
applied
sciences

Article

A Complete Software Stack for IoT Time-Series Analysis that
Combines Semantics and Machine Learning—Lessons Learned
from the Dyversify Project

Dieter De Paepe 1 , Sander Vanden Hautte 1 , Bram Steenwinckel 1 , Pieter Moens 1 , Jasper Vaneessen 1 ,
Steven Vandekerckhove 2, Bruno Volckaert 1 , Femke Ongenae 1 and Sofie Van Hoecke 1,*

����������
�������

Citation: De Paepe, D.; Vanden

Hautte, S.; Steenwinckel, B.; Moens,

P.; Vaneessen, J.; Vandekerckhove, S.;

Volckaert, B.; Ongenae, F.; Van

Hoecke, S. A Complete Software

Stack for IoT Time-Series Analysis

that Combines Semantics and

Machine Learning— Lessons Learned

from the Dyversify Project. Appl. Sci.

2021, 11, 11932. https://doi.org/

10.3390/app112411932

Academic Editor: Amy J.C. Trappey

Received: 3 October 2021

Accepted: 9 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IDLab, Ghent University—imec, 9052 Gent, Belgium; Dieter.DePaepe@UGent.be (D.D.P.);
Sander.VandenHautte@UGent.be (S.V.H.); Bram.Steenwinckel@UGent.be (B.S.);
Pieter.Moens@UGent.be (P.M.); Jasper.Vaneessen@UGent.be (J.V.); Bruno.Volckaert@UGent.be (B.V.);
Femke.Ongenae@UGent.be (F.O.)

2 Renson Ventilation, 8790 Waregem, Belgium; Steven.Vandekerckhove@Renson.be
* Correspondence: Sofie.VanHoecke@UGent.be

Abstract: Companies are increasingly gathering and analyzing time-series data, driven by the rising
number of IoT devices. Many works in literature describe analysis systems built using either data-
driven or semantic (knowledge-driven) techniques. However, little to no works describe hybrid
combinations of these two. Dyversify, a collaborative project between industry and academia,
investigated how event and anomaly detection can be performed on time-series data in such a
hybrid setting. We built a proof-of-concept analysis platform, using a microservice architecture
to ensure scalability and fault-tolerance. The platform comprises time-series ingestion, long term
storage, data semantification, event detection using data-driven and semantic techniques, dynamic
visualization, and user feedback. In this work, we describe the system architecture of this hybrid
analysis platform and give an overview of the different components and their interactions. As such,
the main contribution of this work is an experience report with challenges faced and lessons learned.

Keywords: time series; data analytics; machine learning; semantic web; reasoning; microservice
architecture

1. Introduction

Historically, data analytics has always been a core part of research enterprises and
large scale tech companies. With the ongoing growth of the Internet of Things (IoT)
market [1], more and more enterprises have started to collect and analyze data, leading to
new innovations in domains such as smart cities, home automation, or climate control. For
some applications, such as the booming predictive maintenance market [2], data analysis
needs to be fast, resilient, and support high data throughput.

While most research publications solely focus on specific analysis algorithms , either
data-driven algorithms using machine learning, or knowledge-driven algorithms using
semantics, many other components are needed to create a complete data analysis flow.
Whenever a measurement is made, it needs to be transferred to an analysis algorithm.
In general, data is collected on dedicated machines and processed in bulk, though for
some time-critical applications, trivial on-machine calculations may suffice. In either case,
storage of measurements is useful for later investigations or when new analysis algorithms
are retrospectively introduced. Proper documentation of all metrics is also vital at this
step. When detecting anomalies, the user needs to be informed on the details in a timely
manner. User feedback can also be valuable to optimize the algorithms or visualizations,
for example by labeling events for future reference. Finally, the system should be able
to scale to allow a rising amount of monitored devices and be resilient so no relevant
events go undetected when the system experiences (partial) failure. To this day, a hybrid

Appl. Sci. 2021, 11, 11932. https://doi.org/10.3390/app112411932 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6661-8474
https://orcid.org/0000-0002-5035-4419
https://orcid.org/0000-0002-3488-2334
https://orcid.org/0000-0003-2035-8766
https://orcid.org/0000-0003-3782-8525
https://orcid.org/0000-0003-0575-5894
https://orcid.org/0000-0003-2529-5477
https://orcid.org/0000-0002-7865-6793
https://doi.org/10.3390/app112411932
https://doi.org/10.3390/app112411932
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411932
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411932?type=check_update&version=1

Appl. Sci. 2021, 11, 11932 2 of 22

architecture that combines knowledge-driven and data-driven algorithms and takes into
account all the above requirements does not exist.

In the imec.icon Dyversify project (https://www.imec-int.com/en/what-we-offer/
research-portfolio/dyversify, (accessed on 7 December 2021)), academia and industry
partners collaborated to investigate how (data-driven) machine learning and semantic
(knowledge-based) techniques can be combined for improved event and anomaly detection
on time series originating from IoT sensors. We envision that by fusing semantics and
machine learning, amongst others, state-of-the-art data-driven analysis systems can be
improved, and expert feedback can enable automatic filtering of false positives and/or
enable the shift from unsupervised towards supervised learning. In this article, we present
the resulting Dyversify architecture that enables this fusion of data-driven and semantic
techniques. We also provide high-level descriptions of the individual components, explain
design choices made, and discuss open questions and challenges. A working, full-stack
prototype combining all of the requirements listed has been created and validated using
two use cases with real world data provided by our industry partners: Renson, Televic Rail,
and Cumul.io. To the best of our knowledge, we are the first to present an architectural
design and full-stack, hybrid implementation for (i) fusion of semantic technologies and
machine learning and (ii) composed of solely open-source building blocks.

This article focuses on the Renson use case, where air quality metrics from consumer
owned ventilation units are used for event and anomaly detection. While we do discuss
the underlying data analysis techniques, they are not the focus of this article and mainly
serve to give the reader a better understanding of the system. Instead we refer to dedicated
works discussing those techniques where appropriate. The innovations in this work entail:
(1) the description of a full-stack, hybrid time-series analysis microservice architecture and
(2) the description of the experiences and challenges encountered while designing and
testing this system. As such, we believe this work will be most interesting for parties who
seek to build any type of hybrid data analysis pipeline going from sensor to dashboard but
who lack relevant experience in designing such a system.

The remainder of this work is structured as follows. We start by giving background
information about the Dyversify project and the Renson use case in Section 2, as well as a
brief introduction in the Semantic Web domain. An overview of related literature follows
in Section 3. We discuss the architecture and individual components in Section 4 and its
performance in Section 5. We finish by discussing our experiences and lessons learned
throughout the project in Section 6 and conclude in Section 7.

2. Background Information
2.1. The Dyversify Project

Dyversify is an imec.icon project, where multi-disciplinary teams from academia
and industry work together to do demand-driven research. During the two-year project,
seven different teams worked together: four different research teams from IDLab—Ghent
University and three industry partners, i.e., Renson (ventilation and shading products),
Televic Rail (train components and systems), and Cumul.io (dashboarding platform).

As a research project, each group worked on specific research topics including dynamic
dashboarding using semantic technologies, adaptive anomaly and event detection for time
series using both machine learning or semantic-driven techniques, and scalable services.
All research was brought together in a working prototype for a full-stack data analysis
pipeline that processed real-world data coming from Renson and Televic. This stack
includes time-series data ingestion & persistence, time-series anomaly and event detection,
data semantification, visualization in a dashboard using dynamically configured widget,
and a user feedback mechanism. The prototype was built as a scalable and resilient
microservice architecture.

This work does not cover all research topics of Dyversify but focuses on the integrating
system as a whole that resulted from it. We discuss the stack architecture, give a high level

https://www.imec-int.com/en/what-we-offer/research-portfolio/dyversify
https://www.imec-int.com/en/what-we-offer/research-portfolio/dyversify

Appl. Sci. 2021, 11, 11932 3 of 22

insight into individual components, and describe the experiences we learned along the
way. To streamline our story, we only discuss the Renson use case.

2.2. Renson Use Case

Renson is a Belgian company that produces and sells shading and facade cladding
elements as well as ventilation products. Shortly before the Dyversify project, Renson had
introduced their newest mechanical extraction ventilation unit for home use, the Healthbox
3.0. The Healthbox regulates the airflow in connected rooms, based on various air quality
metrics such as air humidity, CO2 levels, or the presence of volatile organic compounds
(odors). These metrics are measured using sensors located on the valves that connect the
Healthbox to the ventilation shafts. Different types of valves exist, each having sensors
tailored for a specific type of room. Each valve, as well as the Healthbox itself, tracks
between 8 and 12 metrics.

The Healthbox can be configured to upload the valve and Healthbox metrics to Renson.
This data is used to allow users to monitor their indoor air quality using an app. Besides
this, Renson aims to use this data to monitor the performance of their units, to detect specific
in-house events that affect air quality (e.g., showering), or to flag common installation
errors for new customers. One such common installation error is a valve of a wrong room
type being used, such as an (odor sensitive) toilet valve being used for a bedroom (which
should be ventilated based on CO2).

In the Dyversify project, all measured Healthbox 3.0 metrics were forwarded to our
analysis platform. Specifically, each unit sent between 12 and 96 aggregated metrics
(depending on the number of ventilated rooms) at 30 second intervals. We received data
from all existing (upload-enabled) Healthbox 3.0 units, which steadily increased throughout
the project, as more units were being installed.

2.3. Resource Description Framework and Semantic Reasoning

We limit our introduction of the Semantic Web to the two topics mentioned in this
work: the semantic data model, i.e., the Resource Description Framework (RDF), and
semantic reasoning.

RDF is an abstract data model that has to be serialized before it can be exchanged.
Three common serializations are RDF/XML (XML based), JSON-LD (JSON based), and
Turtle (text based). Traditionally, merging (non-semantic) datasets from different sources
is cumbersome because different (local) identifiers are used, which do not match across
datasources, or due to differences in the data format (e.g., JSON versus XML).

In RDF, instances and the relationships between them are identified using globally
unique uniform resource identifiers (URIs) instead of names or numbers, allowing disam-
biguation between concepts that share the same name. When different data sources follow
best practices and correctly reuse existing concepts to construct a dataset, these datasets can
be merged without additional work. Conceptually, reuse is straightforward: properties are
typically bundled in online vocabularies or ontologies and instance identifiers should be
reused from an authoritarian source. RDF is a well suited means to exchange data between
independent parties due to these properties [3] and has been adopted by institutions who
actively share data, such as government registries [4] or libraries [5].

By using non-ambiguous identifiers, data processing can happen in a more automated
fashion. This has led to semantic reasoners, i.e., tools that derive new data by combining
existing data with rules. These rules can express hierarchical properties (e.g., every ventila-
tion machine is a machine) or expert knowledge (e.g., ventilation is required when CO2 is
above 600 ppm). Semantic reasoners vary in expressivity, with more expressive reasoners
typically being slower [6].

Appl. Sci. 2021, 11, 11932 4 of 22

3. Related Literature

In this section, we present related literature. We first discuss architectural designs
for processing streaming data, focusing on system design. Next, we discuss literature on
stream processing, i.e., how data is used by a system.

