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Unsupervised Data Fusion With Deeper Perspective:
A Novel Multisensor Deep Clustering Algorithm

Kasra Rafiezadeh Shahi
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Abstract—The ever-growing developments in technology to cap-
ture different types of image data [e.g., hyperspectral imaging and
light detection and ranging (LiDAR)-derived digital surface model
(DSM)], along with new processing techniques, have led to a rising
interest in imaging applications for Earth observation. However,
analyzing such datasets in parallel, remains a challenging task.
In this article, we propose a multisensor deep clustering (MDC)
algorithm for the joint processing of multisource imaging data.
The architecture of MDC is inspired by autoencoder (AE)-based
networks. The MDC paradigm includes three parallel networks, a
spectral network using an autoencoder structure, a spatial network
using a convolutional autoencoder structure, and lastly, a fusion
network that reconstructs the concatenated image information
from the concatenated latent features from the spatial and spectral
network. The proposed algorithm combines the reconstruction
losses obtained by the aforementioned networks to optimize the
parameters (i.e., weights and bias) of all three networks simulta-
neously. To validate the performance of the proposed algorithm,
we use two multisensor datasets from different applications (i.e.,
geological and rural sites) as benchmarks. The experimental results
confirm the superiority of our proposed deep clustering algorithm
compared to a number of state-of-the-art clustering algorithms.
The code will be available at [Online]. Available: https://github.
com/Kasra2020/MDC.

Index Terms—Autoencoder (AE), convolutional autoencoder
(CAE), deep learning, multisensor data fusion, remote sensing.

I. INTRODUCTION

N RECENT years, we witnessed revolutionary advance-
ments in imaging technologies (e.g., multispectral and hy-
perspectral imaging) [1]. Also, the number of platforms that can
carry different sensors [e.g., unmanned aerial vehicles (UAVs)
and satellites] grew fast [2]. These advancements allow users
to acquire high-quality information of various aspects (i.e.,
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spectral, spatial, and elevation) of on-ground materials and
objects at various spatial scales (from close-range to space) [3].
Among the advanced imaging techniques, hyperspectral imag-
ing is considered as the main source of high spectral resolution
information. A hyperspectral image (HSI) contains hundreds of
narrow spectral bands (channels), covering the visible and near-
infrared (VNR, 0.4 — 1 um) and shortwave infrared (SWIR,
1 — 2.5 um) electromagnetic spectrum [4]. In this way, by
employing an HSI, users can distinguish, identify, and track
different materials and organisms. As aresult, in the last decades,
many studies in Earth science were devoted to the use of HSIs,
e.g., in plant science [5], [6], urban-planning [7], [8], and geol-
ogy [91, [10].

Despite the valuable information that an HSI provides on
surface materials and objects, processing such data can be
challenging [4]. In particular, HSIs suffer from 1) a high in-
trinsic dimensionality, which implies the existence of redundant
features in an HSI, 2) the curse of dimensionality (also known
as Hughes phenomenon), due to the imbalance between the
number of dimensions and available training samples [11], and
3) highly mixed pixels [12]. In order to tackle the aforemen-
tioned challenges, several machine learning algorithms were
extensively designed and proposed [4], [13], [14], in general
such algorithms split up in two general categories: 1) Conven-
tional/shallow learning (CSL) algorithms and 2) deep learning
(DL) algorithms [15].

In supervised CSL algorithms, hand-crafted features are ini-
tially extracted in an unsupervised manner, and subsequently
fed into a supervised model to perform a specific task (i.e.,
classification, regression) [7], [8]. DL algorithms on the other
hand, offer an end-to-end framework to process datasets [14],
usually initialized via unsupervised learning and followed by
fine-tuning in a supervised manner [16]. There has been an
immense number of contributions on supervised DL algorithms
in the recent years [13], [14], [17].

Both supervised CSL and DL techniques, despite their great
performance, require a considerable number of training sample
labels in the learning process, which is hard to acquire in most
fields, specifically environmental applications [13]. This short-
coming led researchers to develop unsupervised learning algo-
rithms [18], [19]. The most widely used unsupervised CSL al-
gorithms (also known as clustering algorithm) are K-means [20]
and fuzzy C-means [21] that employ a distance measure (e.g.,
Euclidean distance) to assign each data point to its closest cluster
centroid [20]. These algorithms are iterative and rely on a
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random initialization of the centroids [22]. During the years,
various enhanced clustering approaches have been proposed.
Interested readers can find an extensive state of the art on CSL
clustering algorithms for HSI analysis in [18]. These methods
can be subdivided in four categories: 1) Probability-based ap-
proaches [23] assume that data points from the same cluster
follow a similar probability distribution; 2) density-based ap-
proaches [24] group data points into different clusters according
to their local density and distance to each cluster centroid; 3)
graph-based approaches [25] represent the data as a similarity
graph (which represents the relations between pairs of points),
on which spectral clustering is applied to generate the final
clustering map; 4) subspace-based approaches [26] assume that
data points are drawn from several low-dimensional subspaces.

