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Abstract—Indoor drone or Unmanned Aerial Vehicle (UAV)
operations, automated or with pilot control, are an upcoming
and exciting subset of drone use cases. Automated indoor flights
tighten the requirements of stability and localization accuracy
in comparison with the classic outdoor use cases which rely
primarily on (RTK) GNSS for localization. In this paper the effect
of multiple sensors on 3D indoor position accuracy is investigated
using the flexible sensor fusion platform OASE. This evaluation
is based on real-life drone flights in an industrial lab with mm-
accurate ground truth measurements provided by motion capture
cameras, allowing the evaluation of the sensors based on their
deviation from the ground truth in 2D and 3D. The sensors
under consideration for this research are: IMU, sonar, SLAM
camera, ArUco markers and Ultra-Wideband (UWB) positioning
with up to 6 anchors. The paper demonstrates that using this
setup, the achievable 2D (3D) indoor localization error varies
between 4.4 cm and 21 cm (4.9 cm and 67.2 cm) depending
on the selected set of sensors. Furthermore, cost/accuracy trade-
offs are included to indicate the relative importance of different
sensor combinations depending on the (engineering) budget and
use case. These lab results were validated in a Proof of Concept
deployment of an inventory scanning drone with more than 10
flight hours in a 65000 m*> warehouse. By combining lab results
and real-life deployment experiences, different subsets of sensors
are presented as a minimal viable solution for three different
indoor use cases considering accuracy and cost: a large drone
with little weight- and cost restrictions, one or more medium
sized drones, and a swarm of weight and cost restricted nano
drones.

Index Terms—drones, Unmanned Aerial Vehicles (UAV), sen-
sor fusion, indoor positioning, Simultaneous Localization And
Mapping (SLAM), ArUco markers, Ultra-Wideband (UWB)
localization

I. INTRODUCTION

Recent advances in drone manufacturing and research real-
ized safe indoor drone flights in many cases, well beyond the
enormous open spaces and human pilots previously required
to fly most drones indoor. This opens up a broad spectrum
of use cases: from industrial inspection [1], construction [2],
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security [3] and crowd sensing [4] up to warehouse inven-
tory control [5] and interactive guides for visually impaired
visitors [6]. However, due to the lack of a standardized one-
size-fits-all indoor positioning solution, similar to the adoption
of Global Navigation Satellite Systems (GNSS) in outdoor
use cases, it is often a painstaking and error-prone process
to identify and select the correct subset of sensors for any
given use case. As with outdoor use cases where GNSS is not
reliable, a robust sensor fusion system should be designed [7].
This paper aims to facilitate this process by giving a broad
overview of different sensor combinations for three different
drone classes that span a wide subset of possible indoor drone
deployments. Note that these drones and use cases are not
categorized by regulatory limits since none of the existing
drone specific regulations apply to indoor use. However,
the EASA Open Category for civil drones [8] gives a very
suitable risk analysis based classification framework in three
categories:

1) Large drones where equipment weight and cost is only a
secondary consideration. These large drones most often
span 40-100 cm in diameter and 2-25 kg in weight.
They are used for use cases where flight clearances are
possible up to several meters in either direction of the
drone for safety considerations. These platforms allow
for the full sensor set under evaluation to be installed
at once. Due to the cost of these platforms, often a
limited set of drones is deployed. This decreases the
importance of optimizing the cost per drone, especially
when accuracy or stability could be compromised.

2) Medium sized drones with limited maximum take-off
weight and size, from 500 g up to 2 kg. These platforms
often use off-the-shelf equipment and allow for a cost
effective indoor drone fleet with ample possibilities in
sensor selection with consideration of the engineering
budgets. For these use cases a careful selection of a
subset of the investigated sensors is appropriate.

3) Small or nano drones with very limited weight and
power provisions are ideal for swarm-like use cases.
Due to their limited weight up to maximally 500 g,
these drones have lower accuracy requirements since a
drone crash can have little to no consequences with a
proper hardware design such as a drone cage or propeller
guards. However, the platform restriction mandate a
carefully investigated engineering budget and sensor
selection for optimal operation in terms of flight time
and stability.

The results presented in this paper are gathered by recording



TABLE I

COMPARISON OF RELATED INDOOR DRONE POSITIONING RESEARCH

paper

technologies

reported error

positioning rate

technology comparison

cost analysis

[9]

ultrasonic positioning system (5
beacons), external TOF camera

4-8 cm 3D (3 measured posi-
tions)

2 Hz

ultrasonic-only (14-35 cm 3D)

no

[10] UWB (4 TDoA anchors) 11 cm 2D / 26 cm 3D (simula- | 50-70 Hz no no
tion)
[11] IMU, external RGB-D camera 10 ecm 3D (position losses ob- 10 Hz no no
served)
[12] UWB, visual SLAM 14 cm 3D 32 Hz UWB-only (20.5 cm 3D) no
[13] IMU, Wi-Fi trilateration 111 cm 2D not reported no cost-effective
[14] 5 external IR sensors and 1 cam- | 2.5 cm 2D (2 positions in 3x4 m | not reported IR-only (4.7 cm 2D), camera- | low
era area) only (6.7 cm 2D)
[15] IMU, Optical flow, UWB (8 13 cm 2D / 26 cm 3D 40 Hz no no
TDoA anchors)
[16] UWB, RGB-D camera <22 cm (X, y or z) not reported camera-only (<46 cm) UWB- | no

only (<22 cm)

[17]

IMU, laser SLAM, visual SLAM

30 cm 2D

10-25 Hz

no

no

[18]

IMU, RGB-D camera (Kinect)

8 cm x-axis, 2D/3D not reported

30 Hz

no

no

real-life drone flights in an industrial lab environment. Fig. 1
depicts the followed research methodology, comprising of two
main components: data capture and analysis. The measure-
ments of each individual sensor are collected together with
ground truth measurements using a Qualisys mm-accurate
motion capturing system [19]. Afterwards the raw sensor data
is processed by the sensor fusion platform using an Extended
Kalman Filter (EKF) [20] without smoothing or backtracking
to comply with the near real-time requirements of drone
flights. The designed sensor fusion framework, named OASE
(for Online Asynchronous State Estimation), supports defining
sensor subsets and deals with variable update rates. OASE
allows sensor selection during flight or reducing the sampling
frequency of a particular sensor. More than 300 sensor con-
figurations were investigated, with different sensor sets and
sampling frequencies, with each configuration applying to one
or more of the defined drone classes.

