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Dankwoord

Dit boek, of zoals sommigen het zouden noemen, een docto-
raatskandidaats magnum opus, is het resultaat van bijna vier en
een half jaar werk. Het bevat een overzicht van de belangrijkste
verwezenlijkingen gedurendemijn doctoraat, maar slaagt er niet
het in de juiste context te plaatsen die hiertoe leidden.

Mijn doctoraatsverhaal startte ongeveer vijf jaar geleden, toen
prof. Johan Bauwelinck me vroeg of ik interesse had in een doc-
toraat. Voordien had ik het altijd voor onwaarschijnlijk gehouden
dat ik aan een doctoraat zou starten. Hoewel ik niet inging op zijn
aanbod, was dat wel de vonk die nodig was om mijn zoektocht
naar een onconventioneel doctoraat te starten dat aspecten uit
computerwetenschappen en elektronica combineerde. Dankzij
de suggestie van prof. Bart Coppens ben ik uiteindelijk terecht
gekomen bij prof. Francis wyffels. Francis vertelde me over een
breed scala aan onderzoeksonderwerpen, maar het onderwerp
dat me het meest aansprak was datgene waarover hij het vlugst
over gegaan was: rekenen met planten. Om (voor mezelf even-
eens) onduidelijke reden, was ik erg aangetrokken tot dit onder-
werp ondanks mijn voorgeschiedenis. Tot dusver had ik immers
elke aanraking met biologie zo veel mogelijk gemeden. Nu zijn
we aan het einde van een avontuur dat niet enkel mijn vaardig-
heden als onderzoeker aanscherpte, maar me ook tot een an-
dere mens gemaakt heeft. Omgaan met contrasterende belan-
gen, stress en mislukking was niet altijd even makkelijk, maar
hebben er wel tot bijgedragen dat ik daar nu beter mee om kan
gaan. Hoewel het niet altijd even eenvoudig ging, ben ik toch blij
dat ik uiteindelijk gekozen heb een doctoraat te starten.
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Dit hobbelig parcours was vaak het gevolg van zelf veroorzaakte
stress, die ontstond doordat mijn verwachtingen en de realiteit
niet altijd overeenstemden. Dit was vooral zo inmijn tweede doc-
toraatsjaar, toen de experimentenmet de hyperspectrale camera
niet naar verwachting werkten en er keer op keer technische
problemen opdoken. Daarmee omgaan was in het begin lastig,
maar heeft er wel toe bijgedragen dat ik nu tevreden kan zijn
met het eindresultaat. Natuurlijk waren er ook veel euforische
momenten zoals artikels die ingediend en geaccepteerd werden,
maar ook gewoon het vlot lopen van een data-analyse bijvoor-
beeld.

Deze tocht zou niet mogelijk geweest zijn zonder de steun van
mijn drie promotoren: prof. Francis wyffels, dr. TomDe Swaef en
dr. Michiel Stock. Zonder hun begeleiding en steun was het me
nooit gelukt dit doctoraat af te ronden. Ik kon niet enkel rekenen
op hun professionele inbreng, maar ook op hun steun wanneer
het eens wat minder ging. Zo heb ik beter leren omgaan met
stress voor alweer een nieuwe deadline of een experiment dat
niet liep zoals verwacht.

Natuurlijk hebben veel andere mensen bijgedragen tot dit docto-
raat zoals Peter, Isabel, Maxime en Ruben. Ik zou graag dr. Peter
Lootens, en prof. Isabel Roldán-Ruiz extra bedanken voor hun
suggesties en opmerkingen bij de projectvoorstellen en de expe-
rimenten rond de hyperspectrale camera.

Eveneens wens ik al mijn voormalige en huidige collega’s van
IDLab-AIRO bedanken: Alexander, Andreas, Asma, Axel, Bene-
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thijs, Maxim, Natacha, Peter, Pieter, Qiaoqiao, Rembert, Remko,
Ruben, Saya, Stefan, Tanguy, Thomas, Tom, Tony, Victor-Louis
en Zimcke. Speciale vermelding is op zijn plaats voor Matthias
en Zimcke. Dankzij de schrijfgroep waar jullie ook vaak aan
deelnamen, heb ik dit boek en meerdere papers sneller en ef-
fectiever kunnen schrijven. Het aantal groepsactiviteiten was
eerder beperkt de afgelopen twee jaar ( je kan al raden waarom),
maar toch heb ik erg genoten van de momenten dat we na het
werk iets gingen drinken. Ook kan ik me de team-building nog



levendig herinneren, evenals dewandelingen, etentjes en ijs eten
bij Francis en Michiel.

Ik wens ook al mijn collega’s op ILVO te bedanken, met speciale
vermelding voor Irene, Michiel,Willem en Evelien die ondertus-
sen eveneens vrienden geworden zijn. In het bijzonder herinner
ik onze reis naar Spanje en Kroatië en de vele etentjes en bord-
spelavonden. Bedankt daarvoor! Ook wens ik alle technici te
bedanken op ILVO die onder meer de planten in leven hielden
in de serre.

Mijn vrienden uit het middelbaar en van de universiteit verdie-
nen eveneens een vermelding hier: Rosanne, Fien, Anneleen,
Marjoleine, Elise en Michiel, en Sander, Robin, Daan, Gert-Jan,
Jorg, Dieter, Milan, Ine en Nicolas. Hoewel wel elkaar niet zo
frequent meer zagen, was het altijd fijn om af te spreken en uit
de rush van het werk te komen. Sander, bedankt voor de vele
gesprekken na het werk, MTB ritten en gratis avondeten.

Een interdisciplinair doctoraat schrijven is een ding, de bood-
schap overbrengen is helemaal anders. Daarom wil ik ook mijn
juryleden bedanken: prof. Pieter Bienstman, prof. Joni Dambre,
prof. Sarah Garré en dr. Xu Zhang. Jullie opbouwende kritiek
heeft deze tekst nog leesbaarder gemaakt voor zowel experten als
niet-experten.

Tot slot kunnen ook mijn ouders en broer niet ontbreken; zoals
altijd komen de belangrijkste mensen laatst. Ik besef dat ik niet
altijd even goed communiceerde over mijn doctoraat, de daarbij
gepaard gaande stress, en soms mijn korte antwoorden. Desal-
nietteminkon ik altijd op jullie onvoorwaardelijke steun rekenen,
in goede en minder goede tijden, waarvoor mijn oprechte dank.
Zonder jullie steun zou dit niet mogelijk geweest zijn en zou ik
niet staanwaar ik nu ben. Dat gaat zowel over de financiële steun
als het vele eten dat ik meekreeg, alsook de ritten van en naar
Gent, laat-avond gesprekken en meer. Bedankt!

Olivier Pieters, 9 februari 2022





Summary

Plants are ubiquitous on Earth. They are often regarded as organ-
isms that undergo the environmental changes they experience.
Instead, we advocate for amore integrated view: a plant as a com-
puting entity. Plants are complex organisms composed of many
interconnected nodes and modules. These enable a plant to deal
with highly variable environmental conditions due to weather
fluctuations, predation and diseases. Despite the absence of a
brain-like organ and their inability to move, plants can react ef-
fectively to cues from their environment. A plant continually
gathers and updates diverse information about its environment
and integrates this with its present internal state. From this in-
tegrated information, it makes decisions that reconcile its well-
being with its environment. We propose to consider the plants as
a computing unit in the context of physical reservoir computing
(PRC).

PRC is an unconventional computing paradigm that utilises phys-
ical substrates for computation. This paradigm entails using a
high-dimensional, nonlinear dynamical (physical) system as a
computational resource to solve a task. Examples encompass
the control of mechanical systems by using a compliant robot
body or the processing of optical and electrical signals. From
the biological realm, a cat’s primary visual cortex and bacterial
cultures have also been demonstrated as a reservoir for classifi-
cation tasks.
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Initially, it might appear odd that (physical) reservoir computing
can work. However, it shares a lot of similarities with conven-
tional computing. Computation is the process of transforming
information to achieve a specific goal. Conventional systems
perform this goal by using algorithms. The human-designed
algorithm processes inputs to accomplish a goal or obtain an
output. In PRC, this algorithm is replaced by a physical sub-
strate that performs the computation. This substrate or reservoir
is observed using sensors whose readout values are combined
to obtain the output. The general idea is that due to the high
dimensionality and memory of the reservoir, the output can be
observed using a simple linear combination of the state observa-
tions. As such, reservoir computing systems can be trained using
well-understood linear regression and are fast to train.

Substrates generally have to fulfil two main requirements for
PRC: nonlinear characteristics and fadingmemory. Plants are in-
deednonlinear organisms. Increasing the light intensity does not
result in the same increase in the photosynthesis rate (nonlinear
behaviour). There is also evidence that plants contain memory
because they have the ability to learn from experience, which is
used to optimise future light acclimation. However, this is not the
same as fadingmemory. Fadingmemory implies that past events
have decreased importance as time advances. There is not yet
formal proof of this ability in plants.

Classic PRC relies on a stationary reservoir; its dynamics, non-
linearity and memory are fixed in time. In general, this is not
the case for plants. Plants have continued development, even
in adulthood. To alleviate this problem, we study plants over a
relatively short period: eight days. During this timeframe, we
consider the plant stationary. In this work, we hope to bridge
reservoir computing to an – as far as we know – unexplored field:
plant ecophysiology. Despite the aforementioned limitation, it
can form the basis of a paradigm shift in phenotyping. Instead
of focussing on specific traits and their effect on physiology, a
more holistic approach can yield interesting new insights into
plant behaviour.

In a first study, we investigate the applicability of the PRC frame-
work to plants using a hyperspectral camera. A hyperspectral



camera is a generalised version of a conventional RGB camera.
Instead of capturing only three spectral bands (red, green and
blue), it captures many more bands of light with higher accuracy
(narrower bands) and a broader range (wavelengths outside the
visible spectrum). Despite extensive analysis, this study was un-
successful. Background materials were equally good at predict-
ing the considered regression tasks as the plant data. We suspect
that the root causes are insufficient accuracy of the camera and
small spectral changes. Improved sensor technologymight solve
some of the issues, yet it remains unsure what the required accu-
racy is. By design, plants were not severely stressed in this study.
As a result, the spectral changes were limited. Alternative sen-
sory equipment thus appears more promising because of several
issues with hyperspectral cameras. Firstly, these cameras are ex-
pensive sensors compared to conventional ones. Secondly, they
produce vast amounts of data. Storage and processing of this data
can be a challenge. Thirdly, hyperspectral data is complex. There
are many bands available, and the spectral resolution might not
be uniform. Moreover, extracting the relevant features from the
data is an ongoing research topic.

Although the results from the hyperspectral experiments were
inconclusive, they are highly relevant for the phenotyping com-
munity. Using our findings, we illustrated some of the limitations
of current hyperspectral technologies. Moreover, we also eluci-
dated that the plant was not the root cause of the system’s perfor-
mance despite some tasks being performant. This observation
highlights that it is always essential to study the environment and
sensory system’s effect on the task at hand.

So, for a second experimental study, we shifted the focus towards
contact sensors. More specifically, we employed leaf thickness
sensors. However, to characterise the state of the plant for PRC,
we needed to measure this state sufficiently fast. Established
sensory systemsdid notmeet the required specifications in terms
of accuracy, flexibility and cost. Therefore, we designed a custom
system: Gloxinia.

The Gloxinia sensor platform aims to advancemonitoring in fun-
damental and applied plant research. Four key needs were ad-
dressed: sensor scalability, accuracy, cost and versatility using



an open hard- and software design. The platform is comprised of
individual sensor nodes that communicate with each other. Each
node has a control board to which sensor nodes are connected.
These sensor boards are equippedwith the necessary electronics
for interfacing withmost analogue sensors used for contact mea-
surements. Digital sensors can also be connected to the control
boards. To validate the accuracy of the system, we set up an ex-
perimental trial in a growth chamber. Environmental conditions,
leaf thickness, and leaf elongation were successfully measured
on one tomato and two strawberry plants at high resolution.

Using the Gloxinia platform, we demonstrated PRC with plants.
While we did not quantify the differentmemory aspects and non-
linear properties of the plant separately and the processes where
these originate, it is a pivotal step towards PRC-inspired comput-
ing with plants. We showed how leaf thickness measurements of
strawberry plants were used to assess ecophysiological, environ-
mental and benchmark regression targets. Our results indicate
that plants are unsuited for general-purpose computation yet are
highly relevant for plant-related tasks. Photosynthetic rate and
transpiration rate are the two main ecophysiological tasks inves-
tigated.

Currently, PRC with plants is in the exploratory phase. We
demonstrated the potential of PRC with plants for ecophysi-
ological tasks using leaf thickness sensors. Advancements in
sensor technology such asmore accurate sensors and alternative
sensing technologies can further improve the results. Moreover,
plants are non-stationary. The PRC framework should thus be
extended to deal with this behaviour. However, the most drastic
implication of PRC might be a new perspective on plants and
their behaviour. Treating a plant as a computing entity can
help generalise plant behaviour and provide essential context
to physiological studies. Each trait exhibited by a plant can
be viewed as the result of the complex interaction between
environmental cues and plant behaviour. Essentially, a plant can
be considered a computational unit that analyses the incoming
environmental signals and optimises its physiology accordingly.
This more holistic approach can help breeding, phenotyping
and precision agriculture advance beyond current methods.



Samenvatting

Planten zijn alomtegenwoordig op aarde. Ze worden vaak be-
schouwd als organismen die veranderingen in hun omgeving on-
dergaan. Met het onderzoek dat we gevoerd hebben, willen we
echter oproepen tot een meer geïntegreerde kijk: een plant als
rekeneenheid. Planten zijn complexe organismen, bestaande uit
vele verbonden knopen en modules. Deze knopen en modules
stellen een plant in staat om te gaan met de sterk veranderende
omgevingsvariabelen ten gevolge van weerpatronen, predatie en
ziekten. Ondanks de afwezigheid van een centraal zenuwstelsel
en onvermogen om te bewegen, kunnen planten effectief reage-
ren op veranderingen in hun omgeving. Een plant optimaliseert
zijn interne toestand continu gebaseerd op interne signalen en
informatie die hij vandeomgeving verzamelt. We stellen voor om
de plant als rekeneenheid te beschouwen in de context van fysisch
reservoir rekenen (Engels: physical reservoir computing (PRC)).

PRC is een onconventioneel rekenmodel dat fysische substraten
gebruikt om mee te rekenen. Dit paradigma omvat het gebruik
van een niet-lineair dynamisch (fysisch) systeem als rekenme-
dium om een taak op te lossen. Het besturen van mechanische
systemen met behulp van een flexibel robotlichaam en het ver-
werken van elektrische en optische signalen zijn slechts enkele
voorbeelden. Er bestaan ook studies die het rekenen illustreren
met biologische reservoirs zoals de primaire visuele cortex van
een kat of bacterieculturen om classificatietaken op te lossen.
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Op het eerste zicht lijkt het vreemd dat PRC kan werken. Er is
echter sterke gelijkenissenmet conventioneel rekenen in bijvoor-
beeld een computer. Rekenen houdt in dat informatie omge-
vormd wordt om een bepaald doel te bereiken. Conventionele
systemen doen dit aan de hand van een algoritme. De invoer
wordt verwerkt door een daarvoor ontworpen algoritme tot de
gewenste uitkomst of uitgang bekomen is. Bij PRC wordt dit
algoritme vervangen door een fysisch substraat dat het reken-
werk verricht. Dit substraat wordt geobserveerd aan de hand van
sensoren, wiens uitleeswaarde gebruikt wordt om de gewenste
uitgang te bekomen. Het onderliggende idee omvat dat men
in staat is de gewenste uitgang te vormen aan de hand van de
hoge dimensionaliteit en geheugen van het reservoir. Bijgevolg
kunnen PRC systemen getraind worden door middel van lineaire
regressie, een courant-gebruikte methode uit de statistiek.

Niet-lineaire eigenschappenenvervagendgeheugen zijn tweeba-
sisvereisten voor PRC. Planten zijn inderdaad niet-lineaire orga-
nismen: de lichtintensiteit verhogen zorgt niet automatisch voor
een evenredige toename van de fotosynthese activiteit. Er is ook
bewijs dat planten geheugen hebben; ze kunnen gebeurtenissen
in het verleden gebruiken om te acclimatiseren aan toekomstige
lichtomstandigheden. Echter, dit is niet hetzelfde als vervagend
geheugen. Vervagend geheugen impliceert dat gebeurtenissen in
het verre in het verledenminder belangrijk zijn dan gebeurtenis-
sen in het recente verleden. Voor planten bestaat er nog geen
formeel bewijs dat ze dergelijk geheugen hebben.

Klassieke PRC veronderstelt dat het reservoir stationair is. De
dynamische eigenschappen, niet-lineariteit en geheugen veran-
deren dus niet met de tijd. Over het algemeen is dit echter niet
geldig voor planten. De ontwikkeling van planten stopt immers
niet, ook al zijn planten in hun mature stadium. Om dit pro-
bleem te vermijden, bestuderen we volwassen planten op een
relatief korte tijdsschaal van acht dagen. Gedurendedezeperiode
beschouwen we planten als stationair. In dit werk pogen we
op die manier een brug te kunnen slaan tussen PRC en plant
ecofysiologie. Voor zover we weten, is dit tot op heden is dit
nog niet onderzocht. Ondanks de eerder vermelde beperking,
kan dit onderzoek tot een grote verandering leiden in fenotype-



ring. In plaats van te focussen op individuele aspecten van de
plant fysiologie, kan er met de meer holistische benadering van
PRCgewerktworden, dewelke kan resulteren innieuwe inzichten
over het gedrag van planten.

In een eerste experiment, onderzoeken we de toepasbaarheid
van het PRC raamwerk op planten aan de hand van een hyper-
spectrale camera. Een hyperspectrale camera is een veralge-
meende versie van een conventionele RGB-camera. Een derge-
lijke camera observeert het licht in drie banden: rood, groen en
blauw. De veralgemeende versie kan dit in veel meer banden
doen, en vaak met hogere nauwkeurigheid (smallere banden) en
groter bereik (i.e. detectie buiten het visuele spectrum). Ondanks
een uitgebreide analyse, was dit experiment onsuccesvol. Het
observeren van achtergrondmaterialen was even effectief in het
oplossen van de regressie-taak als de plant. We vermoeden dat de
hoofdreden hiervoor onvoldoende nauwkeurigheid is van de ge-
bruikte sensor in combinatie met een beperkt golflengtebereik.
Verbeterde sensortechnologie zou dit kunnen oplossen,maar het
blijft echter de vraag welke nauwkeurigheid vereist is. Planten
werden bewust niet onderworpen aan grote stress condities, en
bijgevolg zijn de spectrale verschillen beperkt. Alternatieve sen-
sortechnologie is dus interessanter in het bestuderen van PRC
met planten vanwege verschillende nadelen van hyperspectale
camera’s. Ten eerste zijn dergelijke camera’s erg duur in vergelij-
king met conventionele camera’s. Ten tweede produceren ze erg
veel data indien men de dynamische eigenschappen van planten
wenst te onderzoeken. Verwerking en opslag zijn bijgevolg uitda-
gingen. Ten derde, analyse van de data is ook erg complex aan-
gezien er vele banden beschikbaar zijn, en de spectrale resolutie
ook vaak niet uniform is. Finaal, de extractie van interessante
patronen in de data is bovendien een erg actief onderzoeksdo-
mein.

