diode equivalent circuit including parasitic parameters. Furthermore, by using
Lambert-W function and the perturbation method, closed-form solutions are given for low-input
power cases. The method is validated by means of both simulations and measurements. Extensive
transient simulation results using different diodes (Skyworks SMS7630 and Avago HSMS285x) and
frequency bands (400 MHz, 900 MHz, and 2.4 GHz) are provided for validation of the method.
A 400 MHz 1- and 2-stage voltage multiplier are designed and fabricated, and measurements are
conducted. Different input signals are used when validating the proposed methods, including the
single sinewave signal and the multisine signal. The proposed numerical method shows excellent
accuracy with both signal types, as long as the output voltage ripple is sufficiently low.

Keywords: WPT; RF; rectifier; load resistance; analytical; closed-form; half wave; voltage multiplier

1. Introduction

Wireless power transfer (WPT) is an emerging technology that removes the traditional
charging cables. Due to its convenience, WPT can be found or foreseen in many applications
such as electric vehicles, consumer electronics, and new communication networks [1,2].
Specifically, far-field WPT based on RF signals can deliver wireless power over a long
distance up to kilometers, which enables new communication and sensing networks in the
IoT domain such as wirelessly powered communication network (WPCN). These networks
consist of low-power sensor nodes whose power is provided by either dedicated RF sources
or ambient RF energy, which prolongs the sensors’ lifetime and reduces the maintenance
cost [3].

The receiving side of an RF WPT system is called an energy rectifier. The rectifier
converts the RF signal into a DC voltage that either directly powers electronics or is stored
in storage units such as batteries or super-capacitors. It often consists of an antenna that
captures the wireless signal; a matching and rectifying network for RF-to-DC conversion;
and a power management unit (PMU), which is the rectifier’s load. The power conversion
efficiency (PCE) of a rectifier has been shown to depend on both received RF power and
its load; thus, the optimal load for a rectifier needs to be understood [4]. Additionally,
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novel excitation waveforms such as multisine waveform featuring high peak-to-average-
power ratio (PAPR) and multiple frequency components [5] have been proposed to boost
the rectification efficiency. To analyze the optimal load with general excitation, transient
simulations are often conducted [6], which are time-consuming and computationally
intensive. Harmonic balance (HB) is another option, but its complexity poorly scales with
the number of frequency components in the excitation waveform so that it soon becomes
impractical [7].

Instead of numerical solvers, many efforts were put into the analytical modeling of
rectification. The works [8–10] used the time-domain method to analytically analyze the
shunt-diode rectifier. Afterwards, ref [11] the model was extended with class-f harmonic
termination. In [12–14], Bessel functions are used to separate DC component and the
first harmonic of the diode voltage and the optimal load using the developed model is
calculated. A limitation to the aforementioned works is that they all assume the applied
excitation to be a sine wave. Works in [15,16] extensively analyzed the incurred losses
in the complete rectification chain and pointed out the optimal load resistance for the
overall efficiency in the low input power range is equal to the diode junction resistance and
series resistance combined. The junction resistance, however, depends on the junction bias
voltage, which in turn depends on the load; thus, additional steps are needed to calculate
or measure this quantity.

There have also been works focusing on developing analytical rectification models
for general multisine signals. In [17], a simplified analytical model was developed to
mathematically prove the efficiency gain of the multisine excitation. Later, this model was
used in [18,19] to optimize the transmission waveform with frequency-selective fading
channels because of the tractability of this rectifier model and its ability to capture the
non-linearity of the rectifier circuitry. For the same reason, this model was also used in
system performance analysis and optimization of WPCNs and shows superior accuracy to
the conventional linear rectifier model in [20–23]. Despite the successful applications of
this model, the key assumptions in [17,18] when developing it are the ideal diode and the
half-wave rectifier topology.

In our previous work [24], the model with diode parasitics in the simplest half-wave
rectifier was discussed; then, the model was extended for the voltage-doubler. We also
showed the low-complexity method to derive the optimal load. The method works with
general multisine input signals, provided that the output voltage ripple is small enough.
In the current work, we further extend the model to generic N-stage voltage-multipliers.
More extensive transient simulations are conducted to validate the result. Two different
Schottky diodes are considered in the simulation, and three different frequency bands:
400 MHz, 900 MHz, and 2.4 GHz, which are simulated as well to investigate the impact
of frequency. Finally, rectifier prototypes are designed and fabricated and a measurement
campaign is conducted to provide experimental data to further support the results.