Test flights For each configuration

N ROS
R
Bﬁ T_ 2 - ﬂ
(')
Infrastructure Drone Full sensor + Subsampling OASE position 2D/3D error
Installation Deployment ground truth sensor data for each calculation
recording Ground Truth and

datapoint comparison

Data capture Data analysis

Fig. 1. Research methodology: data capture and data analysis

The main contributions of this paper are as follows:
o Determination of the achievable real-life 2D / 3D local-
ization error with different sensor combinations
o A cost model for sensor configuration & installation is
proposed
« Investigation of the accuracy / cost trade-offs for different
sensor combinations and drone classes
o The impact of different deployment scenarios with vary-
ing numbers of Ultra-Wideband (UWB) anchor nodes and
ArUco markers is discussed
The remainder of this paper is organized as follows. Sec-
tion II discusses relevant related work. Section III describes
the first part of our methodology: the testbed, drone and a
detailed description of the chosen representative drone flight.

The second part of our methodology is covered in Section IV,
elaborating on the data analysis: the configuration of the sensor
fusion platform, the developed cost model and EKF design for
each sensor. Section V presents the results of the full param-
eter space exploration of all possible sensor combinations in
terms of accuracy, stability and cost. Section VI describes a
practical application scenario of deploying a Proof of Concept
warehouse inventory scanning drone. Finally, Section VII
summarizes the relevant results per defined drone class and
presents the concluding remarks.

II. RELATED WORK

This research is a continuation of the experimental valida-
tion performed in [5] where an autonomous drone was used
to evaluate the stability and power efficiency of a wireless
backbone driven UWB indoor positioning system. We have
expanded the evaluation framework previously used to incor-
porate the flexible OASE sensor fusion platform and extend the
sensor set under evaluation to span more possible use cases
and drone classes. Additionally, square fiducial markers are
added next to the flight path based on the ArUco library [21]
[22].

The OASE sensor fusion platform itself is designed by
Flanders Make!. It implements a standard EKF for sensor
fusion with separate observation functions for each sensor
input. Internally, it deals with varying sampling frequencies
and measurements that come with a delay by keeping track of
a buffer of the last measurements, and rerunning the Kalman
equations when required. It’s worth to mention that the purpose
of developing such a toolbox is not to re-invent the Kalman
Filter, but to provide a user-friendly environment to develop
and test different sensor fusion algorithms. This provides us
with the required flexibility to adjust the sensor fusion to
evaluate different scenarios.

Table I summarizes related research on indoor drone local-
ization, with [17], [18] reviewed in [23] and [15], [16] covered
in [24]. Our review shows a maximum of 3 different types of
technologies for sensor fusion are considered, and only in a
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few cases is the impact of individual sensors investigated. Cost
is only explicitly mentioned in 2 papers, but never quantified.
We go beyond these papers by considering up to 5 different
sensors for sensor fusion, but also compare different subsets
of these sensors and different sizes of UWB infrastructure.
Finally, adding a cost breakdown of not only the sensor
hardware, but also estimating the infrastructure costs is a novel
approach for offering a more quantifiable cost-performance
trade-off for sensor fusion.

III. DATA CAPTURE

All experiments presented in this paper were performed
in the Industrial Internet of Things (IloT) lab of the IDLab
research group [25]. All flight and sensor data recorded are the
result of real-life experiments with no simulated data present
in the dataset. All flights were performed by a trained and
licensed drone pilot due to the complexity in terms of testbed
layout and limited flight height. By relying on an experienced
pilot and manual drone control no a priori assumptions had to
be made on which sensors would be reliable for drone control.

A. Testbed

The IIoT lab contains a 240m’ representative warehouse
environment, where the experiments presented in this paper
were performed in the open space subsection of 6m (1) x 11m
(w) x 2.5m (h). In this space, 8 Qualisys Miqus M3 motion
capture (mocap) cameras are installed to provide mm-accurate
ground truth measurements of any device under test. The drone
itself is fitted with 10 passive infrared reflective mocap markers
to allow for Six Degrees of Freedom (6DoF) tracking (X, y, z,
yaw, pitch, roll) of the entire drone body even with multiple
occlusions. Furthermore, 6 ArUco markers are placed around
the flight space and equipped with three mocap markers so
their position and rotation is also fully known in 6DoF. Finally,
6 UWB anchors are also placed at the edges of the area with
a single mocap marker on top of each antenna providing an
accurate position in Three Degrees of Freedom (3DoF), but
no orientation since this has no relevance for multilateration
using omnidirectional antennas. Fig. 2 details the full flight
path, UWB anchor and ArUco marker positions.

B. Drone

All experiments are performed using a DIJI MI100
drone [26], allowing for a stable and expandable flight
platform carrying all the required sensors under test. The
stock flight controller is accessed by a ROS [27] interface
on the on-board additional processing unit: an Intel NUC
(NUCI10i7FNKP). This powerful processing unit aggregates
all the external sensors, together with the stock sensors on
the DJI M100 such as the inertial measurement unit (IMU),
magnetometer, barometer and GNSS. Since the magnetometer,
barometer and GNSS are unreliable in an indoor context [28]
[29], these are not included in the sensor fusion. Only the
IMU data from the drone is used as the control input for the
generic 6DoF rigid body motion equation. Additional sensors
under test are the following:
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Fig. 2. Testbed layout of UWB anchors, ArUco markers and the flight path

1) Sonar at 50 Hz for height estimation as a cost-effective
solution for stable indoor flight height estimation [30]
since a barometer cannot be reliably used indoor. These
sensors can be sensitive to dampening ground covering
such as carpet, but this is less an issue in an industrial
context. For more challenging environments a 1D Li-
DAR provides sub-centimeter accuracy, but this was not
considered for this research since the sonar provides a
more challenging sensor fusion case.

2) Ultra-Wideband tag using Two-Way-Ranging at 75 Hz
between maximally 6 UWB anchors in the testbed. This
sensor provides range information using the Time of
Flight of the UWB signal between tag and each anchor.
Through sensor fusion, combining the IMU data and
these range measurements will result in 6DoF rigid body
motion information (position, speed and orientation).
The Ultra-Wideband devices are battery powered and
use a lightweight wireless infrastructure [31], reducing
the power consumption on the drone and allowing UWB
anchors to be placed without any cabling considerations.