3.1. Streaming Architectures

Processing streaming data is often discussed in the context of big data analytics and
has been applied to many use cases including system monitoring [7,8], smart cities [9,10],
service monitoring [11–13], or marketing [14]. The lambda [15] and kappa [16] architectures
are two well-known high level architectures in this domain. The lambda architecture
consists of a fast (sometimes approximated) analysis flow that consumes real-time data
and a batch-based flow that uses stored historical data. The lambda architecture is suited
for tasks where both real-time updates and historical insights are useful, such as traffic
monitoring [17] or when data may be corrected afterwards [14]. The kappa architecture
simplifies the lambda architecture by dropping the batch analysis flow. Code reuse is
better in kappa architectures because the same flow is used for updating old analytics or
calculating newly added analytics.

Both architectures only provide high-level guidelines and are typically implemented
using stream processing frameworks such as Apache Storm, Flink, or Spark. The concept
of these frameworks is simple: a collection of worker nodes is set up and divides the
workload in an efficient manner. This approach is both resilient and horizontally scalable
as the workload of failed workers is automatically reassigned and new worker machines
may be added as needed. Several works exist that compare the features or performance
of these frameworks for different use cases [18–20]. Another work additionally evaluates
Kafka Streams and IBM Streams [21]. However, the choice of technology remains a difficult
one, as frameworks under active development may improve over time and performance
can even be influenced by the size of the messages being consumed [22].

Another common architecture for stream processing is the microservice architecture,
which is considered an implementation of the broader service oriented architecture [23],
where different responsibilities of an application are captured into dedicated and indepen-
dent services. Services interact with other services to form the full application. Similar
to software libraries or modules, microservices are a form of abstraction making them
easier to test or maintain and promote reuse. However, they distinguish themselves by
being reusable across applications through instance sharing, their ability to scale indepen-
dently, and their ease of integration with other technologies or languages [24,25]. While a
microservice architecture dictates a number of core tenets [23,26], it remains a high level
architecture and leaves a degree of freedom. Practically, they are often implemented as
Docker images that interact using REST APIs or configured message brokers such as Kafka
or RabbitMQ. Note that a microservice architecture can be combined with a lambda or
kappa architecture [17,27]. Microservice architecture systems described in literature include
e-commerce [25] and intelligent transport systems [10].

Fog computing is another paradigm often associated with stream processing at large
scale [28]. Instead of collecting and processing all data streams in a central location, the
data streams are partially analyzed or aggregated in advance. This can result in lower
bandwidth needs or a faster response detection rate for simple events [9].

Coming from the semantic domain, the MASSIF platform suggests a modular system
for IoT services [29]. Data is ingested and a semantic converter is chosen using a data
attribute. After conversion the data is added to a semantic data bus from which inde-
pendent services consume, process, and publish data. As MASSIF was mainly meant for
low-frequency event data from IoT services, it was later adapted to Streaming MASSIF to
handle high frequency data streams [6]. Here, data is filtered by fast operators before being
passed to slower, but more expressive reasoners in a process called cascading reasoning.
The platform has been used in healthcare [30] and smart (nursing) home [31] prototypes.

Appl. Sci. 2021, 11, 11932 5 of 22

While some works do include descriptions of data ingestion [11,17], visualization [32,33],
feedback mechanisms [17], deployment [11] or practical lessons learned [14,32], most do
not. In fact, none of these works covers the complete picture despite such experience
reports being actively desired by developers and architects [23]. We aim to fill this gap
with our work, we discuss every part of our streaming architecture, and divulge valuable
experiences we learned during the development and testing process.

3.2. Stream Processing

In the context of big data stream processing, two major goals can be discerned: de-
riving insights or statistics to help humans make informed decisions [14,34] and anomaly
detection about the process generating the data stream [8,11,17]. The latter is a common
theme in data stream processing that lacks the volume to be seen as big data, with use cases
including computer network monitoring [12], water analytics [32], or Heating, Ventilation,
and Air Conditioning (HVAC) fault detection [35]. Many of these approaches extract sta-
tistical features, typically over predefined time windows, and use clustering, correlations,
or other well-known machine learning methods to find outliers [12,35,36]. Many of these
operations are well supported within the aforementioned streaming frameworks, resulting
in many works using them for anomaly detection [7,8,12,27].

Pattern-based approaches such as the Matrix Profile [37] work by comparing series
subsequences rather than using statistical features. The Matrix Profile can be used to
find unique subsequences (discords) which can be considered anomalous, as well as
matching [37] or repeated [38] patterns (motifs).

Semantic streams can be processed using expressive reasoning techniques. These RDF
Stream Processors infer additional facts from the data using background data and domain
context. These derived facts can then be used to inform users or trigger other actions.
Stream reasoning is a broad research domain and more details can be found in the survey
by Dell’Aglio et al. [39].

We did not encounter literature describing the combination of data-driven and seman-
tic methods, as we do in this work. The system described in this work utilizes classical
machine learning methods, pattern-based methods, and semantic methods. First, a random
forest classifier is used to detect faulty installations by comparing configured versus de-
tected room types in a classical, batch-based manner. Two components use pattern-based
techniques in a streaming fashion to detect anomalies and repeated events respectively.
Finally, a semantic reasoning component evaluates the metrics for expert-defined patterns
using reasoning over time windows. We emphasize that the contribution of this work lies
in describing the way these fundamentally different techniques are brought together in the
platform, rather than the details or innovations of these techniques by themselves.

4. Dyversify Architecture

In this section we discuss the full-stack architecture of our system. We start with a
high level overview and continue to discuss individual components in the order they are
encountered by incoming data.

4.1. High-Level Overview

To understand the flow of data throughout the system, it is easiest to consider mea-
surement data and event data (created by processing measurements) separately. Both flows
are shown in Figure 1.

The left of Figure 1 shows the flow of measurements throughout the system. Measure-
ments originate from individual Healthbox devices, as described in Section 2.2, and are
received by a gateway on Renson premises. The Healthboxes have an internal memory
to buffer measurements to prevent data loss in case of connectivity issues to the gateway.
The gateway forwards all measurements to the Obelisk component, which serves as the
ingestion and long term storage system. Obelisk pushes all measurements in a JSON
format to a Kafka message bus that is consumed by other components. Two event detection

Appl. Sci. 2021, 11, 11932 6 of 22

(ED) and two anomaly detection (AD) components consume all measurements and output
an event message when a specific condition or pattern is observed. The RML component is
responsible for mapping measurements to their semantic form, which are needed by the
expert rules and dashboard components. The dynamic dashboard component is intended
for user interaction: it can visualize the data streams for all devices, updating as new
measurements flow in. We utilize the term dynamic as the dashboard suggests visualization
widgets based on the semantic annotations of the metrics that are to be visualized.

Dynamic Dashboard

ED: Expert-rules

ED: MP-events

AD: MP-outliers

AD: Valve Classifier

Semantic Events

Stardog DB

Dynamic Dashboard

ED: Expert-rules

ED: MP-events

AD: MP-outliers

AD: Valve Classifier

RML

R
M

L

Obelisk

H
is

to
ric

al
 d

at
a

Measurements

Ev
en

ts

Stardog DB

AD: MP-outliers

ED: MP-events

Devices

Gateway

Figure 1. Flow of measurement (left) and event data (right) throughout the different microservices
or microservice-based components (rectangles). Events are generated by the services after processing
measurements. The thick bands represent data flow through Kafka topics, while arrows represent
flow through HTTP API calls. Light colors indicate non-semantic (JSON) data; dark colors indicate
semantic (JSON-LD) data. Measurements are ingested and persisted by Obelisk. The event detection
(ED) and anomaly detection (AD) services process the measurements and produce messages for
certain observed patterns. The RML component maps non-semantic data to a semantic format and
Stardog is a semantic database that is used to store the semantic events. The dashboard is the only
user-facing component and visualizes both measurements and detected anomalies/events.

The event stream is shown on the right of Figure 1. Events are generated by the
anomaly and event detection components whenever they find a relevant pattern in the
incoming measurements. All components output events in a JSON format which are con-
verted to a semantic format by the RML component, except for the expert-rules component,
which works internally using semantics as well. The semantic events are ingested by three
different components. The dynamic dashboard triggers (or updates) user notifications
whenever an event is ingested. Whenever the MP-events component receives a labeled
event, it will start a new pattern detector to find that specific pattern in new measurements.
Finally, the Stardog component is a database that permanently stores the semantic events
and can be used by the dashboard and MP-events component to retrieve historical events.
Note that the dashboard also outputs events; these are in fact previously ingested events
that have been updated by user interaction, such as the labeling of an anomalous pattern.

The precise definition of “anomaly” varies from source to source. Some consider
anomalies as strictly undesired (e.g., a malfunction), others prefer outside of normal condi-
tions (e.g., machine maintenance), or simply as previously unknown (e.g., higher power
consumption for a specific configuration). In this work, we use the term “anomaly” to
indicate a previously unknown pattern, which may be undesired (e.g., malfunction) or
normal behavior (e.g., opening a window for the first time), and we use the term “event” to
indicate patterns recognized using some known rule (e.g., a humidity peak in a bathroom
indicates a shower). However, when discussing the Kafka message bus, the event topic
contains both events and anomalies, as hinted by Figure 1.

Appl. Sci. 2021, 11, 11932 7 of 22

4.2. Microservices and Deployment

A proper microservice-based system is defined by a number of properties [23]: fine
grained interfaces, business-driven practices, cloud-native design principles, polyglot
programming and persistence, lightweight containers, decentralized continuous delivery,
and DevOps with a large amount of automation. These properties make the microservice
architecture an ideal choice when scalability and independent governance of its components
is required. It enables different teams to collaborate on a project, as each team can develop,
maintain, and deploy their own services independently.

The components in our platform, implemented as microservices, are deployed as
Docker containers on a Kubernetes cluster, using Helm as management tool. Services that
require basic data persistence are configured with Kubernetes persistent volumes, so data
is not lost if a service is restarted. We used Kubernetes resource management to specify
CPU and RAM quota for all services, so as to prevent system degradation in the case of
misbehaving services, which is not uncommon in development. By using microservices,
each team could independently develop and test their service; this allowed freedom in
both planning and choice of technology. In stream processing frameworks such as Storm,
Flink, or Spark, it can be more challenging to include techniques that are not available out
of the box. The only downside we experienced from using a microservice architecture was
the increased effort needed when the message exchange format (e.g., events) changed.

All services are deployed on the IDLab Virtual wall (https://doc.ilabt.imec.be/ilabt/
virtualwall/, (accessed on 7 December 2021)), a server park of over 350 machines. Practi-
cally, the Dyversify project uses four pcgen3 nodes (2x Hexacore Intel E5645 2.4 GHz CPU,
24 GB Ram, 250 GB harddisk) and two pcgen4 nodes (2x 8core Intel E5-2650v2 2.6 GHz
CPU, 48 GB Ram, 250 GB harddisk) for all services except for Obelisk. Obelisk is deployed
on a dedicated Kubernetes cluster and hardware but is used by 12 other projects alongside
Dyversify. Obelisk is deployed on three nodes with the following hardware: Intel Xeon
Silver 4114 2.2 Ghz CPU (40 cores) and 264 GB Ram.

4.3. Time-Series Ingestion and Persistence: Obelisk

The ingest system is responsible for accepting all IoT sensor data. For a general
IoT case, this component needs to be secure, resilient, and able to handle parallel, high
throughput streaming data. Long-term data persistence is also required for visualization,
initializing new stream processing models or updating old ones.