The paper is organized as follows: Section 2 introduces the simplified analytical
rectifier model for both half-wave and N-stage voltage multiplier with a realistic diode
equivalent model; Section 3 describes the calculation of the optimal load and its closed-
form asymptotic solutions; and numerical and experimental validations are discussed
in Section 4, including the simulation setup, PCB design considerations, measurement
setup, results, interpretation, and discussion. Finally, Section 5 summarizes the paper and
discusses the implications of applications.

2. Analytical Rectification Model

In this section, we will summarize the rectification model for the half-wave topology
and analyze the effects of diode parasitic parameters. Then, we will extend the model to a
generic N-stage voltage multiplier.
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2.1. Half-Wave Rectification Model

The schematic of a half-wave rectifier is shown in Figure 1a. The diode is modeled
by the equivalent circuit shown in Figure 2, where there is the ideal diode junction Dj,
junction capacitance Cj, series resistance RS, parallel capacitance CP, and series inductance
LS. Assume a multisine input voltage to the rectifier circuit being:

vin(t) =
N f−1

∑
n=0

VA cos(2π fnt + φn) (1)

where N f is the number of sub-carriers or tones, VA is the amplitude of each tone, fn and
φn are the frequency and phase of the n-th tone, respectively. The tones are assumed to
follow a uniform frequency grid, such that fn = f0 + n∆ f , with ∆ f being the frequency
separation. As a result, vin(t) is a periodic signal with period T = 1/∆ f when N f > 1. The
CW signal can be viewed as a special case with N f = 1 and a period of T = 1/ f0.

Figure 1. Schematic of (a) a half-wave rectifier and (b) an N-stage voltage-multiplier.

Figure 2. Diode equivalent circuit [25].

According to the Kirchhoff’s voltage and current law, and Figures 1a and 2, we have
the following relationships:

C
dvout(t)

dt
+ iout(t) = CP

dvCP(t)
dt

+ iDj(t) + Cj
dvCj(t)

dt
(2)

iDj(t) = is(e
αvDj

(t) − 1) (3)

vDj(t) = vin(t)− vLS(t)− vRS(t)− vout(t) (4)

iRS(t) = iD(t)− CP
dvCP(t)

dt
(5)

where is is the diode saturation current, and α = 1/(nvt) with n and vt being ideality
factor and thermal voltage, respectively. Equation (3) is the Shockley equation of the diode
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junction. Because we are interested in the DC output voltage rather than its transient, we
average both sides of Equation (2) over a signal period after the system reaches steady state:

idc = E{iDj(t)} =
is

T

∫ T

0
e

αvDj
(t)

dt− is (6)

where idc is the DC component of output current iout, E{.} denotes time averaging, and the
juntion current iDj(t) is substituted by Equation (3). Note that during the time averaging,
the current terms related to capacitors vanishe. This is because in the steady state, the
amount of electronic charges on a capacitor remains the same in the beginning and the end
of a period. As a result, the average current has to be zero.

Next, we assume the output capacitor C in Figure 1a is sufficiently large, such that the
output voltage ripple is negligible. Hence, the output voltage over the load is effectively
a DC signal, such that we can write iout(t) ≈ idc and vout(t) ≈ idcRL. This is a reasonable
assumption since a steady state voltage source is essential for the proper functionality of the
circuitry behind the rectifier. Following this assumption, we can further approximate the
current through diode iD(t) = C dvout(t)

dt + iout(t) ≈ idc. Substituting these approximations
in Equation (4), we obtain

vDj(t) ≈ vin(t)− iRS(t)RS − idcRL (7)

The series inductance term is dropped because LS is typically very small so naturally
vLS(t) = Ls

diD(t)
dt ≈ 0. Similarly, the parallel capacitance term in Equation (5) is also

dropped due to small CP value. As a result, Equation (5) can be rewritten by iRS(t) ≈ idc,
and Equation (7) is now:

vDj(t) ≈ vin(t)− idc(RS + RL) (8)

Substitute it back to Equation (6):

idc = e−αidc(RS+RL)
is

T

∫ T

0
eαvin(t)dt− is (9)

Note now that idc is still on both sides of the equation. Move is to the left hand side
and multiply αRheα(idc+is)Rh to both sides:

α(idc + is)Rheα(idc+is)Rh = αRheαisRh
is
T

∫ T

0
eαvin(t)dt (10)

where Rh = RS + RL. Equation (10) can be solved for idc by using the principle branch of
the Lambert W-function [26]:

idc(vin, RL) = −is +
1

αRh
W
(

αRh(is + zdc)eαisRh
)

(11)

where zdc = is
T
∫ T

0 eαvin(t)dt − is, which is a monotonic function with the amplitude of
input voltage, and W(x) is the Lambert W-function whose value is the solution of w to the
equation wew = x. The Lambert W-function does not have an explicit formula but can be
evaluated by simple numerical methods described in [26].