Hoewel de resultatenmet de hyperspectrale camera niet overtui-
gendwaren, zijn deze erg relevant voor de fenotyperingsgemeen-
schap. Ze illustreren immersdebeperkingenvandehuidige tech-
nologie gebruikt in dergelijke camera’s. Bovendien illustreren ze
ook dat het steeds belangrijk is te controleren dat de plant zijn
respons gemeten wordt en niet een combinatie van de omgeving



en het meetsysteem.

Daardoor verlegden we de focus in onze tweede reeks experi-
menten naar contactsensoren. Meer specifiek werd er gebruik
gemaakt van (blad)dikte sensoren. Deze sensoren dienen vol-
doende snel uitgelezen te worden om voldoende plant dynamie-
ken te capteren. Bestaande meetsystemen voldeden niet aan de
vereiste specificaties vannauwkeurigheid, inzetbaarheid en kost.
Dus werd een eigen systeem ontwikkeld: Gloxinia.

Het Gloxinia sensor platform heeft als doel plantmetingen te ver-
gemakkelijken in fundamentele en toegepaste plant wetenschap-
pen. Vier centrale noden werden aangekaart: schaalbaarheid
naar grote sensor aantallen, kost, nauwkeurigheid en inzetbaar-
heid met behulp van een open hard- en software ontwerp. Het
platform bestaat uit individuele sensor punten die met elkaar
communiceren. Elk punt bestaat uit een controle bord dat met
de sensor borden verbonden is. Deze sensor borden bevatten de
nodige elektronica ommet de meeste analoge sensoren gebruikt
in fenotypering te verbinden. Digitale sensoren kunnen even-
eens verbonden wordenmet het controle bord. Om het platform
te evalueren, werd een experiment opgezet in de groeikamer.
Omgevingsvariabelen, bladdikte en bladverlenging werden suc-
cesvol opgemeten van een tomaat en twee aardbei planten.

Gebruikmakende van het Gloxinia platform, demonstreren we
PRC met planten. Hoewel we de geheugenaspecten en niet-
lineaire eigenschappen van planten niet gekwantificeerd hebben
ende onderliggendeplantprocessenniet geïdentificeerdhebben,
blijft dit toch een curicale stap naar PRC-geïnspireerd rekenen
met planten. We tonen aan hoe bladdikte metingen van aardbei
gebruikt werden om ecofysiologische, omgeving en benchmark
regressietaken te evalueren. Onze resultaten geven aan dat
planten ongeschikt zijn voor generieke rekendoeleinden, maar
hoogst relevant zijn voor plant gerelateerde taken. Fotosynthese
en transpiratie zijn de twee belangrijkste ecofysiologische taken
die we onderzochten.

Momenteel is PRC met planten in een opstart- en exploratiefase.
We toonden het potentieel aan van PRCmet planten voor ecofysi-
ologische taken aan de hand van bladdikte sensoren. Verbeterde



en alternatieve sensortechnologieën kunnen deze resultaten nog
verder verbeteren. Daarenboven zijn planten niet-stationair. Het
PRC raamwerk dient dus verbreed te worden om hiermee om te
gaan. Echter, de meest verregaande implicatie hiervan is een
nieuwperspectief opde eco-fysiologischeprocessen vanplanten.
De plant beschouwen als een rekeneenheid kan het gedrag van
planten generaliseren en essentiële context bieden in fysiologi-
sche experimenten. Elk plantenkenmerk kan bijgevolg gezien
worden als het resultaat van een complexe interactie tussen de
omgeving en de plant. Samengevat, kunnen we de plant dus
beschouwen als een rekeneenheid die ingangssignalen van de
omgeving verwerkt en daarop zijn fysiologie aanpast. Deze toe-
genomen holistische benadering kan veredeling, fenotypering
en precisie landbouw helpen beter de doen dan huidige metho-
den.
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1
Plants as Intelligent and
Information Processing Organisms

Plants are everywhere in our daily lives, in our offices and gar-
dens, on our plates or between the joints of the pavement tiles.
Yet, they are very different from us. In contrast to animals, they
do not move, have a more modular morphology and synthesise
their food from water, sunlight and nutrients they absorb (au-
totrophy). Moreover, plants are found in nearly every ecosystem
on the planet and often thrive in those ecosystems. Without
plants, animals in their current form would not exist on Earth
since they are at the basis of each food chain. However, because
plants are so different from animals, plants are often not consid-
ered as intelligent. Mostly, people think that plants “just grow”
and undergo changes in their environment. An increasing body
of research is proving otherwise, indicating that plants exhibit
emergent intelligence (Trewavas 2016; van Loon 2016).

1.1 Are Plants Intelligent?

Plants are at the basis of nearly all ecological systems on Earth
(Walter 1985). Humans and, more generally speaking, all animal
life depends upon plants either directly or indirectly. Despite
their inability to move, which is also called sessile, plants thrive
in almost all habitats found on Earth. This sessile nature has
forced plants to develop a wide range of strategies to cope with
environmental changes. Mangrove forests thrive despite growing
in saltwater andbeingflooded twice a daydue to the tide (Kathire-
san et al. 2001). Cacti have to store water over more extended
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periods of dehydration and rapidly refill reserves when water is
available (Taiz et al. 2010; Huang et al. 1992). Crops are subject to
intense sunlight and heat during the day and low temperatures at
night, even in summer.

To survive inhighly variable conditions such as sunlight intensity,
temperature fluctuations and water availability, plants need to
continuously sense their environment through a wide range of
sensors. These sensors are spread all over the plant. Based on
these sensory signals, plants adapt their physiology accordingly
(Taiz et al. 2010). As a result, they can measure many more
variables than humans, including electrical fields, chemical gra-
dients and temperature (Karban 2015).

Unlike animal-like organisms that have central sensory process-
ing in a brain-like structure, plants are distributed organisms.
Plants lack specialised organs identifiable in animals, such as the
brain, lungs and digestive system. Instead, they have a more
modular structure that avoids high-specialisation. From an evo-
lutionary perspective, this structure is vital since plants are ses-
sile and can easily fall victim to predation. Loss of a vital organ
would mean the death of the plant; by limiting specialisation,
plants can continue to grow (Mancuso et al. 2018). Indeed, mow-
ing the lawn does not stop the grass from growing. Planting a
cutting of most plants also results in a new plant due to the rapid
development of roots in the cutting. These characteristics make
plants very distinct from animals.

Due to this very different behaviour from animals, plants are not
often considered intelligent organisms (van Loon 2016). This is an
attribute reserved only for animal-like organisms such as parrots,
octopuses (Schnell et al. 2020), and humans. However, some re-
searchers are challenging this view (Trewavas et al. 2020; Calvo et
al. 2020). As a result, the question arises: “what is intelligence?”.
There is no single definition available. Yet, based on Downing
(2015) and Legg et al. (2007), there are three properties that are
common aspects of intelligent behaviour in many definitions:
(i) intelligence is a property that an individual agent has as it
interacts with its environment(s); (ii) intelligence is related to an
agent’s ability to succeed or profit with respect to some goal or
objective; (iii) intelligence depends on how the agent is adaptive

4



1.1 Are Plants Intelligent?

to different objectives and environments. Legg et al. (2007) sum-
marise this as:

General Intelligence

Intelligencemeasures an agent’s ability to achieve goals in awide
range of environments (Legg et al. 2007).

In this dissertation, we will use a more specific definition that is
encompassed in the one above:

General Intelligence, Alternative Definition

Intelligence is a very generalmental capability that, among other
things, involves the ability to reason, plan, solve problems, think
abstractly, comprehend complex ideas, learn quickly and learn
from experience (Gottfredson 1997).

This definition mentions some key aspects necessary for intelli-
gence, such as problem-solving capabilities, memory, planning
and more. Recent research is also identifying such behaviour in
plants.

Szechyńska-Hebda et al. (2010) showed that plants possess mem-
ory of previous light incidents, which is used for the optimisation
of future light acclimation and optimisation responses. Com-
bined with other research, this has led Karpiński et al. (2010) to
conclude that plants can store and use information of light sum,
intensity and day length for several days or more to anticipate
changes that might appear in the near future in the environ-
ment. These examples illustrate that plants have typical learning
(habituation, priming) and complexly integrated store/recall sys-
tems of memory (Thellier et al. 2013). Mimosa pudica (also called
sensitive plant) plants have also been used to demonstrate the
learning capabilities of plants. These plants can fold their leaves,
a defensive mechanism. Yet, this should only occur when there
is imminent danger because photosynthesis is reduced, and leaf
folding also requires energy. Gagliano et al. (2014) showed that
dropping a plant initially triggers the plant to fold the leaves, yet
is ignored after a few incidents. In later work, Gagliano et al.
(2016) even demonstrate associative learning in plants. The re-
searchers introduced a neutral environmental cue along with the
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same direction of the incident light. They showed that this cue
was used by plants to predict the future light source’s location,
affecting the growth direction. These case studies underpin that
plants can store and recall past events despite lacking a central
brain-like structure. Baluška et al. (2018) assembled an overview
of recent work on memory and learning in plants.

Moreover, plants can also communicate with each other. Since
the discovery of phenolic compound accumulation in poplar
when nearby trees are damaged (Baldwin et al. 1983), there
has been ever-increasing evidence that plants communicate.
Main methods for communication appear to be airborne volatile
organic compounds (VOCs) but others have demonstrated that
root-root interaction when experiencing drought also occurs
(Ueda et al. 2012; Wang et al. 2021); as well as plant-to-plant
competition (Taiz et al. 2010); or even acoustic signals (Gagliano
2013; Khait et al. 2019). Communication is not limited to
hormonal or electrical cues; hydraulic or even electrical field
communication is also reported (Collings et al. 1992; Baluška
et al. 2010).

These examples illustrate the complexity and highly optimised
behaviour of plants for the challenging conditions in which they
develop. These behaviours can be interpreted as emergent in-
telligence. While not all aspects of the above definitions of in-
telligence are already observed, there is abundant evidence that
plants are more than passive organisms. More research and im-
proved experimental designs will be necessary to investigate this
emergent intelligence further.

The ongoing research on plant intelligence and related proper-
ties has led some researchers to go even further and attribute
emergent consciousness to plants (Trewavas et al. 2020; Calvo et
al. 2020; Trewavas 2021). This has led to a hotly debated topic
with part of the community trying to debunk the consciousness
hypothesis (Mallatt et al. 2021; Draguhn et al. 2021; Taiz et al.
2019), while other support it vigorously (Trewavas et al. 2020;
Calvo et al. 2020; Trewavas 2021).
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1.2 Are Plants Conscious?

Often, the debate about plant consciousness revolves around a
primary form of consciousness, simply put: “a first-person point
of view” (Nagel 1974). While both pro and contra groups have
compelling arguments in favour and against this hypothesis, we
believe a paradigm shift is needed from a very anthropomorphic
view on consciousness to a more generalised version. Trewavas
(2021) provided the first steps in this direction, by adopting the
word awareness in place of consciousness. However, the experi-
mental evidence to support or reject the consciousness hypoth-
esis in plants is mainly lacking. Nick (2021) identified that most
research focuses on analysing literature rather than hard experi-
mental analysis.

(a) (b)𝛷 = 74 bit 𝛷 = 20 bit

Figure 1.1 Two causal interaction diagrams and their causally effec-
tive information 𝛷 expressed in bit. Diagram (a) has a heterogeneous
structure, resulting in a much higher value for 𝛷 than (b), which has a
uniform structure. Figure inspired by (Tononi 2004).

What is needed is a set of measurable criteria that enable re-
searchers to test their hypotheses. Trewavas (2021) proposes the
integrated information theory (IIT) for consciousness. IIT was
initially proposed in the field of neuroscience and psychology by
Tononi (2004). As the name suggests, it uses integrated infor-
mation that is defined through a network of elements or nodes,
illustrated in figure 1.1. Linkages modify the behaviour of each
node, thus representing the intrinsic information, which cannot
be measured directly (Tononi et al. 2016). Though this theory
seems interesting at first glance, several issues can be identified
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when transitioning to physical media. Plants are composed of
interconnected networks that indicate modularity. However, we
should also consider other inanimate structures such as mass-
damper systems. They are also composed of interconnected net-
works and fit the framework in a similar sense as plants. We
can compute the IIT for these, yet attributing consciousness to
mass-damper systems is far fetched. Similarly, in a simulated
environment, the IIT can be computed for neural networks. Yet,
it is also difficult to attribute consciousness to current state-of-
the-art neural networks (Nick 2021).

Instead, Nick (2021) proposes that a Turing test for plants might be
needed. The essence of a classic Turing test is that the observer
investigates a system on its ability to think. To this end, the
observer asks questions as if the system were intelligent. The
performance of the system (also called black box) is compared to
a true thinker (i.e. a human). If the observer is unable to identify
which is the black box andwhich is the human, the systempasses
the test (Turing 1950). Thus instead ofmaintaining the status quo
andmainly performing literature reviews, it would bemore inter-
esting to devise a non-verbal Turing test. Though this might not
be trivial, as Searle (1980) demonstrated using the Chinese room
argument. The setup in the Chinese room argument is similar
to that of the Turing test, but for a system that is perceived to
understandChinese. The systemprocesses Chinese characters at
the input and output according to a computer programme. If the
programme is sufficiently advanced, it could pass the Turing test,
convincing thehumanoperator that the programmeunderstands
Chinese. However, since the system is following a predetermined
programme, it cannot be considered as true intelligent behaviour
(Searle 1980).

1.3 Plants as Computational Resource

A general computational resource is depicted in figure 1.2. In-
puts are presented to a processing unit, which produces the de-
sired output. Computers are prime examples: they receive inputs
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from, for instance, the keyboard, process these signals to gener-
ate the corresponding display command and depict the pressed
letter on the screen. Humans are also information processing en-
tities. We continuously receive sensory inputs that are processed
by our brain and act accordingly.

input processing entity output

Figure 1.2 Diagram depicting a general computational resource. This
diagram is not only a good model of computers, but also for humans
and possibly plants.

While both a computer and the human brain are computational
resources, they have widely different properties. On the one
hand, humans have no trouble driving a car, even in conditions
not experienced before, while this is a much more challenging
problem for computers. While on the other hand, humans are
not good at raw number crushing. For instance, computing the
square root of a random number is non-trivial for us, yet com-
puters are very efficient at this. Consequently, they each excel at
different tasks. The same holds for less conventional computa-
tional resources.

Artificial neural networks (ANNs), for instance, are loosely in-
spired by the brain, consisting of a network of elementary pro-
cessing elements, similar to how IIT works. ANNs are universal
approximators (Hornik et al. 1989), so they can also be used as a
computational resource. Research on ANNs is a very active part
of computer science.

One specific type of computing paradigm that is very relevant
here is reservoir computing (Schrauwen et al. 2007). It uses a
randomly initialised ANN to perform computations. Figure 1.3
visualises a simple reservoir. Input is fed into the reservoir that
transforms this information into new information that depends
on the current input and past inputs through the recurrent con-
nections present in the network. It is easiest to consider the sys-
tem in discrete time, though the extension to continuous time is
easily made. The input then consists of a series of sensor values.
At each timepoint, a single value is put into the network. The arcs
(arrows) from the input nodes to the nodes in the reservoir deter-
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mine how the inputmodifies the reservoir state. The state values,
represented as nodes, of the reservoir not only depend upon the
input but also upon the previous reservoir state. The new node
state (or value) is determined by theweighted sumof the previous
states that influence a particular node. The darker an arc, the
stronger this node influences the other. Finally, based on a (par-
tial) observation of the reservoir, the output is determined. This
output is thus also a weighted sum of node values. Though this
simple readout system is observed to perform well for specific
tasks, it is not advised to use reservoir computing for general-
purpose machine learning (Vlachas et al. 2020). However, PRC
is still relevant for solving tasks related to the physical body that
is used for computation (Nakajima 2020). A typical example is
the ability to use signals generated by a compliant body to steer
locomotion (Urbain et al. 2021).

input reservoir/ANN output

Figure 1.3 General architecture of a RNN in reservoir computing.

This separation of computing and readout has inspired a wide
range of physical implementations. Physical reservoir comput-
ing outsources the network to a substrate. The reservoir can be
a robot body (Caluwaerts et al. 2013), a plant, a photonic circuit
(Shastri et al. 2021; Vandoorne et al. 2014) or a water bucket
(Fernando et al. 2003). The idea behind (physical) reservoir com-
puting is explained in depth in section 2.5.

The main goal of this dissertation is to validate the use of plants
for computation experimentally. By computation, we imply
plant-centric types of computation instead of general-purpose
computation, achievable using a conventional computer.
Though Adamatzky et al. (2018) have proposed to build a fully
functional computer fromplants, theywill not replace computers
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in everyday life, but they can replace some conventional
systems in tasks inherently related to plants, such as yield
optimisation. Adamatzky et al. (2018) describe several input-
output relationships, but none seems to be practically scalable
using currently available technology. Limiting the scope to tasks
that are related to plants is probably relevant in practice. This
hypothesis is based on similar work in robotics. In compliant
robotics, there is considerable interest in outsourcing part of the
control loop for locomotion to the body. It has been observed
that sensory information from this robot body is highly suitable
for locomotion tasks and terrain classification (Urbain et al.
2021; Degrave et al. 2013).

Examining the computational properties of plants is not only
interesting from a fundamental point of view but can also cause a
shift of paradigm in phenotyping. Phenotyping is, loosely speak-
ing, the characterisation of a plant’s traits. Reservoir computing
can provide a new framework for plant physiological studies.
Most studies focus on the interplay of one or two environmental
variables on a plant, while a plant’s responses are the integrated
sumofmanymore variables (Poorter et al. 2016). After all, the en-
vironments in which plants grow are subject to constant change
(Murchie et al. 2020; Jones 2013). These changes are not only
the result of variable weather conditions but also of biological
nature. Animals continuously interact with plants, resulting in,
for instance, pollination, predation and even fertilisation. More-
over, the soil is also subject to constant changes and interactions
due to parasitic and symbiotic relationships between the roots
and nematodes, fungi and bacteria. So, instead of focussing on
the relationship between one or two controlled variables and
the plant’s responses, reservoir computing can provide a more
general framework: the plant is a computational resource that
processes these input signals in a certain manner and behaves
accordingly.