As ingestion service, we use Obelisk [40,41], a scalable platform for building applica-
tions on IoT-centric time-series data that was developed in-house by Ghent University and
imec in the scope of several IoT projects [42,43]. Obelisk provides a stateless HTTP API
for storing and retrieving data and uses authentication based on OpenID and OAuth 2.0.
Authorization is done by assigning users to project scopes. Internally, Obelisk consists of
several distributed microservices that are managed by Kubernetes and are deployed on
dedicated hardware with fail-over capacity (see Section 4.2).

Obelisk is based on Vert.x, an event-driven and non-blocking JVM framework that can
handle high concurrency using a small number of kernel threads. It uses InfluxDB to persist
time series and mongoDB for storing metadata and allows rates of up to 6000 measurements
per second [41]. Obelisk is foreseen to become open-source by the first half of 2022.

Alternatives to Obelisk include the Open Source FiWare ecosystem. Testing showed
scalability issues with passing data to and retrieving data from the FiWare context broker,
and only in later versions was historical data aggregation added. These performance
issues were also observed by external researchers [44]. Other options include proprietary
solutions like Microsoft Azure IoT Hub, Google Cloud IoT Core, and the AWS IoT Platform.
As these latter solutions come with a substantial vendor lock-in (with no control over the
evolution of APIs a.o.), the choice for Obelisk was made.

As shown in Figure 1, the measurements made by the Healthbox devices are sent to
Obelisk. Once received, the measurements are validated, persisted, and forwarded to other
components through the Kafka message broker. An example of a measurement message is

https://doc.ilabt.imec.be/ilabt/virtualwall/
https://doc.ilabt.imec.be/ilabt/virtualwall/

Appl. Sci. 2021, 11, 11932 8 of 22

shown in Listing 1; it contains a single humidity measurement from a single device for a
specific timestamp.

Listing 1. Example of a measurement JSON message. The geohash key specifies information
regarding location of the measurement but was not used in Dyversify.

1 {
2 " metr ic Id " : " sensor . indoor_re la t ive_humidi ty . humidity : : number " ,
3 " timestamp " : 1549973410001 ,
4 " timeUnit " : "MILLISECONDS" ,
5 " sourceId " : "HEALTHBOX3.171030 SD0005 . 2 " ,
6 " geohash " : n u l l ,
7 " value " : 40 .052812500 ,
8 " tags " : {
9 " par tner " : " renson " ,

10 " contex t " : " icon " ,
11 " p r o j e c t " : " dyvers i fy "
12 }
13 }

4.4. Message Broker: Kafka

The message broker is responsible for the communication between all other compo-
nents. Together with the ingest system, it should provide enough throughput and be both
scalable and fault tolerant. Additionally, our use of time-series analysis techniques required
that messages remained ordered and were not lost in the case of failure, and messages had
to be processed according to the at-least-once principle.

We selected Kafka as message broker. Kafka is a high-throughput, low-latency, re-
silient, and scalable message passing platform suitable for handling real-time data feeds.
Message streams are organized in topics that can be further subdivided into one or more
disjoint partitions. One topic typically corresponds to one type of message (e.g., measure-
ments or events), whereas partitions divide a topic into logical groups (e.g., groups of
machines being monitored). This structure supports Kafka consumers to be horizontally
scalable through the use of consumer groups. In Kafka, partitions are automatically divided
amongst all consumers that belong to the same consumer group, meaning that the work-
load decreases as more consumer instances are created. This principle is visualized in
Figure 2.

Topic A
Partition 2

Topic A
Partition 1

Consumer X
(Group Gx)

Consumer Y
(Group Gy)

Topic A
Partition 2

Topic A
Partition 1

Consumer X
(Group Gx)

Consumer Y
(Group Gy)

Consumer X
(Group Gx)

Figure 2. Horizontal scalability through group based partition assignment in Apache Kafka. Left:
One consumer of type X and group Gx and one consumer of type Y and group Gy reading from a
topic with two partitions, each consumer is assigned all partitions. Each consumer therefore handles
the entire workload. If the data stream becomes larger, it is possible that consumer X is no longer
able to handle the workload, causing it to lag behind. Right: To deal with this change in behavior, a
second instance of consumer X and group Gx is added. Kafka divides the partitions over consumers
of the same group, lowering the workload of both instances (each instance handling 50% of the data
stream). This enables horizontal scalability of all consumers in the overall architecture.

Kafka also allows for resilient data processing by having data consumers commit their
position in each stream at periodic intervals. When a consumer crashes or gets added
in response to an increased system load, it can resume processing from the most recent
checkpoint. This way, every message is guaranteed to be processed, though some messages
may be processed multiple times as a result of a crash. Kafka itself is made resilient through
its distributed, redundant deployment.

We utilize Kafka topics to differentiate four types of messages: measurements, seman-
tic measurements, anomalies, and semantic anomalies. The measurement topics contain

Appl. Sci. 2021, 11, 11932 9 of 22

the sensor data as received by the ingest system, while the event topics contain informa-
tion about the detected events. By using Kafka partitions, any consumer can be made
horizontally scalable through consumer groups. For example, we use five partitions for
the measurement topic, meaning that up to five instances of a single anomaly detection
algorithm can process incoming measurements at the same time, if required.

Alternative message brokers would be RabbitMQ (a traditional message broker that
does not focus on persisting messages), ZeroMQ (a lightweight messaging system that is
aimed at high throughput but lacking advanced features), or Apache ActiveMQ (supports
both broker and peer-2-peer messaging). We chose Apache Kafka due to its inherent focus
on high reliability and scalability. Apache Pulsar was a considered alternative, as it had
similar feature sets. Still, we found Kafka to have the more mature offering at the time this
research was performed, especially when deployed in a Kubernetes cluster environment.

4.5. Semantic Conversion: RML

The Dyversify project combines machine learning and semantic technologies. As
such, a step to transform data to a semantic format is needed. Specifically, the dynamic
dashboard and expert-rule-based components rely only on semantic data. It would be
possible to include this conversion for every data outputting service in our system, but
this would require teams not familiar with semantic technology to include it in their
service. This in turn would have required more testing and development effort for those
teams. Furthermore, Dyversify wanted to actively explore how semantic and non-semantic
services could work together, so introducing semantics in every component was not useful
in this regard. We opted for a separate conversion service that could be reused by other
services. Data throughput was the main requirement for this service.

We selected our in-house RMLStreamer [45] for this component, which is a streaming
implementation of the RMLMapper [46], a tool that executes RML (RDF Mapping Lan-
guage [47]) mappings. Using RML, we can define a mapping from various common input
formats, including JSON, XML, or CSV, to a semantic format. Note that RML mappings
are themselves specified using RDF. The actual conversion is done by the RML-streamer, a
tool that executes the mappings defined in RML. Under the hood, the RMLStreamer uses
Apache Flink to distribute the workload to different nodes. We utilized four worker nodes
and one supervising node in Dyversify.

The format of measurements was defined by Obelisk and always had the same struc-
ture, making mapping straightforward. However, the information in the event messages
could differ depending on the origin service. To simplify conversion, we defined a JSON
template (discussed in Section 4.6) with optional fields for event messages that would be
used by all event-generating components. As missing fields are simply ignored in the
mapping process, we only need a total of two mappings: one for measurements and one
for events.

The mappings were made by a semantic expert using YARRRML [48], a more user-
friendly textual format that compiles to RML. While several formats are possible to serialize
semantic data, we selected JSON-LD since it allows data extraction using well-known JSON
constructs (opposed to SPARQL constructs), which was again useful for lesser semantic-
experienced teams and early prototyping. Mappings used the SSN (Semantic Sensor
Network) [49], SOSA (Sensor, Observation, Sample, and Actuator) [50], and Folio [51]
ontologies, the latter of which was developed specifically for both use cases in Dyversify.
Listing 2 shows the semantic version of the measurement in Listing 1. Note that this
example is not fully valid RDF, as the resultTime does not specify a valid ISO timestamp
but rather an epoch timestamp. This is due to a limitation in the RMLStreamer, which did
not yet support functions in mappings at the time of the Dyversify project. Consumers of
semantic events took this quirk into account instead.

SPARQL-Generate is an alternative tool for semantic conversion that is based on an
extended SPARQL syntax [52]. However, it is less performant than the RMLStreamer [45].
RocketRML [53] is a Node-JS based mapper that also uses RML mappings. It claims

Appl. Sci. 2021, 11, 11932 10 of 22

faster timings than the RMLMapper but does not implement the full functionality. Finally,
CARML is a converter that struggles with large datasets in batch conversion but might be
suited for streaming cases [54]. Of course, mapping through a custom-made script is also
possible, but this ignores the benefits that supporting tools might offer, such as graphical
editing or correctness checking [55].

Listing 2. The semantic JSON-LD equivalent of the measurement shown in Listing 1.
1
2 {
3 " @id " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 .2/ metr ics/sensor .

indoor_re la t ive_humidi ty . humidity%3A%3Anumber/observat ions /1549973410001" ,
4 " @type " : " ht tp : //www. w3 . org/ns/sosa/Observation " ,
5 " hasSimpleResult " : " 4 0 . 0 5 2 8 1 2 5 " ,
6 " observedProperty " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 .2/ metr ics/

sensor . indoor_re la t ive_humidi ty . humidity%3A%3Anumber" ,
7 " resul tTime " : "1549973410001" ,
8 " @context " : {
9 " observedProperty " : {

10 " @id " : " ht tp : //www. w3 . org/ns/sosa/observedProperty " ,
11 " @type " : " @id "
12 } ,
13 " resul tTime " : {
14 " @id " : " ht tp : //www. w3 . org/ns/sosa/resultTime " ,
15 " @type " : " ht tp : //www. w3 . org /2001/XMLSchema#dateTime "
16 } ,
17 " hasSimpleResult " : {
18 " @id " : " ht tp : //www. w3 . org/ns/sosa/hasSimpleResult " ,
19 " @type " : " ht tp : //www. w3 . org /2001/XMLSchema# f l o a t "
20 }
21 }
22 }

4.6. Event/Anomaly Detection

A wide range of analysis techniques exists, as discussed in Section 3. The choice of
technique often depends on the use case, efforts to implement, and characteristics of the
technique such as throughput or data requirements. Techniques can also be combined,
either as single service using boosting or bagging approaches or as multiple, independent
services to further improve performance [56]. Some common requirements of techniques
include availability of historic data, availability of labeled data, and scalability.

In Dyversify, we investigated how to leverage the Healthbox data to detect certain
user events as well as anomalous system behavior. Three teams, each with different
backgrounds and a focus on different techniques, implemented their techniques as separate
microservices. This resulted in four different microservices, as shown in Figure 1. We
discuss each in detail below.

Each of the detector instances reads measurements from the (semantic) measurement
Kafka topic and writes any detected anomaly/event to the (semantic) event Kafka topic.
Components that require historic data query Obelisk for measurements or the Stardog
database for anomalies and events. Each detected anomaly/event is described with an
event identifier, the originating Healthbox, the metric(s), the time range of the event, the
timestamp of the detection, a description, and an identifier of the detector.