2.2. N-Stage Voltage-Multiplier Rectification Model

In this section, we will generalize the analytical half-wave rectification model devel-
oped in the previous section to N-stage voltage-multiplier. Figure 1b shows the schematic
of a N-stage voltage-multiplier. A voltage-multiplier is often used to boost the output DC
voltage by cascading voltage-doublers. The capacitors Cn with even n are used to provide
DC offset to each stage so the output voltage is stepped up gradually. Assume all diodes
used in Figure 1b are the same. According to the Kirchhoff’s current law, for the upper
diode of the last stage D2N :
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C2N−1
dvout(t)

dt
+ iout(t) = C2N

dvC2N (t)
dt

+ CP2N

dvCP(2N)
(t)

dt
+ iDj(2N)

(t) + Cj(2N)

dvCj(2N)
(t)

dt
(12)

where CP(2N) and Dj(2N) denote the parallel capacitance and junction of the 2N-th diode.
By time-averaging the above equation in the steady state like we did with Equation (2),
we get:

idc = E{iDj(2N)
(t)} = is

T

∫ T

0
e

αvDj(2N)
(t)

dt− is (13)

According to the Kirchhoff’s voltage law for the diode D2N , the junction voltage is:

vDj(2N)
(t) = vin(t)− vC2N (t)− vLS(2N)

(t)− vRS(2N)
(t)− vout(t) (14)

where LS(2N) and RS(2N) are series inductance and series resistance of the 2N-th diode. The
same treatment with the series inductance and resistance can be done as when analyzing
the half-wave rectifier, to approximate vLS(2N)

≈ 0 and vRS(2N)
≈ idcRS. To ensure a small

output ripple, all capacitors in a voltage-multiplier need to be large enough so the time
constant is larger than the signal period. This means the capacitors can be considered
short-circuits at high frequency so that their voltage drop has only DC component [27]. At
DC, the capacitors are open circuit and the input is shorted because the input voltage does
not have DC component. As a result, the voltage drop across C2N is:

vC2N (t) = −
2N − 1

2N
idcRL (15)

which equals to the voltage drop across the first 2N − 1 cascaded diodes. Using it in
Equations (13) and (14), we get:

idc = eαidc(RS+
RL
2N ) is

T

∫ T

0
eαvin(t)dt− is (16)

Again, solve it for idc using the principle branch of the Lambert W-function:

idc(vin, RL) = −is +
1

αR
W
(

αR(is + zdc)eαisR
)

(17)

where R = RS + RL
2N and N is the number of stages of a voltage-multiplier. Given the

similarity between Equation (11) for half-wave and Equation (17) for voltage-multiplier,
the half-wave model can be viewed as a special case of the multiplier model with number
of stages N = 0.5.

3. Calculation of Optimal Load Resistance
3.1. Problem Formulation

We have so far developed the output DC current in the last chapter. By definition, the
output DC power Pdc is:

Pdc = i2dcRL (18)

The optimal load that maximizes Pdc can be found by numerically evaluating
Equation (18) based on Equation (17) with a scanned RL. This solution is called numerical
solution of the analytical model.

To find the closed-form solution to the optimal load, the first derivative of Pdc needs
to be formulated. We first write the idc’s first derivative with respect to the load using (17):

∂idc
∂RL

= − 1
2αNR2 W(E) +

1
αR

∂W(E)
∂RL

(19)
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where E = αR(is + zdc)eαisR. To simplify the notation, we omit the dependency of both idc
and Pdc on vin and RL in equations from here on. The derivative of Pdc with respect to the
load resistance:

∂Pdc
∂RL

= idc(idc + 2RL
∂idc
∂RL

) (20)

Use Equations (17) and (19) in (20) we further have:

∂Pdc
∂RL

= idc

(
− is +

NR− RL

αNR2 W(E) +
2RL
αR

∂W(E)
∂RL

)
, idc I0 (21)

Since idc is by definition a non-negative number, solving for I0 = 0 is equivalent to
solving ∂Pdc

∂RL
= 0. However, finding the closed-form solution can be a challenge due to the

lack of explicit formula of the W-function.