Since the latter assumption is realistic in real world datasets,
subspace-based approaches received great attention [22]. One
well-known subspace-based approach is the sparse subspace-
based clustering (SSC) algorithm, which utilizes the self-
expressiveness property that implies each data point can be
written as a linear combination of other data points from the
same subspace. The superiority of SSC in terms of accuracy,
is counterbalanced with being computationally expensive and
time-consuming compared to traditional approaches. Therefore,
different studies have been devoted to address SSC’s shortcom-
ings [27], [28]. In [27], authors proposed a scalable exemplar-
based subspace clustering (ESC) algorithm, in which a subset
of representative samples (also known as exemplars) is used
to construct the sparse representation, resulting in a drastic
decline of the computational expenses. In [28], Rafiezadeh Shahi
et al. recently proposed a hierarchical sparse subspace-based
clustering algorithm (HESSC), which uses the sparse represen-
tation of an HSI to extract the lower dimensional subspaces
information and to cluster the HSI into meaningful groups.
In [29], authors proposed graph-based convolutional subspace
clustering, in which a graph representation is combined with
subspace clustering on (linear or nonlinear) subspaces.

In addition, coclustering approaches have been proposed to
improve the performance of graph-based clustering approaches.
Coclustering approaches hence aim to cluster pixels and spectral
features/bands simultaneously. For instance in [30], authors
proposed a novel coclustering approach based on bipartite graph
partitioning with joint sparsity to analyze HSIs. Similarly, au-
thors in [31] proposed a graph convolutional sparse subspace
coclustering that utilizes nonnegative matrix factorization to
reduce the computational power, and thus, to allow analyzing
large-scale HSISs.

All the abovementioned CSL clustering approaches were
applied on single sensor-based datasets. Most of them are pixel-
wise, which implies that they do not consider spatial information
from adjacent pixels. In [32], Rafiezadeh Shahi et al. proposed a
multisensor sparse-based clustering (multi-SSC) algorithm that
exploits the spatial information derived from a complementary
source of information, e.g., a high spatial resolution, multispec-
tral image, etc.

The main disadvantage of unsupervised CSL algorithms is
that hand-crafted features need to be extracted first. Unsuper-
vised DL algorithms on the other hand, offer an end-to-end
framework to process datasets. In the last decade, there has

been a remarkable number of contributions in computer vision
regarding DL clustering architectures [33]-[35]. Autoencoders
(AE) are regarded as the most prominent unsupervised DL
architectures [19]. AE-based networks are capable to learn
informative features without any need for supervision, which
makes them highly suitable for clustering. A well-known
AE-based clustering algorithms is the deep clustering network
(DCN) [34]. DCN minimizes a loss function, which consists
of the network reconstruction loss and a clustering loss. DL
clustering algorithms have been proposed for the specific task of
hyperspectral image clustering. In [36], a Laplacian regularized
deep subspace clustering was proposed, that contains a
Laplacian regularization to incorporate geometric information
within the subspace clustering concept and a self-expressiveness
layer in the architecture of a 3D deep convolutional autoecoder.
Similarly, in [37], a 3D convolutional autoencoder architecture
was presented in which the network is optimized according to
two separate loss functions (i.e., network loss and clustering
loss). In [38], authors proposed a deep spectral-spatial
subspace-based clustering algorithm, in which various patches
of an HSI are processed by parallel convolutional autoencoders
(CAE), and in which the network parameters are simultaneously
optimized. In [39], a deep clustering algorithm, utilizing an
intraclass distance constraint within its network objective
function was proposed. The authors in [40] proposed an
automatic clustering approach using a two-branch convolutional
neural network, one branch extracting spatial information, and
the other branch extracting spectral information.

In all aforementioned studies using remote sensing datasets,
DL clustering algorithms have been employed to analyze single
sensor data (e.g., HSIs). Recently, in [41], authors proposed
a multisensor CAE-based network to cluster urban areas. In
their proposed framework, handcrafted features along with the
products of normalized digital model, normalized difference
vegetation index, and excess green are extracted, and fed to a
boosted CAE network to produce a set of latent features that are
passed through a mini-batch K-means algorithm.

In this work, we propose a novel multisensor deep clus-
tering (MDC) algorithm for multisource datasets. MDC is a
multistream autoencoder-based framework for the clustering of
multisensor data. More specifically, MDC uses AE and CAE
networks to extract spectral information from the HSI and spatial
information from an auxiliary image, e.g., a high spatial reso-
lution image or LiDAR data, which contains a LiDAR-derived
digital surface model (DSM), and thus, consists of elevation
information, respectively. Then, the computed latent features
are concatenated and fed to a fusion network that reconstructs
the concatenated images. A cost function is designed which
optimizes the network parameters of all three networks simul-
taneously.

The main contributions of this study can be summarized as
follows.

1) We propose a novel multisensor deep clustering workflow
to integrate multisensor remote sensing datasets (e.g., HSI,
LiDAR-derived DSM) in a robust and effective manner.
Furthermore, MDC can be regarded as a pioneer mech-
anism which offers an end-to-end framework to cluster
multisensor remote sensing datasets.
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2) MDC benefits from (1) an AE-based network to process
the spectral information of HSIs, (2) a CAE-based network
to process the spatial information of auxiliary images; and
(3) a fusion network to integrate different data modalities.