3) Simultaneous localization and mapping (SLAM) camera:
The Intel Realsense T265 SLAM camera has an on-
board processor for local visual SLAM processing and
is used as a standalone sensor providing: position (X, ,
z), orientation (yaw, pitch, roll) and speed (in the x-, y-,
z-axis) of the SLAM camera at 200 Hz. This data can be
used as a measurement of the drone’s motion states, with
the consideration of an installation offset of the SLAM
camera on the drone, and a slow varying random drift
of the position estimated by the sensor fusion.

4) Cameras with a global shutter for ArUco marker detec-
tion [32]. These cameras need to be calibrated carefully,
meaning both its intrinsic and extrinsic parameters are
known, and provide images at 30 Hz with little motion
blur. The raw images are processed by an on-board
marker detection algorithm. The sensor fusion platform
can estimate the pose of the drone using a camera model
and the 4 detected corners of each ArUco marker visible
in the camera frame.



C. Measurement Campaign

More than 6 hours of drone flights were performed in the
IIoT lab using the DJI M100, where the onboard processing
unit collected all raw sensor data using ROS subscribers,
together with 200 Hz ground truth updates including measure-
ment delay from QTM [33]. All data stored in the on-board
ROS bag was timestamped by the same system. We focus
on a representative flight from these experiments that can be
used for our three broad classes of drone platforms and related
use cases. The annotated dataset and all relevant configuration
parameters are made available through [34]. The flight at the
basis of our analysis has a total duration of 215 seconds,
with a stable flight height and multiple accelerations on the
horizontal plane to investigate the sensor fusion’s robustness
to sudden position changes and high acceleration. For safety
reasons indoor flight speeds did not exceed 1 m/s, with a target
speed of 0.6 m/s. Fig. 3 gives an overview of the measured
velocities during the flight and Table II gives more details on
the dataset contents totalling 571979 data points.

TABLE 11
DETAILED DATASET CONTENTS

sensor # data data type

ArUco markers 16783 4 corners positions with ArUco ID
when detected

ArUco camera data 12962 Camera metadata (distortion model,
D, K, R, P)

SLAM acceleration 13523 Linear acceleration x, y, z (+ covari-
ance)

SLAM Gyroscope 43119 Angular velocity x, y, z (+ covari-
ance)

SLAM odometer 43118 Odometry data (6DoF Pose, Twist +
covariances)

UWB Ranges 2703 Array of UWB ranges to all 6 UWB
anchors

DIJI Flight attitude 21602 Quaternion rotation data (X, y, z, W)

DJI M100 IMU 21602 Orientation, angular velocity, linear
acceleration

Ground Truth: ArUco | 234215 | 6DoF body position

Ground Truth: drone 40434 6DoF body position
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IV. DATA ANALYSIS

After capturing both flight data and ground truth via motion
capturing cameras, the configuration of the sensor fusion
platform is performed offline and the results of the EKF
are compared to the ground truth measurements for each
configuration. A single configuration comprises the selected
sensors, the update rate of the sensors under test and the model
settings of the sensor fusion platform. For experiments using
the UWB sensor the subset of UWB anchors used for ranging
is also defined up to 6 active anchors. This methodology allows
the evaluation of many different sensor fusion configurations
based on realistic measurement data and noise of a single
drone flight. For this research a total of 337 configurations
were analyzed, corresponding to more than 20 flight hours.

A. Configurations

Based on the real-life measured data a wide selection of
drone configurations are created, together with an estimated
cost for each configuration. The costs taken into consideration
are indications of material cost following industry standards,
but depending on the use case this cost can vary based on
the quality requirements. For example, the cameras taken into
consideration for ArUco detection are global shutter cameras
to limit motion blur due to drone movement and frame
vibrations. If the ArUco positions aren’t essential for drone
stability a less expensive camera can be used when another
source is used as primary positioning sensor, such as UWB.

Table III lists an overview of the most interesting configu-
rations to be investigated further and to which drone classes
these configurations can apply. All of these configurations also
use the IMU sensor, which is not included in the table for
brevity.

TABLE III
SENSOR CONFIGURATIONS AND APPLICABLE DRONE CLASSES
UWB | sonar - SLAM ArUco drone
altitude | yaw | x,y | speed classes
v 1,2,3
v v 1,2,3
v v 1,2
v v 1,2
v v v 1,2
v v 1,2
v v v v 1,2
v v 1,2
v v v 1,2
v v v 1
v v v v 1
v v v v 1
v v v v v v 1
v v v 1.2
v v v v 1,2
v v v v v 1.2

For each subset of sensor inputs under consideration a
configuration file for the sensor fusion platform OASE was
created, which then was run in offline mode and tasked to
give a position and orientation update for each data point of
the ground truth measurements during the flight (40434 points
of comparison over 215 seconds of flight time).



B. Drone and infrastructure cost

Cost calculations that cover the entirety of a drone de-
ployment are strongly use case specific and are dependant on
the amount of drones deployed, the sensor set of each drone
and the infrastructure costs. However cost is an important
factor in drone and sensor selection, together with accuracy
and stability. For this reason we’ve chosen to use a simple,
but representative cost model based on industry standards to
try and model both the drone and infrastructure costs. An
overview of the additional drone costs per sensor and the
typical ranges of quantities installed is listed in Table IV. We’ll
use the actual sensor cost for easier comparison in the rest
of this paper, based on a practical use case of a warehouse
inventory scanning drone.