3.2. Closed-Form Approximations for Low Input Power

The W-function can be approximated in closed-form under some assumptions. By
definition, the value of the W-function in Equation (21) is the solution of the equation:

W(E)eW(E) = αisReαisR + αzdcReαisR (22)

An easy solution would be obtained if the second term on the right hand side was
absent, which is W(E) = αisR. This situation is similar to solving a nonlinear ordinary
differential equation (ODE). When the ODE is constructed in a way that there is a simple
part added by a complex nonlinear term, often the perturbation method can be applied
if the nonlinear term is small [28]. Here, we apply the perturbation method to solve
Equation (22) under the condition that zdc is small compared with is. Because zdc is a
monotonic function of input voltage amplitude, the condition is equivalent to a small
input power.

The exact solution W(E) is obviously a function of zdc; thus, a power series about zdc
exists that approximates W(E):

W(E) ≈W(K)
a (E) =

K

∑
k=0

zk
dcWk (23)

where W(K)
a (E) is the approximation to W(E) with order K and the coefficients Wk,

∀k = 0, 1, . . . , K are the generating solutions. Naturally, the smaller zdc is, the less or-
der K is needed before the approximation converges. After substituting (23) into (22) and
taking logarithm on both sides, we obtain

ln
( K

∑
k=0

zk
dcWk

)
+

K

∑
k=0

zk
dcWk = ln

(
α(is + zdc)R

)
+ αisR (24)

Taking the derivative of this equation from 0 to K times and equating zdc to zero each
time gives us K + 1 generating equations. We list them with K = 2 here:

ln(W0) + W0 = ln(αisR) + αisR (25)
1

W0
W1 + W1 =

1
is

(26)

−
(W1

W0

)2
+ 2

W2

W0
+ 2W2 = − 1

i2s
(27)

Then, it is straightforward to get the generating solutions:

W0=αisR, W1=
αR

1+αisR
, W2=−

α2R2(2+αisR)
2(1+αisR)3 (28)
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Using the first two generating solutions and (23), the W(E) is approximated in order
K = 1 by:

W(1)
a (E) = αisR +

αRzdc
1 + αisR

(29)

Substitute this into I0 = 0 and solve for RL, the optimal resistance based on the 1st
order approximation is:

R∗L,1 = 2N(RS +
1

αis
) (30)

This solution is then the closed-form approximation with the first-order truncation for
extremely low input power. Note that what is inside the bracket is the diode’s resistance at
low power [29], which suggests the load should match the resistance of all diodes in series
to obtain maximum output power.

Furthermore, using all three generating solutions in (28), the W(E) is approximated in
order K = 2 by the following:

W(2)
a (E) = W(1)

a (E)−
α2R2(2 + αisR)z2

dc
2(1 + αisR)3 (31)

This approximation of higher order is accurate over a wider zdc range than the 1st
order approximation in (29). By substituting this into I0 = 0, multiplying a positive
term α(α−1 + isR)4/(i2s zdc) to both sides of the equation, and simplifying, we get a cubic
equation about R:

µR3 +
µ

αis
R2 − µ + 5zdc/2

α2i2s
R +

1
α3i2s

= 0 (32)

where µ = zdc/2− is. Since only positive multipliers are used during the derivation of
(32), the equation (32) is equivalent to ∂Pdc

∂RL
= 0. During the simplification of the above

equation, we used approximation R ≈ RL/2N in order to simplify the derivation. This is
supported by the fact that the diode series resistance RS is normally no more than a few
tens of Ohm while the optimal load is typically in the order of kilo-Ohm. As the optimal
load decreases to lower magnitudes with higher input power, the approximation (31) will
become inaccurate, as we will show in Section 4 for validation results. The solution to the
above cubic function is found by using Cardano’s general cubic formula. The roots of a
cubic equation ax3 + bx2 + cx + d = 0 are given by:

xk = −
1
3a

(b + ξkB +
∆0

ξkB
), k ∈ {0, 1, 2} (33)

where xk is the k-th root, B =
3

√
∆1±
√

∆2
1−4∆3

0
2 , ∆0 = b2 − 3ac, ∆1 = 2b3 − 9abc + 27a2d,

ξ = −1+
√
−3

2 . The choice of plus or minus in B is arbitrary as long as it does not lead to
B = 0. We then choose the smallest positive real root out of the three, i.e.,

R∗L,2 = min
∀k∈Θ

(2Nxk) (34)

where Θ = {k ∈ {0, 1, 2}|xk is real and positive}.