3) We design a total loss deployed in MDC, where the spec-
tral, spatial, and fusion network parameters (i.e., weights
and bias) are optimized simultaneously, and in accordance
with the proposed total loss. The total loss consists of
three reconstruction losses that are computed using the
aforementioned networks. In addition, MDC has a control
on the impact of the spectral and spatial networks, in which
a contributing weight is assigned to their corresponding
losses.

The rest of this article is organized as follows. In Section II, we
explain the proposed methodology. In Section III, the datasets
and the experimental setup are described. Section IV gives a
quantitative and qualitative assessments of the obtained exper-
imental results, and a discussion follows in Section V. Finally,
Section VI concludes this article.

II. METHODOLOGY

In this section, we initially describe the notations utilized
throughout this article. Subsequently, to comprehend the MDC’s
architecture, prior to introduce its structure, we provide an
elaboration on the deployed AE and CAE networks in MDC’s
paradigm. Following, we present the proposed loss function
which is utilized to optimize the parameters (i.e., weights and
bias) in MDC.

A. Notation

Throughout the article X € R™V*P expresses an input image
(e.g., an HSI), where N and D represent the number of pixels
and the spectral dimension of the image. A column vector in
X is presented as x;,i = {1,2,..., N}. The concatenation of
images acquired from different sources is further presented as
Fused = Sensor; + Sensorsy (e.g., Fused = HSI+LiDAR). Let
H € RY*M denote the generated latent features, with M the
number of latent features. The reconstructed image of X is
represented as R € R™V*P, Furthermore, we use the following
notations throughout the manuscript: X; as a high spectral
resolution image; X5 as a high spatial resolution image; and
X3 as the concatenation of both. We extend this notation for the
reconstructed images.

B. Autoencoder-Based Network

An AE consists of three main sections, an encoder, a bot-
tleneck, and a decoder (Fig. 1). The encoder is a multilayer
perceptron with the original image as the input and latent fea-
tures as the output. These features are stored in the bottleneck
section. In this study, we use an AE-based network as the
spectral network with an encoder section which consists of three
fully connected layers and a rectified linear unit (ReLU) as its
activation function. The decoder has the mirror architecture
of the encoder and reconstructs the original image from the
latent features. The reconstruction loss can be computed as the
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Fig. 1. Fully connected autoencoder network for HSI analysis.

Reconstructed
image

Decoder

Jo(H)
—

Encoder
Jo(X)
1

Latent
Features

Original
image

Fig. 2. Convolutional autoencoder network for HSI analysis.

mean squared difference between the reconstructed and original
image.

Formally, let us formulate an AE-based network as follows.
The encoder generates H from X using a nonlinear mapping
process. The encoder function can be formulated as

H = fp(X) 1)

where fy(.) expresses an encoder nonlinear mapping function
and 0 represents the set of parameters (i.e., weights and biases),
to be optimized during the encoding process. The decoder uses
the latent features to reconstruct the input X by a reverse

mapping
R = f,(H) 2

where f(.) denotes a decoder nonlinear mapping function with
¢ the set of parameters to be optimized during the decoding
procedure. The reconstruction loss L. is defined as the mean
squared error (mse) between X and R. The network is con-
strained to minimize the reconstruction loss

N
1
. ,C]- _ s o ) 2 3
argevr;nn ec ar%yr;nn]\,;:lllxz fo(foxi))llz 3

C. Convolutional Autoencoder-Based Network

Convolutional autoencoder (CAE)-based networks (see
Fig. 2) inherit the general architecture (i.e., encoder, bottleneck,
and decoder) of an AE-based network. In the encoder and
decoder parts of a CAE network, each fully connected layer is
replaced with a (de)convolutional layer. Each (de)convolutional
layer contains convolutional filters, batch normalization steps,
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Fig.3. Architecture of a CAE. Each (de)convolutional layer includes Conv2d,

BatchNorm2d, and ReLU, which represent 2D convolution operations, 2D batch
normalization, and a rectified linear unit as the activation function, respectively.

and an activation function (Fig. 3). In a CAE-based network, the
main objective is the minimization of the reconstruction loss,
similar as in an AE. The main difference is that a CAE can exploit
spatial information from neighbouring pixels. In this regard,
a CAE-based network has become the desired architecture to
inject spatial and contextual information in the processing work-
flow, and the (de)convolutional layers play an important role to
extract distinct features which conserve the spatial continuity
between neighboring pixels [33].

D. Multisensor Deep Clustering

The proposed multisensor deep clustering (MDC) algorithm
offers a workflow to simultaneously extract spectral and spatial
features by fusing information derived from high spectral and
spatial resolution data sources. Such a workflow mitigates the
absence of spatial information in spectral-based deep clustering
algorithms, and at the same time, allows the network to maintain
the balance between spectral and spatial features.

To be more precise, an AE-based network is employed to
extract spectral information from the high spectral resolution im-
age (e.g., HSIs), while a CAE-based network is implemented to
extract spatial information from high spatial resolution data (e.g.,
LiDAR-derived DSM). In the original AE-based and CAE-based
networks, the corresponding reconstruction losses are optimized
to find a set of optimal parameters (i.e., weights and bias), after
which the produced latent features are passed through K-means
clustering to generate a final clustering map. We employ K-
means on the lower dimensional but informative latent features

due to its fast process and to preserve the geometric correlations
between data points from the same cluster.