TABLE IV
SENSOR COST

symbol | sensor | weight | power cost quantity
St IMU lg 001 W | €10 1,2]Qr

Sso sonar 10g 0.1 W €25 0,6]Qso0
Su UWB 12¢g 04 W €100 0,2]Qu
Ssi SLAM | 60 g 1.5W €200 0,1]Qs;
Sa ArUco | 36 ¢ 3w €300 0,2]Qa

This leads to the following straightforward cost calculation
of a single drone (Cp), starting from the basic drone chassis
cost (C¢) and adding the quantities of the selected sensors.
This result should be extrapolated by the number of drones
required for a specific use case:

Cp = Cot+QrXxS1+Qs0x 550X Qu x Su+Qs1 X Ss1+Q A xS a

(1

The infrastructure cost is harder to quantify since it de-
pends heavily on the specific use case and the flight areas
available. For example, a large open space of a 1000 square
meters would only require 4 UWB anchors in the corners
to position the drone adequately, while hundreds of ArUco
markers would need to be placed to cover the entire area,
and their positions need to be calibrated accurately, leading to
excessive personnel costs. Alternatively a collection of racks
can easily be fitted with ArUco markers on known locations
(e.g., on the crossings of the horizontal and vertical beams
that make up the rack structure, whose location is known),
while every hallway would require UWB anchors due to the
electromagnetic disruption of the metal racks and Non-Line of
Sight signals, requiring additional intelligent processing and
anchor node selection [35].

For a rack-based flying environment, such as a large ware-
house, we have quantified the infrastructure cost as an example
of the minimum and maximum cost differential between
ArUco markers and UWB anchors based on a real-life use case
at a large logistics company. Table V lists the variables taken
into account and their default values used in the remainder of
this paper.

The personnel cost of applying ArUco markers at one
location was determined to be 2 minutes (7'4) over 4 heights.
A maximal marker density would be every 0.8 m (A) for each
EUR-pallet, with additional calibration for ArUco positioning,
which takes 3 minutes per location (7) for a total personnel

TABLE V
INFRASTRUCTURE COST VARIABLES
sym description . default‘ unit
with without
SLAM | SLAM
Ta ArUco marker installation time 2 2 min
T ArUco calibration time 0 3 min
A ArUco density 32 0.8 m
U UWB anchor density per 100m 1 4 -
Tu UWB calibration time per anchor 20 15 min
Cp Personnel cost 50 50 €/h
Cu UWB anchor cost 100 100 €
Dy, Dimensions: hallway width 3.6 3.6 m
D, Dimensions: rack depth 1.2 1.2 m

cost of 5 minutes per location. When performing sensor fusion
of the SLAM camera with ArUco markers the density of
the ArUco markers could be reduced to every 3.2 m and
individual ArUco marker calibration was not required, leading
to 2 minutes of work every 3.2 m of rack space.

When considering UWB anchor deployment a maximal
density of 4 anchors (U) for 100 m of rack space leads
to €400 of equipment cost, with 15 minutes of installation
and calibration time per anchor (7t7). When combined with a
SLAM camera the UWB anchor density can be reduced to only
1 anchor every 100 m and 20 minutes of personnel cost, only
measuring the distance traversed between the racks. This leads
to the following calculation to determine the infrastructure cost
of ArUco and UWB deployments.

ArUco deployment cost per meter of hallway:

. Ta+T. C,

A =P
Cin = 60min x A 2)

ArUco deployment cost per square meter of warehouse space:

cA, = O (3)
m Dy +2x D,

UWB deployment cost per meter of hallway:

cv_ Ux(CutTy)

4
m 100m @

UWB deployment cost per square meter of warehouse space:

CU

cVy=—"m
m " DL +2x D,

&)

In Table VI these costs are detailed per meter of rack length
and square footage of warehouse space assuming a personnel
cost Cp, of €50/hour, UWB anchor cost Cyy of €100, a
hallway of 3.6 m wide with rack depth of 1.2 m.

TABLE VI
WAREHOUSE INFRASTRUCTURE COST FOR ARUCO AND UWB
sensors cost per m | cost per m?
ArUco €521 €0.87
ArUco + SLAM | €0.52 €0.09
UWB €4.5 €0.75
UWB + SLAM €1.17 €0.19




C. Sensor fusion platform OASE

The OASE (Online Asynchronous State Estimation) Tool-
box is used to allow for a fast and flexible configuration of sen-
sor fusion with variable rate sensor inputs. Its modular design
enables an easy way to test different sensor configurations,
with the most notable features being:

e Low calculation time by using CasADi [36] to analyti-
cally derive the system model, observation functions and
their Jacobian matrices and generate efficient C code for
these functions.

o Complex data scheme handling: by storing a buffer of the
last NV timestamped measurements, processing and data
transmission delays are compensated in the toolbox, al-
lowing asynchronous sensor inputs with different sample
rates and delays. The measurement function of the system
is split into separate observation functions for each sensor,
such that the respective sensor inputs can be fed to the
filter separately. Each sensor measurement is inserted
into the buffer, which is sorted by the timestamp of
the measurement. Measurements with a later timestamp
than the latest measurement added to the buffer are
reprocessed.

o Easy to use thanks to the Python front-end allowing it to
work cross-platform with easily extensible configuration
scripts and code, and automatic Jacobian calculation us-
ing CasADi. Additionally the toolbox contains commonly
used vehicle and sensor models that can be used as-is
or as the basis to add new customized models. Finally
it contains several utility modules to help with post-
processing and data analysis.

D. Sensor fusion design

A traditional EKF is implemented using the OASE toolbox
for the drone states estimation. Since the goal of this paper
is to compare different sensor combinations in terms of cost
and accuracy, the choice for the EKF was made in favor of
alternatives such as particle filters [37], Unscented Kalman
Filters [38], moving horizon estimation [39], etc. due to
its simplicity. The potentially lower estimation accuracy of
the EKF compared to other sensor fusion techniques is not
expected to have an impact on the relative comparison between
different sensor configurations.

The system states include 6DoF rigid body motion states
(Xb), as well as the initial position and yaw angle of the SLAM
camera reference frame (Xj), as:

Xb = [x,y,z,u,v,w7kll,@,<l>]T (6)
X = (00,2l )" (7)

Where: x, y and z are the drone location coordinates among
the x-, y- and z-axis. u, v and w denote the drone speed in
the body reference frame among the x-, y- and z-axis. ¥, ©
and @ is the yaw, pitch and roll angle of the drone. ¥? is the
yaw angle shift between the SLAM reference frame and the
local frame. 2% and 3° are the x- and y-positions of the SLAM
reference frame in the local frame.

The X, is required to use the SLAM camera position and
yaw data since the SLAM location reference frame is located

at the position where the SLAM camera is initialized. By
adding those states, the drone can start flying at an arbitrary
position.