Theorem 1. The smallest positive root of (32) is the optimal load resistance that maximizes Pdc
when zdc < 2is.

Proof of Theorem 1. Denote the left hand side of (32) by CI0 . CI0 has a positive y-intercept
1

α3i2s
, so its positive before R increases to its minimum positive root and becomes negative

after that. CI0 has the same polarity as partial derivative ∂Pdc
∂RL

because there is only a positive



Sensors 2021, 21, 8038 8 of 16

term multiplied to I0, which means the first positive root is a local maximizer of Pdc. It can
be easily proven that CI0 either monotonically decreases or increases first then decreases
when zdc < is by inspecting CI0 ’s derivative. This means CI0 always has a single positive
root when zdc ≤ 2is; thus, the local maximizer is also a global maximizer. When zdc ≥ 2is,
there may be more than one positive root, but the small zdc assumption is violated so the
perturbation approximation is inaccurate anyway.

4. Validation and Discussions

The validation consists of two parts: simulation and measurement, whose details will
be explained in this section. The results and insights obtained from the validation will also
be discussed.

4.1. Simulation Setup and Results

To verify the accuracy of the proposed methods, a set of transient simulations are
carried out with MATLAB Simscape Electrical [30] by sweeping the load RL. The load
sweep starts from 10 Ω to several tens of kΩ. Two low-barrier Schottky diodes Skyworks
SMS7630 and Avago HSMS285x are used for comparison. Key parameters of the two
considered types of diode are taken from their data sheets and summarized in Table 1.
In Simscape, the junction capacitance CJ is modeled as a voltage dependent parameter
calculated based on zero-bias junction capacitance CJ0, junction potential VJ , and grading
coefficient M. All capacitors in Figure 1 are set to 500 pF. Besides, the simulation is carried
out in three different frequency bands: 400 MHz, 900 MHz, and 2.4 GHz, due to their
availability of license-free bands.

Table 1. Parameters of two types of Schottky diode that are considered in the simulation.

is RS N CJ0 M VJ LS CP

SMS7630 5 µA 20 Ω 1.05 0.14 pF 0.4 0.51 V 0.05 nH 0.005 pF
HSMS285x 3 µA 25 Ω 1.06 0.18 pF 0.5 0.35 V 2 nH 0.08 pF

Figure 3(a1) shows the calculated optimal load of three different rectifier topolo-
gies, i.e., half-wave, 1-, and 2-stage voltage-multipliers with Skyworks SMS7630 diode
at 400 MHz frequency band. It can be seen that the numerical solution to the analytical
model (red) has good accuracy compared with simulated results (blue) for all topologies.
This proves that our proposed simplified analytical model is sufficiently accurate and that
no numerical simulation is needed. Besides, the optimal load of 1- and 2-stages voltage-
multipliers are roughly 2 and 4 times larger than that of the half-wave rectifier, which
corresponds to 2 and 4 times more series diodes from the load’s view point.

Figure 3(a1) also shows the closed-form solutions with truncation order K = 1 (yellow)
and K = 2 (purple). When K = 1, the closed-form result is accurate only when input
power is extremely low and is an upper bound of optimal load. This is helpful when
determining the specification of an adaptive optimal load system. For K = 2, the valid
input power region is wider until approximately 30 mV of input voltage amplitude, after
which it becomes inaccurate. This completely closed-form solution is helpful in very low
power applications due to its extremely low computational complexity.
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Figure 3. Optimal load calculated by transient simulation (blue), numerical solution of the analytical model (red), and
closed-form solutions (yellow and purple), when (a) N f = 1, and (b) N f = 4 with ∆ f = 1 MHz, with half-wave, 1-, and
2-stage voltage-multipliers using Skyworks SMS7630. The results under different frequency bands (a1,b1) 400 MHz, (a2,b2)
900 MHz, and (a3,b3) 2.4 GHz are shown, too.

Figure 3(a2,a3) also shows results at 900 MHz and 2.4 GHz bands. No clear difference
can be observed when frequency is increased to 2.4 GHz. This is because the Skyworks
diode has very small parasitic parameters, see Table 1, which means the reactance part of
the diode impedance remains negligible within the frequency spectrum that we considered.