In MDC, we propose to use AE-based and CAE-based net-
works and their corresponding loss functions. A straightforward
approach that might be effective for data fusion is to train
each network individually, and generate the clustering map by
concatenating the extracted latent features and feed them into the
K-means clustering algorithm. We propose a more sophisticated
scheme for the fusion process.

A third network can be regarded as a decoder phase which
aims to minimize the reconstruction error between reconstructed
and original concatenation image inputs to AE and CAE (see
Fig. 4). Moreover, all three networks are trained simultaneously,
by minimizing a loss function that is the weighted sum of the
loss functions of the three networks. This allows to control the
contribution of the spectral and spatial networks on the fusion
process.

Formally, the loss function of the spectral AE is given by

N
1
£Spectra1 = N Z Hxli - f¢1 (f@l (Xli))Hg 4)
i=1
where x7; represents the ith column vector of the HSI X5; 6
and ¢ denote the set of network parameters for the encoding
and decoding parts of the spectral network, respectively.
The loss function of the spatial CAE is given by

N
Lopaia = v D lbeai — faall( )} ©
i=1
where xg; denotes the ith column vector of the high spatial
resolution image (X2) and 65 and ¢- express the set of network
parameters in the spatial network.

For the fusion purpose, the latent features extracted from
the spectral and spatial networks are fused (concatenated) and
presented as Hj at the input to a decoder of a AE-based network,
which will be referred to as the fusion network. That network is
trained to reconstruct Xg € RV* (P+B)  which is the concatena-
tion of the images X; and X. The loss function of that network
is given by

N
1
LFusion = N Z ||X3i - f¢3 (h31))||§ (6)
i=1
where x3; and hg; are the ith column vectors of X3 and
Hag, respectively. ¢3 represents the network parameters of the
decoding phase of the fusion network.

Rather than training each network individually, we propose
to train them simultaneously, by minimizing the following loss
function:

arg min
0(1,2,3), P(1,2,3)

{ETotal = A1£Spectral + )MZESpatial + EFusion} (7)

where A; and A, are the weights of the spectral and spatial
networks, ranging between 0 and 1, respectively.

When the networks are trained, the obtained latent features
H;; are fed to a K-means clustering algorithm to provide the final
clustering map. Furthermore, for the optimization, we employ
the adaptive moment estimation (Adam) in the back-propagation
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Scheme of our proposed multisensor deep clustering algorithm. In the figure, X1, X2, X3, R1, Ra, and Rg3 represent the original images of HSI,

LiDAR-derived DSM, and the concatenation of HSI and LiDAR-derived DSM data and their reconstructed ones, respectively. The connection operation & denotes

the concatenation process of extracted features from the AE and CAE networks.

step as a stochastic optimization approach to optimize all param-
eters [42].

III. DATA DESCRIPTION AND EXPERIMENTAL SETUP

We evaluate the performance of our proposed algorithm in two
different application domains (i.e., geological and rural sites),
for which already coregistered multisource datasets are available
(i.e., HSI, RGB, and LiDAR-derived DSM).

A. Trento Dataset

The dataset is acquired over a rural area in the south of the
city of Trento, Italy. The dataset includes HSI and LiDAR-
derived DSM data, composed of 166 x 600 pixels with a spatial
resolution of 1 m. The AISA Eagle sensor was employed to
capture the HSI with 63 spectral bands ranging between 0.40
and 0.98 ym. The Optech ALTM 3100EA sensor was utilized
to capture the LiDAR-derived DSM data. The acquired HSI and
LiDAR-derived DSM data are presented in Fig. 5. In the Trento
dataset, there are six classes: 1) Apple trees, 2) Buildings, 3)
Ground, 4) Wood, 5) Vineyard, and 6) Roads.

B. Geological Finland Dataset

The geological Finland dataset was captured over an outcrop
of the Archean Siilinjdrvi glimmerite-carbonatite complex in
Finland [43]. A hyperspectral frame-based camera (0.6 Mp
Rikola Hyperspectral Imager), which was mounted on a hex-
acopter unmanned aerial vehicle (UAV; Aibotix Aibot X6v2)

is utilized to capture the HSI, containing 50 spectral bands
in the range between 0.5 and 0.9 ym. A senseFly S.O.D.A.
RGB camera, mounted on a fixed-wing UAV is engaged to
acquire the RGB image. In the geological Finland dataset, the
high spatial resolution RGB image with a spatial resolution of
1.5 cm, was downsampled to the HSI with a spatial resolution
of 3.3 cm. After coregistration and resampling, the HSI and
RGB images are composed of 300 x 900 pixels. The geological
Finland dataset contains five classes: 1) Clay, 2) Glimmerite, 3)
Dark-rocks (which is a mixture of soil and Glimmerite), 4) Dust,
and 5) Water. The captured RGB image and its corresponding
reference map are shown in Fig. 6. More elaborated and detailed
information on the geological Finland dataset can be found
in [44].

C. Experimental Setup

To validate the generality of our proposed approach, we tested
the MDC’s performance on the aforementioned datasets. We
additionally investigated the effect of different hyperparameters
(e.g., A1, A2) in the performance of MDC.