The 6Dof rigid body kinematic equation is used to calculate
the Xb [40], while using the IMU data as input, i.e., three
linear accelerations and three angular speeds. X is assumed
to be constant (X, = 0).

For this system, observation functions are defined for each
sensor mentioned in Table III.

1) UWB: The observation function for the UWB sensor is
a vector of Euclidean distances between the tag (on the drone)
and all anchors in the environment [41].

2) Sonar: The sonar provides the distance between the
sensor and the ground where it points to. The observation
function can be derived as:

= — Zsonar (8)

Ysonar -
cos ¢ cos ©

where zgonqr 18 the z-coordinate of the sensor installation
position in drone body frame.

3) SLAM altitude: The SLAM altitude is related to its
initialization position, which normally does not correspond to
the ground reference. A constant shift of the altitude should
be taken into account for the observation function, as:

Yi = 2 hy ©)

where hgo is the altitude of the drone at SLAM camera
initialization.

4) SLAM yaw: The observation function for SLAM yaw
data is:

Y =0 - 0l (10)

5) SLAM speed: As the SLAM camera is not mounted at
the origin point of the drone frame, the linear motion of the
SLAM camera is a combination of the linear motion and the
rotation of the drone. However, considering that drone motion
in indoor drone use cases will not be aggressive, and the
SLAM camera is relatively close to the origin point, the effect
of the rotation of the drone can be neglected in the observation
function, i.e., the speed of the SLAM camera is considered to
be the same as the speed of the drone. The observation function
is:

Yt = fu,v,w]” (11)

6) SLAM x-,y-position: To calculate the 2D posi-
tion of the drone (x-,y-coordinate) in the SLAM frame
(ngLAM),yéSLAM)), the initial location and the yaw angle
of the SLAM frame related to local frame is required. The
observation function is:

L (SLAM)
st: flSLAM) 12)
Ya
rasianx ([ - []) o0
92SLAM y yi’

where Rgog1, 4 is the rotation matrix between ground frame
and the SLAM frame, which depends on \I!Z.



7) ArUco Marker position: Using a marker detection algo-
rithm, the location of an ArUco marker in camera images can
be detected. The output of the detection is a vector of pixel
coordinates for the four corners of a marker.

To derive the observation function for the marker detection,
the classic pinhole camera model is used. The camera needs
to be calibrated for both the intrinsic and extrinsic parameters,
including:

o P: the projection matrix of the camera

 d: the distortion parameters of the camera

e Rgo.: the homogeneous rotation and transformation ma-

trix from the drone body frame to the camera frame, i.e.,
the extrinsic parameters.

Meanwhile, the following information for each marker in
the environment should also be known: the marker position
(Tm» Ym»> 2Zm), orientation (¥,,, ©,,, ®,,), and marker size
(d).

The coordinates of all four corners in the marker frame are
known, which can be written in matrix form as

-1 1 1 -1
dTm 11 -1 -1
0 0 O 0

where each column represents one corner location (Pg)n )).

Using the pose of the marker and the pose of the drone,
the transformation matrix from the marker frame to the local
ground frame (R,,24) and the matrix from local ground frame
to drone body frame ([2424) can be obtained.

Combining those transformations, the position of one
marker corner in the camera frame can be calculated as:

(c) (m)
[Pco ] = Rae X Ryng X Rimag % {P i ] (14)

1
With the known corner position in the camera frame and
camera intrinsic parameters, the projection model [42] can be
applied to obtain the pixel coordinates of all four corners.

V. RESULTS

In this section the results of the different sensor configura-
tions are presented and analyzed. We’ll first present a broad
overview of the possible sensor configurations that allow for
a stable and reliable flight within our parameters. Afterwards,
we consider the configuration costs and which trade-offs can
be made for each drone class. Finally, the UWB results are
further investigated on flight accuracy and stability when a
subset of the 6 UWB anchors is used.

Note that the results are based on the deviation of the
calculated position in comparison to the ground truth mea-
surement by the mocap system. Although mocap systems can
be used for drone positioning and control, the scalability of
such systems in an industrial context with Non-line-of-sight
(NLOS) conditions is prohibitively expensive. However, for
use cases where mocap control is feasible the following results
can be interpreted to show the potential gain in accuracy
when switching to mocap positioning and control versus the
evaluated sensor configurations.

A. General results

Fig. 4 shows the average 2D and 3D error for the configura-
tions selected in Table III together with the respective standard
deviations over the course of the flight. A full parameter
space exploration of all possible sensor configurations was
performed, but only the results of the sensor fusion algorithm
that remain within the flying area boundary will be considered.
The following sensor configurations did not lead to stable
flight results: IMU only flight, SLAM without altitude, ArUco
only, Sonar + ArUco, SLAM (yaw only) + ArUco, SLAM
(altitude and yaw only) + ArUco.

A first general conclusion is that most stable sensor con-
figurations deliver an error of 10 cm or better in the 2D
plane, while only 2 configurations exceed a 20 cm average
2D error due to using ArUco markers without an accurate
yaw source. This leads to inaccuracies in the marker detection
algorithm. For some use cases this 2D error allows a broad
range of sensor configurations in case a relatively accurate
altitude sensor can be introduced to the drone. The importance
of height estimation for drones is clear when considering the
presented 3D error. With the UWB-only configuration, an
average 3D error of 67 cm is achieved since the UWB anchors
in the test area cannot be differentiated in the z (height)
plane due to the limited ceiling height. Adding a relatively
inexpensive altitude sonar to the drone immediately improves
the average 3D error notably to 10.71 cm and the 2D error
slightly to 9.25 cm (from 67.24 cm 3D and 12.54 cm 2D).