Listing 3 shows a JSON event as generated by the MP-events component. The id
field contains an identifier for the event. We opted to have each component create HTTP
ids so as to simplify the semantic conversion and for easier differentiation of the events
when debugging. The update field indicates whether the event is an updated version of a
previously published event and is used to update the records in Stardog. The generatedBy
field provides provenance information. A versioning scheme for the component was
foreseen but did not see real use in Dyversify. The timestamp indicates the detection time,
and the anomaly field gives all information regarding the event, including the occurrence
time of the event (in epoch time). Note that the timestamp and timing of the event may
differ when older data is being processed, which might occur when a processor has been
offline for a while. Finally, the matches field is specific to the MP-events component; it links
the detection to the labeled pattern that was matched.

Appl. Sci. 2021, 11, 11932 11 of 22

Listing 3. JSON representation of an event detected by the MP-events service.
1 {
2 " id " : " h t tps : // g i t l a b . i l a b t . imec . be/dyvers i fy/dyversi fy −ml−anomaly− d e t e c t o r /KPD/HEALTHBOX3.171030 SD0005 .2/ sensor . indoor . CO$_{ 2 }

$. co nc en t r a t io n : : number/1532217600000/1532217601000" ,
3 " update " : f a l s e ,
4 " generatedBy " : {
5 " id " : " h t tps : // g i t l a b . i l a b t . imec . be/dyvers i fy/dyversi fy −ml−anomaly− d e t e c t o r /ns/known−pattern − d e t e c t o r /1" ,
6 " algo " : " M a t r i x P r o f i l e " ,
7 " vers ion " : 1
8 } ,
9 " timestamp " : "2019 −11 −25T15 : 33 : 04.333950+00 : 00" ,

10 " anomaly " : {
11 " type " : [
12 "Anomaly" ,
13 " KnownPatternAnomaly "
14] ,
15 " d e s c r i p t i o n " : " Pa t te rn s i m i l a r to Window opened " ,
16 " p a r t s " : [
17 {
18 " thing " : "HEALTHBOX3.171030 SD0005 . 2 " ,
19 " property " : " sensor . indoor . CO$_{ 2 } $. c on ce nt ra t i on : : number " ,
20 " from " : 1532217600000 ,
21 " to " : 1532217601000
22 }
23]
24 } ,
25 " matches " : {
26 " id " : " h t tps : // g i t l a b . i l a b t . imec . be/dyvers i fy/dyversi fy −ml−anomaly− d e t e c t o r /UAD/HEALTHBOX3.171030 SD0005 .2/ sensor . indoor . CO$_{ 2 }

$. co nc en t r a t io n : : number/1532449470000/1532478210000" ,
27 " s i m i l a r i t y " : −1
28 }
29 }

The same information is present in the semantic format shown in Listing A1. The JSON-
LD version is more verbose due to constraints imposed by the used ontology and the need
to include a JSON-LD context, which links the JSON keys to semantic concepts.

Because detector deployments may also crash or change due to rescaling, they use
Kafka to persist their progress periodically. To avoid issues with reporting a single event
multiple times when measurements are re-processed, we generate event identifiers based
on the timestamp of the measurements. This way, duplicate detections will have the same
identifier and require no special treatment.

4.6.1. Anomaly Detection: Valve Classifier

The valve classifier is the most straightforward analysis component. It aims to detect
incorrectly installed valves, a common installation error as described in the use case
explanation. It does this by using the measurements to determine the most likely room
type and comparing this prediction against the type of configured vent.

Classification techniques evaluated include neural networks, decision trees, random
forest, and Gaussian processes. Ultimately, we settled for a random forest classifier that dis-
criminates between bedrooms, bathrooms, and an unknown type. Features were obtained
by subsampling the measurements to 5 min intervals, collecting a full day of absolute
humidity measurements, and generating 7 statistical features. The humidity signal was
chosen as it is present in every possible valve type. The classifier was trained on available
data (209 bathrooms and 114 bedrooms) and utilized oversampling to compensate the data
imbalance.

The valve classifier service reads data from Kafka and buffers it until a complete day
is ingested, then it uses the pretrained random forest to classify the room and outputs an
anomaly message if there is a mismatch to the configured room type. As each prediction
took only 50 ms per room, scalability was not an issue for this service. The classifier was
built in Python using Scikit-learn [57].

4.6.2. Anomaly Detection: MP-Outliers

This service was created to investigate how the Matrix Profile [37] could be used to
detect anomalies in the measurements. These anomalies in turn could indicate anomalous

Appl. Sci. 2021, 11, 11932 12 of 22

system behavior or specific user actions that affect air quality such as cooking, showering,
or opening a window.

The Matrix Profile is a technique that analyzes temporal patterns rather than individual
values and can be used to find both unique and repeating patterns. It works by sliding
a window of a predefined size over the incoming series and calculating the distance to
the best matching window in previous data. High distances indicate unique patterns (i.e.,
discords) and low distances indicate repeating patterns (i.e., motifs).

As measurements enter the component, they are subsampled to 1 min intervals and
passed to a Matrix Profile instance specific for the originating device/metric pair. To ensure
each Matrix Profile has reference data, historic data is queried from Obelisk when first
encountering a new pair. If no historic data is available (as would be the case with a newly
connected device), data is buffered until a predefined number of days is available after
which a complete Matrix Profile is calculated. The resulting distances are normalized [58]
and checked against a predefined anomaly threshold. Anomalies are not triggered right
away when the threshold is passed, but the next distances are also considered and used
to find a local maximum. Once a local maximum is found, it is reported and a cooldown
period is initiated to avoid new reports for the same underlying pattern. This approach
avoids multiple anomalies being reported by the same underlying behavior.

The committing of progress to Kafka was somewhat complicated through the use of
windows and delayed reporting: an index could only be committed if all preceding data
was no longer used for a Matrix Profile window or in a delayed anomaly report. Horizontal
scalability is straightforward and only limited by the number of partitions used in the
measurements Kafka topic.

In Dyversify, we evaluated this technique for the CO2, temperature, and relative
humidity measurements, as we expected these signals to be periodic in nature. Near the
end of the project, we dropped the temperature signal as this signal produced the least
interesting results. We configured each Matrix Profile to track one year of data (to have
representative data for all seasons), used a window length of 1 h (humidity) or 8 h (CO2),
and utilized a method to reduce the adverse effects of noise [59]. Furthermore, we only
allowed pattern comparisons for the humidity signal if the standard deviation ratio between
both windows was similar (ratio below 1.5). This was needed to discriminate activity
patterns from random noise in a period without activity. The MP-outliers component was
implemented in Python using the in-house Series Distance Matrix library [60].

Evaluations showed the MP-outliers processes around 2000 (non-filtered) measure-
ments per minute or 1 measurement every 30ms. Since the average Healthbox generates
15 relevant measurements per minute, a single MP-outliers instance can process up to
133 Healthboxes in real-time. Further performance gains can be gained by using coarser
subsampling, reducing the amount of reference data or by using GPU implementations of
Matrix Profile [61].

4.6.3. Event Detection: MP-Events

This component assumes that repeating patterns represent repeating system or con-
sumer behavior and uses the Matrix Profile to search for new occurrences of relevant
patterns. Relevant patterns are provided by the user interacting with the dashboard; any
labeled event will be tracked.

This and the previous component differ in how they use the Matrix Profile. The MP-
events component compares a query pattern sequence against the incoming measurements,
while the previous component performs a so-called self-join [37] to look for unique patterns
in the incoming measurements. The processing flow and parameters are similar as the
previous component, except here a local minimum is used, as we are interested in the best
possible match for each query pattern.

The query patterns originate from two sources, as shown in Figure 1. The first source
is the Kafka event topic, where all detection events are submitted, but because we filter on
labeled events, effectively only those of the dashboard are used. Still, by reading from the

Appl. Sci. 2021, 11, 11932 13 of 22

Kafka topic, rather than creating a direct link to the dashboard, we have a loose coupling
that would allow transparent changes in the future. The second source of query patterns
is the Stardog database, which is queried using a SPARQL HTTP API. Where Kafka acts
as the live event feed, Stardog is the historical repository. Retrieval of historical events is
needed in cases where an MP-events instance does not start processing a stream from the
start. This can occur due to recovery of a crashed instance or due to reassignment after
horizontal rescaling. Horizontal scalability is achieved in the same way as the MP-outliers
component. Reading from two Kafka topics did pose some challenges; these are discussed
in Section 6.

As a Matrix Profile instance can only process a single measurement stream, MP-events
creates one Matrix Profile per pattern. As MP-events consumes measurements, it forwards
each measurement to all Matrix Profile instances tracking that specific stream. This does
mean this approach will have scalability issues if the number of patterns would keep
growing, though this was not a problem for Dyversify. Evaluations showed that incoming
measurements for a single pattern were processed in 15ms.

4.6.4. Event Detection: Expert-Rules

This service processes the incoming measurements using expert rules that were con-
verted into semantic rules. These rules follow an if-then structure, where both parts
contain RDF triples with variables in them. Note that outputs of one rule may be used
as input for a different rule. As semantic reasoners apply rules to collections of triples,
rather than streams, we use windowing to reason over the most recent measurements per
device/metric pair.

A semantic expert created the rules in cooperation with domain experts. As prepara-
tion, experts were asked to complete FMEA (failure mode and effects analysis [62]) and
FTA (fault tree analysis [63]) documents, which were converted to semantic rules [64].
An example rule, shown in Listing 4, describes the conditions for humid weather and is
used as condition for other rules. Reasoning is done by an internal Stardog database. This
database is loaded with the rules, the last 10 measurements, and any available metadata of
the device. When the reasoner outputs an anomaly, it is submitted to Kafka.

Listing 4. A semantic rule that expresses humid weather based on available measurements.
1 IF {
2 ?h1 a <http ://www. w3 . org/ns/sosa/Observation > .
3 ?h2 a <http ://www. w3 . org/ns/sosa/Observation > .
4 ?h1 <http ://www. w3 . org/ns/sosa/hasSimpleResult > ? r1 .
5 ?h2 <http ://www. w3 . org/ns/sosa/hasSimpleResult > ? r2 .
6 FILTER (? r2 −? r1 >4) .
7 ?h1 <http :// IBCNServices . github . io/Fol io −Ontology/ F o l i o . owl#hasEpochTime> ? t1 .
8 ?h2 <http :// IBCNServices . github . io/Fol io −Ontology/ F o l i o . owl#hasEpochTime> ? t2 .
9 FILTER (? t1 <? t2) .

10 ?h1 <http ://www. w3 . org/ns/sosa/observedProperty > ? o1 .
11 ? o1 a <http :// IBCNServices . github . io/dyvers i fy/Renson# RelativeHumidity > .
12 ?h2 <http ://www. w3 . org/ns/sosa/observedProperty > ? o2 .
13 ? o2 a <http :// IBCNServices . github . io/dyvers i fy/Renson# RelativeHumidity > .
14 }
15 THEN {
16 ?h1 <http :// IBCNSercices . github . io/dyvers i fy/model_renson#hasWeather> " humid_weather " .
17 }

As the reasoner only uses static metadata and measurements coming from a single
device, this service is horizontally scalable. We deployed three instances of this service,
where each instance ran on a 10 CPU core node with 10 Stardog instances. Evaluations
showed that on average, a single instance processes bedroom measurements in 320 ms
and bathroom measurements in 730 ms. This difference in timings can be attributed to the
complexity of the applicable rules. Further details can be found in a dedicated work [51].