Additionally, in the long-term, industrial applications in horticul-
ture and agriculture are also possible. For instance, it is crucial to
continuously monitor the plants’ conditions in greenhouses for
optimal yields. Currently, growers rely on manual observation
and known set-points of optimal growth due to the long-term
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experience of a farmer with a particular crop. This high degree
of specialisation has led to ever-increasing yield yet also poses
difficulties when switching cultivars. Growers need to be able to
respond to shifts in themarket rapidly to maximise profits. How-
ever, switching cultivars in this classical approach is not easy. It
can take several growing seasons before production is optimised,
partially due to the lack of detailed information on a plants’ state.
Using the computation properties of plants can solve this issue
because plants become active participants in optimising environ-
mental conditions.

Obtaining information on plants’ state and using this in a control
loop, as described above, can yield to highly autonomous plant
systems. In such systems, plants can take overmany responsibil-
ities of the farmer, including irrigation, fertiliser application and
climate control.

1.4 Research Outline

As mentioned in the previous section, the main goal is to vali-
date computing with plants by means of a PRC-inspired setup.
The tasks can be roughly divided into the following objectives:
(i) investigate suitable sensing technologies to assess the plant’s
state; (ii) use sensor data to evaluate PRC with plants; and (iii)
investigate potentially interesting biological tasks.

Before we can dive into the details of reservoir computing with
plants, one needs to get acquainted with the basics of machine
learning, and ecophysiology and phenotyping. These subjects
are covered in chapters 2 and 3 respectively. Essential concepts
are introduced from both fields, making the rest of this book
accessible to experts from either discipline. Afterwards, in chap-
ter 4, we discuss how we can make use of physical reservoir
computing to study the computational properties of plants. In
chapter 5, a first attempt is made to study the plant behaviour
under varying conditions with high temporal resolution using
a hyperspectral camera. While this line of research was incon-
clusive, valuable information on the limitations of hyperspectral
cameras was obtained for such experiments. Consequently, an
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alternative sensing technology was used for which a versatile
data logging system was developed, Gloxinia (chapter 6). This
sensor platform was used in the experiments of chapter 7 where
several tasks are used to evaluate the computational properties of
plants. Concluding remarks and future research are discussed in
chapter 8.

1.5 Publications

A list of all published work is included below. Most of these
publicationshavebeen (partially) integrated into this book. Here,
we approach each of these studies from a reservoir computing
point of view. However, this is not the point of view in someof our
publications. Figure 1.4 visualises the interconnections between
different publications and research subjects.

PRC with plants

Pieters et al. (2020b)
and Jas et al. (2020)

Pieters et al. (2020a)

PRC with
plants paper
(under review)

Pieters et al. (2020c)

student projects

Pieters et al. (2021) Penders et al. (2018)

hyperspectral

Gloxinia

simulated PRC

MIRRA Solis

Figure 1.4 Visualisation of the dependencies between publications
and the research subjects
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In our initial attempt to investigate PRC with plants, we worked
with a hyperspectral camera as the plant observing sensor. How-
ever, the results were inconclusive. Based on the data collected
from this sensor, there was no significant difference between the
background and plant observations. Nonetheless, we published
these results in Pieters et al. (2020b), where we analysed the ex-
tractability of useful information on dynamic plant properties.
Consequently, we shifted our focus to different sensing technolo-
gies. To that end, we developed Gloxinia, a custom sensing plat-
form optimised for our future experiments. At the core of our
experimental design is the rapid and continuous observation of
plant properties such as leaf length and thickness. Such mea-
surement systems are not very common, and possible implemen-
tations are costly. As a result, we designed a custom sensing
platformwith the experimental design inmind. We developed an
open research platform named Gloxinia that is (i) cost-effective,
(ii) accurate, (iii) modular and (iv) versatile. Our experimental
validation study of PRC with plants is currently under review.

All of the main publications focussed on PRC experiments with
physical substrates. Yet, we can also approach plant PRC using
simulation models (also called digital twins) of plants. We pub-
lished preliminarywork on this in Pieters et al. (2020c). The focus
here is onusing reservoir computing as ameans to compare plant
models.

Several side-track projects were also published as a conference
paper or a journal article. Penders et al. (2018) is based on a stu-
dent project. Students developed a smart house plantmonitoring
system further developed by researchers in the Department of
Industrial Systems and Product Design. Pieters et al. (2021) is
also the result of preliminarywork bymaster students. Thiswork
discusses the development of a microclimate system, MIRRA.

We experimented with several extensions to linear regression
such as group least absolute shrinkage and selection operator
(LASSO) when analysing the data. This led to a contribution to
an open-source software library Pyglmnet, published in Jas et al.
(2020).
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2
Introduction to Machine Learning
and Reservoir Computing

Reservoir computing is a computational framework derived from
recurrent neural network models. It can be used for machine
learning which has seen a tremendous rise over the past decade
mainly due to increased computational resources and utilisation
of graphics processing unit (GPU) (AI and Compute 2018). This
chapter provides a high-level overview ofmachine learning tech-
niques, focusing on (physical) reservoir computing. We start
from a very descriptive introduction in section 2.1 and gradually
add details until we have covered all necessary parts to under-
stand the remainder of this dissertation.

2.1 Machine Learning

Machine learning techniques aim to learn a suitable model from
the data (within a specific set of constraints), thus skipping the
need to model the underlying processes explicitly. They are flex-
ible algorithms whose parameters are tuned using training data
but should generalise well to unseen data and conditions. Es-
sentially, machine learning algorithms operate as black boxes that
process inputs and provide outputs. The inner workings of the
model are – in general – not related to the underlying processes.
The model cannot be interpreted by looking at the model pa-
rameters. This is in stark contrast to white box models, where
parameters of the model correspond to interpretable concepts
and underlying processes.
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Take for instance Gompertz model for plant growth (Tjørve et al.
2017):

𝑊 (𝑡) = 𝐴 exp [− exp (−𝑘𝐺(𝑡 − 𝑇𝑖))] . (2.1)

𝑊 (𝑡) is the expected value (mass or length) as a function of time
(for example, days since germination or growing degree days), 𝐴
represents theupper asymptote (saturation value), 𝑘𝐺 is a growth-
rate coefficient (which affects the slope), and 𝑇𝑖 represents the
time at inflexion, i.e. the time at which growth is maximal.

0 𝑇𝑖

𝐴

time 𝑡

𝑊
(𝑡)

slope 𝐴𝑘𝐺𝑒−1

Figure 2.1 Gompertz growth model for plants.

The Gompertz equation originates from medicine, where it was
used to describe human mortality (Gompertz 1815). Later it
was identified from experimental data that it is also applicable
to other growth processes, including plant growth (Tjørve
et al. 2017). Each of the parameters in the model originates
from observations and are readily interpretable. However,
formulating a model like equation (2.1) is not always obvious,
and in many situations, it is impossible to find such a general
model.

Consider, for example, the following problem: wewant to predict
the dry matter yield of ryegrass at the end of the growing season
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based on the current growing state of a field. This is highly rele-
vant information for breeders to speed up the selection process
of new cultivars. Illustrative data is depicted in figure 2.2 for
several cultivars. Intuitively, we can see that it is impossible to
find an exact solution to this problem. There are many influ-
ential factors, including the weather, genetic factors, different
management practices and soil heterogeneity. So finding the un-
derlying model is infeasible. However, based on previous data, a
machine learning system can learn part of the underlying factors
contributing to the yield and how these factors contribute to the
result. As such, it can provide an estimate of the yield.
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Figure 2.2 Dry matter yield data from a ryegrass trial at ILVO (Pranga
et al. 2021).

The aforementioned problem is an example of supervised learn-
ing. In supervised learning, the algorithm is presented a series
of input-output pairs. The goal is that the learned model should
approximate the output from the input data. Moreover, it should
be done such that previously unseen inputs also generate the cor-
rect outputs. However, not all problemshavewell-defined in- and
outputs. When this is the case, the term unsupervised learning is
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used because there is no direct way to evaluate the performance
of the model. Here, the machine learning algorithm should try
to find patterns in the data. Another class of machine learning
problems is reinforcement learning. In this last case, the algorithm
interacts with a dynamic environment to achieve a certain goal.
For instance, we can train a computer to play a game like pong, a
simple version of ping-pong on the computer. The agent can take
three actions: stay in place, move up or move down. A single
move up or down is not rewarded, but bouncing the ball back
to the other side is. A series of actions are required to achieve
the goal. Moreover, there is no predefined set of actions that is
the best. Another famous example is AlphaGo Zero (Silver et al.
2017). The rules of the Go game are straightforward, yet the num-
ber of possible actions is enormous. Moreover, it is challenging
to define intermediate steps to help the agent learn the game.
Nonetheless, researchers at Google Deepmindmanaged to create
a system that can beat the best human players (Silver et al. 2017;
Borowiec 2016).

This introduction focuses on supervised learning since reservoir
computing is traditionally applied in a supervised context. Su-
pervised learning is typically categorised roughly into regression
and classification problems. In regression problems, the goal is
to predict a certain quantity (real number) from the input data.
Other examples include stock price prediction, plant biomass es-
timation from image data, object counting in images andweather
prediction. Yet, not all problems fall within this category. There
are also classification problems, where the goal is to categorise
the data in a certain set of classes. For instance, the automated
subject detection in Google Photos, written character recogni-
tion in envelopes, natural language problems, and product rec-
ommendation systems (Netflix, groceries) are all examples of
classification problems. Reservoir computing can be used for
both problem classes, but in this dissertation, the focus will be
restricted further to regression problems only.

Now we shift our focus from the goal and output to the machine
learning model itself. In the next sections, we discuss several
linear and nonlinear models that are used later in this disserta-
tion. A first set of models are the linear models, discussed in
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section 2.2. These are the simplest models. Their behaviour is
well understood, and optimisation is straightforward. Nonlinear
models are more powerful, at the cost of increased complexity
and more difficult optimisation.

2.2 Linear Regression Models

One of the simplest types of models is a linear model. They have
the advantage that model behaviour is usually well understood,
easy to optimise and use. Consequently, they are very popular
in nearly all fields of research, from micro-climate research to
sociology (Wild et al. 2019; Schwemmer et al. 2020).

To illustrate the power and limitations of linear models, we will
consider the following problem: we want to predict the growth
curve of a variety of ryegrass. These are useful to construct a
simulated version in the computer later on. As a first attempt,
we will fit a polynomial to a series of observations. These obser-
vations (𝑥𝑖) are the input of the model. This is sometimes also
labelled as input feature, a specific type of input to themodel. The
data are depicted in figure 2.3. Before we can fit a model to the
data, we first have to decide on the order of the polynomial that
we want to use. One can choose a linear, second or fifth-order
polynomial, for example. Depending on the order, themodel has
very different behaviour, illustrated by figure 2.3. The order of a
model is a so-called hyperparameter.

Hyperparameters tune the model’s abilities and come in various
forms. They can determine the model size (like here), learning
ability or learning speed, for instance. They share the common
attribute that they remain constant after initialisation. However,
the choice for these parameters is very important. Wewill go into
more detail on this in section 2.3.

Suppose that we want to fit a second-order polynomial to this
data, then we have four different unknown model parameters:
𝑤0, 𝑤1 and 𝑤2. The model output ̂𝑦(𝑡) has the following form:

̂𝑦(𝑡) = 𝑤0 + 𝑤1𝑥(𝑡) + 𝑤2𝑥2(𝑡). (2.2)
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Figure 2.3 Linear polynomial regression models fit to dataset with
unknown underlying model.

Usually, one wants to optimise the coefficients to minimise the
mean squared error (MSE) between the predicted output ̂𝑦𝑖 and
observed output 𝑦𝑖 for all samples (𝑀 in total):

ℒ = 1
𝑀

𝑀−1

∑
𝑖=0

(𝑦𝑖 − ̂𝑦𝑖)
2 . (2.3)

Finding the optimal values for all 𝑤𝑖’s is not trivial from this
formulation. To obtain amoreworkable form, we have to rewrite
this as a matrix multiplication:

𝐰 = [𝑤0 𝑤1 𝑤2]
⊺

(2.4)

𝐱𝑖 = [1 𝑥𝑖 𝑥2
𝑖 ]

⊺
(2.5)

̂𝑦𝑖 = 𝐱⊺
𝑖 𝐰. (2.6)

If we concatenate all samples into a single matrix, we obtain:

�̂� =

⎡
⎢
⎢
⎢
⎢
⎣

̂𝑦0
̂𝑦1

⋮
̂𝑦𝑀−1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝐱⊺
0𝐰

𝐱⊺
1𝐰
⋮

𝐱⊺
𝑀−1𝐰

⎤
⎥
⎥
⎥
⎥
⎦

= 𝐗𝐰. (2.7)
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Now, we can rewrite the loss function from equation (2.3) to:

ℒ = 1
𝑀‖𝐲 − �̂�‖

2
2 (2.8)

= 1
𝑀‖𝐲 − 𝐗⊺𝐰‖

2
2 (2.9)

= 1
𝑀 (𝐲 − 𝐗𝐰)

⊺
(𝐲 − 𝐗𝐰) . (2.10)

We want to minimise the error with respect to 𝐰, so we have to
differentiate equation (2.10) with respect to 𝐰:

∇𝐰ℒ = −2𝐗⊺(𝐲 − 𝐗𝐰). (2.11)

When we assume that 𝐗 has a full rank (and thus, 𝐗⊺𝐗 is positive
definite), then equation (2.11) has a unique solution and we can
invert this previous expression and obtain the solution for 𝐰:

𝟎 = −2𝐗⊺ (𝐲 − 𝐗𝐰) (2.12)
= 𝐗⊺𝐲 − 𝐗⊺𝐗𝐰 (2.13)

⇒ 𝐰 = (𝐗⊺𝐗)
−1 𝐗⊺𝐲. (2.14)

Now, we have the optimal values for 𝐰 with respect to ℒ. How-
ever, the choice for a second-order polynomialwas a bit arbitrary.
We could have chosen a first or fifth-order as well and also have
obtained unique solutions for 𝐰. As one can see in figure 2.3, the
more complex the chosen model, the better the model fits our
data. However, this does not imply that the obtained model is a
goodfit for the problemat hand. Weneed tomodify our approach
to make the final model behave well on unseen data. More on
this in section 2.3. First, we continue our explorations of linear
models and their properties.

Equation (2.2) specified a second-order polynomial, but this is
not the only form of linear model (Bishop 2006). Generally, a
linear model takes the following form:

̂𝑦(𝑡) = 𝑤0 +
𝑁

∑
𝑖=1

𝑤𝑖𝜙𝑖(𝐱(𝑡)). (2.15)
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Again, we observe the bias term 𝑤0, and one major addition:
𝜙(⋅). This is a fixed nonlinear transformation. In the previous
example, this was: 𝜙1(𝑥) = 𝑥, 𝜙2(𝑥) = 𝑥2 and 𝜙3(𝑥) = 𝑥3. We also
observe that the input is generalised to enable the use ofmultiple
input variables or features.

2.3 Generalisation, Bias and Variance

While the model obtained in section 2.2 is optimised, it is gen-
erally not usable on new data. The number of parameters vs.
the number of samples is quite low. The model thus has the
ability to fit the data almost exactly due to the high degree of free-
dom. Suppose we perform a new set of measurements (depicted
in figure 2.4) and measure the model performance in terms of
MSE. In this case, the highest order polynomials appear a lot less
interesting indeed. The results are summarised in table 2.1.
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Figure 2.4 Models from figure 2.3 compared with new sample data
(dataset 2).

This poor model performance of the fifth-order model is due to
model overfitting. Themodel is overly optimised to the data that is
used during optimisation. These data are often labelled training
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2.3 Generalisation, Bias and Variance

MSE
1st order 2nd order 5th order

dataset 1 34.57 11.66 4.35
dataset 2 37.34 18.3 34.88

Table 2.1 Polynomial model comparison between training data
(dataset 1) and validation data (dataset 2), containing unseen data that
was now used for model optimisation. Lower values indicate better
performance for the MSE error metric.

data because it is used to tune the weights of the model. As a
result, using these data to assess the model’s performance on
unseen data is not possible. Of course, the model behaves well
on these data; we tuned it to work well on it. It is also clear that
the fifth-ordermodel will have better performance than the first-
order model because of the increased number of weights. This
enables the model to capture more variation present in the data.
These variations stem from the underlying processes that gener-
ated the data and noise in the data. Generally, these underlying
processes are unknown. Usually, there is no way to distinguish
between both, but obviously, the model should not be optimised
to the noise present in the data.

One common technique to improve model performance is to use
regularisation. Regularisation includes the model’s weight values
(except for 𝑤0) into the error function using a parameter 𝜆:

ℒ = 1
𝑀

𝑀−1

∑
𝑖=0

(𝑦𝑖 − ̂𝑦𝑖)
2 + 𝜆

𝑁−1

∑
𝑖=1

𝑤2
𝑖 . (2.16)

The choice of 𝜆 determines the range of the weight coefficients in
𝐰. Effectively, we have now introduced a new parameter in our
model. Since 𝜆 tunes the models’ ability to learn, this is another
example of a hyperparameter, similar to the order of the employed
polynomial. A hyperparameter is a powerful tool, but also intro-
duces an additional training step: determining the optimal value
of all hyperparameters. More on this later on in this section.

Yet, why does this help in improving model performance? This
stems from the observation that coefficients tend to take on high
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values when the noise in the data is also modelled. In our ex-
ample from figure 2.3, the mean absolute coefficient value is
0.45, 0.12 and 1.81 for the first, second and fifth-order model re-
spectively. The better performing models have smaller absolute
weight values.

But howshould𝜆bedetermined? This is usually doneusing a sep-
arate dataset. First, one has to determine an appropriate interval
for 𝜆; since this is not known beforehand, a logarithmic evalua-
tion is often performed. The exact value of 𝜆 is subordinate to
the magnitude. Second, the model is optimised for each of these
choices on the training data. So for each new set of hyperparam-
eters, a new set of weighting coefficients is determined since this
optimisation step is performed anew. Third, the validation data
is used to assess themodel’s performance for this specific choice
of 𝜆. Based on the optimal value for the performance metric, we
select the final value of 𝜆. The model with the best performance
on both validation and train data is thus selected.