1) UWB synergies with other sensors: Comparable results
to a sonar height estimation are achieved when using the
altitude measurements from the SLAM camera together with
UWB. However, other sensor sources are also observed to
indirectly affect the 3D error of a UWB setup due to interesting
complementary effects:

e SLAM xy readings reduce the 3D error from 67.24 cm
to 45.29 cm, a 33% increase of accuracy by greatly
reducing the 2D error by 42% and thus improving the
implicit multilateration process of the UWB localization
by reducing the intersections of the measured distance
spheres.

e adding ArUco markers around the flight path reduces
the 3D error to 13.17 cm with a larger standard devi-
ation of 14.85 cm due to the drift of the IMU sensor
between ArUco marker detections. However, this config-
uration needs an accurate yaw sensor, since otherwise
the ArUco marker detection algorithm can introduce
significant errors that negate the improvements made
to the 3D position error. In industrial environments the
magnetometer and IMU acceleration measurements are
clearly not accurate enough to be a reliable yaw source.
This is shown in the UWB + ArUco configuration that
reduces the 3D error by 59% to 27.91 cm but also
drastically increases the 2D error by 68% to 21.02 cm
with a standard deviation of 31.57 cm. Even when adding
an accurate height estimation through sonar the instability
in the 2D plane leads to marginally better results in the
3D plane as well, only improving by 6.76 cm to a 21.15
cm average 3D error. It becomes clear that more fused
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Fig. 4. average 2D and 3D error of different sensor fusion configurations (UWB = Ultra-WideBand, SLAM = Simultaneous localization and mapping)

sensors do not always lead to better results as simply
adding a sonar to a UWB setup without ArUco markers
leads to a reduction of the average 3D error from 56.53
cm to 10.71 cm.

2) SLAM camera synergies: A similar effect of indirect
height estimation is observed when combining ArUco markers
and the SLAM xy+yaw sensor. Here, the average 3D error is
24.97 cm, but with a large standard deviation of 62.47 cm.
This leads to a very unreliable flight height, which would only
be acceptable at sufficient flight heights of multiple meters.
This is comparable to the inaccuracies of a pure UWB setup,
with the ArUco markers providing absolute positioning infor-
mation, while the SLAM camera retains relative positioning
stability. This complementary effect of a stable, but drifting
relative positioning sensor and an intermittent, but absolute
positioning sensor shows the real strengths of a good sensor
selection for fusion.

When adding altitude measurements to the SLAM and
ArUco sensor combinations the average positioning error
drops well below 10 cm on both the 2D and 3D metrics. With
an average 3D error of 4.93 cm it is only 0.1 cm less accurate
than the full sensor set solution of 6 UWB anchors, SLAM
and ArUco markers. In flight areas where reliable updates

of the ArUco markers are guaranteed, this solution can be a
valid alternative for UWB positioning. However, the starting
position of the drone flight should be fixed or at least well-
defined since the absolute positioning of UWB is unavailable.
This is even more important for the SLAM only flight, while
the average accuracy seems very comparable with a 6.82 cm
error, this sensor configuration works only for relatively short
flights and with a very accurately defined starting position in
6DoF (x, v, z, yaw, pitch, roll).

TABLE VII
EFFECT OF ACCURATE STARTING POSITION ON FLIGHT ACCURACY
configuration 3D error
aligned | misaligned | relative effect
UWB + SLAM 6.58 cm 8.90 cm 35%
UWB + SLAM + ArUco | 4.82 cm 6.65 cm 38%
SLAM 6.82 cm | 111.40 cm 1533%
SLAM + ArUco 493 cm 8.63 cm 75%

The importance of a well-defined starting position when
using a SLAM camera as part of the sensor fusion configu-
ration is shown in Table VII. Here we compare the average
3D error of a flight with an accurate starting position versus
a misaligned starting position by 100 cm in the x,y plane.



When only using a SLAM camera for position estimation, this
starting error propagates through the entire flight as expected.
The effect is also noticeable when adding absolute positioning
sensors to the configuration although it does not propagate
through the entire flight. From the results it is clear that
adding UWB positioning to the fused sensors provides the best
robustness to misaligned starting positions due to the constant
position updates of similar accuracy. Using ArUco markers as
absolute positioning sensors leads to similar positioning errors
when starting from a misaligned position, but a larger relative
drop in accuracy since the ArUco marker position updates are
more sparse than the constant rate of UWB position updates.

B. Adding cost to the equation

As previously mentioned when considering sensor configu-
rations that include a height sensor, the average 3D localization
error is reduced to 10 cm or lower, with many configurations
reaching comparable results. However, the cost of the used
sensors can differ vastly and depending on the use case this
cost needs to be scaled to the entire drone fleet in operation.

Fig. 5 shows the distribution of 3D positioning versus cost.
Note the logarithmic y-axis scale and the omission of the
SLAM-only configuration. When no absolute positioning is
required, but simple flight stability and/or relative positioning

is sufficient a single SLAM camera would suffice as sensor
at €200. As long as the environment is sufficiently distin-
guishable for the SLAM algorithm and the flight is short
enough so that positioning drift has little effect. However,
the operational requirements increase by requiring a well-
defined take-off position and there are no safety guarantees
since a single sensor failure would crash the drone. Therefore,
this configuration is not immediately applicable to any of our
predefined use cases since the SLAM camera would not fit
the small/nano drone class that comes with lessened reliability
requirements and is not further taken into account in this cost
accuracy trade-off.

When considering the trade-offs for the absolute positioning
configurations the Pareto frontier defines the most interesting
setups and leads to the following insights:

o« UWB-only positioning has the lowest cost but also the
highest positioning error, making this configuration only
applicable to the nano drone class. However, even for the
smallest drones a reliable height estimation is preferred,
so adding a sonar or solid state 1D LiDAR is strongly
suggested. This leads to the largest improvement in
error for the lowest additional cost. The UWB + sonar
configuration is furthermore applicable to all use cases
under consideration with an average 3D error of 10.71
cm and € 735 cost. However, a single sensor failure can
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still lead to a drone crash and the yaw estimation of the
drone is not reliable, which can be an issue for certain
use cases.

e Adding a SLAM camera to UWB localization miti-
gates these concerns, allowing for the SLAM camera or
the UWB localization to fail without compromising the
stability of the drone, as well as providing a reliable
yaw estimation. This is sufficient for video or RFID
based asset identification. This configuration reaches a
3D error of 6.58 cm at €910. It is also clear that using
a subset of the SLAM camera sensors is not useful in a
cost/accuracy trade-off, since a full sensor set from the
SLAM camera reliably leads to a lower error at same
cost. This configuration is only suitable for medium sized
drones and upwards due to the computational and power
requirements.

o Dropping the UWB positioning and adding cameras for
ArUco markers instead, together with a SLAM camera
further reduces the error up to 4.93 cm at a slightly
higher cost of € 1010. However, the weight is increased
as well due to the cameras required for stable ArUco
positioning, reducing flight time, as well as an increase
in personnel cost to install sufficient ArUco markers to
keep the SLAM camera from drifting. Furthermore, this
relatively expensive configuration is susceptible to SLAM
failures and will quickly crash due to IMU drift and
incorrect ArUco position estimations without the SLAM
yaw sensor.

e« When combining UWB, the SLAM camera and ArUco
markers we get the most stable and accurate sensor
configuration (4.82 cm avg. 3D error), but also the most
expensive at € 1735 (including 6 UWB anchors). Due to
the power and weight requirements this configuration is
most appropriate for large drone platforms that also ben-
efit the most from the additional stability and reliability
of this configuration.