4.7. Semantic Database: Stardog

The semantic database is needed to persist all relevant semantic data. This includes
all reported events, as well as available metadata about all Healthbox devices. Notably, the
semantic measurements are not persisted, as semantic databases are simply less optimized
for storing large collections of time-series data.

Appl. Sci. 2021, 11, 11932 14 of 22

Stardog was selected based on previous experiences of the semantic team as well as
practical considerations towards the project partners regarding licensing. One advantage
of Stardog is that it is not just a RDF store but also a Graph DBMS, which facilitated data
isolation for the industry partners. Some alternatives include Virtuoso, which has a more
complex setup, or Apache Jena, which is limited to Java.

4.8. Dynamic Dashboard and Feedback

The last step in the system is a dashboard where users can visualize the various
metrics and investigate any event in detail. Dashboards need to balance between flexibility
and ease of use. Many dashboards require the user to specify and configure the widgets
of each desired visualization. While wizards somewhat ease this task, they can still be
burdensome when the number of devices or metrics grows. Dashboards are also a location
to gather user input or feedback, since they are typically the only point of interaction.

In Dyversify, we further developed a semantics-driven dynamic dashboard [65,66].
This dashboard suggests suitable visualizations by reasoning over the semantic descriptions
of the sensors and supported visual widgets. The dynamic reasoning component was also
developed as an independent microservice, so it could be used to suggest visualizations
in other, commercial dashboards, as was tested by our industry partner cumul.io. When
an event is selected by a user, the dashboard automatically selects and configures a set
of widgets that are suited to investigate it, and manual configuration of widgets remains
possible.

The dashboard is implemented as an Angular application interacting with three other
microservices: a data streamer, broker, and gateway. These are written in Kafka Streams,
Django REST framework, and AIOHTTP respectively. The data streamer acts as the data
access point to which dashboard widgets subscribe for data. The relevant metrics are then
filtered from Kafka and forwarded to the widgets. Note that the streamer service is foreseen
to be integrated into the gateway in future versions of the dashboard. The broker stores
and provides user state (e.g., dashboard layout), keeps track of the available metrics, and
houses the semantic reasoner that suggests widgets based on the semantic description of
visualized data. Finally, the gateway acts as an API to retrieve the metadata and assets for
dashboard widgets.

Only the dashboard microservices in our stack are exposed to the public. This way
the dashboard can provide real-time updates, while all other services of our system remain
in an isolated, secure setting.

Users can validate or remove events flagged by the system and can assign labels to
events. These interactions act as feedback for the other components of the system. After
user interaction, the label and semantic type of the event are updated and the updated event
is resubmitted to the event Kafka topic where it can be picked up again by other services.

The dashboard is described in more detail in other works. Vanden Hautte et al.
describe the dashboard in the context of Dyversify and include a demo movie (https:
//www.dropbox.com/s/lhg7v5wz09ffvun/Dyversify%20demo.avi?dl=0, (accessed on
3 October 2021)) in their work [66]. Moens et al. describe the interaction between the
dashboard and Obelisk in more detail for a different, industrial IoT case [43].

4.9. Monitoring

Ensuring components are behaving as expected is of vital importance both during
development and in production settings. Monitoring systems give insight into the underly-
ing system to ensure this is the case. Even if different teams do not know the specifics of
components maintained by other teams, it is straightforward to interpret metrics such as
CPU usage, message throughput, or Kafka messages to quickly validate that components
are behaving well.

As a monitoring solution, we compared the TICK stack and Prometheus. TICK
(Telegraf, InfluxDB, Chronograf, and Kapacitor) is a set of open-source tools that can be
combined together or used separately to collect, store, visualize, and manipulate time-series

https://www.dropbox.com/s/lhg7v5wz09ffvun/Dyversify%20demo.avi?dl=0
https://www.dropbox.com/s/lhg7v5wz09ffvun/Dyversify%20demo.avi?dl=0

Appl. Sci. 2021, 11, 11932 15 of 22

data. It is developed by InfluxData, mostly known for its time-series database InfluxDB.
The second candidate, Prometheus is a fully open-source monitoring solution inspired by
Google Borg Monitor [67]. It was initially developed by SoundCloud and later donated to
the Cloud Native Computing Foundation, which also houses Kubernetes, fluentd, Helm,
Envoy, and others. Each Prometheus server is standalone, ensuring correct functioning of
Prometheus even when other parts of the infrastructure are broken. While both monitoring
systems have the same capabilities, we chose Prometheus as a monitoring solution because
it collects metrics in a pull-based manner, has a more streamlined data store, has a less
verbose query language, and found it easier to configure for small setups.

Monitoring solutions such as Prometheus collect metrics can be broadly divided into
three categories: service metrics (e.g., input or error rate), resource metrics (e.g., CPU usage
or network I/O), and events (e.g., alerts or configuration changes). Some metrics like
cache hits or database locks cannot be put in any of these categories but may still prove
to be useful in representing the operability of the system. Existing methodologies can
prove good starting grounds for deciding which metrics to collect. The USE-method [68] is
a system-agnostic methodology that focuses on the resource utilization, saturation, and
errors. Another methodology comes from the Google Site-Reliability Engineering (SRE)
team; they formulated four golden signals: latency, traffic, errors, and saturation [67].
Finally, the RED-method (rate, errors, duration) was created by Tom Wilkie, a former
Google SRE employee, and focuses on microservice monitoring.

All of the metrics above were made available in a Grafana dashboard. Still, we found
the Kafka consumer lag and latest Kafka messages the most useful metrics during service
development. We also experimented with a fully automatic rule-based scaling mechanism
for the microservices, based on the number of incoming messages, the number of consumed
messages, the average consumer lag, and the derivation thereof. This approach proved
successful, but it took some time before the system reached a stable state after rescaling, so
specific configuration for every use case would be required in order to be truly efficient.

5. Evaluation Results

To evaluate the complete architecture, from sensor value ingestion up to the visual-
ization of detected events in the dashboard, the end-to-end methodology was evaluated
for the derivation of highly accurate anomalies and their interpretable causes from sensor
monitoring streams by enabling adaptive, context-aware anomaly detection, and root cause
analysis through the fusion of (semantic) knowledge- and data-driven techniques. This
methodology and pipeline was validated using the Renson use case. All methods, either
machine learning based, semantic-based, or fused data analysis for anomaly detection and
root cause analysis, have local response times below 1 s. The dynamic detection and match-
making of visualizations that fit with sensors and/or occurring events remained below
1.3 s for the user-driven visualization and below 1.6 s for the anomaly-driven visualization.
It is logical that anomaly-driven visualization takes on average slightly longer to complete
than user-driven visualization, because the dashboard must suggest multiple visualization
widgets at once instead of assisting in the visualization options for just one widget. As a
result, the full chain from sensor data ingestion up to visualization is achieved in less than
5 s.

6. Lessons Learned

After this overview of the architecture of the Dyversify stack, we now discuss lessons
we learned while developing and testing our stack.

6.1. Scalability Requirements

Scalability is achieved by up- or downscaling the instances of components based
on the workload and having each instance process a subset of the incoming data. When
these components and their data flow adhere to certain guidelines, the complexity can be
greatly reduced.

Appl. Sci. 2021, 11, 11932 16 of 22

First, each instance should be able to work independently, so there is no need for
synchronization between all instances. Ideally, the input data also forms disjoint logical
groups. In our proof-of-concept, we wanted to perform event detection across all ventilated
rooms per building, so the data had to be partitioned in such a way that all streams
originating from a single building were assigned to the same Kafka partition.

Here, we encountered an issue for the MP-events component which also uses user
feedback. The event topic contains the patterns that need to be tracked, while the mea-
surement topic contains the actual data being tested. The issue originates from the need to
process two Kafka topics at the same time (with the event topic having priority), which is
not supported by Kafka. We solved this by interweaving the reads from both topics, though
this introduces a timing-dependent non-deterministic behavior that might be undesired
for some use cases.

A second requirement for reactive scalability is that each instance should have a short
startup (ideally around or less than one minute) and perform a clean and fast shutdown
when it receives a termination signal. Here, we experienced many problems with the
MP-outliers service, which determines anomalies by referencing one year of historic data.
Because of the way different device/metric pairs are interwoven on the measurement topic,
all relevant historic data will be loaded before the detector achieves normal operating
speed. As fetching historic data could take several minutes for a single sensor, this resulted
in an effective startup time of 30 to 60 min before the service could start processing at
normal speed. We observed cases where data fetching for a single sensor took exceptionally
long, up to 12 min. These occurrences triggered the mechanism in Kafka to detect stalled
processors, which terminated these processors and redistributed the workload, effectively
re-triggering the issue. We solved the cascade problem by using manual partition assign-
ment and starting the instances one at a time to avoid all instances querying Obelisk at the
same moment. The long data fetches could be solved by caching the historic datasets on a
shared drive, avoiding the need for lengthy data retrieval queries, and by increasing Kafka
timeouts through configuration.

6.2. Setting Up a Complex Microservice-Based Backend

There is a need for a number of essential enablers during multi-team collaborative R&D
on complex microservice-based systems such as the one described here. For one, in-depth
monitoring of individual service endpoints in terms of, e.g., load, resource consumption,
and response times allowed us to rapidly gain insights into the dynamics of the service
backend. This aided in identifying erroneous or misbehaving service instances, e.g.,
due to overconsumption of memory. In Dyversify, we chose to employ Prometheus
as a monitoring and alerting toolkit, monitoring all Dockerised services deployed on
Kubernetes, with metrics visualized on Grafana dashboards and automated push-based
developer alerting in case a back-end issue was detected. Service mesh technologies (e.g.,
Istio) can provide additional monitoring, specifically network metrics, by adding sidecars or
proxies to each service that is deployed. However, due to the constraints of our architecture,
i.e., high speed IoT data, we opted not to implement this technology due to the impact on
performance.

A second important lesson learned was that when multiple development teams de-
ploy services on the same container orchestration infrastructure (e.g., Kubernetes), it is
important to enforce infrastructural bulkheads (fixed resource constraints per team sup-
plying services). This follows the embrace failure principle, as deployment of an erroneous
service version (which can and will happen) cannot escape the confines of the bulkhead
and therefore has a more limited impact on other well-behaving service instances.

Thirdly, as data in our architecture was sent over Kafka, it became clear that input
validation of posted messages should be mandatory. To give an example: faulty sensors
were at times emitting NaN (Not a Number) as value. As consuming services expected
these values to be of floating point type, these messages remained unconsumed and

Appl. Sci. 2021, 11, 11932 17 of 22

cluttered the different topics. Dedicated alerting or data offloading strategies for data that
does not adhere to the expected input should therefore be installed.

6.3. Early Testing for Library Limitations

Any high-level software component relies on libraries made by third parties for
certain functionality. The availability or maturity of these libraries may differ between
programming languages and should be considered during the design of any component.
Unfortunately, desired functionality may not be fully known in advance, or limitations of
certain libraries may not be apparent through documentation.