When applying these steps to our toy problem, we obtain fig-
ure 2.5. The model performance is very different for the train-
ing and test data. Generally speaking, lowering the value for 𝜆
improves performance on the training data (figure 2.5a). This
corresponds to reducing the penalty of large weights, thus re-
moving restrictions on the model weights. However, this same
observation does not hold for the validation dataset (figure 2.5b).
The MSE value has a clear minimum value for all models, with
decreased performance for very large and very small values of
𝜆, especially for the fifth-order model. For small values of 𝜆, the
model captures part of the noise characteristics, as is evident in
the very largeMSE values. Increasing 𝜆, decreases the error until
a minimum value is reached. Higher 𝜆 values restrict the weight
coefficients in learning a usefulmodel. As a result, theMSE value
increases. Figure 2.5c visualises the magnitude of the weight
coefficients for variable 𝜆. We can clearly observe the decay of
the weight coefficients for large values of 𝜆.

Note also that ℒ and MSE are two different optimisation targets.
ℒ is the loss function. It is a model-dependent function that is
used to optimise the model coefficients. Equation (2.16) is an
example of such a function. However, it is not used to evaluate
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2.3 Generalisation, Bias and Variance

the model performance on unseen data. For instance, in the
case of the loss function in equation (2.16), model weights also
contribute to the loss. This is undesirable for comparisons since
it adds a constant bias term that is model-dependent in place of
data-dependent. As a result, a different performance metric is
used, such asMSE. Thismetric is used to determine the hyperpa-
rameters based on validation data and compare the performance
of different models on test data.
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Figure 2.5 Effect of hyperparameter 𝜆 on model performance and
coefficient distribution. Polynomial model of first, second and fifth-
order’s performance for MSE loss function for the training (a) and val-
idation datasets (b) for variable regularisation parameter 𝜆. (c) depicts
the evolution of the coefficient distribution for different 𝜆.

Naively, one could use the minimum value obtained using the
above procedure as the finalmodel performance. However, since

29



Chapter 2

we used the validation data to finalise the hyperparameter choice
of the model, this is not an unbiased estimate. We need a third
dataset, often called the test data that is not used for training or
validation, i.e. that hasnot beenused to optimise themodel in any
way. The performance on this dataset is the final performance
of the model. Ideally, this should be very close to the validation
performance. If this is not the case, then themodel is still overfit-
ting on the data, and additional measures are needed to improve
performance.

The choice of regularisation is dependent upon the task the
model has to perform, and the resulting model can have
different properties. The regularisation used in equation (2.16)
is called Tikhonov regularisation (Tikhonov 1963) and the
regression model (i.e. the combination of a linear model with
Tikhonov regularisation) is often called ridge regression. Amore
general form is:

ℒ = 1
𝑀

𝑀−1

∑
𝑖=0

(𝑦𝑖 − ̂𝑦𝑖)
2 + 𝜆

𝑁−1

∑
𝑖=1

|𝑤𝑖|
𝑞 . (2.17)

Figure 2.6 is a visual depiction of of three 𝑞 values and the effect
thereof on the structure of the solution 𝐰∗ in two dimensions. To
understand figure 2.6, we can interpret equation (2.17) as equa-
tion (2.3), subject to the following constraint:

𝑁−1

∑
𝑖=1

|𝑤𝑖|
𝑞 ≤ 𝛾. (2.18)

Simply put, we split equation (2.17) in two parts that have to be
met simultaneously to minimise ℒ. The first part of the sum
is the same as equation (2.3), which defines circles in the case
of two-dimensional input. The second part can be rewritten as
equation (2.18), which defines a centred shape as illustrated in
figure 2.6. Because both conditions have to be met, the intersec-
tion point defines the optimal value for 𝐰: 𝐰∗.

For 𝑞 ≤ 1, the solution will generally be sparse since the deriva-
tive is not defined for points on the axes (i.e. the sharp tip). Conse-
quently, the chance of a result on one of the axis will be aremuch
higher. Sparse solutions can be interesting when there are many
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𝐰∗
(a)

𝑞 = 0.5

𝐰∗
(b)

𝑞 = 1

𝐰∗

(c)

𝑞 = 2

Figure 2.6 Contour plots of the weight vector 𝐰 in blue, subject to
different regularisation constraints (equation (2.18), 𝑞 = 0.5, 1, 2). The
optimal weight vector 𝐰∗ is depicted by a dot.

inputs (and thus also weights), and one wants to find the most
important ones. LASSO (𝑞 = 1) is a popular regression model
that produces a sparse solution (Tibshirani 1996).

Figure 2.7 visualises the optimisedmodels corresponding tomin-
imal MSE in figure 2.5. All three models are a lot closer to each
other. Performance on three data sets is summarised in table 2.2,
where the test data is new data that was not used for training
and/or validation. Generally, all three datasets are obtained by
splitting the initial data into three subsets. Sometimes more
complex systems are used, such as K-fold cross-validation, but
they are out of the current scope of this introduction.

Splitting the data cannot be done arbitrarily. Suppose we want
to classify leaf images as diseased or healthy. To that end, we
have a dataset of 200 images: 100 disease infected leaf images
and 100 healthy leaf images. If we were to use a train dataset
of 75 healthy and 5 infected images, a validation dataset of
20 healthy images and no infected images, and the remaining
images for testing, then the model would perform poorly.
Clearly, this is not a good data split. There are no infected images
in the validation dataset and many more in the test data than
in the training data. As a result, the model is likely to perform
poorly on infected leaf images due to the lack of examples during
training and a bias towards healthy leaves in the validation data.
Thus, when splitting data into multiple subsets, it is important to
make sure they are independent and identically distributed. This
means that there should be no overlap or correlation between
the different subsets, and all subsets should present the data in a
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Figure 2.7 Optimised polynomial regression models of first, second
and fifth-order subject to ridge regularisation.

similar way (i.e. have the same percentage of healthy vs. infected
leaves in this case).

In reality, it is often even more complicated as it is more likely
that there will be more images of the healthy subclass than the
diseased subclass. In that case, additional measured are needed
that are out of scope of this introduction.

Table 2.2 Performance comparison (MSE) of optimised polynomial
regression models from figure 2.7 on three datasets: the training, vali-
dation and test data.

MSE
1st order 2nd order 5th order

train data 42.003 14.071 10.944
validation data 47.498 17.922 15.168

test data 43.032 10.322 62.95

Let us now revise our model choice. In section 2.2, we assumed
a second-order model. However, this choice is quite arbitrary.
Nothing is limiting us from taking a fifth-order model. As can
be seen in figure 2.3, this model has a much better fit to the

32



2.4 Multi-layer Perceptron Models

sample data than the second-order model. However, when the
noise in our data is slightly different, themodel has very different
behaviour in some locations, as is observed in figure 2.8, while
the first and second-order models are much more alike.
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Figure 2.8 Optimised polynomial regression models of first, second
and fifth-order subject to ridge regularisation, trained with a different
dataset (but the same underlying world and noise model).

Based on the results in figure 2.8, one can conclude that a simpler
model is the best in this case. Deciding which model is best is,
however, not always trivial. This illustration is an example of the
bias-variance dilemma.

Suggested works with more in-depth and complete overviews of
linear and nonlinear models are Bishop (2006) and Hastie et al.
(2009).

2.4 Multi-layer Perceptron Models

Linear models like in sections 2.2 and 2.3 are powerful for a wide
range of problems, but for some problems it is difficult to opti-
mise a model when there is no direct relationship between the
input and output. For instance, when we want to classify images,
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a linear classifier will typically fail; or in case we want to predict
the short termelectricity demand or predict how the 3D structure
of proteins from an amino acid sequence, there is no simplemap
possible from the input to the output. To solve such problems,
researchers often use artificial neural networks (ANNs) (Jumper
et al. 2021; Wen et al. 2020; Mohanty et al. 2016). These are (very
loosely) biologically-inspired systems.

The human brain is composed of up to 86 billion neurons, and
each neuron has approximately 7000 synaptic interconnections
(Herculano-Houzel 2009). Neurons process spikes; they receive
spikes from other neurons and sensory organs and, depending
on their frequency, and intensity can generate spikes themselves.
One can view the brain as composed of a very large set of very
simple processing units that, when combined, can solve very
complex tasks. All these processing units operate in parallel.

Although we are not interested in the exact functioning of the
human brain, we can use it as inspiration to design systems that
solve tasks our brain solves easily. Such networks are called ANN
since they are man-made (Rosenblatt 1961). A simple example of
a feed-forward artificial neural network is depicted in figure 2.9
as a graph. Artificial neurons or perceptrons are displayed as
nodes, while the directional arcs (arrows) represent the intercon-
nectivity from one perceptron to the next. This network has a
layered structure. The main idea behind this is that each layer
processes the input at a higher abstraction until we reach the
final output layer and desired output. Additionally, if there were
only a single layer, theANNwould reduce to a linearmodel (equa-
tion (2.15)).

To make this more concrete, consider the following example:
handwritten digit recognition. Each layer is designed to integrate
an increasing amount of information. The first layer can find
strokes, combine these strokes in the next layer to find corners
or circles and finally combine all this data to classify the image
as a certain digit.

Not only the interconnectivity is important, but equally impor-
tant is howaneuronprocesses the inputs. The output of neuron 𝑖,
𝑦𝑖, is composed of aweighted sumof the inputs that is nonlinearly
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input layer hidden layers output layer

Figure 2.9 Simple feed-forward ANN with three fully interconnected
hidden layers.
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Figure 2.10 A single perceptron.

transformed using an activation function 𝜓:

𝑦𝑖 = 𝜓
⎛
⎜
⎜
⎝

𝐶

∑
𝑗=1

𝑥𝑗𝑤𝑗

⎞
⎟
⎟
⎠
. (2.19)

This Multi-layer Perceptron Models is visualised in figure 2.10.

Figure 2.11 depicts historically popular activation functions such
as the tangent hyperbolic (tanh), logistic function and also the
more modern rectified linear unit (ReLU). ReLU-based ANNs
(and its many variants) are generally easier to compute and train
than their historical counterparts because it avoids a vanishing
gradient.
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Figure 2.11 ANN activation functions.

Feed-forward neural networks are the simplest since the outputs
of a layer form the inputs of the next layer until the final layer
is reached. A system with one hidden layer is already a general
approximator, but modern systems havemuchmore layers since
this tends to be more efficient for training. Ideally, we want a
system with as few perceptrons as possible since training time
increases dramatically when the amount of interconnections in-
creases. This translates in practice to the use of many layers and
more specialised architectures where each perceptron is only
connected to a part of the perceptrons in the next layer, leading
to deep learning (LeCun et al. 2015). Models with over a billion pa-
rameters have been developed and trained (Brown et al. 2020).

The previous algorithm from section 2.2 does not scale to very
large datasets and models. Matrix inversion is a very complex
and time-consuming operation, so onehas to resort to alternative
training methods.

Finding a global optimum is no longer possible due to the lack of a
closed-form solution to the optimisation problem. Thus, instead
of trying to find a global optimum, we have to resort to finding
local optima. Local optima can be obtained by evaluating the
modelwith slightly different parameters in the neighbourhood of
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Figure2.12 Gradient descent optimisation technique illustrated on the
loss-curve from the polynomial regression of the fifth-order model in
section 2.3.

its current state. When themodel is not yet locally optimal, there
will be a set of parameters, close the current parameters, where
themodel has better performance. We now only have to evaluate
the model in the neighbourhood of its current coefficients. This
approach is called gradient descent since we follow the gradient
towards regions with lower loss.

This technique can also be applied to linear problems. To il-
lustrate the principle, we consider the cost curve for the from
figure 2.5b for the fifth-order model in figure 2.12. Suppose that
our initial guess for 𝜆 is 1.0 (the blue square ). Evaluating 𝜆 in
that regionwill cause the algorithm to decrease the value of 𝜆, in-
dicated by the direction of the arrow, since the error decreases in
this direction. It will reach a local optimumat the red dot ( ). This
example highlights the power of this approach: we need fewer
evaluations to find the optimum, but also its weakness. Only eval-
uating in the local space around the current point does not yield
the global optimum (here ) in general. The initialisation point
is very important in this case. Note that while we can apply gra-
dient descent to hyperparameters, this is unconventional. Here,
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this example served solely to illustrate the working principle of
gradient descent. Remember from the previous section that the
exact value for 𝜆 is subordinate to the magnitude. In reality, one
would, for instance, perform a logarithmic sweep of 𝜆 at 10−5,
10−4, …, 105.

While feed-forward ANNs are powerful, they are generally not
capable of processing time-series data. Time series data gener-
ally require the system to maintain information about previous
inputs. For example, an English word is composed of different
sounds. The short sound samples have no real meaning on their
own, yet combined, they do. Furthermore, longer dependencies
exist also. Words such as it and there can refer to previous infor-
mation passed in a conversation. One way to capture such de-
pendencies is to use a window of inputs. Instead of presenting a
single input sample to themodel,multiple samples in the past are
also presented. The window size is a hyperparameter that has to
beoptimised. However, this approachalsohas its limitations. For
instance, relations that are far apart can fall out of the window.
The model can thus not perform the correct inference.

As a result, researchers have added feedback connections to the
network. This way, the network can retain information about
its previous state. These feedback connections have large con-
sequences on the behaviour of the network. A recurrent neural
network (RNN) is no longer a mathematical function as is the
case for feed-forward ANNs, but a dynamical system. Due to the
existence of feedback, the network can self-sustain temporal ac-
tivation dynamics without active input to the network. Addition-
ally, the network’s internal state becomes a function of previous
inputs, resulting in dynamic memory. Consequently, training
the network has become a lot more complex because the cost
landscape can change drastically over very small perbutations
of the model parameters (bifurcations) (Doya 1992). Gradient
descent based algorithms are thus not well-suited for RNNs. At
the turn of themillennium, a lack of alternative trainingmethods
led researchers to explore radically different approaches, giving
rise to reservoir computing (Kolen et al. 2001).

However, two decades later, the field of RNN has progressed sig-
nificantly and the historical context that gave rise to reservoir
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computing is not longer valid today. Long short-term memory
(LSTM) cells, first introduced by Hochreiter et al. (1997), are cur-
rently used in state of the art RNN architectures (Yu et al. 2019).
These results have moved beyond what is possible with reservoir
computing and LSTM is now the de facto standard for RNN archi-
tectures. LSTM-based RNNs have been used to tackle problems
in reinforcement learning (Stanford 2019), speech recognition
(Graves et al. 2013) and sign language translation (Camgoz et al.
2018). Sherstinsky (2020) give an introduction to LSTM funda-
mentals.

2.5 Reservoir Computing

Reservoir computing was introduced as a computational frame-
work that uses an RNN (also called a reservoir) whereby the input
and hidden layers of the network are randomly initialised and
left as is. Only the output mapping is trained using simple linear
regression, often ridge regression. This idea was independently
introduced by Jaeger (2001), Maass et al. (2002), and Steil (2004)
and radically simplifies training RNNs. While very similar ideas
were already introduced in the nineties, they failed to attract
significant interest from a wide scientific audience (Schomaker
1992).

Jaeger (2001) approached the issue of systematic training RNNs
with a general architecture. He proposed to only train the output
layer, leaving the randomly initialised connectivity matrix as is.
This effectively reduces the whole training procedure to a one-
shot linear regression. The network must satisfy the echo-state
property (also called fading memory), meaning that the current
state is mostly dependent on previous inputs with decreasing
importance as the time difference becomes larger. As a result,
inputs in the distant past do not affect the current state of the
network. A network that satisfies this property is called an echo
state network (ESN).

Maass et al. (2002) were instead investigating a biologically plau-
sible implementation of the brain using spiking neurons. Their
liquid state machine (LSM) has a similar structure as an ESN but
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works in both continuous and discrete-time on spike trains (vs.
discrete-time signals only for ESN). Maass et al. (2002) identi-
fied two necessary properties that the network should meet in
order to function as a universal approximator: the separation
and approximation property. The (point-wise) separation property
states that different input sequences generate different internal
trajectories, while the approximation property requires that the
readout function should be able to approximate any function
on a closed and bounded domain with arbitrary precision. An
illustration of a spike train and spiking neuron is depicted in
figure 2.13.

𝑡 𝑡

neuron

input output

Figure 2.13 Illustration of two spike trains and a spiking neuron. The
input spike train is processed by the neuron, yielding the output. A
network is such neurons is called an LSM.

The third and final approach by Steil (2004) is a learning rule for
RNNs: backpropagation-decorrelation (BPDC). While ESNs and
LSM use one-shot learning, this is an online learning method.
Similar to the other cases, only the output is trained.

While all three methods have a different background, they share
the same conceptualisation: leave the reservoir as-is and train
only the output mapping. This is illustrated in figure 2.14. One
or more inputs is mapped into the reservoir, whose state is used
to perform one or more output tasks. Only the red output in-
terconnects (arcs) are trained. The output can optionally be fed
back into the reservoir, but this case is not considered since it is
not relevant for the work presented here. Because of these large
similarities, researchers coined the term reservoir computing, col-
lective noun for these three methods (Verstraeten et al. 2007;
Schrauwen et al. 2007; Lukoševičius et al. 2009; Lukoševičius et
al. 2012).
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input reservoir output

Figure 2.14 General architecture of a RNN in reservoir computing.
Only the weights in red are trained. All other weights remain fixed.

Even earlier publications with similar concepts can be found
in literature , among others the sequential associative memory
models (Gallant et al. 1988), neural oscillator network models
(Schomaker 1992), context reverberation networks (Kirby 1991;
Kirby et al. 1990), cortico-striatal models for context-dependent
sequence learning (Dominey et al. 1995), and biological
neural network models for temporal pattern discrimination
(Buonomano et al. 1995; Tanaka et al. 2019).

How can something that is randomly initialised result in good
performing networks? The answer comes from statistics, in the
form of kernel support vector machines (SVMs). A kernel SVM
uses a nonlinear function to transform the input data into a new
space, typically a high-dimensional space (feature space) that has
attractive properties for the problem under investigation. Linear
methods are then applied inside this feature space to solve the
problem at hand. Performing this transformation can be very
computationally intensive. However, using the kernel trick, SVMs
avoid explicit computations inside the feature space. The ker-
nel computes a dot product in the feature space directly on the
untransformed data. Many different kernels exist, each specif-
ically designed for a certain data type and problem. The only

41



Chapter 2

requirement is that thekernel has tobepositive definite (Mercer’s
condition). This is very useful since we are often not interested
in the actual transformed data, only in the dot product.

Reservoirs operate similarly. They also map the input into a new
high-dimensional space where extraction of the target data is
straightforward using a linear mapping. The difference lies in
the fact that the feature space is computed explicitly instead of
using the kernel trick. Additionally, RNNs also incorporate time
information, something that is not possible with classic SVMs
(Hermans et al. 2011).

Not only are reservoirs easily trained, but they are alsowell suited
for parallel computations. When training a standard RNN using
backpropagation, the system is first trained to solve a single task
and has to subsequently learn a second task. This sequential
training limits generalisation since the systemmight unlearn the
first task partially. Reservoir computing does not suffer from this
problem since the reservoir is left as is. One just has to create an
additional mapping from the reservoir towards the output, as in
figure 2.14. Adding or removing an output task does not alter the
performance of the others.