Adam optimizer with default parameters is used for optimiz-
ing each of the networks (i.e., spectral, spatial, fusion). The pa-
rameters of Adam are set as follows: 31 = 0.9, 5> = 0.999, ¢ =
10~8, and weight decay is equal to 0. We choose {64,128, 40}
as the number of nodes for each of the layers of both spectral
and spatial networks. The proposed algorithm is implemented in
Python 3.8 using PyTorch library. The implementation of MDC



SHAHI et al.: UNSUPERVISED DATA FUSION WITH DEEPER PERSPECTIVE: A NOVEL MULTISENSOR DEEP CLUSTERING ALGORITHM 289

Wood Buildings Apple trees Road
Ground Vineyard Background

Fig. 5. Trento dataset. From top to bottom: LiDAR-derived DSM rasterized
dataset; false color-composite image of the HSI using bands R:40, G:20, B:10;
ground truth along with the class legends.

Clay Glimmerite Dark-rocks Dust

Water

Background

Fig. 6. Geological Finland dataset, captured over Siilinjédrvi in Finland. Top:
RGB image; bottom: ground truth along with the class legends.

will be available online at.? For all experiments, we run the
algorithm five times, and the average results are presented.

D. Evaluation Metrics

For the validation, three commonly used evaluation met-
rics are employed: Overall accuracy (OA), average accuracy

2[Online]. Available: https://github.com/Kasra2020/MDC

(AA), and Kappa. The reference map is denoted as Y =
[y1,92, ..., yn] and the clustering map as C = [c1, ¢a, ..., cN],
wherec; = {1,. .., k}, with k the number of clusters. To validate
the performance of a clustering approach, a matching function
¢, = bestMap(y;, ¢;), is required to match the cluster labels
¢; and reference labels y;. The employed matching function
is based on the Hungarian algorithm, and ¢} is the clustering
map for which the best match between y; and ¢; is produced
by bestMap(.) [45]. OA is then calculated as ¥, T'(c;, ;) /N,
where I'(¢}, y;) is 1 if y; = ¢} and O otherwise.

We additionally report two commonly applied unsupervised
evaluation metrics, namely, the adjusted rand index (ARI) and
the normalized mutual information (NMI). NMI is based on
the common/mutual information between two clusters and is
defined by

241 108 7 n 8)
(it log 5)(52, i log ™52

where n;; = |¢; Ny;|, n;+ and ny; are defined as Z;\Ll Ngj
and Zf\il n;;, respectively. In order to compare different ap-
proaches, the mutual information is normalized between 0
and 1 [46].

ARI computes the similarity (or dissimilarity) between two
clusters and is a adopted from the original rand index [47]. It is
defined as

> (%) = X () 5, (57) () |
LS () + 5, ()] - 2 () 5 () /3)

The value of ARI is smaller than 1 and can be negative, which
implies that two clusters have even less similarity than what can
be expected from a random result.

E. Comparison With the State-of-The-Art Approaches

We will compare the performance of the proposed approach
with a number of state-of-the-art clustering approaches. Since
these approaches are all single-sensor approaches, we will apply
each of these approaches twice; once on the HSI alone, and once
on the concatenation of the multisensor images.

The following clustering approaches have been applied.

1) K-means clustering algorithm [20].

2) AE [15], applied on the HSI and the concatenated images,
respectively. The same architecture is applied as in the
spectral network of the proposed method.

3) CAE [15], applied on the HST and the concatenated im-
ages, respectively. The same architecture is applied as in
the spatial network of the proposed method.

4) Variational AE (VAE) [48] can be regarded as a variant of
AE and is a deep generative learning approach, aiming to
force the latent features to follow a predefined distribution.

5) DCN [34], combining an AE reconstruction loss and a
clustering loss.

6) The Multi-SSC algorithm [32], another multisensor clus-
tering approach, which takes the same multisensor image
data as input as the proposed approach.
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We use K-means to generate the final clustering maps in AE,

CAE, and VAE. It also should be brought to attention that all the

samples in the ground-truth dataset are used in the test phase,
and none is used to train the unsupervised networks.

IV. EXPERIMENTS
A. Hyperparameters Evaluation of MDC

Here, we investigate the effect of the hyperparameters de-
ployed in MDC and the evaluation is carried out on the Trento
dataset, because of its availability of rich ground truth data. The
hyperparameter values that will be selected as the optimal values
are applied in all consecutive experiments, on both datasets.

1) Sensitivity of MDC to Learning Rate: We conducted an
experiment to identify the optimal value for the learning rate
(LR) with respect to the model’s loss value. Fig. 7(a) illustrates
the effect of different LR values on MDC'’s performance. It can
be observed that in general, a higher LR value leads to a lower
loss value and a lower number of required iterations before
convergence. Remark that the plotted loss values in Fig. 7(a)
are smooth, due to the fact that the entire scene is fed to the
network. If the employed LR is too high, it might cause trapping
of the model in local minima. On the other hand, deploying too
low values for the LR can cause a slow convergence. In this
respect and based on empirical results, we employ 0.001 as the
optimal LR value. With LR = 0.001, the algorithm converges
after a few hundreds of iterations. To accelerate the procedure,
we fix the number of iterations to 500.
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2) Influence of the Kernel Sizes on the Performance of MDC:
We evaluated the effect of different kernel sizes of the convo-
lutional filters applied in the CAE of the MDC approach by
performing MDC with 1 x 1, 3 x 3, and 5 x 5 kernels, respec-
tively. Fig. 7(b) displays the obtained OAs as a function of the
different kernel sizes. The 5 x 5 kernel achieved the highest OA,
and will be applied in all consecutive experiments.