For us, the choice of programming language was mainly based on the expertise of
each team, but we did not foresee problems related to libraries. Still, two library related
problems arose during the course of the project. First, we encountered problems with the
Python Kafka client implementation. One issue entailed internal timeouts leading to costly
consumer rebalances and were due to the inner workings of the client library. Later versions
of the library fixed this issue, months after we reported the issue. Another issue was missing
functionality to avoid the previously mentioned initialization cascade, which is available
in the Java Kafka client but not in the Python client. Both problems required workarounds
that cost multiple weeks of work to get right. The second library problem was related
to the RMLStreamer, and was due to an undocumented interaction between Kafka and
Apache Flink (used internally by the RMLStreamer). Here, we learned the hard way that
Flink does not follow the consumer group semantics of Kafka. This caused input partitions
to be processed zero or multiple times, leading to both duplicate and missing semantic
messages. Tests had missed this problem because the testing environment only used one
data partition, whereas the production environment used multiple. This highlights the need
to test early during development and to match the testing and production environment as
best as possible.

6.4. Semantic Microservice Communication

The independence of components in microservice architectures imposes a need for
well-defined message formats. Once established, changes may affect multiple other com-
ponents and should be avoided. A known solution is for each microservice to provide
versioned, well-defined contracts to clients. New versions incorporate changes and are
used in parallel with older, deprecated contracts during a grace period.

Our stack uses two types of messages in the Kafka topics: measurements and events.
Both types have a JSON and semantic JSON-LD model, and a mapping is possible from
one format to the other. The measurement format is straightforward, as it is only outputted
by the ingest system. The event format consists of a single specification with optional fields
that are filled depending on the producer.

While semantics are well suited for streamlining communication from different
sources, we experienced no benefit from using semantic messages over plain JSON for
microservice communication. As mentioned in the introduction, semantic graphs can be
serialized in multiple ways. Even in the JSON-LD serialization, there are multiple formats
to represent the same data. This means developers either have to use a technique called
JSON-LD framing to transform it to a desired JSON structure or load the data into a triple
store so it can be queried using SPARQL. While framing and SPARQL are well supported,
they are unfamiliar to developers and introduce an extra level of complexity. Because
the microservice environment is isolated and the format of messages is well defined, the
streamlining value of semantics is somewhat lost and we are left with a complex data container.

Another aspect to take into account is the verbosity of semantic messages. Because
URIs are used to identify concepts and relations, and values should be specified explicitly
(i.e., they should not be extracted from URIs), semantic messages are typically longer
than a pure JSON representation. Methods exist to reduce verbosity, such as the use of a
context that maps (long) URIs to short, simple string keys, as is done in Listings 2 and A1.
However, this has no effect for short messages such as measurements or events because

Appl. Sci. 2021, 11, 11932 18 of 22

the mapping context has to be included in the message as well. The JSON-LD context can
also be included as an external link in a HTTP header. Conceptually, this requires clients
to validate the context for every message they process, incurring a processing overhead
instead. For us, semantic messages were 1.5 to 6 times larger than their equivalent JSON
messages.

7. Conclusions

In this paper we discussed the architecture designed and validated within the Dyver-
sify project to create a working, scalable, and resilient proof-of-concept software stack
that combines machine learning and semantic technologies. This stack is used for event
detection on time-series data stemming from internet-enabled ventilation devices. The
stack was developed in cooperation with three industry partners and validated using real
data from train bogie monitoring and ventilation monitoring systems, though this paper
only discusses the former.

We explain how data ingest, storage, transfer, processing, visualization and capturing
of user feedback are performed by interacting, independent microservices. Event and
anomaly detection is performed by multiple machine learning and semantic expert-based
components, whose output is unified to a semantic format. A dashboard uses semantic
sensor descriptions to dynamically generate visualizations for events with only limited
human intervention. We also discuss our system monitoring approach and considerations
to guarantee scalability. We believe ideas and lessons described in this work can provide a
valuable starting reference for parties considering IoT event or anomaly detection, parties
who want to combine both data-driven and semantic analytics, as well those looking at
full-stack design.

To show general applicability of the presented stack for real-life monitoring beyond
the presented use case, and given the current pandemic of COVID-19, we are currently
researching the potential of the Dyversify stack for COVID-19 airborne transmission
monitoring in buildings.

Research continues on all techniques mentioned in this work, as well as their inte-
gration. Anomaly detection methods for IoT still suffer from the varying deployment
situations and uncertainty on what should be considered anomalous. Incorporating the
context of sensors into anomaly detection might prove useful. Monitoring of distributed
systems faces similar challenges, since the normal system behavior changes as services are
added or replaced on the network. Finally, more fine grained models might also be useful
for recommending anomaly visualizations, since users will have different focuses based on
their company role or expertise.

Author Contributions: Conceptualization, D.D.P.; software, D.D.P., S.V.H. (Sander Vanden Hautte),
B.S., P.M., J.V. and S.V.; validation, D.D.P., S.V.H. (Sander Vanden Hautte), P.M. and J.V.; investigation,
D.D.P., S.V.H. (Sander Vanden Hautte), B.S., P.M. and J.V.; resources, S.V.; writing—original draft
preparation, D.D.P.; writing—review and editing, D.D.P., S.V.H. (Sander Vanden Hautte), P.M. and
S.V.H. (Sofie Van Hoecke); supervision, B.V., F.O. and S.V.H. (Sofie Van Hoecke); project administra-
tion, D.D.P, F.O. and S.V.H. (Sofie Van Hoecke); funding acquisition, S.V.H. (Sofie Van Hoecke). All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by DyVerSIFy. The imec.icon project DyVerSIFy is co-
financed by imec and VLAIO (project HBC.2017.0147) and brings together the following partners:
Renson Ventilation, Televic Rail, cumul.io, and imec, IDLab, Ghent Unviversity. Validation of part of
the Dyversify-stack was done via the VLAIO proof of concept Smart Maintenance of IDLab, Ghent
University—imec and Flanders Make.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 11932 19 of 22

Appendix A

Listing A1. An example of a semantized data sample taken from OpenWeatherMap reporting
air temperature at Jagiellonian University.

1 {
2 " @graph " : [
3 {
4 " @id " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 .2/ metr ics/sensor . indoor .

CO$_{ 2 } $. co nc en t r a t io n%3A%3Anumber" ,
5 " isObservedBy " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 . 2 "
6 } , {
7 " @id " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 .2/ metr ics/sensor . indoor .

CO$_{ 2 } $. co nc en t r a t io n%3A%3Anumber/observat ions /1532217600000" ,
8 " resul tTime " : "1532217600000"
9 } , {

10 " @id " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 .2/ metr ics/sensor . indoor .
CO$_{ 2 } $. co nc en t r a t io n%3A%3Anumber/observat ions /1532217601000" ,

11 " resul tTime " : "1532217601000"
12 } , {
13 " @id " : " ht tp : //example . com/procedure_bn /2019−11−25T15%3A33%3A04.333950%2 B00%3A00" ,
14 " l a b e l " : " M a t r i x P r o f i l e "
15 } , {
16 " @id " : " ht tp : //example . com/stimulus/HEALTHBOX3.171030 SD0005 .2/ sensor . indoor . CO$_{ 2 } $. co nc en t r a t io n%3A%3Anumber

/1532217600000/1532217601000" ,
17 " @type " : " ht tp : //www. w3 . org/ns/ssn/Stimulus " ,
18 " fromObservation " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 .2/ metr ics/

sensor . indoor . CO$_{ 2 } $. co nc en t r a t io n%3A%3Anumber/observat ions /1532217600000" ,
19 " observedProperty " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 .2/ metr ics/

sensor . indoor . CO$_{ 2 } $. co nc en t r a t io n%3A%3Anumber" ,
20 " toObservation " : " ht tp : //dyversi fy −s tack . id l ab . be/scopes/icon . dyvers i fy . renson/things/HEALTHBOX3.171030 SD0005 .2/ metr ics/

sensor . indoor . CO$_{ 2 } $. co nc en t r a t io n%3A%3Anumber/observat ions /1532217601000"
21 } , {
22 " @id " : " h t tps : // g i t l a b . i l a b t . imec . be/dyvers i fy/dyversi fy −ml−anomaly− d e t e c t o r /KPD/HEALTHBOX3.171030 SD0005 .2/ sensor . indoor .

CO$_{ 2 } $. co nc en t r a t io n : : number/1532217600000/1532217601000" ,
23 " @type " : [
24 " ht tp : //IBCNServices . github . io/Fol io −Ontology/F o l i o . owl#Anomaly" ,
25 " ht tp : //IBCNServices . github . io/Fol io −Ontology/F o l i o . owl#KnownPatternAnomaly "
26] ,
27 " d e s c r i p t i o n " : " Pa t te rn s i m i l a r to Window opened " ,
28 " resul tTime " : "2019 −11 −25T15 : 33 : 04.333950+00 : 00" ,
29 " usedProcedure " : " h t tps : // g i t l a b . i l a b t . imec . be/dyvers i fy/dyversi fy −ml−anomaly− d e t e c t o r /ns/known−pattern − d e t e c t o r /1" ,
30 " wasOriginatedBy " : " ht tp : //example . com/stimulus/HEALTHBOX3.171030 SD0005 .2/ sensor . indoor . CO$_{ 2 } $. co nc en t r a t io n%3A%3Anumber

/1532217600000/1532217601000" ,
31 " update " : " f a l s e " ,
32 " metr ic Id " : " sensor . indoor . CO$_{ 2 } $. c on ce nt ra t i on : : number " ,
33 " th ingId " : "HEALTHBOX3.171030 SD0005 . 2 "
34 } , {
35 " @id " : " h t tps : // g i t l a b . i l a b t . imec . be/dyvers i fy/dyversi fy −ml−anomaly− d e t e c t o r /ns/known−pattern − d e t e c t o r /1" ,
36 " @type " : " ht tp : //www. w3 . org/ns/sosa/Procedure " ,
37 " s p e c i a l i z a t i o n O f " : " ht tp : //example . com/procedure_bn /2019−11−25T15%3A33%3A04.333950%2 B00%3A00"
38 }
39] ,
40 " @context " : {
41 " metr ic Id " : { " @id " : " h t tps : //idlab − i o t . tengu . io/api/v1/vocabulary/metr ic Id " } ,
42 " th ingId " : { " @id " : " h t tps : //idlab − i o t . tengu . io/api/v1/vocabulary/thingId " } ,
43 " l a b e l " : { " @id " : " ht tp : //www. w3 . org /2000/01/ rdf −schema# l a b e l " } ,
44 " d e s c r i p t i o n " : { " @id " : " ht tp : //purl . org/dc/terms/ d e s c r i p t i o n " } ,
45 " update " : { " @id " : " h t tps : //idlab − i o t . tengu . io/api/v1/booleans/update " } ,
46 " resul tTime " : {
47 " @id " : " ht tp : //www. w3 . org/ns/sosa/resultTime " ,
48 " @type " : " ht tp : //www. w3 . org /2001/XMLSchema#dateTime "
49 } , " usedProcedure " : {
50 " @id " : " ht tp : //www. w3 . org/ns/sosa/usedProcedure " ,
51 " @type " : " @id "
52 } , " wasOriginatedBy " : {
53 " @id " : " ht tp : //www. w3 . org/ns/ssn/wasOriginatedBy " ,
54 " @type " : " @id "
55 } , " isObservedBy " : {
56 " @id " : " ht tp : //www. w3 . org/ns/sosa/isObservedBy " ,
57 " @type " : " @id "
58 } , " observedProperty " : {
59 " @id " : " ht tp : //IBCNServices . github . io/Fol io −Ontology/F o l i o . owl# observedProperty " ,
60 " @type " : " @id "
61 } , " fromObservation " : {
62 " @id " : " ht tp : //IBCNServices . github . io/Fol io −Ontology/F o l i o . owl# fromObservation " ,
63 " @type " : " @id "
64 } , " toObservat ion " : {
65 " @id " : " ht tp : //IBCNServices . github . io/Fol io −Ontology/F o l i o . owl# toObservat ion " ,
66 " @type " : " @id "
67 } , " s p e c i a l i z a t i o n O f " : {
68 " @id " : " ht tp : //www. w3 . org/ns/prov# s p e c i a l i z a t i o n O f " ,
69 " @type " : " @id "
70 }
71 }
72 }