While all three approaches mentioned previously can be used
for general computation, ESNs are the easiest to reason on be-
cause of their discrete-time nature and continuous variables. As
a result, we focus mostly on networks of the ESN type since they
resemble hardware-based implementations more closely.

A mathematical description of an input-driven ESN is:

𝐱(𝑛 + 1) = (1 − 𝛼)𝐱(𝑛) + 𝛼𝐟 (𝐖in𝐮(𝑛) + 𝐖𝐱(𝑛)) (2.20)

𝐲(𝑛) = 𝐖out𝐱(𝑛). (2.21)

We assumed the input and output target to be appropriately cen-
tred (typically zero-centred), such that bias vectors are negligible.
𝐖in, 𝐖 and 𝐖out are the weight vectors of the system. Only 𝐖out

is trained, for example with one of the techniques discussed in
section 2.2. While the other two matrices are left unaltered, that
does not mean that they are fully random. Important optimisa-
tion parameters (hyperparameters) are the spectral radius and
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sparsity of 𝐖, input scaling using 𝐖in and leaking decay rate 𝛼.
Often the tangent hyperbolic (tanh) is selected as nonlinearity
and applied element-wise. For a more practical and complete
introduction to training ESNs, see Lukoševičius (2012).

The reservoirs discussed so far have always been input-driven
reservoirs. This means that an input signal is fed into the reser-
voir. Yet, this need not be always the case. For instance, in
robotics, central pattern generators can be used for locomotion
(Urbain et al. 2018). They are essential to creating rhythmic sig-
nals, which can, in turn, be used to actuate motors in quadruped
robots (Marder et al. 2001; Ijspeert 2008). Additionally, the core
of a reservoir was so-far assumed to be based on an ESN, but
this is not a requirement. Appeltant et al. (2011) showed that a
delay-line with a single nonlinear node has similar properties as
RNNs.

2.6 Physical Reservoir Computing

Reservoir computing inherently relies on the properties of the
underlying dynamical system. They can be implemented using a
perceptron network with feedback, but this need not be the case.
Any dynamical system that satisfies the properties detailed above
can be used as a reservoir. Reservoirs are left as-is, and only the
readout part is tuned. Consequently, a wide range of physical
dynamical systems can also be used for computation. When
using a physical medium, one is performing physical reservoir
computing (PRC).

Using thePRC framework, it is possible to use a dynamical system
for computation (Nakajima 2020). Thus, instead of performing
control tasks in software, they are now performed in hardware,
using eithermaterial or structural properties of the system. Mor-
phological computation is a commonly used alternative name for
PRC in compliant robotics. Yet, this is not the same (see the next
section).

However, while any system can be used, successful computation
inherently relies on repeatability. Similar inputs should lead to
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similar outputs. Indeed, if this were not the case, the system
would behave in unexpected ways with the same input, leading
to chaotic behaviour. Simply put, the time window of previous
inputs that affect the reservoir dynamics should be limited. This
corresponds to the echo state property of ESN. The conceptual-
isation of reservoir computing using ESNs closely matches the
hardware-based descriptions we are interested in, so we will use
the conventions and definitions provided by Jaeger (2001) and
Jaeger et al. (2004).

In their review, Tanaka et al. (2019) identify four key characteris-
tics that a physical reservoir should have: (i) high dimensionality,
(ii) nonlinearity, (iii) fading memory and (iv) separation prop-
erty. While these are useful for the selection of reservoirs, they
offer no means of designing better reservoirs that achieve high
computational performance. Moreover, researchers still rely on
task-specific benchmarks to compare how much computational
power can be attained by individual PRC systems (Dambre et al.
2012; Nakajima et al. 2015). Examples of such tasks include the
nonlinear auto-regressive moving average (NARMA) task (Atiya
et al. 2000) and Santa-Fe tasks (Gershenfeld et al. 1993). This
highlights that there is still plenty to be discovered in the field
of PRC. A unifying theoretical framework would help to identify
objective performance characteristics.

Nonetheless, the inability to indicate sub-optimality in the reser-
voir has not withheld a wide range op physical media to be ex-
ploited for computation. Examples can be found in integrated
analogue circuits (Schürmann et al. 2005), memristive devices
(Du et al. 2017), integrated photonic devices (Vandoorne et al.
2014), opto-electronics (Paquot et al. 2012), a water bucket (Fer-
nando et al. 2003), a soft silicone arm (Nakajima et al. 2015), com-
pliant robots (Iida et al. 2005; Liimatainen et al. 2013), tensegrity
robots (Caluwaerts et al. 2013; Caluwaerts et al. 2014; Degrave et
al. 2013) and living organisms (Hafizovic et al. 2007; Jones et al.
2007).

Recently, a new book on reservoir computing and PRC was pub-
lished byNakajima et al. (2021a). While knowledge of this book is
not necessary to understand thework presentedhere, it offers ad-
ditional insights, theory and context that are out of scope here.
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2.7 Morphological Computation

Morphological computation is the potential of any physical body
to take part in computation and problem solving (Hauser et al.
2011). Instead of working around the dynamics of a physical
body in control problems, it should be embraced and leveraged
to simplify control. The idea of morphological computation also
aligns well with the idea of embodiment. The control (or brain)
and body cannot be studied separately since they are both needed
to interact with the physical world (Pfeifer et al. 2009). Clearly,
this conceptualisation is closely related to PRC.

Plants are prime examples of organisms that perform morpho-
logical computations. For instance, they grow to discover new
food sources and alleviate stress. Other examples in living organ-
isms are widespread, including slime mould (Mayne et al. 2015)
and animals (Müller et al. 2017).

While morphological computation is an interesting conceptual-
isation, it does not provide a general framework for computa-
tion, though field-specific formalisations exist (e.g., Hauser et al.
(2011)). However, we can rely on the closely related framework of
PRC for a theoretical foundation.

2.8 Summary

In this chapter, we introduced essential concepts from machine
learning, necessary to understand reservoir computing and PRC.
While reservoir computing is inspired by the brain and often
uses an RNN as a reservoir, the main learning rule is based on
linear regression. Elementary concepts such as regularisation,
data splitting and hyperparameters are introduced with clear ex-
amples. Based on this foundation, one should be able to compre-
hend the analysis presented in later chapters.

In later chapters, we will build on these foundations to explore
PRC with plants. To conclude, we want to stress that while reser-
voir computing is a generalmachine learning techniques that can
be applied to time-series data, PRC is not. PRC is about using a
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physical medium for computation. Consequently, PRC is more
about a shift in paradigm: where computation can occur and
which type of medium can be used for computation.
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3
Introduction to Plant
Ecophysiology, Phenotyping and
Phenomics

Plant ecophysiology studies how physiology responds to environ-
mental conditions. This includes plant mechanisms that sense
the environment and that act in response to this sensing, but
also how environmental conditions affect the overall growth and
development of plants.

In this chapter, we will give a brief overview of a plant’s eco-
physiology. Additionally, we also discuss the basics of phenotyp-
ing and measurement methods. The focus will be on the leaves
since these are the primary interfaces with the (above ground)
environment and are the easiest to monitor. Moreover, we will
restrict ourselves to photosynthesis and water-related processes
since monitoring focuses thereon in later chapters.

3.1 Plant Ecophysiology

Plants are sessile organisms. This restriction has forced them to
evolve a wide range of unique characteristics that enable them
to survive and thrive in challenging environments all over the
globe. Environmental influences are categorised as biotic or abi-
otic. Biotic factors involve other living organisms, including,
for example, symbiotic relationships with bacteria and fungi in
the soil, pests and diseases, and pollination by insects. Abiotic
factors are all the other factors, such as (solar) radiation, soil and
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air temperature, precipitation, wind direction and speed, water
and nutrient availability, and relative humidity.

Due to this sessile nature, plants cannot collect food. Instead,
they synthesise their food from atmospheric carbon dioxide
(CO2) and (soil) water. An organism that can synthesise food
from the environment is also called an autotroph. Organisms
that depend upon other organisms as a food source are called
heterotroph.

Put simply, plants collect solar energy and convert it to chemical
energy. This process is summarised as 6CO2 + 6H2O → C6H12O6
+ 6O2. Consequently, they provide their own food from two
abundant resources in nature. While light is required, not all
wavelengths are equally effective for photosynthesis. Light in
the range of 400 – 700 nm can be used for photosynthesis. This
is the photosynthetically active radiation (PAR), expressed in
µmolm−2 s−1 (i.e. the number of photons incident per unit of
area and time).

While the chemical formula for the synthesis of sugars during
photosynthesis seems simple, the processes involved in photo-
synthesis are far fromsimple. Theprocess of photosynthesis con-
sists of two main reactions: light-dependent reactions and dark
reactions. During the light-dependent reactions, light energy is
converted into chemical energy. This chemical energy cannot be
stored for a long time. The energy is thus converted into glucose
by the dark reactions (Taiz et al. 2010).

Figure 3.1 depicts a typical plant. Water ismostly absorbed in the
roots but can also enter via the leaves and other organs (Rundel
1982; Berry et al. 2019). From there, it is transported through spe-
cialised organs to sites of transpiration, located predominately
on the leaves. Plants have dedicated tissues to facilitate water
transport, such as xylem. Though water is used in the process
of photosynthesis, most of the water is lost through evaporation
in the stomata.

Stomata (figure 3.2) are pores in the epidermis of leaves, stems
andother plant organs that regulate the gas exchangeof theplant.
This regulation is very important, since plants continuously have
to strike a balance between CO2 uptake from the air and water

50



3.1 Plant Ecophysiology

mature leaf
crown

hair root

roots

immature leaf

stem

rh
iz
os
ph

er
e

H+ Mg+ K+

fungi micro biome

acidification and
ion mobilisation

le
af

su
rf
ac
e

stomata

open closed

CO2 uptake

water evaporation

energy flow

water flow

Figure 3.1 Plant with the main organs, and water and carbon dioxide
uptake annotated. Detailed images of stomata and rhizosphere are also
included.

loss to avoid desiccation (Meeus et al. 2020). The state of the
stomata (open or closed) is quantitatively expressed as stomatal
conductance in mol(H2O)m−2 s−1 (Gimenez et al. 2005; Li-Cor
Inc. 2012). This quantity is also related to the transpiration rate,
expressed in mmol(H2O)m−2 s−1.

The net uptake of carbon dioxide from the atmosphere per leaf
area is the photosynthetic rate µmol(CO2)m−2 s−1, which is influ-
enced bywater and light availability aswell as other environmen-
tal inputs like temperature and relative humidity and the plant
organ’s age and water availability. During the day, most plants
perform photosynthesis and thus, there is a net uptake of CO2.
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100 µm

Figure 3.2 Image of dried leaf surface of Barkeria, depicting open and
closed stomata. Only stomata that are fully included in the image are
annotated. Image from the dataset by Meeus et al. (2020).

However, during the night, plants burn part of this energy to
maintain essential plant processes. As a result, there is a release
of CO2 during the night.

Temperature and relative humidity jointly cause the vapour pres-
sure deficit. This is the difference in actual water concentration
in the air and the saturated concentration, expressed in kPa (Pa is
equivalent to the free energy per unit volume Jm−3). The larger
this difference, the larger the transpiration rate becomes since
water “escapes” more easily to the environment.

One of the means a plant has to actively regulate the leaf tem-
perature is through transpiration. Yet, there are limits to the
amount of transpiration. These arise due to the combined effect
of limited water availability in the soil and hydraulic resistance
along thewater transport pathway. The leaf temperature can thus
be significantly different from the surrounding air temperature
(Jones 2013). This effect is illustrated in figure 3.3 for a soy trial.
Figure 3.3a depicts a field that received normal rainfall, while
figure 3.3b was subject to drought. A rainout shelter prevented
rain from entering the soil on this field. As a result, soil water
availability in (b) was lower than in (a). Lower water availability
caused plants to close their stomata to prevent excessive water
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losses, causing the temperature in the canopy to rise. If this
increased high temperature and low soil water availability con-
ditions persist, plants will eventually die.

In figure 3.3a, all soy varieties performed equally well. This is to
be expected since plants were not stressed (there is enoughwater
available in the soil). However, in figure 3.3b this was not the
case. Plants in the upper halve were more stressed than those in
the lower half, as is indicated by the higher temperatures. Lower
canopy temperatures are used as a proxy for improved resilience
to drought stress.

(a) (b)

30

35

40

45

50

Figure 3.3 Thermal image of two fields of soy in a drought trial. (a) is
the control treatment, while (b) is subject to drought. This trial is part
of the EUCLEG project (http://www.eucleg.eu/).

All of the above quantities and relationships illustrate that plants
have a complex interplay of regulatory mechanisms. As a result,
a plant’s state and development are the result of both internal and
external factors. Determining and/or quantifying these parame-
ters is called phenotyping.

The term phenotyping was introduced byWilhelm Johannsen (Jo-
hannsen 1903; Johannsen 1911); it is the quantitative or quali-
tative description of an organisms’ observable characteristics or
traits. For instance, one can measure the total plant length of
maize. This is a phenotypic trait and the result of the genotype,
environmental factors and their interaction (Walter et al. 2015).
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Different environmental factors can result in a diverse set of phe-
notypes, making it sometimes difficult to relate genotypic factors
to specific traits (Xu 2016). But even if the environmental factors
are identical, plants canhave very different gene expression (Cor-
tijo et al. 2019).

In literature, phenotyping and phenomics are often used inter-
changeably, though there is a clear distinction between the two.
Phenomics is the study of plant growth, performance and com-
position (Furbank et al. 2011). It provides a more holistic view
than phenotyping and was coined in analogy to genotyping and
genomics. Genotyping studies the properties of a limited set of
genes, while genomics is interested in the genome as a whole.
However, there are also clear differences. While determining
the genome is a well-defined problem, the phenome cannot be
uniquely characterised since it can change in time and space,
even on a cellular basis. Consequently, there is always a focus
on a particular aspect of the phenome (Houle et al. 2010). In
summary, phenotyping studies detailed properties of the plant,
while phenomics is more holistic.

Recently, the term envirotyping was introduced by Xu (2016). It
is also related to phenotyping and genotyping in that it highlights
the need to accurately monitor environmental changes. A single
measurement location for weather data for a field is often inade-
quate since many parameters differ significantly over small dis-
tances. For instance, the soil is known to be very heterogeneous,
or local temperature fluctuations due to, e.g., tree shading can
cause differences in phenotype that cannot be explained by just
monitoring or considering the macroclimate (De Frenne et al.
2019; Bennie et al. 2008).

3.2 From Phenotyping to Phenomics

Phenotyping is the quantification of certain plant traits that are
the result of the interaction between plant genetics and environ-
mental conditions to which plants are exposed. Consequently,
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phenotyping is applied inmany plant science disciplines. In fun-
damental plant science, phenotypic observations are used to dis-
cover novel mechanistic insights into a plant’s (eco)physiology.
This is often referred to as deep phenotyping because it aims to get
a deeper insight on mechanisms, and studies are generally per-
formed on a few plants. But also, in more applied research like
precision agriculture or breeding research, plant phenotyping
plays a central role. Here, it is also often called high-throughput
phenotyping because many genotypes are observed.

Due to the effects of climate change, meteorological conditions
are expected to become more extreme (Rockström et al. 2009;
Steffen et al. 2015). To maintain productivity and feed a grow-
ing human population, breeders have to create new crop vari-
eties thatmaintain or even improve productivity under these new
conditions. Moreover, farming has to become more sustainable
without affecting productivity (Foley et al. 2011; Xu 2016).

Genetic gain, the increase in performance achieved per unit time
through artificial selection, is diminishing for several key crops,
including wheat, maise and rice (Fischer et al. 2014; Sadras et al.
2011; Acreche et al. 2008). However, developing new crop vari-
eties is labour and time-intensive. While genotyping has evolved
significantly over the past 20 years, leading to high-throughput
and inexpensive sequencing, phenotyping has not experienced
similar gains. Thismismatch between genotyping and phenotyp-
ing throughput is often referred to as the phenotyping bottleneck
(Costa et al. 2019). Consequently, a large scientific community is
focussing on alleviating this issue.

Araus et al. (2018) identified five ways to increase genetic gain
through high-throughput phenotyping: (i) increasing the size of
the breeding programme, (ii) faster breeding cycles, (iii)more ac-
curate selection, (iv) adequate genetic variation and (v) decision
support tools. All of these aspects of the breeding pipeline re-
quire reliable high-throughput phenotyping techniques to scale
breeding efforts cost-effectively. Breeding efforts thus transition
from classic phenotyping to high-throughput phenotyping. Yet,
this transition alone is probably insufficient. An increasing body
of research is also indicating that a more integrated look upon
phenotyping is needed, leading to phenomics. In the future,
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it is thus expected to see a transition towards high-throughput
phenomics (Yang et al. 2020). A large population of plants is thus
studied as a whole instead of as a limited set of traits (Furbank
et al. 2011; Tardieu et al. 2017). The goal is not to characterise all
traits, but instead offer more context on why these traits are ob-
served. We thus imply that there should be less focus on linking
specific traits to treatments, but instead approach the effect of a
treatment on the observed traits as a whole.

However, determining or quantifying traits is not easy nor always
objective. Breeders often rely on manual visual scoring of plants
to determine the phenotype. For instance, they often assign a
score to each plant’s performance in a drought experiment. This
is both time-consuming labour intensive and can introduce bias
into observations (Ali et al. 2016). Additionally, destructive sam-
pling is also often performed to obtain dry matter weight, for
instance. While this yields very informative results, it poses ad-
ditional restrictions on the size of studies and influences plant
responses because of this intervention. To alleviate this bias and
increase the overall throughput, the focus in high-throughput
phenotyping is on remote sensing using imaging sensors (Araus
et al. 2018).

A wide range of image sensors and image analysis techniques
are used to determine traits. Both active and passive sensors
are used, including laser imaging, detection, and ranging (Li-
DAR), synthetic aperture radar (SAR), ground penetrating radar
(GPR), and visual/red green blue (RGB), hyperspectral, multi-
spectral and thermal cameras (Araus et al. 2018; Fahlgren et al.
2015; Li et al. 2014). These image-based techniques are well-
suited to analyse large fields with plants in a semi-automated
fashion. The resulting datasets offer information at high spatial
resolution. Which sensor is most suitable depends on the trait to
bemeasured; for a (non-exhaustive) overview of possibilities, see
table 3.1.

In summary, there are currently two trends in phenotyping re-
search relevant here: a shift towards a more holistic view of
the plant through phenomics and a shift to larger experimental
sizes by means of high-throughput techniques. High-throughput
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techniques have become mainstream over the last decade. Ad-
ditionally, the more holistic view characterised by phenomics is
also gaining traction in the community. However, a third axis can
be identified, which is currently not yet as accepted as the other
two: the time scale at which measurements are recorded.