3) Contribution of the Spectral and Spatial Networks: To
investigate the contribution of the individual losses Lsepeiral



SHAHI et al.: UNSUPERVISED DATA FUSION WITH DEEPER PERSPECTIVE: A NOVEL MULTISENSOR DEEP CLUSTERING ALGORITHM 291

(b)

Fig. 11.

Clustering maps of Trento dataset obtained by: (a) K-means on HSI, (b) K-means on HSI+LiDAR; (c) AE on HSI, (d) AE on HSI+LiDAR; (e) CAE on

HSL, (f) CAE on HSI+LiDAR; (g) VAE on HSL (h) VAE on HSI+LiDAR; (i) DCN on HSL, (j) DCN on HSI+LiDAR; (k) Multi-SSC; (1) MDC.

and Lgpaia in MDC, we varied the values of A; and Ao to
be {1075, 1074, 1073, 1072, 10~}. Fig. 8 shows the obtained
OAs. The best overall result was obtained with A; = 0.0001
and Ao = 0.0001. Therefore, these values were applied as the
default values for the consecutive experiments, for both datasets.
Remark that the relative contribution of the spectral and spatial
information may vary depending on the application at hand,
resulting in different optimal values of 1; and As.

4) Influence of the Number of Latent Features on the MDC
Performance: We have evaluated the performance of MDC as
a function of the number of latent features (i.e., the num-
ber of nodes in the bottleneck of the networks), varying to
be {10, 20, 30, 40, 50, 60, 70, 80, 90}, of which half are ex-
tracted from the spectral network, and the other half from the
spatial network. Fig. 9 shows the results in terms of OA. When
the number of latent features is too low, information is lost during
the encoding, while a high number of latent features generates
redundancy. Based on the obtained quantitative result, 40 is

selected as the optimal number of latent features for MDC. In ad-
dition, the number of parameters in each network (i.e., spectral,
spatial, and fusion) are reported in Table I. For both datasets, the
number of required parameters in the spatial network is higher
than in the spectral and fusion networks. This implies that the
spatial network requires more time to be optimized compared to
the other employed networks.

5) Performance of MDC by Employing Different Fusion
Scenarios: The performance of the proposed fusion strategy is
validated by comparing it to three alternative fusion strategies
as follows.

1) Alternative 1 (Al): The AE and CAE networks are trained
individually, and their corresponding latent features are
concatenated and fed into the K-means clustering algo-
rithm.

2) Alternative 2 (A2): The AE and CAE networks are trained
simultaneously, and the loss function is given by Lo =
Lspectral + Lspaiial- No fusion network is applied.



292 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

(& (h)

) @

Fig. 12.  Clustering maps of geological Finland dataset obtained by: (a) K-means on HSI, (b) K-means on HSI+RGB; (c) AE on HSI, (d) AE on HSI+RGB;
(e) CAE on HSI, (f) CAE on HSI+RGB; (g) VAE on HSI, (h) VAE on HSI+RGB; (i) DCN on HSI, (j) DCN on HSI+RGB; (k) Multi-SSC; (1) MDC.

TABLE I
NUMBER OF NETWORK PARAMETERS REQUIRING OPTIMIZATION IN MDC

Different streams designed in MDC

Dataset Spectral Network Spatial Network Fusion Network

Trento 30035 542015 17664

Finland 28358 548421 16949
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TABLE II
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES ON THE TRENTO DATASET

Different clustering approaches

Clusters Test K-means AE CAE VAE DCN
Multi-SSC MDC
HSI Fused HSI Fused HSI Fused HSI Fused HSI Fused

Apple Trees 4034 27.49 54.45 16.63 54.95 0.00 0.00 32.56 33.24 33.81 44.01 0.00 76.14
Buildings 2903 58.63 50.43 54.85 56.07 70.54 92.21 52.05 52.79 57.60 69.91 57.68 90.88
Ground 479 0.00 0.16 43.33 0.17 14.87 0.19 0.00 0.00 0.00 0.21 9.22 1.94
Wood 9123 61.14 62.88 55.05 64.64 41.45 47.41 73.20 72.84 68.29 62.09 90.95 79.77
Vineyard 10,501 98.21 88.91 97.81 87.45 66.78 85.80 81.04 80.50 97.57 86.80 68.89 94.23
Roads 3174 72.88 98.36 83.63 98.17 70.85 75.19 99.21 99.82 69.68 97.95 75.37 89.83
OA (%) 57.95 61.62 50.87 64.23 59.54 68.25 50.12 50.56 60.89 63.79 71.90 82.79

AA (%) 53.06 59.20 58.55 60.24 44.08 50.13 56.34 56.53 54.49 60.16 50.35 72.13

Kappa 0.46 0.50 0.38 0.53 0.43 0.56 0.39 0.39 0.50 0.53 0.61 0.77

NMI 0.43 0.48 0.45 0.49 0.55 0.61 0.47 0.47 0.47 0.48 0.60 0.69

ARI 0.28 0.37 0.28 0.39 0.39 0.48 0.28 0.28 0.34 0.37 0.60 0.63

A full iteration (t seconds) 3.90 6.65 15.16 15.19 87.71 87.13 1054.82 1146.71 3053.10 3093.29 518.63 79.76

In the table, Fused indicates the concatenation of HSI and LiDAR-derived DSM data. The bold entities indicate the highest obtained values regarding different studied evaluation

metrics.