Appl. Sci. 2021, 11, 11932 20 of 22

References
1. eSIM Technology to Spur IoT Connections in APAC by 2025. Available online: https://www.forest-interactive.com/newsroom/

esim-technology-to-spur-iot-connections-in-apac-by-2025/ (accessed on 12 January 2021).
2. Grand View Research—Predictive Maintenance Market Size Worth $28.24 Billion By 2025. Available online: https://www.

grandviewresearch.com/press-release/global-predictive-maintenance-market (accessed on 12 January 2021).
3. Bizer, C.; Heath, T.; Berners-Lee, T. Linked data: The story so far. In Semantic Services, Interoperability and Web Applications:

Emerging Concepts; IGI Global: Hershey, PA, USA, 2011; pp. 205–227.
4. Buyle, R.; Vanlishout, Z.; Coetzee, S.; De Paepe, D.; Van Compernolle, M.; Thijs, G.; Van Nuffelen, B.; De Vocht, L.; Mechant, P.;

De Vidts, B.; et al. Raising interoperability among base registries: The evolution of the Linked Base Registry for addresses in
Flanders. J. Web Semant. 2019, 55, 86–101. [CrossRef]

5. Deliot, C. Publishing the British national bibliography as linked open data. Cat. Index 2014, 174, 13–18.
6. Bonte, P.; Tommasini, R.; Della Valle, E.; De Turck, F.; Ongenae, F. Streaming MASSIF: Cascading reasoning for efficient processing

of iot data streams. Sensors 2018, 18, 3832. [CrossRef] [PubMed]
7. Solaimani, M.; Iftekhar, M.; Khan, L.; Thuraisingham, B.; Ingram, J.B. Spark-based anomaly detection over multi-source VMware

performance data in real-time. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Cyber Security
(CICS), Orlando, FL, USA, 9–12 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–8.

8. Solaimani, M.; Khan, L.; Thuraisingham, B. Real-time anomaly detection over VMware performance data using storm. In Pro-
ceedings of the 15th International Confonference on Information Reuse and Integration (IRI), San Francisco, CA, USA, 13–15
August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 458–465.

9. Tang, B.; Chen, Z.; Hefferman, G.; Wei, T.; He, H.; Yang, Q. A Hierarchical Distributed Fog Computing Architecture for Big
Data Analysis in Smart Cities. In Proceedings of the ASE BigData & SocialInformatics, Kaohsiung, Taiwan, 7–9 October 2015;
Association for Computing Machinery: New York, NY, USA, 2015.

10. Asaithambi, S.P.R.; Venkatraman, R.; Venkatraman, S. MOBDA: Microservice-Oriented Big Data Architecture for Smart City
Transport Systems. Big Data Cogn. Comput. 2020, 4, 17. [CrossRef]

11. Rettig, L.; Khayati, M.; Cudré-Mauroux, P.; Piorkówski, M. Online Anomaly Detection over Big Data Streams. In Applied
Data Science: Lessons Learned for the Data-Driven Business; Springer International Publishing: Berlin/Heidelberg, Germany, 2019;
pp. 289–312. [CrossRef]

12. Zhao, S.; Chandrashekar, M.; Lee, Y.; Medhi, D. Real-time network anomaly detection system using machine learning. In
Proceedings of the 2015 11th International Conference on the Design of Reliable Communication Networks (DRCN), Kansas City,
MO, USA, 24–27 March 2015; pp. 267–270. [CrossRef]

13. Parwez, M.S.; Rawat, D.B.; Garuba, M. Big Data Analytics for User-Activity Analysis and User-Anomaly Detection in Mobile
Wireless Network. IEEE Trans. Ind. Inform. 2017, 13, 2058–2065. [CrossRef]

14. Yang, F.; Merlino, G.; Ray, N.; Léauté, X.; Gupta, H.; Tschetter, E. The RADStack: Open source lambda architecture for interactive
analytics. In Proceedings of the 50th Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 4–7
January 2017.

15. Marz, N.; Warren, J. Big Data: Principles and Best Practices of Scalable Real-Time Data Systems; Manning Publications Co.: New York,
NY, USA, 2015.

16. Kreps, J. Questioning the Lambda Architecture. Available online: https://www.oreilly.com/radar/questioning-the-lambda-
architecture/ (accessed on 12 January 2021).

17. Ta-Shma, P.; Akbar, A.; Gerson-Golan, G.; Hadash, G.; Carrez, F.; Moessner, K. An Ingestion and Analytics Architecture for IoT
Applied to Smart City Use Cases. IEEE Internet Things J. 2018, 5, 765–774. [CrossRef]

18. Lopez, M.A.; Lobato, A.G.P.; Duarte, O.C.M. A performance comparison of open-source stream processing platforms. In Pro-
ceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 1–6.

19. Karimov, J.; Rabl, T.; Katsifodimos, A.; Samarev, R.; Heiskanen, H.; Markl, V. Benchmarking distributed stream data processing
systems. In Proceedings of the 2018 34th International Conference on Data Engineering (ICDE), Paris, France, 16–19 April 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1507–1518.

20. Persico, V.; Pescapé, A.; Picariello, A.; Sperlí, G. Benchmarking big data architectures for social networks data processing using
public cloud platforms. Future Gener. Comput. Syst. 2018, 89, 98–109. [CrossRef]

21. Isah, H.; Abughofa, T.; Mahfuz, S.; Ajerla, D.; Zulkernine, F.; Khan, S. A Survey of Distributed Data Stream Processing
Frameworks. IEEE Access 2019, 7, 154300–154316. [CrossRef]

22. Blamey, B.; Hellander, A.; Toor, S. Apache Spark Streaming, Kafka and HarmonicIO: A Performance Benchmark and Architecture
Comparison for Enterprise and Scientific Computing. In International Symposium on Benchmarking, Measuring and Optimization;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 335–347.

23. Zimmermann, O. Microservices tenets. In Computer Science-Research and Development; Springer: Berling/Heidelberg, Germany,
2017; Volume 32, pp. 301–310.

24. Li, Z.; Seco, D.; Sánchez Rodríguez, A.E. Microservice-oriented platform for internet of big data analytics: A proof of concept.
Sensors 2019, 19, 1134. [CrossRef]

https://www.forest-interactive.com/newsroom/esim-technology-to-spur-iot-connections-in-apac-by-2025/
https://www.forest-interactive.com/newsroom/esim-technology-to-spur-iot-connections-in-apac-by-2025/
https://www.grandviewresearch.com/press-release/global-predictive-maintenance-market
https://www.grandviewresearch.com/press-release/global-predictive-maintenance-market
http://doi.org/10.1016/j.websem.2018.10.003
http://dx.doi.org/10.3390/s18113832
http://www.ncbi.nlm.nih.gov/pubmed/30413104
http://dx.doi.org/10.3390/bdcc4030017
http://dx.doi.org/10.1007/978-3-030-11821-1_16
http://dx.doi.org/10.1109/DRCN.2015.7149025
http://dx.doi.org/10.1109/TII.2017.2650206
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
http://dx.doi.org/10.1109/JIOT.2017.2722378
http://dx.doi.org/10.1016/j.future.2018.05.068
http://dx.doi.org/10.1109/ACCESS.2019.2946884
http://dx.doi.org/10.3390/s19051134

Appl. Sci. 2021, 11, 11932 21 of 22

25. Hasselbring, W.; Steinacker, G. Microservice Architectures for Scalability, Agility and Reliability in E-Commerce. In Proceedings
of the 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), Gothenburg, Sweden, 5–7 April 2017;
pp. 243–246. [CrossRef]

26. Neri, D.; Soldani, J.; Zimmermann, O.; Brogi, A. Design principles, architectural smells and refactorings for microservices:
A multivocal review. In SICS Software-Intensive Cyber-Physical Systems; Springer: Berling/Heidelberg, Germany, 2019; pp. 1–13.

27. Augenstein, C.; Spangenberg, N.; Franczyk, B. An Architectural Blueprint for a Multi-purpose Anomaly Detection on Data
Streams. In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS), Heraklion, Greece, 3–5
May 2019; pp. 470–476.

28. Cardellini, V.; Mencagli, G.; Talia, D.; Torquati, M. New Landscapes of the Data Stream Processing in the era of Fog Computing.
Future Gener. Comput. Syst. 2019, 99, 646–650. [CrossRef]

29. Bonte, P.; Ongenae, F.; De Backere, F.; Schaballie, J.; Arndt, D.; Verstichel, S.; Mannens, E.; Van de Walle, R.; De Turck, F. The
MASSIF platform: A modular and semantic platform for the development of flexible IoT services. Knowl. Inf. Syst. 2017,
51, 89–126. [CrossRef]

30. De Brouwer, M.; Bonte, P.; Arndt, D.; Vander Sande, M.; Heyvaert, P.; Dimou, A.; Verborgh, R.; De Turck, F.; Ongenae, F.
Distributed Continuous Home Care Provisioning through Personalized Monitoring & Treatment Planning. In Proceedings of the
Companion Proceedings of the Web Conference, Taipei, Taiwan, 20–24 April 2020; pp. 143–147. [CrossRef]

31. Mahieu, C.; Ongenae, F.; De Backere, F.; Bonte, P.; De Turck, F.; Simoens, P. Semantics-based platform for context-aware and
personalized robot interaction in the internet of robotic things. J. Syst. Softw. 2019, 149, 138–157. [CrossRef]

32. Vercruyssen, V.; Meert, W.; Verbruggen, G.; Maes, K.; Bäumer, R.; Davis, J. Semi-Supervised Anomaly Detection with an
Application to Water Analytics. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore,
17–20 November 2018; pp. 527–536. [CrossRef]

33. Shah, P.; Hiremath, D.; Chaudhary, S. Big Data Analytics Architecture for Agro Advisory System. In Proceedings of the 2016
IEEE 23rd International Conference on High Performance Computing Workshops (HiPCW), Hyderabad, India, 19–22 December
2016; pp. 43–49. [CrossRef]

34. Amini, S.; Gerostathopoulos, I.; Prehofer, C. Big data analytics architecture for real-time traffic control. In Proceedings of the 2017
5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy,
26–28 June 2017; pp. 710–715. [CrossRef]

35. Shaw, S.R.; Norford, L.K.; Luo, D.; Leeb, S.B. Detection and Diagnosis of HVAC Faults via Electrical Load Monitoring. HVAC&R
Res. 2002, 8, 13–40. [CrossRef]

36. Assent, I.; Kranen, P.; Baldauf, C.; Seidl, T. Anyout: Anytime outlier detection on streaming data. In International Conference on
Database Systems for Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 228–242.