When scaling these costs by multiple drones, the UWB
anchor cost is not scaled, since the same anchor nodes are
used by each drone. This reduces the per drone cost to one
UWRB tag of € 100.

C. UWB Anchor selection

In this section the effect of scaling the amount of UWB
anchors per drone is investigated, both on error and cost. The
previous results considered a full UWB anchor set of 6 anchors
for maximal positioning stability and reliability. However,
depending on the use case a smaller set of anchors can be
used to reduce costs or comply with wiring and technical
constraints of the environment. For this reason a full parameter
space exploration of UWB anchor selection was performed,
leading to 63 experiments (from 1 UWB anchor to all 6)
per considered configuration (UWB + ArUco, UWB + sonar,
UWB + sonar + ArUco, UWB + SLAM, UWB + SLAM +
ArUco).

The results from these experiments are presented in Fig. 6.
Note the logarithmic y-axis scale and the gaps in the graph
representing failing configurations.
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Fig. 6. average 3D error in cm for each anchor selection set

For a UWB + sonar configuration there are no risks of
diverging sensor fusion behavior since localization errors do
not compound over time. However, a single UWB anchor
setup leads to positioning errors upwards of 400 cm, making
these setups only applicable for very large free space locations.
Interestingly, some 2-anchor setups have a similar error as 3+
anchor setups. typically, 3 anchors are considered a minimum
amount for 3D localization, even with an additional height
sensor such as a sonar. Furthermore, the 2-anchor selections
performing the best are those with the highest Dilution of
Precision (DoP). This high DoP leads to one possible larger
intersection with low precision, while anchors with a low
DoP can lead to 2 intersections with high precision. This
leads to increased nonlinear behavior in the EKF, reducing its
performance and overall sensor fusion accuracy. This effect is
illustrated in Fig. 7.

{a) low DoP: high precision, 2 solutions {b) high DoP: low precision, 1 solution

Fig. 7. Horizontal Dilution of Precision when using only two UWB anchors

From 3 UWB anchors and upwards, the positional stability
can be considered reliable with an average error below 15 cm.



In Table VIII these results are further detailed, with the
maximum error reduction of an additional anchor as the most
appropriate metric, reducing the error by 2 cm on average
with each additional anchor from 3 anchors upwards. When
considering the best case anchor selection, the accuracy of a
3 anchor setup can rival that of 6 anchors. This confirms the
importance of intelligent anchor selection when the environ-
ment or cost restriction do not allow for an overdimensioned
amount of UWB anchors. When considering equipment failure
and possible ranging errors it is appropriate to consider a
4 anchor minimum for ideal drone stability, especially in
the higher weight drone classes upwards of 2 kg when no
additional absolute positioning source such as ArUco markers
is available.

TABLE VIII
3D ERROR IN CM PER AMOUNT OF UWB ANCHORS
UWB anchors 3D error
average | minimum | maximum
1 644 cm 392 cm 794 cm
2 100 cm 12.6 cm 266 cm
3 13.3 cm 11.7 cm 15.3 cm
4 11.9 cm 10.5 cm 13.6 cm
5 11.2 cm 10.4 cm 12.5 cm
6 10.7 cm 10.7 cm 10.7 cm

Adding ArUco markers as an additional sensor leads to
interesting results. The minimum positioning error is doubled
from 10 cm to 20 cm, but a lower error than a UWB only
setup is often achieved for 1 and 2 anchor setups with a few
exceptions that lead to possible sensor fusion deviation due to
an inaccurate yaw angle. Detecting this runaway behavior in
a separate routine and falling back on deviation-proof sensors
such as UWB and sonar would be an appropriate technique
in these cases. The results of ArUco runaway detection on
the 3D error of 1-anchor and 2-anchor UWB sensor fusion
are detailed in Fig. 8 with the cross hairs representing the
runaway detection fallback. This technique would allow even
nano drones to operate with high enough positional stability in
cases of very sparse UWB anchor deployments if a sufficiently
capable camera is included on the drone platform.

For medium sized drones and upwards the most reliable
solution is pairing UWB localization with ArUco markers and
a SLAM camera or other accurate yaw source. The reliability
of each possible anchor subset is drastically improved with
stable localization results from 2 anchors upward and a 3D
error of 15 cm to 7 cm. When only 1 UWB anchor is
available the accuracy improves notably in all cases except the
worst case anchor selection, where a runaway position was
observed due to divergence of the ArUco marker detection
algorithm. However, when looking at the results of the UWB
+ SLAM configuration, the 1-anchor stability was greatly
improved with no runaway positions and an average 3D error
of 23.85 cm possibly qualifying for certain use cases with
enough flight clearance. When 2 or more UWB anchors are
available ArUco markers can safely be added to the UWB +
SLAM configuration without chance of instability and an error
reduction of 26% on average.

Taking these UWB anchor selection results into account

1000

——UWB + sonar + ArUco

—e—UWB + SLAM + ArUco

100

Error (cm)

[
N

UWB anchor count

Fig. 8. 1-2 UWB anchor selection 3D error with ArUco runaway detection

gives the following revised cost optimizations for our three
drone classes:

1) Large drone use cases could reliably cut infrastructure
costs when using a full sensor set of UWB, ArUco
markers and a SLAM camera or other reliable yaw and
altitude source. Using only 2 UWB anchors in Line
of Sight of the flight path leads to a 66% reduction
of the UWB anchor deployment cost while retaining a
positioning error of 15 cm or better. In the example given
an average 3D error of 10.5 cm at € 1310 is achieved
for 2 anchors versus 7.2 cm at € 1710 for 6 anchors.