Figure 3(b1–b3) shows the calculated optimal load at three different frequency bands,
with multisine signals consisting of four subcarriers that are separated by 1 MHz. The
numerical solution to the analytical model (red) still shows high accuracy in low input
power region, while larger discrepancy is observed as input amplitude increases than when
N f = 1. This is because a much larger signal period and thus a much larger ripple is created
by the multisine signal. As a result, to minimize the output ripple, an output R-C section
with a much larger time-constant is needed than when single-sinusoid signal is used. In
the simulation, the output capacitor is 500 pF all the time, so when the load decreases, it
will come to a point when the output ripple becomes significant, which is also when the
low ripple assumption of the rectification model fails. In practice, this can be avoided by
using a large enough capacitor in the output R-C section based on the applied signal.

Figure 4 shows the optimal load calculated by the proposed methods and simulation
when using Avago HSMS285x. Similarly to the results with the Skyworks diode, the pro-
posed analytical solution (red) shows very good accuracy compared with simulated results
(blue). However, at 2.4 GHz, a slightly larger discrepancy can be observed between the
analytical and the simulated results, due to the fact that the Avago diode has considerably
larger parasitic capacitance and inductance as can be seen from Table 1. This means at
higher frequency, the effect of parasitics becomes more significant while the simplified
model neglects it. Nevertheless, the error is still minor within the frequency range that
we consider.
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Figure 4. Optimal load calculated by transient simulation (blue), numerical solution of the analytical model (red), and
closed-form solutions (yellow and purple) when (a) N f = 1, and (b) N f = 4 with ∆ f = 1 MHz, simulated with half-wave,
1-, and 2-stages voltage-multipliers using Avago HSMS285x. The results under different frequency bands (a1,b1) 400 MHz,
(a2,b2) 900 MHz, and (a3,b3) 2.4 GHz are shown, too.

Another observation is that the optimal load with the Avago diode is almost twice
as large as the Skywork’s. This can be interpreted from the order 1 closed-form solution.
The saturation current is of the Avago diode is almost half of the Skyworks one. According
to (30), this corresponds to an approximate twice as large optimal load. This observation
shows the optimal load of a rectifier is highly dependent on the diode’s parameter.

4.2. Measurement Setup

To further validate the results, the one-, and two-stage voltage multiplier PCBs are
designed in Altium Designer at 400 MHz and fabricated, see Figure 5. Only 400 MHz is
chosen for fabrication because of the lack of high-frequency probes for debugging purposes
in our lab. An IS400 substrate with dielectric constant εr = 4.3 and thickness h = 0.119 mm
is used. Grounded co-planar waveguide (GCPW) with vias is used as transmission line
with track and slot width of 0.225 mm and 0.17 mm to ensure 50 Ω characteristic impedance.
An edge-mount SMA connector is used for RF input, and a pin header is used to connect
external variable load. All capacitors used on the PCBs are 500 pF. The used Schottky
diode is SMS7630-040LF from Skyworks. Measurements have been conducted to obtain
experimental data to validate the model presented in Section 2.

The variable load is achieved by a resistor bank on a bread board, see Figure 6. In
total, there are 14 resistors, and 16 resistance values are used in the measurement. The used
resistance values are listed in Table 2.
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Figure 5. PCB picture of (a) one-stage multiplier and (b) two-stage multiplier.

Figure 6. Resistor bank on a bread board.

Table 2. Load resistance values used in the measurement.

R1 R2 R3 R4 R5 R6 R7//R8 R7

Value [Ω] 16.2 100.3 328 558 822 1.2 k 1.99 k 3.29 k

R8 R9 R11//R14 R10 R11 R12 R13 R14

Value [Ω] 5.1 k 7.49 k 9.63 k 11.97 k 14.96 k 18.01 k 22 k 26 k

A Rohde & Schwarz SMW200A signal generator is used as RF source to generate the
input signal. The RF source is fed to the SMA connector on the PCB using a coaxial RF cable.
The average output voltage of the rectifier is measured by a Keysight MSO7104B digital
oscilloscope. The acquisition of measured average voltage is controlled by a windows
PC through SCPI remote commands via a USB connection. The remote control session
is established by MATLAB using Instrument Control Toolbox. The output DC voltage
is measured 20 times during each measurement with 0.5 s interval between consecutive
acquisitions. The 20 acquired samples are then averaged to obtain a final measurement
result. A picture of the measurement setup is shown in Figure 7.
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Figure 7. Picture of the measurement setup.