37. Yeh, C.C.M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H.A.; Silva, D.F.; Mueen, A.; Keogh, E. Matrix Profile I: All Pairs
Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets. In Proceedings of the 16th
International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 1317–1322. [CrossRef]

38. De Paepe, D.; Van Hoecke, S. Mining Recurring Patterns in Real-Valued Time Series using the Radius Profile. In Proceedings of
the 20th International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; IEEE: Piscataway, NJ, USA,
2020; pp. 984–989. [CrossRef]

39. Dell’Aglio, D.; Della Valle, E.; van Harmelen, F.; Bernstein, A. Stream reasoning: A survey and outlook. Data Sci. 2017, 1, 59–83.
[CrossRef]

40. The Obelisk Platform. Available online: https://obelisk.ilabt.imec.be (accessed on 12 January 2021).
41. Bracke, V.; Sebrechts, M.; Moons, B.; Hoebeke, J.; De Turck, F.; Volckaert, B. Design and evaluation of a scalable IoT backend for

Smart Ports. In Software: Practice and Experience; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 1557–1579 [CrossRef]
42. Santos, J.; Vanhove, T.; Sebrechts, M.; Dupont, T.; Kerckhove, W.; Braem, B.; Van Seghbroeck, G.; Wauters, T.; Leroux, P.; Latre, S.;

et al. City of things: Enabling resource provisioning in smart cities. IEEE Commun. Mag. 2018, 56, 177–183. [CrossRef]
43. Moens, P.; Bracke, V.; Soete, C.; Vanden Hautte, S.; Nieves Avendano, D.; Ooijevaar, T.; Devos, S.; Volckaert, B.; Van Hoecke, S.

Scalable fleet monitoring and visualization for smart machine maintenance and industrial IoT applications. Sensors 2020, 20, 4308.
[CrossRef]

44. Araujo, V.; Mitra, K.; Saguna, S.; Åhlund, C. Performance evaluation of FIWARE: A cloud-based IoT platform for smart cities. J.
Parallel Distrib. Comput. 2019, 132, 250–261. [CrossRef]

45. Haesendonck, G.; Maroy, W.; Heyvaert, P.; Verborgh, R.; Dimou, A. Parallel RDF generation from heterogeneous big data.
In Proceedings of the International Workshop on Semantic Big Data (SBD), Amsterdam, The Netherlands, 5 July 2019; pp. 1–6.

46. Dimou, A.; De Nies, T.; Verborgh, R.; Mannens, E.; Mechant, P.; Van de Walle, R. Automated metadata generation for Linked
Data generation and publishing workflows. In Proceedings of the 8th Workshop for Linked Data on the Web (LDOW), Montreal,
QC, Canada, 12 April 2016; pp. 1–10.

47. Dimou, A.; Vander Sande, M.; Colpaert, P.; Verborgh, R.; Mannens, E.; Van de Walle, R. RML: A Generic Language for Integrated
RDF Mappings of Heterogeneous Data. In Proceedings of the 7th Workshop on Linked Data on the Web (LDOW), Lyon, France,
23 April 2014; Volume 1184.

http://dx.doi.org/10.1109/ICSAW.2017.11
http://dx.doi.org/10.1016/j.future.2019.03.027
http://dx.doi.org/10.1007/s10115-016-0969-1
http://dx.doi.org/10.1145/3366424.3383528
http://dx.doi.org/10.1016/j.jss.2018.11.022
http://dx.doi.org/10.1109/ICDM.2018.00068
http://dx.doi.org/10.1109/HiPCW.2016.015
http://dx.doi.org/10.1109/MTITS.2017.8005605
http://dx.doi.org/10.1080/10789669.2002.10391288
http://dx.doi.org/10.1109/ICDM.2016.0179
http://dx.doi.org/10.1109/ICDM50108.2020.00113
http://dx.doi.org/10.3233/DS-170006
https://obelisk.ilabt.imec.be
http://dx.doi.org/10.1002/spe.2973
http://dx.doi.org/10.1109/MCOM.2018.1701322
http://dx.doi.org/10.3390/s20154308
http://dx.doi.org/10.1016/j.jpdc.2018.12.010

Appl. Sci. 2021, 11, 11932 22 of 22

48. Heyvaert, P.; De Meester, B.; Dimou, A.; Verborgh, R. Declarative Rules for Linked Data Generation at your Fingertips!
In Proceedings of the 15th European Semantic Web Conference (ESWC): Posters and Demos, Heraklion, Greece, 3–7 June 2018.

49. Neuhaus, H.; Compton, M. The semantic sensor network ontology. In Proceedings of the AGILE 2009 Pre-Conference Workshop:
Challenges in Geospatial Data Harmonisation, Hannover, Germany, 2 June 2009; pp. 1–33.

50. Janowicz, K.; Haller, A.; Cox, S.J.; Le Phuoc, D.; Lefrançois, M. SOSA: A lightweight ontology for sensors, observations, samples,
and actuators. J. Web Semant. 2019, 56, 1–10. [CrossRef]

51. Steenwinckel, B.; De Paepe, D.; Vanden Hautte, S.; Heyvaert, P.; Bentefrit, M.; Moens, P.; Dimou, A.; Van Den Bossche, B.; De
Turck, F.; Van Hoecke, S.; et al. FLAGS: A methodology for adaptive anomaly detection and root cause analysis on sensor data
streams by fusing expert knowledge with machine learning. Future Gener. Comput. Syst. 2021, 116, 30–48. [CrossRef]

52. Lefrançois, M.; Zimmermann, A.; Bakerally, N. A SPARQL extension for generating RDF from heterogeneous formats. In Pro-
ceedings of the Extended Semantic Web Conference (ESWC’17), Portoroz, Slovenia, 28 May–1 June 2017.

53. Şimşek, U.; Kärle, E.; Fensel, D. RocketRML-A NodeJS implementation of a use-case specific RML mapper. arXiv 2019,
arXiv:1903.04969.

54. CARML. Available online: https://github.com/carml/carml (accessed on 13 January 2021).
55. Heyvaert, P.; Dimou, A.; Herregodts, A.L.; Verborgh, R.; Schuurman, D.; Mannens, E.; Van de Walle, R. RMLEditor: A

Graph-Based Mapping Editor for Linked Data Mappings. In The Semantic Web. Latest Advances and New Domains; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 709–723.

56. Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z. Unsupervised real-time anomaly detection for streaming data. Neurocomputing 2017,
262, 134–147. [CrossRef]

57. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

58. De Paepe, D.; Avendano, D.N.; Van Hoecke, S. Implications of Z-Normalization in the Matrix Profile. In Pattern Recognition
Applications and Methods; Springer: Berlin/Heidelberg, Germany, 2020; pp. 95–118. [CrossRef]

59. De Paepe, D.; Janssens, O.; Van Hoecke, S. Eliminating Noise in the Matrix Profile. In Proceedings of the 8th International
Conference on Pattern Recognition Applications and Methods—Volume 1: ICPRAM, INSTICC, Prague, Czech Republic, 19–21
February 2019; SciTePress: Setúbal, Portugal, 2019; pp. 83–93. [CrossRef]

60. De Paepe, D.; Vanden Hautte, S.; Steenwinckel, B.; De Turck, F.; Ongenae, F.; Janssens, O.; Van Hoecke, S. A generalized matrix
profile framework with support for contextual series analysis. Eng. Appl. Artif. Intell. 2020, 90, 103487. [CrossRef]

61. Zhu, Y.; Zimmerman, Z.; Senobari, N.S.; Yeh, C.C.M.; Funning, G.; Brisk, P.; Keogh, E. Matrix Profile II : Exploiting a Novel
Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and Joins. In Proceedings of the 16th
International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 739–748. [CrossRef]

62. Stamatis, D.H. Failure Mode and Effect Analysis: FMEA from Theory to Execution; Quality Press: Seattle, WA, USA, 2003.
63. Lee, W.S.; Grosh, D.L.; Tillman, F.A.; Lie, C.H. Fault Tree Analysis, Methods, and Applications—A Review. IEEE Trans. Reliab.

1985, 34, 194–203. [CrossRef]
64. Steenwinckel, B.; Heyvaert, P.; De Paepe, D.; Janssens, O.; Vanden Hautte, S.; Dimou, A.; De Turck, F.; Van Hoecke, S.; Ongenae,

F. Towards adaptive anomaly detection and root cause analysis by automated extraction of knowledge from risk analyses.
In Proceedings of the 9th International Semantic Sensor Networks Workshop, Co-Located with 17th International Semantic Web
Conference (ISWC 2018), Monterey, CA, USA, 8–12 October 2018; Volume 2213, pp. 17–31.

65. Vanden Hautte, S.; Moens, P.; Van Herwegen, J.; De Paepe, D.; Steenwinckel, B.; Verstichel, S.; Ongenae, F.; Van Hoecke, S. A
Dynamic Dashboarding Application for Fleet Monitoring Using Semantic Web of Things Technologies. Sensors 2020, 20, 1152.
[CrossRef]

66. Vanden Hautte, S.; De Paepe, D.; Steenwinckel, B.; Moens, P.; Verstichel, S.; Vandekerckhove, S.; Ongenae, F.; Van Hoecke, S.
Event-driven dashboarding and feedback capturing for improved anomaly and fault detection and reduced human labeling
effort. Eng. Appl. AI 2021, submitted.

67. Murphy, N.R. Site Reliability Engineering: How Google Runs Production Systems; O’Reilly Media: Sebastopol, CA, USA, 2016.
68. Gregg, B. The USE Method. Available online: http://brendangregg.com/usemethod.html (accessed on 13 January 2021).

http://dx.doi.org/10.1016/j.websem.2018.06.003
http://dx.doi.org/10.1016/j.future.2020.10.015
https://github.com/carml/carml
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1007/978-3-030-40014-9_5
http://dx.doi.org/10.5220/0007314100830093
http://dx.doi.org/10.1016/j.engappai.2020.103487
http://dx.doi.org/10.1109/ICDM.2016.126
http://dx.doi.org/10.1109/TR.1985.5222114
http://dx.doi.org/10.3390/s20041152
http://brendangregg.com/usemethod.html

	Introduction
	Background Information
	The Dyversify Project
	Renson Use Case
	Resource Description Framework and Semantic Reasoning

	Related Literature
	Streaming Architectures
	Stream Processing

	Dyversify Architecture
	High-Level Overview
	Microservices and Deployment
	Time-Series Ingestion and Persistence: Obelisk
	Message Broker: Kafka
	Semantic Conversion: RML
	Event/Anomaly Detection
	Anomaly Detection: Valve Classifier
	Anomaly Detection: MP-Outliers
	Event Detection: MP-Events
	Event Detection: Expert-Rules

	Semantic Database: Stardog
	Dynamic Dashboard and Feedback
	Monitoring

	Evaluation Results
	Lessons Learned
	Scalability Requirements
	Setting Up a Complex Microservice-Based Backend
	Early Testing for Library Limitations
	Semantic Microservice Communication

	Conclusions
	
	References