2) Medium sized drones could benefit from a SLAM
camera without ArUco markers to reduce the camera
cost and weight of the drone platforms. This leads to
a remarkably stable flight configuration, reducing the
importance of intelligent anchor selection and delivering
an average 3D error of 23.85 cm if only one UWB
anchor is available. This can be sufficient for traversing
open spaces or wide corridors at a sensor cost of € 410.
When 2 UWB anchors are available this average 3D
position is further improved to 14.59 cm on average,
with a maximum error of 20.56 cm and best of 9.9 cm.
This shows the gains of intelligent anchor selection, but
this configuration also performs adequately without for
use cases where a 20 cm worst case positioning error is
acceptable.

3) Small or nano drones can rarely rely on a SLAM
camera, but can reduce the UWB infrastructure cost
in half by requiring only 3 UWB anchors in Line of
Sight compared to 6 without intelligent anchor selection,
while still retaining an average 3D error of 13.3 cm for
a UWB and sonar sensor configuration of €435. For
even sparser UWB anchor deployments of 2 anchors
intelligent anchor selection is required leading to an
average 3D error of 14.9 cm at € 335 sensor cost in case
anchors with a high Dilution of Precision are reliably
selected.



VI. PRACTICAL APPLICATION SCENARIO

Apart from the IIoT testbed, the different sensor configura-
tions were tested in a portion of a large warehouse of 65000
m?. In total hundreds of flights, totaling to more than 10 flight
hours, have been performed. Due to the large scale of the
environment, the main cost driver is the cost per m? depicted
in Table VI. From this table, it is clear that the SLAM sensor
reduces the cost per m?> dramatically. The combination with
ArUco markers results in the lowest possible cost, especially
when considering that the cameras used for detecting the
markers may also be used for the inventory scanning process.
The accuracy and stability of the combination of SLAM with
ArUco markers proved to be sufficient for autonomous flight.
For flying in between racks, the proposed solution for large
scale warehouses is thus to make use of the SLAM camera and
ArUco markers, with a marker placed every 3.2 m on each rack
level. For larger, open spaces, the combination of SLAM with
UWRB is proposed, as in these large areas, fewer UWB anchors
are required as there are no obstructions, while ArUco markers
will not be detected from a larger distance. This guarantees
there’s always one absolute positioning method (UWB or
ArUco) available to complement the relative positioning of
the SLAM camera.

The Proof of Concept deployment showed that a fully au-
tonomous inventory scanning system was possible. Taking into
consideration the previous small and large scale experiments
led to a full sensor set of UWB + SLAM + ArUco, since the
drone in question has a Maximum Take Off Weight (MTOW)
of 5.2 kg and falls squarely in the Large drone category. Using
our cost model this leads to a sensor cost of € 1280 per drone,
with the addition of a 1D LiDAR [43] instead of a sonar to
reduce measurement noise.

The infrastructure cost was minimized by using both SLAM
and ArUco for positioning between the warehouse racks
at €0.09 per m?, leading to a total infrastructure cost of
€ 5850 for the deployment of the ArUco markers. In case
a complementary absolute positioning technology would be
required between the racks, deploying one UWB anchor every
100m of rack space would increase the infrastructure cost by
€ 12350 to a total of € 18200 to cover the entire 65000 m?
warehouse with both ArUco and UWB positioning.

This Practical application scenario was presented as part
of the imec.icon InWareDrones project with a demonstration
video [44] and validated additional research material such as
UWB self-calibration [45] and RFID localization of scanned
tags [46].

VII. CONCLUSION

In this paper a full parameter space exploration was per-
formed of 337 possible sensor configurations of the flexible
sensor fusion platform OASE using an IMU, sonar, SLAM
camera, ArUco markers and UWB localization with up to 6
UWRB anchors. Estimated costs of the sensors under evaluation
were also taken into account to show the trade-offs in cost
versus accuracy when considering sensor configurations with
similar performance and reliability. Additionally a cost model
to estimate the infrastructure cost of placing ArUco markers

and UWB anchors was developed. This model showed the
impact of sensor selection on the infrastructure cost as well,
with a significant reduction of ArUco and UWB deployment
costs when a SLAM camera was added to the drone.

These performance and cost considerations were applied
to three drone classes to differentiate and define a minimally
viable and optimal sensor selection set as follows.

e Large drone platforms preferably have one sensor re-
dundancy for every possible Degree of Freedom. The
suggested sensor configuration contains an IMU, SLAM
camera, ArUco markers and UWB tag with 3 anchors
along the flight path in constant Line of Sight. This
configuration has an average 3D error of 8.3 cm with an
estimated sensor cost of € 1410. Additional sonar sensors
can be added to the platform for obstacle avoidance, but
show no advantage in positional stability when combined
with the SLAM camera and ArUco markers.

e Medium drone use cases often present a more complex
trade-off in the sensor cost and engineering budgets. A
minimally viable sensor set was defined as a 1 anchor
UWRB sensor together with a SLAM camera for accurate
height, yaw and x,y positioning redundancy at a cost
of €410. But depending on the reliability requirements
up to four UWB anchors might be advised in case a
more robust localization is required leading to a total
cost of €710. Additionally, if the use case in question
also involves video asset recognition ArUco markers can
be added instead of additional UWB anchors to improve
reliability at an increased drone cost of € 1210.

e Small or nano drones should be able to operate with only
UWB localization and a single height sensor such as a
sonar or solid state 1D LiDAR for even more weight
reduction. Together with intelligent anchor selection, po-
sitional error of 15 cm was achieved using 2 anchors
with high DoP and a limited sensor set cost of € 335.
Adding one additional UWB anchor lowers the onboard
processing requirements of intelligent anchor selection
and guarantees a stable position with 3DoF of 13.3 cm
on average for €435.

These results show that depending on the use case and
engineering budgets there is always a good trade-off to be
found between reliability, accuracy and cost for the consid-
ered sensor configurations. By incorporating intelligent anchor
selection the reliability of limited UWB anchor deployments
can be increased drastically, which is a promising future
research track. An additional improvement can be found in
using the camera feed of the SLAM camera for object and
asset recognition with an additional on-board video processing
unit, which can also be used for ArUco marker positioning.
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