3.3 The Temporal-Spatial-Trait Axis

So far, the focus has been on the spatial resolution: the number
of plants monitored (high-throughput) and the number of traits
monitored (phenomics). The same is true in contemporary re-
search in phenotyping: high temporal resolution is often lacking.
It is uncommon to have information at the second to minute or
even hour to daily time scale for large fields.

In high-throughput phenotyping and phenomics, image sensors
are mounted on drones or mechanical systems that scan the plot
one part at a time. Afterwards, images are combined into a single
orthophoto. Using drone flights to collect data also introduces
a new constraint: suitable weather. In conditions with precipi-
tation and/or high wind speed, it is not possible to collect data.
To increase the time-resolution, either the number of sensors
has to be increased, or the number of monitored plants has to
decrease. Often, the second option is preferred due to the high
costs associated with the first method. To tackle the requirement
for suitableweather, we can employ non-drone basedmonitoring
platforms such as stationary platforms or phenomobiles (Araus
et al. 2018).

Also, in more fundamental research, time aspects are often
ignored. Many measurements are recorded at steady-state, yet
in reality, the plant is rarely in steady-state conditions due to a
highly fluctuating environment (Schurr et al. 2006; Arsova et al.
2020). As a result, plants continuously adapt their physiology in
response to these environmental fluctuations. This determines
their performance, both in natural ecosystems, as well as in
crop systems (Schurr et al. 2006; Arsova et al. 2020). Their
dynamic behaviour might even be more important than steady
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state-conditions (Kaiser et al. 2018; Kromdijk et al. 2016; Vialet-
Chabrand et al. 2017; Matthews et al. 2018; Townsend et al.
2018).

Consequently, to capture the effect of genotypic variation in
plants, there is a need to measure on three different axes,
identified in figure 3.4. The point “perfect balance” is the only
point where each axis is equally important, and the experiment
does not sacrifice one of the aspects over the other. Three
regions are indicated: high-throughput phenotyping, phenomics
and deep phenotyping. In each of these regions, there is a clear
dominance of one of the measurement axis.

number of traits

number of plants

time resolution

high-troughput phenotyping
phenomics
deep phenotyping
dynamic properties of plants
perfect balance

Figure 3.4 Overview of measurement axes in phenotyping.

For example, because the response of the photosynthesis bio-
chemistry to fluctuating light conditions is faster than the ki-
netics of stomatal conductance, these fluctuations also impact
the interplay between plant water and carbon relations (Law-
son et al. 2012; Lawson et al. 2014). Consequently, a mismatch
arises between CO2 assimilation and water loss (McAusland et
al. 2016). Reducing this mismatch and improving the capacity of
crop photosynthesis to respond to fluctuating light environments
is, therefore, a promising avenue for breeding more productive
crop varieties (Salter et al. 2019; Murchie et al. 2020).

Given the importance of plant physiological responses to envi-
ronmental fluctuations, it is essential that new field phenotyping
technologies specifically focus on capturing such fast-changing
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dynamics (Murchie et al. 2018). Yet, it remains difficult to capture
plant photosynthetic and water status responses to fluctuating
conditions in the field. Gas exchange devices based on infrared
gas analysers (IRGAs) allow continuous measurements of tran-
spiration and CO2 assimilation and capture detailed dynamics
(Kromdijk et al. 2016). However, this approach does not allow for
high-throughput measurements and requires expensive devices.
Furthermore, these systemsmonitor individual leaves and do not
provide concurrent data at the plant scale, while recent evidence
points out that plants display systemic responses under fluctuat-
ing light conditions (Shimadzu et al. 2019).

Chlorophyll fluorescence imaging is a powerful method to moni-
tor the photosynthetic capacity of plants (Baker 2008; Murchie et
al. 2013). However, these measurements typically require a dark
adaptation period of one hour, which limits the applicability to
study short-term dynamics. New developments in chlorophyll
fluorescence imaging methods like light-induced fluorescence
transient (LIFT) or sun-induced fluorescence (SIF) overcome this
dark adaptation period and can be used as proxies. These meth-
ods can be applied at different scales and show great promise,
though they do not enable the acquisition of absolute photosyn-
thesis biochemistry data and still require extensive calibration
(Murchie et al. 2020; Bandopadhyay et al. 2020).

Moreover, chlorophyll fluorescence imaging is unable tomonitor
stomatal conductance. Because stomatal conductance is closely
related to leaf temperature, thermal sensors can be used to mon-
itor it by applying basic energy balance equations (Jones 2004;
Maes et al. 2012). These equations require the assessment of
themicro-environmental conditions of the leaf and the boundary
layer resistance to water vapour (Jones et al. 2002). Although
most studies with thermal sensors use single time point observa-
tions, continuous monitoring of dynamic stomatal conductance
in response to a fluctuating environment is possible and can be
combined with chlorophyll fluorescence imaging to link plant
water relations and photosynthesis (McAusland et al. 2016).

Generally, many phenotyping methods use imagery to extract
traits. Examples include, but arenot limited to, detectionof biotic
and abiotic stress and estimation of nitrogen content and yield.
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Mir et al. (2019) provides an overview of currentmethods. In this
respect, broadband RGB cameras are often used in phenotyping
experiments because they are inexpensive and can be used to
monitor plant growth at the scale of days and weeks or to de-
velop spectral indices referring to the greenness or canopy cover
(Borra-Serrano et al. 2020). However, these sensors are not useful
for providing information on dynamic responses of photosynthe-
sis over time scales of seconds or minutes. Therefore, increased
exploitative work will be needed to capture plant dynamics in
a non-invasive cost-effective way. Only in this way can the full
extent of phenotypic variation be captured both within a single
plant and across plants.

3.4 Trait Measurement Technologies

Based on the sensor technology, three kinds of attributes can be
attributed to a sensor: (i) contact or non-contact based, (ii) active
or passive and (iii) direct or indirect measurement.

Contact sensors are directly mounted on the plant, while non-
contact sensors measure through the air or water at some dis-
tance. A leaf thickness sensor is a contact sensor, while an RGB
camera is a non-contact sensor. The advantage of a non-contact
sensor is that is has little to no influence on responses. The dis-
advantage is that due to the indirect nature of the measurement,
environmental noise is more easily picked up. Contact measure-
ments do not suffer from these issues, yet their interaction can
cause unwanted side effects.

Active sensors transmit a signal that interacts with the tissue and
measure the response or alteration of the reflected or transmit-
ted signal. Passive sensors do not transmit a signal and directly
measure the response of the plant to environmental conditions.
A distance sensor or fluorescence meter are examples of active
sensors, while all cameras are passive devices.

Direct measurements can measure the trait directly. For
instance, a leaf temperature sensor connected to the leaf
measures the temperaturewithout intermediate. In comparison,
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many other traits are measured indirectly, such as stomatal
conductance by an IRGA. Based on the leaf temperature, water
vapour and CO2 concentrations, the stomatal conductance is
computed. Each sensor type has its own merits and pitfalls.
Thus there is a sensing trade-off that one has to be aware of.

Image sensors are gaining importancedue to the increasing focus
on high-throughput phenotyping, but this also poses additional
challenges, especially in experiments where plant responses are
not extreme. Indeed, most image sensors listed in table 3.1 are
passive sensors, meaning that they acquire indirect signals from
what they observe. These signals arise from the crop under in-
vestigation but can also arise from the surroundings. For increas-
ingly subtle responses that have to be captured, this can pose new
challenges as one has to ensure that the responses of the crop and
its surroundings are separated.

Active imaging systems such as some depth cameras and LiDAR
do not suffer from this issue but instead transmit a signal that
interacts with the crop. Thus, the effects of the surroundings
are often negligible. However, this also creates a new issue: the
transmitted signal can affect plant properties. For instance, if
modulated light is needed to obtain a measurement, this can
affect the physiological response, like e.g., in chlorophyll fluores-
cence.

3.5 Employed Sensor Technologies

In the experiments discussed later, there is a strong focus on
dynamic aspects of plants. As a result, there is a need tomeasure
the sensor readout with a sufficiently high temporal resolution
and follow multiple traits in parallel. We are mainly focussing
on the first and third classes ((non-)contact and (in)direct mea-
surements, respectively). More specifically, we are employing a
snapshot hyperspectral camera. Hyperspectral imaging sensors
capture reflectance in many wavelengths and are increasingly
applied in phenotyping research. This imaging technique has
already been applied to various settings that benefit from higher
spectral resolutions to detect biotic and abiotic influences on
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plants (Khan et al. 2018). Examples of studies on biotic factors
include blight caused by Alternaria solani in potato (Van De Vi-
jver et al. 2020), late blight caused by Phytophthora infestans in
potato (Franceschini et al. 2019), or tracking the development of
three foliar diseases in barley (Wahabzada et al. 2016). Mahlein
(2015) and Lowe et al. (2017) provide comprehensive overviews of
plant disease detection using imaging sensors and hyperspectral
sensors specifically. Studies in which hyperspectral imaging was
used to investigate plant responses in interactionwith abiotic fac-
tors include, for example, detection of green citrus fruits on trees
(Okamoto et al. 2009), nitrogen deficiency in sorghum (Zhao et al.
2005), seasonal structural changes and a heterogeneous architec-
ture in an olive orchard (Zarco-Tejada et al. 2013), nitrogen and
water distribution quantification in wheat (Bruning et al. 2019),
and drought stress in barley and saxaul (Behmann et al. 2014; Jin
et al. 2016). As a result, it is an interesting sensing technology
that can capture a wide range of plant states. Moreover, a sensor
was available at ILVO at the start of our work on PRC with plants.
Thus, experimentation could start early on. More details on sen-
sor performance and experimental results are documented in
chapter 5.

In the third class of direct and indirect sensors, wemainly employ
leaf thickness, leaf length and gas exchanges sensors. Leaf thick-
ness is a very interesting variable to measure since it is strongly
correlated to the water status of a plant (De Swaef et al. 2015b;
McBurney 1992; Afzal et al. 2017). The water status of plants can
change rapidly due to internal and external changes (variability
of sunlight, temperature and water availability). Measuring leaf
thickness is also practical since it is a direct measurement, and
clips are inexpensive compared to other methods.

Like thickness sensors, leaf length sensors provide information
on dynamics in plant water status but additionally capture the
irreversible growth of leaves. Leaf lengthmeasurements are also
easy to set up, though less so than leaf thickness measurements.
Leaf length measurements used in this dissertation are the E100
sensors (Chauvin Arnoux, France) and are constructed around
a linear variable displacement transducer (LVDT). As a result,
the measurement is more involved since a sine wave has to be
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applied at the input terminals, and the amplitude and phase shift
characterise the displacement of the sensor. Measurements are
always relative to the initial distance, which has to be determined
using an alternative method.

A final type of contact sensor employed here is a gas exchange
sensor (IRGA). The specific device used here is the LI6400XT
(LI-COR Biosciences, Lincoln, NE, USA). This device measures
various plant-traits related to photosynthesis based on measure-
ments of CO2 and water vapour.

An overview of all sensors used and their characteristics are pro-
vided in table 3.2.

Table 3.2 Overview of sensors used in the experiments and their char-
acteristics. The typical sensor size is also included.

sensor contact active direct image

leaf thickness
small, 1 – 2 cm

yes no yes

leaf length
large, 30 – 50 cm

yes no yes

hyperspectral camera
medium, 15 cm

no no yes

LI6400XT
large, 2 × 30 cm

yes yes yes

3.6 Summary

In this chapter, we introduced the basic concepts of plant
ecophysiology and how important aspects of photosynthesis and
transpiration can be monitored. Moreover, we also highlighted
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3.6 Summary

a need in research targets from phenotyping to phonemics.
With the impacts of climate change, phenotyping will have to
become more holistic, leading to phenomics. Important sensor
technologies and their merits were also featured in this chapter.
Finally, the most important sensor devices of the subsequent
studies were introduced.
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4
Reservoir Computing with Plants

The notion of plant intelligence was briefly discussed in chap-
ter 1. While this is not the subject of this dissertation, as outlined
in section 1.4, its discussion serves as an interesting general in-
troduction to information processing. To research the computa-
tional properties of plants, we propose to use PRC.

In order to study the applicability of the PRC framework to plants,
a machine learning foundation was established in chapter 2, and
a plant ecophysiology and phenotyping foundation was estab-
lished in chapter 3. These chapters are essential building blocks
to achieve a proper experimental design founded in existing re-
search in both domains.

In this chapter, both domains meet, and we discuss how the PRC
framework can be mapped to plants based on literature. More-
over, we also discuss the general setup of experiments and their
goal.

4.1 Mapping the Physical Reservoir Framework to
Plants

We already mentioned that plants are good examples of organ-
isms that perform morphological computations in section 2.7.
For instance, due to the sessile nature of plants, they need to
rely on their ability to grow their body based on environmental
queues to explore new regions in search of food. Other organ-
isms such as slime mold have also adopted intelligent strategies
of dealing with these limitations (Mayne et al. 2015). However,
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there is no general framework to understand or quantify mor-
phological computation. Consequently, we need to look into re-
lated fields for inspiration. Cellular automata are good candi-
dates (Adamatzky 1995), but we preferred to work with reser-
voir computing because it can be leveraged for more general-
purpose problem-solving. As mentioned in chapter 2, reservoir
computing is a very general framework in which the dynamics
of the reservoir are exploited for computation. Initially, RNN-
based reservoirs were used, but in section 2.6 we discussed the
transfer to physical systems. Yet, the mapping from the RNN to
the physical substrate was not discussed in detail.

Therefore, we will discuss this mapping using three examples
in figure 4.1. The baseline RNN-form is depicted in (a). Such
reservoirs are fully observable. Generally, this is unfeasible for
physical implementations and not necessary in practice for PRC
as long as the four main requirements listed in section 2.6 are
met. Nonetheless, these requirements restrict the generalising
ability of PRC for morphological computing. Indeed, in case
of plants and mold, physical bodies change over time, resulting
in violations of the PRC requirements. Yet, due to the lack of
a better theoretical foundation, one can limit the time frame
and/or impose other constraints such that the requirements are
approximately met.

The example physical substrates we consider in figure 4.1 are (b)
a silicone arm, (c) a tensegrity robot and (d) a plant. We go over
each of the cases anddiscuss how these criteria aremet, with spe-
cial emphasis on the nonlinear and fading memory properties.
Each of these systems can be in an infinite number of transient
states, so the high-dimensionality requirement is clearly met.
Moreover, the separation property is also fulfilled since none of
these systems is generally at the boundary of chaos. As such,
slightly different inputs will generate similar signals inside the
reservoir.

Figure 4.1b depicts a PRC implementation consisting of a silicone
arm that is connected to a motor and submerged in a tank of
water, as published by Nakajima et al. (2015). The reservoir is
formed by the silicone-water interaction. To read out the reser-
voir state, they used ten bend sensors that characterised the de-
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formation of the arm. Weighting functions were trained to sev-
eral NARMA benchmark tasks. The fading memory requirement
is clearlymet because the arm always returns to the same resting
position for a zero-input due to friction and gravitational forces.
Moreover, several physical attributes such as the viscosity of the
liquid and arm length determine the memory of the system. The
reservoir is built of silicone, which is a highly nonlinear material
(Nakajima et al. 2013). For instance, we can apply a force that
causes part of the material to contract. Doubling this force will
not result in doubling this contraction. Due to the nonlinear
properties, the contraction will be less and diminish as higher
forces are applied.

Another example is depicted in figure 4.1c, based on the work
of Caluwaerts et al. (2013). Here, the reservoir is composed of
beams and active and passive springs. Beams are the thick black
lines, active springs the dotted lines and passive springs the thin
lines. The beams have a fixed length and cannot deform, while
the springs can contract and/or extend, either actively or pas-
sively. Force sensors in a (sub)set of passive springs measure the
state of the reservoir. The nonlinearity in this system arises from
the fixed lengths of the beams and spring properties if they have
non-zero equilibrium lengths. This last requirement is always
met in physical implementations. Memory is also embedded in
the structure due to the interconnected nature, and these are also
damped due to friction, resulting in fading memory.

In figure 4.1d, we arrive at themost relevant physical reservoir in
this work: a plant. It was already mentioned in section 1.1 that
emergent intelligence could be attributed to plants. One of the
requirements of intelligence is the ability to process sensory data
in non-trivial ways. In essence, such ability is the same as the
ability to compute. As is evident from theprevious examples, PRC
maps to a wide range of unconventional substrates. As a result,
we hypothesise that PRC is a good candidate framework to study
the computational properties of plants.

Plants are highly nonlinear. Increasing the air temperature by
3 °C from27 °C to 30 °C can already result in flower drop in tomato,
while a temperature decrees of 3 °C from 27 °C to 24 °C has no ad-
verse effects (Ozores-Hamptonet al. 2012). This is a clear example
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of nonlinear behaviour. Another example of nonlinear behaviour
is the oxygen yield of plants in figure 4.2. Initially, the yield
increases linearly for low light intensities (green area). However,
at higher intensities, it is no longer the case (white area). In con-
clusion, plants respond nonlinearly to environmental changes.
For nearly all environmental factors affecting plants, there are
clear plant-specific ranges in which they grow well. However,
beyond a certain point, they are subject to stress and can even-
tually die. Clearly, the fading memory requirement is not met
if the plant dies. However, true fading memory is usually not
met in a strict sense in physical implementations. Indeed, as the
examples above also illustrate, prior conditions canhave a lasting
effect if they are outside of the allowed interval. Similar behaviour
can be found in plants. Nonetheless, partial fading memory can
be attributed to plants. For instance, recently, a vaccine was
developed for the late blight disease in potato (Najdabbasi et al.
2021). This vaccine offers good initial protection but fades over
time.

maximum yield

light intensity

O
2
pr
od

uc
tio

n

linear region

Figure 4.2 Oxygen production is nonlinearly dependent on incident
light intensity on plants.

In section 1.1 we already reported on findings that identifymem-
ory and learning behaviour in plants. Yet, there is so far no
evidence of properties related to fading memory reported in lit-
erature. However, it is well established that plants are nonlinear
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dynamic systems. In modelling plant behaviour, modellers often
rely on differential equations to describe relationships within the
plant, such as water and nutrient transport in a plant’s vascular
system (De Swaef et al. 2022).

Plants are non-stationary systems: their properties in terms of
memory and nonlinearity change over time due to their contin-
ued development (Hilty et al. 2021). For instance, a leaf can be
shedwhen it is too old or damaged and newplant organs develop.
Yet, we suspect that if experiments focus on a sufficiently short
timescale, theymay be assumed as stationary (reservoirs). While
the exact environmental conditions (e.g., 11 °C in place of 12 °C)
have diminishing influence the longer ago they occurred, the
range can have a lasting influence. For instance, if soy is not sub-
ject to a strong nighttime temperature drop, then the plant height
increases much faster than when there is a strong temperature
drop (Sionit et al. 1987).