3) Alternative 3 (A3): Only the fusion loss (Lron =
Lrusion) 18 employed to optimize all three networks
of MDC.

Fig. 10 compares the performance of the MDC fusion ap-
proach with these alternative fusion scenarios. The proposed
fusion scenario surpasses the alternative scenarios, which con-
firms the effectiveness of the proposed fusion technique. Both
alternatives Al and A2 show a large variance in their results.
A2 is superior to Al, showing that the inclusion of spatial
information from the CAE in the training phase of the AE boosts
the final performance, and vice versa. The performance of A3
is close to the performance of the proposed fusion strategy,
showing that the fusion loss (Lgysion) plays an important role
in the performance of MDC.

B. Comparison to State of the Art

1) Experimental Results on Trento Dataset: The perfor-
mance of the different clustering approaches applied on the
Trento dataset are quantitatively compared in Table II. Overall,
the inclusion of the LiDAR-derived DSM data along with the
HSI data in the single-source clustering approaches, led to
improving the results. For instance, in terms of OA, when CAE
was applied on HSI+LiDAR, a 10% increase can be observed
in comparison to when CAE applied on the HSI alone. Such
observations confirm the importance of amalgamating the infor-
mation derived from different sensors as well as incorporating
the information of adjacent pixels. In VAE, however, the fusion
of HSI and LiDAR-derived DSM data did not improve the
result; in addition, VAE poorly performs in the clustering task
compared to all studied approaches. MDC outperformed the
single-source approaches and the Multi-SSC. In particular, the
Apple Trees and Wood classes have been much better clustered
by MDC.

For a visual comparison, the obtained clustering maps are
shown in Fig. 11. Noisy clustering maps are generated, ex-
cept for the CAE-based clustering approaches, including MDC
and Multi-SSC. These clustering approaches [Fig. 11(e), (f),
(k), (D] employ both spatial and spectral information. Only in
MDC [Fig. IT (1)], the Apple Trees class is clearly visible. The

smooth clustering result generated by MDC is due to employing
convolutional operators. To smooth out the clustering results
in MDC even more, the size of the kernel size needs to be
increased; however, such a strategy might result in losing local
pixels’ details.

The total required processing time of all studied clustering
approaches are reported in Table II. K-means is the fastest
algorithm, as it merely requires the computation of the Euclidean
distances between the centroids and the remaining pixels in the
dataset. MDC (79.76 s) has a multistream structure, but is able
to compete with the single-sensor approaches. Despite its good
performance, the most expensive approach is DCN, as it needs
to optimize both reconstruction and clustering losses.

2) Experimental Results on Geological Finland Dataset:
The quantitative assessment of the geological Finland dataset
is reported in Table III. In terms of OA, MDC attained the
highest performance. This observation supports the generaliza-
tion capability of MDC to different types of datasets. Similar
to the Trento dataset, VAE attained the lowest performance.
Remarkably, AE and CAE performed reasonably well on HSI,
but worse on HSI+RGB, indicating that the mere concatena-
tion of features of multisensor datasets is not the best strat-
egy. On the contrary, DCN on HSI+RGB outperforms DCN
on HSI.

For a visual comparison, the obtained clustering maps of the
geological Finland dataset are presented in Fig. 12. Similar as
in the Trento dataset, the CAE-based networks, Multi-SSC, and
MDC [Fig. 12(e), (f), (k), and (i)] yield smoother clustering
maps compared to the others. VAE produced noisy clustering
maps and was not able to separate relevant clusters. While MDC
was able to distinguish Water and Clay, Multi-SSC could not.
Despite the noisy clustering maps produced by DCN in both
scenarios, it has the capability of distinguishing different clusters
well.