The measured output DC voltage and power with one- and two-stage multipliers are
shown in Figures 8 and 9, respectively. The voltage and power are plotted against the load
resistance with different tone amplitude VA. During measurement, VA is measured at the
central pin of the SMA connector on the PCB using a Teledyne LeCroy SDA816Zi serial
data analyzer with a ZS1000 active probe with 1 GHz bandwidth. The fluctuation with the
measured results with low input VA and especially low load resistance is because of the
low output voltage, which is close to the digital oscilloscope’s noise floor. Despite this, the
measured and simulated results are consistently in very good agreement.

Figure 8. Comparison between measurement, simulation, and analytical model of the one-stage multiplier. Output DC
voltage with (a) N f = 1 and (c) N f = 4; output DC power with (b) N f = 1 and (d) N f = 4.
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Figure 9. Comparison between measurement, simulation, and analytical model of the two-stage multiplier. Output DC
voltage with (a) N f = 1 and (c) N f = 4; output DC power with (b) N f = 1 and (d) N f = 4.

Figures 8 and 9 also show the output DC voltage and power calculated by the analyti-
cal model given by (17) and (18). The accuracy of the analytical model is confirmed with
respect to both measured and simulated results when N f = 1 for all input levels. When
N f = 4, however, the model fails to predict the rectifier output with small loads when the
input level is high. This is because high PAPR signals in general (in this case the multisine
signal) need an R-C section with a higher time constant than the conventional single-sine
signal to eliminate the output voltage ripple, and a negligible ripple is a prerequisite for
our simplified model, as we explained in Section 4.1. Indeed from Figures 8 and 9, as
the load increases, which leads to a larger time-constant, the model becomes more and
more accurate.

Moreover, the optimal load based on the measured data as a function of VA is shown
in Figure 10. The simulated results and the numerical solution of the analytical model are
also shown as solid and dashed lines, respectively, for comparison. Note that the resolution
of the measured optimal load is limited by the step size of the variable load listed in
Table 2. Also note that the optimal load associated with the lowest input level tends to be
an outlier since the rectifier’s output voltage is close to the oscilloscope’s noise floor, so
more randomness is observed on the left-most measured point in Figure 10a,b. It can be
seen that the simulated data is in close agreement with the measured data when N f = 1
and N f = 4. The numerical solution of the analytical model also shows great agreement
with the measured data except in the high input VA region with four-tone multisine signal,
which has already been explained before.
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Figure 10. Optimal loads calculated by simulation, numerical solution of the analytical model, and
measurement with (a) N f = 1 and (b) N f = 4. Note that the measured results with the lowest input
tone amplitude vA tend to be outliers since the rectifier’s output voltage is close to the noise floor of
the oscilloscope.

5. Conclusions

In this paper, we analyzed simplified analytical rectification models for the half-
wave rectifier and the N-stage voltage-multiplier. The targeted rectifier topologies are
generic, and the models consider the diode as its realistic equivalent circuit. Based on the
models, a set of methods that calculate the optimal loading condition for the rectifiers are
given, including a low-complexity numerical method, and closed-form approximations
for low input power scenarios. The proposed methods are validated by both simulation
and measurement.

The simulation results show that the parameters of the diode, namely, saturation
current is and ideality factor n, significantly influence the optimal loading condition. The
simulation results also show that the carrier frequency does not influence the optimal
loading condition with Skyworks SMS7630 diode. The effect of frequency gets larger
only when the frequency and the diode parasitics get larger. In our simulation, the Avago
HSMS285x diode with much higher parasitics exhibits more discrepancy between simulated
and analytical optimal loads at 2.4 GHz than 400 MHz and 900 MHz. However, the
discrepancy is still negligible. This means the frequency impact is negligible at least below
2.4 GHz.

The proposed numerical and closed-form methods have low computational complex-
ity, which can provide a head start when designing a rectifier system. It provides very good
accuracy without the need for either harmonic balance or transient simulation provided
that the output voltage ripple is eliminated. Moreover, the proposed methods are also
valid for general signals, for example, novel input signals such as the multisine waveform,
with which the problem can quickly become infeasibly large for harmonic balance as the
number of tones increases [7]. Another possible application is adaptive load control in
an actual rectifier to ensure optimal efficiency. Implementation of such a control scheme
constitute future work.
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