What is missing in the classic description of ESN is a notion of
time. In software, the reservoir is stationary. But for physical
systems, this is rarely the case. In the first example of PRC by Fer-
nando et al. (2003), the reservoir consisted of a bucket of water.
If left untouched, this water will evaporate, making computation
impossible. Even before this point, the dynamics would have
changed due to a decreasing water level. Clearly, the timescale
at which computations are performed and the variability of the
reservoir has to be considered. In this case, the changes in the
reservoir can be neglected with respect to the timescale at which
tasks are performed. Another example of PRC that violates the
fadingmemory requirement can be found in compliant robotics.
A series of incorrect actuations of a gait in a quadruped robot
can cause the robot to flip. Most quadrupeds cannot recover and
are thus stuck. Manual intervention is thus needed to restart
the system. Even photonic systems suffer from non-stationary
effects due to bias voltage and temperature fluctuations (Reddy
Chittamuru et al. 2017). These fluctuations cause physical pro-
perties such as wavelength and output power to change in time.
Generally, this is an undesired effect.

In summary, the applicability of PRC on plants needs to be in-
vestigated, as well as the (non-)stationary nature of plants. In
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literature, there are already reports of biological media such as
(in vivo) brain cells (Dominey 2013; Enel et al. 2016; Obien et
al. 2015) and bacteria cultures of Escherichia Coli (Jones et al.
2007) that can be used for PRC.These are also non-stationary, and
previous events can also have lasting effects. They illustrate that
these issues can be overcome, at least to a certain extent.

Not only the time frame in which the dynamics of the reservoir
change is important but also the sampling time (time between
measurements). A plant is a living organism that continuously
senses the environment and optimises its physiology. Observing
this variable physiology is, however, only possible in discrete
time. Measurements are performed at a certain rate, and any
variation that occurs between measurement time points is not
captured. As a result, it is important to sample sufficiently fast.
Table 3.1 contains some information on relevant timescales for
imaging sensors. Table 4.1 is similar, but for other non-imaging
sensors. The continuous nature of plants is thus fundamentally
different from the discrete-time steps employed in RNN-based
ESN reservoirs.

These tables give an indication of the relevant timescale but are
only observed after the data was acquired and the sample fre-
quencieswerenot optimisedwith respect to theplant’s dynamics.
It is also worth mentioning that the employed sensor accuracy
and the accuracy of the acquisition system are also key. Changes
associated with higher frequencies are inherently smaller due to
the time lag caused by underlying physiological processes.

Considering that plants are not designed for computation, it is
unlikely that plants can serve as efficient computational devices.
Still, plant reservoir computingmay have a substantial impact on
the plant science community. It can provide a holistic approach
to plantmodelling, improve plant sensing and bring new insights
into plant physiology. This computational framework offers a
general basis that can be used to study plant behaviour, where
a plant’s state is the result of its information processing of all
incoming environmental and internal signals. Such a view can be
applied to plant functioning and development in general instead
of focusing on certain plant processes as the result of a specific
treatment.
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4.2 Experimental Design

Evaluating the applicability of PRC to plants requires an adequate
experimental design to quantify the nonlinear processing and
memory properties of plants. The core of the experimental de-
sign is depicted in figure 4.3. A single plant is placed in a growth
chamber and subject to variable light, temperature and relative
humidity conditions. These are abiotic factors, which are pre-
ferred in this exploratory work because of the ability to replicate
the experiment more easily than biotic factors. Moreover, we
selected these three factors because they are easy to control in
growth chambers and are the main driving forces for short-term
physiological responses.

growth chamber

LIGHTBULB LIGHTBULB LIGHTBULB LIGHTBULB

TEMPERATURE-HIGH

Tint

abiotic excitation

plant observation
using sensors

Video

Figure 4.3 Schematic overview of the experimental setup.

To eliminate disturbances from the observer and environment,
we have to automate experiments. This is also necessary to
achieve a high temporal resolution.

4.2.1 Details on the Experimental Set-up

All experiments are conducted in a growth chamber at ILVO
(Melle, Belgium). The chamber has a usable volume of
1.45 × 0.77 × 1.45m (height × depth ×width) (BIOCLIM 1600
US, Weiss Technik, Reiskirchen, Germany). Light intensity,
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temperature and relative humidity were controlled by a
microcontroller board placed outside the growth chamber.
The temperature and relative humidity of the growth chamber
were controlled using analogue signals and varied randomly
between 11 °C and 33 °C, and 31% and 75% respectively.

Because the built-in lights of the growth chamber cannot cre-
ate spatial variation, a custom-built frame of 1.00 × 0.70 × 1.10m
(height × depth ×width) was inserted into the chamber. Lamps
aremounted on this frame and canbe turned on and offprogram-
matically.

One key aspect in the experimental design is the ability to distin-
guish between computation arising due to the dynamics of the
environment and those stemming from the plant. If environ-
mental dynamics cannot be eliminated due to the sensor choice,
a control experiment should be performed with the same input
conditions but without a plant. The performance of both experi-
ments can then be compared to assess the amount of computing
power originating from the environment.

The choice of sensor technology employed to monitor the
plant’s state is also important. Sensors should have limited to
no influence on plant responses. However, as mentioned in
section 3.4, different technologies have their own advantages
and disadvantages. The exact technologies used are highlighted
in section 3.5.

The base sampling period of our experiments is set to 1 s, based
on literature. Technical limitations of the gas exchange device
limit its sample period to 3 s which is later interpolated to match
the sample rate of the other sensors. This base period should be
sufficiently fast to detect relevant changes in the observable traits
(see also tables 3.1 and 4.1).

4.2.2 Plant Species Selection

When performing experiments, strawberry (Fragaria × ananassa)
is the main model species. An additional species of interest is
tomato (Solanum lycopersicum).
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In section 1.3, we discussed several long-term applications of
PRC with plants. Most of these are situated in greenhouses since
greenhouses offer more opportunities for intervention and opti-
misation without needing additional infrastructure. Strawberry
is selected because it is a commercially interesting crop in Bel-
gian greenhouses (Lieten 2013). Moreover, strawberry is not a
seasonal crop. After the fruit and seed production, it does notwilt
and die. As a result, a set of plants can be continuously available
in the mature growth stage in the greenhouse.

Tomato is also oftengrown in greenhouses (Hemminget al. 2020).
This plant is a seasonal crop, characterised by a sigmoid growth
curve (de Koning 1994) (see e.g., equation (2.1)) and offers an
interesting alternative species that is more actively growing than
strawberry in the experiments.

Experiments were conducted in a growth chamber and plants
were grown in the greenhouse at ILVO. Thus, selecting typical
greenhouse crops is more relevant since the results will be more
representative for future applications. Moreover, shock due to
the difference in growing conditions between the greenhouse
and growth chamber was limited compared to moving plants
from the field to the growth chamber (Poorter et al. 2016). This is
an important practical detail since plants should not experience
strong stress after the transfer from the initial growing environ-
ment to the growth chamber. Otherwise, responses might be
altered, affecting the computational properties. Furthermore,
plants can even die if the conditions are too different.

4.2.3 Reservoir Computing Performance Evaluation Metrics

To evaluate the performance for PRC, we consider a set of bench-
mark tasks. These tasks fall into three categories: input recon-
struction, ecophysiological tasks and benchmarks. These cate-
gories and the associated variables are listed in table 4.2. Estimat-
ing the modulated environmental inputs of the reservoir (𝐼PAR,
𝑇air and ℎ) gives an idea of the information directly available at
the output. We estimate the actual environmental conditions
that were measured using sensors, not the targets used to set the
growth chamber. Since PRC is mainly interesting in a biological
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context and ecophysiological tasks are highly relevant for future
applications and research. Finally, from a more fundamental
PRC perspective, benchmark tasks such as NARMA, a delay line
and polynomial regression enable us to estimate the computa-
tional performance in terms of nonlinearity and memory with
literature.

Table4.2 Overviewof considered environmental andecophysiological
variables.

abbr. description unit sensor

𝑃𝑛 photosynthesis
rate

µmol(CO2)m−2 s−1 LI6400XT

𝑔𝑠 stomatal conduc-
tance

mol(H2O)m−2 s−1 LI6400XT

𝐸 transpiration
rate

mmol(H2O)m−2 s−1 LI6400XT

𝐷leaf vapour pressure
deficit based on
leaf temperature

kPa LI6400XT

𝑇leaf leaf temperature °C LI6400XT

𝑇air air temperature
(growth
chamber)

°C Vaisala 50Y

ℎ relative humidity
(growth
chamber)

% Vaisala 50Y

𝐼PAR light intensity
expressed in
PAR (growth
chamber)

µmolm−2 s−1 LI6400XT

All ecophysiologicalmeasurements are capturedusing the gas ex-
change measurement device (LI6400XT). Different environmen-
tal and ecophysiological parameters were captured, providing a
diverse set of target variables.

80



4.2 Experimental Design

4.2.4 Error Metric

There are many error metrics used in literature, such as MSE,
mean absolute error (MAE), normalised mean squared error
(NMSE) and root normalised mean squared error (RNMSE).
MSE and MAE are absolute measures, so different values from
targets cannot be compared. NMSE and RNMSE are relative
measures. They are normalised in some way such that inter-task
comparisons are possible. RNMSE is the root of NMSE Here, we
focus exclusively on the NMSE because it is used extensively in
PRC. Equation (4.1) defines the equation for NMSE:

NMSE =

1
𝑁

𝑁−1

∑
𝑡=0

(𝑦(𝑡) − ̂𝑦(𝑡))2

var(𝑦)
, (4.1)

̂𝑦(𝑡) is the predicted value from themodel, 𝑦(𝑡) is the actual value,
var(⋅) computes the variance and𝑁 is the total number of samples
considered. Thismetric has several advantages over a traditional
mean squared error comparison. It takes the variability of the
target signal into account. This eliminates a possible bias to-
wards slow varying signals. Additionally, interpretability is very
straightforward. An NMSE of 1.0 corresponds to the mean pre-
diction for all samples, since the numerator reduces to the vari-
ance, while an NMSE of 0.0 corresponds to a perfect prediction.
This property makes it very easy to compare and interpret NMSE
values.

4.2.5 Machine Learning Model Overview and Data Flow

The different sensors employed in the experimental setup in fig-
ure 4.3 and section 4.2.1 all generate data. This data is combined
using a machine learning model to target a specific task. These
tasks can be divided into three categories: environmental tasks,
ecophysiological tasks and benchmark tasks.

In this work, we restrict ourselves to regression tasks, which
naturally fit well with biological tasks that can be observed using
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the sensors from table 4.2 and all tasks are evaluated using the
NMSE error metric.

Ecophysiological and benchmark tasks are observed using sen-
sors and are a natural output of the PRC system. However, envi-
ronmental tasks are not. These are the input to the PRC system.
Yet, wealso target these variables because they cangive an insight
into how these inputs are represented in the reservoir.

Figure 4.4 visualises how the data flows through the system for
PRC with plants. Plant state observations such as leaf thickness
and hyperspectral data are the outputs of the plant reservoir (fig-
ure 4.3). These form the inputs of the linearmodel, which targets
three types of regression targets previously discussed. When we
return to the simulated reservoir from figure 2.14, we note that
the red edges are implemented by the model from figure 4.4.

In summary, the inputs of the reservoir (environmental condi-
tions) are not the same variables as the inputs of the machine
learning model. The inputs of the machine learning model are
the observations of the reservoir. Thus, we can use the inputs
of the reservoir as targets of the model, to gain a better under-
standing of the data retained by the reservoir. This exemplifies
that PRC is not another machine learning tool, but rather a shift
in paradigm. Our goal is not to present PRC as a tool to analyse
phenotyping data such as an SVM or linear regression. Instead,
the goal is the interpret these data in an entirely new way.

4.3 Summary

Wemapped plants to PRC using evidence from physiological and
PRC literature and reviewed the general experimental design of
the subsequent chapters. In these chapters, two sensing tech-
nologies are used to assess to evaluate the computational proper-
ties of plants. In chapter 5, a hyperspectral camera is used, while
in chapter 7 leaf thickness clips are used.
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plant
observations

model

target

train data
validation data
test data

leaf thickness data

hyperspectral data

linear model

environmental
ecophysiological
benchmark

Figure 4.4 Schematic overview of the data processing for PRC with
plants.
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5
Reservoir Computing with a
Snapshot Hyperspectral Camera

Advanced hyperspectral imaging tools are increasingly used in
phenotyping and have been applied to detect changes in plants in
response to a specific treatment or phenological state (Dale et al.
2013;Mishra et al. 2017; Adão et al. 2017; Khanet al. 2018). As a re-
sult, this is an interesting sensing technology to uncover the com-
putational properties of plants. Two consecutive experiments in
growth chambers were set up, in which strawberry plants and
four different background materials, serving as controls, were
monitored by a snapshot hyperspectral camera in variable condi-
tions of light, temperature and relative humidity. Results indicate
that current hyperspectral technologies are not yet suitable for
reservoir computing processes. We suspect that limited variation
due to the treatment and low spectral resolution and range are the
main causes of the inability of the models to extract meaningful
information. Furthermore, the models that were only trained on
background data also showed good predictive performance.

Part of the data, analysis and results are published in Pieters et
al. (2020b). This publication discusses a different view of the data
and results than what is presented here. The focus is on captur-
ing fast-changing dynamics in plants by means of hyperspectral
data.



Chapter 5

5.1 The Rise of Hyperspectral Imaging in
Phenotyping Research

Hyperspectral imaging sensors capture reflectance in many
wavelengths and are increasingly applied in phenotyping
research. Figure 5.1 elucidates on the properties of hyperspectral
cameras. They are generalised versions of RGB cameras, which
capture light in three bands. Hyperspectral cameras can capture
hundreds of bands in the visual and near-infrared spectrum
(Adão et al. 2017).

sp
ec
tra
l b
an
ds

Figure 5.1 Illustration of a snapshot hyperspectral camera.

This imaging technique has already been applied to various set-
tings that benefit fromhigher spectral resolutions to detect biotic
and abiotic influences on plants (Khan et al. 2018). Examples of
studies on biotic factors include blight caused byAlternaria solani
in potato (Van De Vijver et al. 2020), late blight caused by Phy-
tophthora infestans in potato (Franceschini et al. 2019), or tracking
the development of three foliar diseases in barley (Wahabzada
et al. 2016). Mahlein (2015) and Lowe et al. (2017) provide com-
prehensive overviews of plant disease detection using imaging
sensors and hyperspectral sensors specifically. Studies in which
hyperspectral imaging was used to investigate plant responses
in interaction with abiotic factors include, for example, detec-
tion of green citrus fruits on trees (Okamoto et al. 2009), nitro-
gen deficiency in sorghum (Zhao et al. 2005), seasonal structural
changes and a heterogeneous architecture in an olive orchard
(Zarco-Tejada et al. 2013), nitrogen and water distribution quan-
tification in wheat (Bruning et al. 2019), and drought stress in
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barley and saxaul (Behmann et al. 2014; Jin et al. 2016).

The successes reported in literature, in addition to the non-
invasive and high degree of information availability, makes this
sensor an excellent first candidate to investigate the applicability
of PRC on plants. Moreover, the resulting dataset can be very
interesting since – to the best of our knowledge – there is no
research yet on hyperspectral datawith respect to photosynthetic
activity at high spatial and temporal resolution in the seconds to
minutes range in normal conditions.

5.2 Experimental Setup

The experimental setup follows the general setup described in
section 4.2. Additional information on the exact experimental
conditions is detailed below.

5.2.1 Measurement Setup

The experimental setup consisted of a single strawberry plant
(Fragaria × ananassa) placed inside a growth chamber. Light
intensity, temperature and relative humidity were controlled by
amicrocontroller board (Dwenguino, Dwengo vzw, Brussels, Bel-
gium), placed outside the growth chamber. The temperature and
relative humidity of the growth chamber were controlled using
analogue signals and varied randomly between 11 °C and 33 °C,
and 31% and 75% respectively.

A grid of lamps was mounted on the custom frame, consisting of
32 light emittingdiode (LED) lamps (MASLEDspotVLED4.9-50W
GU10 927 60D, Koninklijke Philips N.V., Amsterdam, The Nether-
lands) and twelve halogen lights (DECOSTAR 51 PRO 50 W 12 V
36°GU5.3, OSRAMGmbH,Munich, Germany). Thehalogen lights
were used as a broadband light source, providing illumination in
the visible and infrared range, while the LED lights increased the
total PAR while keeping thermal radiation within limits. Graphi-
cal depictions of the emission spectra areprovided in appendixA,
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figure A.1. The light intensity of the halogen lamps was con-
trolled using a digital addressable lighting interface (DALI) con-
troller and bus, while the LED lights were arranged in four sets
that could be individually turned on and off. A detailed overview
of the grid is depicted in figure 5.2.
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Figure 5.2 Schematic representation of the light and camera arrange-
ment above the plant and background materials.

A single strawberry leaf was inserted into a transparent leaf
chamber of the LI-6400XT photosynthesis system (LI-COR,
Lincoln, NE, USA) to acquire gas exchange measurements
(transpiration and photosynthesis). The control board also
controlled the sampling time steps of the LI-6400XT, using a
custom circuit that was connected to the manual sample button
on the measurement node. To increase the carbon dioxide
concentration in the growth chamber, we used a constant influx
of stabilised air. This influx had a carbon dioxide concentration
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of 500 ppm at a rate of 1m3 h−1. For environment sensing at
canopy height, we measured the temperature, light intensity
and relative humidity. An external probe (Vaisala 50Y, Vaisala,
Helsinki, Finland) was used to measure temperature and
humidity. The gas exchange device has a PAR probe to measure
light intensity. This device was programmed to recreate the
temperature measured using the probe inside the chamber,
thus preventing the chamber from heat-up due to the infrared
radiation.