The total required processing time of all studied clustering
approaches on the geological dataset are reported in Table III.
Similar to the Trento dataset, among all applied approaches,
K-means is the fastest. MDC processed the multisensor dataset
in 136.13s, which is reasonably fast, considering the number
of parameters that needs to be trained. Similar to the Trento
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TABLE III
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES ON THE GEOLOGICAL FINLAND DATASET

Different clustering approaches

Clusters Test

K-means AE CAE VAE DCN
Multi-SSC MDC
HSI Fused HSI Fused HSI Fused HSI Fused HSI Fused

Clay 767 89.05 89.34 85.10 81.09 84.40 92.13 89.35 79.64 89.98 90.92 78.18 92.95
Glimmerite 381 72.43 76.36 91.37 100.00 69.00 78.90 48.26 52.92 66.50 67.34 99.74 93.97
Dark-rocks 659 79.09 79.33 73.12 58.30 80.53 84.45 61.38 82.68 78.80 86.93 67.27 71.67
Dust 282 39.44 37.37 49.20 59.30 42.62 48.87 38.19 39.82 36.19 43.75 31.95 40.81
Water 135 45.84 32.30 67.63 100.00 68.32 17.77 4.51 8.73 27.03 21.91 0.00 100.00
OA (%) 64.52 61.67 70.76 68.89 68.37 60.83 56.43 59.94 60.80 68.12 62.14 79.69

AA (%) 65.17 62.94 73.28 79.74 68.89 64.42 48.34 52.76 59.07 62.17 55.43 79.88

Kappa 0.55 0.52 0.61 0.58 0.59 0.51 0.42 0.47 0.49 0.59 0.50 0.72

NMI 0.51 0.49 0.58 0.52 0.58 0.53 0.47 0.52 0.51 0.59 0.44 0.68

ARI 0.44 0.39 0.53 0.42 0.49 0.41 0.38 0.43 0.42 0.56 0.40 0.67
A full iteration (t seconds) 8.34 9.08 25.36 26.62 112.85 134.42 2880.62 2911.11 8216.10 8592.59 2112.90 136.13

In the table, Fused indicates the concatenation of HSI and RGB data. The bold entities

data, DCN is the slowest approach, it analyzed the HSI and the
HSI+LiDAR-derived DSM in 3053.10 and 3093.29 s, respec-
tively.

V. DISCUSSION

We evaluated and compared the performance of MDC with
a conventional multisensor clustering approach (i.e., Multi-
SSC) and some single source-based deep learning clustering
approaches on two different types of datasets (i.e., geological
and rural areas). Experimental results confirm the superiority of
MDC over the Multi-SSC and the state-of-the-art deep learning-
based clustering algorithms. From these observations, we can
conclude that the proposed fusion strategy is more reliable and
effective than a mere concatenation of the multisensor datasets,
initial to the clustering procedure. In addition, it was shown that
clustering approaches, which incorporate spatial information of
neighboring pixels, produce less noisy clustering maps. Among
the state-of-the-art deep learning-based approaches without in-
cluding the information of adjacent pixels, AE and DCN per-
formed relatively strong, in particular DCN, which indicates
its effective architecture design to extract clustering friendly
features as well as its great potential for clustering of remote
sensing datasets. The poor performance of VAE can be explained
by its pixelwise framework that generates nonspatial and non-
contextual latent features in the encoding phase.

We conducted experiments to select the optimal LR, which
highly influences the pace of the training phase. According to
obtained results, LR = 0.001 is selected as the optimal value.
Furthermore, in this study, we investigated the impact of the
hyperparameters in MDC'’s architecture. Regarding the convo-
lutional kernel sizes of MDC, we propose 5 X 5 as the optimal
kernel size. The lower kernel sizes degraded the performance
of MDC, because the spatial and spectral information is not
efficiently exploited. A kernel size of 1 x 1 achieved weak
results, since MDC performs as a pixelwise approach.

The impact of the fusion strategy was investigated, by com-
paring the proposed strategy with a number of alternatives
(explained in Section IV-AS5). From this comparison, it was
clear that the simultaneous training of the spectral and spatial
networks was advantageous over training them separately. The
fusion network has the highest impact on the performance. The

indicate the highest obtained values regarding different studied evaluation metrics.

combination of all three networks, with a minor contribution
of the spatial and spectral networks, provided the best results.
Depending on the application at hand, the optimal relative con-
tribution of the spectral and spatial networks may vary.

In this study, we proposed to use a baseline clustering ap-
proach (i.e., K-means) to produce the final clustering map. As
future work, we will investigate the performance of MDC when
combined with more sophisticated clustering approaches (e.g.,
spectral clustering).

With respect to the geological Finland dataset, we should note
that the theory remains the same, however, a more effective ap-
proach is to upsample the dataset with a lower spatial resolution;
nonetheless, due to the availability of the ground truth dataset at
the lower spatial resolution, we downsampled the RGB image.

VI. CONCLUSION

In this article, we proposed a multisensor deep clustering
algorithm that exploits spectral and spatial information from
multisensor datasets (i.e., HSI, LiDAR-derived DSM, RGB).
MDC includes three architectures; an AE-based network which
extracts the spectral information from an HSI, a CAE-based
network that extracts spatial information from a high spatial res-
olution image, and a fusion network that takes the concatenated
features from the former networks as input to reconstruct the
concatenated image data. Subsequently, MDC computes three
different losses (i.e., spectral, spatial, fusion losses) to find the
optimal network parameters (i.e., weights, bias). The fusion loss
was observed as the main contributor, but MDC additionally
benefits from the spectral and spatial losses in the training phase.
In future work, we will combine this strategy with more so-
phisticated clustering approaches. Among all applied DL-based
clustering approaches, AE, CAE, and DCN performed well, and
have high potential to be further explored for application in
multisensor deep clustering frameworks. This work may lead
to an enhanced effort to further explore DL-based unsupervised
multisensor approaches for remote sensing applications.
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