In the centre of the lamp grid, a hyperspectral camera consisting
of two camera heads (EP-12, 3D-One, Sulz, Austria) was placed
to monitor the plant. One head is sensitive to light in the near-
infrared (NIR), while the other is sensitive to the visible range
(VIS). We refer to these as H1 and H2, respectively. Both heads
capture 12 bit colour information. The sensors were constructed
by IMEC (Leuven, Belgium). H1 captures light in 25 spectral
bands and has a spatial resolution of 403 × 216. H2 captures light
in 16 spectral bands and has a spatial resolution of 504 × 270. A
trade-offwasmade here between spectral accuracy and sampling
rate. We set the sampling period to 3 s, which was too fast for us-
ing a high-resolution line-scanning sensor. The snapshot camera
usedhere cancapture imagesup to 120Hz. One spectral filterwas
used for each sensor to limit the sensitivity rangeof theVISorNIR
spectra. The NIR filter was a long pass filter, starting at 675 nm
and cuts-off at 1650 nm (TECHSPEC 675nm 25mm Dia, High Per-
formance Longpass Filter, Edmund Optics, Barrington, NJ, USA),
while the VIS filter (SCHOTT BG38, Edmund Optics, Barrington,
NJ,USA) starts at 350 nmand cuts-off at 645 nm. This camera does
not support an external trigger source, thus the internal trigger
source was configured to sample every 3 s. When the response of
the cameras were taken into account, this setup observed wave-
lengths in the ranges 400 – 645 nm, and 675 – 1000 nm for H1 and
H2 respectively. An illustration of the entire setup is shown in
figure 5.3.

The spectral peak wavelengths for H1 and H2 are depicted in
appendix A: tables A.1 and A.2. The spectral resolution of H1
varies between 6nm and 25nm, while the spectral resolution of
H2 varies between 2nm and 14nm.
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Figure 5.3 Experimental setup inside the growth chamber. The plant
(strawberry) was raised to increase the area of the leaf in the im-
ages. The sensors (photodiodes, relative humidity and temperature
sensor) weremounted at canopy height. The hyperspectral camerawas
mounted directly above the plant. Lights were mounted at the same
height as the camera. A grey PVC plate was used to provide a uniform
background.

A camera always makes an indirect observation, so there
might be unwanted interference with the measurements. To
investigate this, we also included different backgroundmaterials
in the analysis. Four materials were investigated: plywood
(hardwood, Van Den Nest, Aalst, Belgium), non-reflective black
cotton cloth (Veritas, Kontich, Belgium), grey polyvinyl chloride
(PVC) (Scafoam, Scala, Wetteren, Belgium), and Ytong (Xella,
Duisburg, Germany). It was not possible to have similar lighting
conditions on all four materials simultaneously. Consequently,
the experiment was conducted twice. The first experiment
used PVC and plywood, while the second used Ytong and cloth.
The second experiment was conducted four days after the first
one on a different plant. Both plants were grown in the same
greenhouse in close proximity and thus experienced similar
conditions before the experiment. Each experiment lasted for
100 h. Temperature, relative humidity and light radiation were
randomly varied, but the same time series was used in both
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experiments. To generate these random sequences, we drew
samples from a uniform distribution.

5.2.2 Data Preparation and Processing

The setup consisted of two independent data sources: the gas
exchange system and the hyperspectral camera. They were not
synchronised due to the lack of a common trigger source. Hence,
the start of measurement was not aligned. This difference was
manually corrected by turning on all LED lights at the start of
the experiment. Furthermore, the camera did not always sample
consistently. As a result, the time points of the images did not
always align with those of the gas exchange system. Both the gas
exchange and hyperspectral camera systems provide a sample
timestamp. Synchronisation of both sources was achieved using
the time points of both sources and linear interpolation to con-
struct sample points on a single time axis.

Time drift between both was negligible for the time span of the
experiment because the sample rate was 3 s and the duration
of the experiment was only 100 h. The camera had an internet
uplink and was synchronised to a network time protocol (NTP)
server. Typical synchronisationoffsetwithNTP-servers are lower
than 10ms (Marouani et al. 2008). The LI6400XT has an accurate
internal clock that has at most 0.5 s drift after 92 days (Li-Cor Inc.
2012). Consequently, it is safe to ignore the drift between the two
systems.

Photosynthesis is driven to a large extent by light. To maximise
the variation in photosynthetic activity of the plant, we varied
the illumination intensity. Because a camera requires light to
operate, the light was never fully turned off. The lowest PAR
value that was applied was 70 µmolm−2 s−1, while the highest was
409 µmolm−2 s−1. The camera was set to automatic exposure to
optimise the dynamic range of each image and reduce over- and
underexposed areas. In low illumination conditions, there was a
considerable amount of noise. Consequently, after aligning and
resampling the data, the data was further processed using a 5 × 5
uniform blur filter to reduce noise in the image. Additionally, the
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data was rescaled and converted to floating-point to compensate
for the variable exposure duration.

The leaves of the strawberry plant displayed limitedmotion from
reorientation, as is evident from figure 5.4. Hence, no motion
compensation was applied to the image sequence to reduce com-
putational complexity. This also simplified the masking that had
to be applied to separate the plant from the background. The
mask was manually determined from the dataset. A different set
of masks was used for both experiments because the locations of
the two plants and four materials differ.

cotton cloth

Ytong

strawberry

Figure 5.4 Averaged image from every 10th image from the start to the
end of the experiment of H1 in the second experiment.

Image data are highly correlated, especially for adjacent pixels.
Therefore, we constructed two types of datasets. The first dataset
averaged over all spatial locations of each mask to obtain a new
data entry. This technique drastically reduced the number of
features at each sample point from over 10 0001 to 41 (25+16). To
incorporate spatial effects, we constructed a second dataset using
subsampling. The images were spatially sampled in a random
fashion without duplicates. When a certain location was consid-
ered, all spectral bands were included in the dataset. Subsam-
pling sizes (H1+H2) varied between 3 (1+2) and 200 (78+122) for
both experiments. The split was designed to have an (approxi-
1The number of features is dependent upon the type of data (plant 1, plant 2,
cotton, Ytong, PVC or wood) and the experiment.
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mately) equal number of spectral features from H1 and H2. A
different set of spatial sample points was selected for each of the
plants and each of the materials due the unique mask associated
with each substrate.

Subsampling and averaging also helped to deal with the large
amount of data that was captured during the trial. Each image
from either H1 or H2 had a size of 4.3MB, and there were ap-
proximately 130 000 valid data points per trial, resulting in a total
dataset size for both trials of slightly more than 2TB.

In remote sensing and phenotyping, vegetation indices (VIs) are
often used to extract meaningful information from image data.
A vegetation index is a (fractional) combination of two or more
spectral bands that separates plant and background data. Due to
differences in light intensity and imaged subject, it is often diffi-
cult to use absolute values as thresholds to extract plant-relevant
data while relative differences are much more stable. Hence,
this technique is often used to analyse data from RGB and NIR
cameras (or combined versions). VIs are also developed for hy-
perspectral imaging systems (Vogelmann et al. 1993; Rouse et al.
1974; Gitelson et al. 1994; Sims et al. 2002; Gamon et al. 1992;
Behmann et al. 2014; Jin et al. 2016; Gao et al. 2018; Alonso et
al. 2017). These indices are used in linear regression or other
machine learning pipelines to calculate an output variable. Due
to these observations and wide-spread use in the phenotyping
community, we also generated VIs. However, only a limited and
non-uniformly spaced number of bands are available here, lim-
iting the possibilities to use VIs from literature. Therefore, we
generated a custom set of VIs. Based on literature and taking
practical limitations of the number of variables into account, we
limited the createdVIs to combinations of fractions of bandpairs,
summarised by equations (5.1) and (5.2). All possible combina-
tions of two spectral bands were generated. Equation (5.1) is the
fraction (F), and equation (5.2) is the normalised fraction (NF)
of a pair of bands. Themodel automatically selected the relevant
indices thanks to regularisation (see below). The spectral bands
from H1 were numbered 0 through 24, and those of H2 25 to 40.
An index was only included if the absolute value of the maxi-
mum value of all Pearson correlation coefficients (𝜌) with already
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included indices was lower than 0.95. This boundary ensures
that none of the features was (nearly) linearly dependent. Note
that the included VIs need not be the same for the different data
types since the correlation metric might differ. This technique
generates up to 2459 new features:

𝜈𝐹
𝑖𝑗 =

𝐶𝑖
𝐶𝑗

, 𝑖 ∈ {0, 1, … , 40},

𝑗 ∈ {0, 1, … , 𝑖 − 1, 𝑖 + 1, … , 40} (5.1)

𝜈NF
𝑖𝑗 =

𝐶𝑖 − 𝐶𝑗

𝐶𝑖 + 𝐶𝑗
, 𝑖 ∈ {0, 1, … , 39},

𝑗 ∈ {𝑖 + 1, 𝑖 + 2, … , 40}. (5.2)

Normally, VIs are only generated on image data from plants, but
we also generated them for the background materials. Limiting
the application of VIs to plant data alonewould drastically reduce
the number of features available for somemodels. Moreover, the
comparison would not be fair since the model based on plant
data would have potentially more expressive features than the
background model. The data from the different data types is not
mixed, so background VIs are based solely on background data.
The same holds for plant data. A different set of VIs were selected
for each experiment and data type because of the constraint of
the upper value of the correlation coefficient.

To assess the variability in performance due to the subsampling
in the second dataset, we constructed nine independent subsets
of each subsample size. Consequently, partial overlap between
datasets was possible.

A linear model combined with Tikhonov (or L2) regularisation
(Tikhonov 1963), commonly called ridge regression, was used to
fit the camera data to the environmental and ecophysiological
data. Such a model is well-suited to demonstrate the correlation
between different datasets and should provide improved predic-
tion performance compared to only using indices (Yendrek et
al. 2017). It is guaranteed to provide the global optimum for
regularised loss with given 𝜆 and is very fast to fit. This is impor-
tant since hyperspectral cameras generate vast amounts of data.
The whole pipeline was implemented in Python, with the help
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of the Pandas (McKinney 2010; McKinney 2011) and Scikit-Learn
(Pedregosa et al. 2011) and publicly available on GitHub2.

Ridge regression has one hyperparameter that must be
optimised. This parameter determines the impact of the
total magnitude of the model coefficients. As a result, each time
series had to be split into three subsets: training, validation and
test data (as described in section 2.3), depicted in figure 5.5.
To eliminate possible day-night rhythms, we split the data into
batches of 3000 samples (2.5 h), while 1500 samples (1.25 h)
between batches were discarded to eliminate the correlation
between adjacent batches. This decorrelation was verified after
the analysis by means of an offset between the target and input
data (not shown). After selecting the optimal hyperparameter,
a final model was trained on both the train and validation data.
This ensures optimal data use.

time
[date]03-19 03-20 03-21 03-22

time
[date]03-30 03-31 04-01 04-02

invalid data train data validation data
test data discarded data

Figure 5.5 Visualisation of the data split in training, validation, and
test data for both experiments.

In summary, three different types of linear models were gener-
ated based on six different data types. The three model types
refer to the kind of input features presented to the model. In
the first case, the model was trained on the averaged spectral
bands. In the second case, VIs were added to the input feature
set. This input data expansion enabled the model to leverage
nonlinear dependencies in the data. In the third and final case,
the input features consisted entirely of spectral bands butwithout
averaging over the entire mask. Different materials give rise to
2https://github.com/opieters/hyperspectral-analysis
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distinct data types; plant 1, plant 2, wood, PVC, Ytong, and cotton
were thematerials considered in this study. Thedataflow through
the machine learning pipeline is depicted in figure 5.6.

data split and selection:
plant, background 1 or background 2

experiment 2experiment 1

hyperspectral data

VIs*

standard scaler

rigde regression model

target variable
𝑇air, ℎ, 𝐼PAR

𝑃𝑛, 𝑔𝑠, 𝐸
𝐷leaf, 𝑇leaf

⎧⎪
⎪
⎨
⎪
⎪⎩

Figure 5.6 Overview of the dataflow from data collected by the setup
to the prediction outcome of the model. * optional feature: generation
of vegetation indices (VIs).

5.2.3 Additional Details on the Setup

All variables except for air temperature (𝑇air) and relative humid-
ity (ℎ) weremeasured outside the area observedwith the camera.
This was a requirement due to the high reflectivity of the leaf
chamber that resulted in undesired exposure compensation of
the camera.
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5.3 Results

The data were analysed in three parts: first, the environmental
conditions were investigated to better understand the ecophysi-
ological responses in the second and third parts. The averaged
dataset was extended with VIs and analysed in the second part,
and the subsampled dataset was studied in the third and final
parts.

5.3.1 Analysis of the Environmental Conditions

Normalised density plots of the environmental conditions are
depicted in figure 5.7. These indicate that 𝐼PAR vs. ℎ (𝜌 = −0.05)
and 𝐼PAR vs. 𝑇air (𝜌 = −0.04) did not show bias towards particular
values of either parameter. This is, however, not the case for ℎ
vs. 𝑇air (𝜌 = −0.27), due to the inability of the growth chamber to
settle at the target point before a new onewas set. A combination
of low 𝑇air and low ℎ was not achieved (see figure 5.7c, lower left
corner). High ℎ values are also less prominent than low ones.

Similar observations were made for the second experiment (not
depicted) since the random target sequence was the same for
both experiments to simplify the comparison between both ex-
tracted datasets. As expected, the main environmental condi-
tions in the growth chamber covered a wide range, but extreme
values that cause strong stress conditions were avoided.

5.3.2 Analysis of the Averaged Dataset

First, we analyse the smaller dataset. This is the dataset that is
constructed after averaging over the entire mask, resulting in a
single value per spectral band and per mask type. VIs were also
generated from the spectral bands. These features were then
fitted to target ecophysiological and environmental variables. An
overview of themodel performance for each data type is depicted
in figure 5.8. Models with VIs are shown by means of coloured
bars, while models without VIs are depicted using a bar with
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Figure 5.7 Normalised density plots of the most important environ-
mental conditions: light intensity expressed in PAR (𝐼PAR), air temper-
ature (𝑇air) and relative humidity (ℎ) in the growth chamber for the first
experiment. The second experiment had similar densities.

only a black border ( ). Numeric values are also included in the
table A.3.

The performance for photosynthetic rate (𝑃𝑛), stomatal conduc-
tance (𝑔𝑠) and transpiration rate (𝐸) is poor, bothwith andwithout
VIs. Better performance is observed for 𝑇leaf and to a lesser extent
𝐷leaf. The entire time series of 𝐷leaf for plant2 is depicted in
figure 5.9 for visual inspection. There are several regions where
the data fitted verywell, but in other parts, therewas a significant
offset from the measured variable, especially at the extremes.
Though the model usually follows the correct trend. Visualisa-

100



5.3 Results
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Figure5.8 Performance of the linearmodel for different ecophysiolog-
ical and environmental parameters. The lower the NMSE, the better.
The coloured bars represent models that were trained with raw image
data and VIs, while the black bordered bars ( ) are those without VIs.

tions of different tasks for the plant2 time series are depicted in
figure 5.10. From this figure, it is clear that models with a high
NMSE value have very low extraction efficiency. We consider a
fit sufficient if the NMSE value is equal to or below 0.25 for both
plant models.

While NMSE provides an objective comparison, correctly
followed trends such as in the case of 𝑃𝑛 in figure 5.10 are
not reflected in a low NMSE score. This is due to a continued
offset between the correctly predicted trends and the measured
variable. The prediction of 𝑃𝑛 has a better NMSE score because
the predicted values approximate an averaged version of the
measured variable.

Ecophysiological tasks with high NMSE values also display major
differences in modelling performance between batches of test
data (not visualised). This further indicates that the model was
unable to extract meaningful information from the spectral fea-
tures and VIs. Either the information was masked by interferers,
or the camera was unable to capture changes related to these
variables.

Formost tasks, therewas a limited improvement or even reduced
performance by adding VIs. Improved performance is strongest
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Figure 5.9 Visualisation of the vapour pressure deficit (𝐷leaf) of plant2
data 𝑦 and themodel prediction ̂𝑦. Themodel was trained from the first
dataset with vegetation indexes. The different data split types are also
indicated.

for 𝐷leaf, 𝑇leaf, and 𝑇air. Reduced performance on the test data
can be attributed to overfitting of the model. The performance
on the training set has improved, but the models’ ability to gen-
eralise has decreased, leading to reduced performance. This is
especially visible in the case of ℎ when using Ytong-data. The
NMSE value rises from 0.63 to 1.13, above the baseline.

For all physiological variables, plant1 and plant2 are expected to
have better performance than the background materials. How-
ever, this is not the case for plant2. While the differences between
plant2 andYong and cotton (plant andmaterials from the second
experiment) are low, there is a large difference between plant1
and plant2 for both the average modelling performance of 𝑃𝑛, 𝑔𝑠
and 𝐸.
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Figure 5.10 Time plots of the third batch of test data for plant2 for leaf
temperature (𝑇leaf), vapour pressure deficit based on leaf temperature
(𝐷leaf), transpiration rate (𝐸), andphotosynthesis rate (𝑃𝑛). Thedepicted
NMSE was computed using the global normalisation factor to prevent
possible bias due to batch choice. We can clearly observe a decay in
modelling performance as the NMSE increases. 𝑦 is themeasured data,

̂𝑦 is the model prediction, and ̄𝑦 is the mean value.
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From the environmental variables, 𝑇air and 𝐼PAR have the highest
extraction precision. ℎhas a similarNMSE score for all data types
except for Ytong.

5.3.3 Analysis of the Subsampling Dataset

The averaged dataset loses the differences in response due to for
instance the age of a leaf. Including such dynamics can possibly
yield improved performance. This subsampled dataset investi-
gates this by means of including randomly sampled pixels. The
ridge model is able to automatically differentiate between more
and less relevant pixels because of the regularisation. The analy-
sis itself was similar to that of the previous section.

Figure 5.11 displays the performance for the same set of tasks as
figure 5.8. Error bars are depicted in black. They were computed
from the difference inNMSE value arising from the subsampling.
The performance of the tasks is similar to that of the previous
datasetwithout VIs. These are not includedhere because itwould
drastically increase thenumber of features, which is undesirable.
Table A.4 in appendix A provides the same information as fig-
ure 5.11 in numeric form.

𝑃𝑛 𝑔𝑠 𝐸 𝐷leaf 𝑇leaf 𝑇air ℎ 𝐼PAR
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Figure 5.11 Overview of the performance for all variables for a sub-
sample size of 77 (30 + 47), resulting in 1502 input features for themodel.
Error bars represent the standard deviation.
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The number of samples is an important metric for this dataset.
Figure 5.12 visualises the effect of the number of features on
the modelling accuracy for 𝑇air and 𝐸. The standard deviation is
depicted as a shaded area around the curve in the same colour.
As expected, the NMSE decreases with an increasing number of
features. The largest subsample size generally offers the best
performance, but for underperforming tasks such as 𝐸, the vari-
ance between different batches tends to increasewith an increas-
ing number of samples, especially for plant data. This further
illustrates the lack of useful information in the dataset for this
particular task.
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Figure 5.12 Subsample size effect for the air temperature (𝑇air) and
transpiration rate (𝐸) tasks.

5.4 Discussion

In this chapter, we set up two experiments to demonstrate PRC
with plants using a hyperspectral sensor. However, results from
figures 5.8 and 5.11 indicate that there is no clear difference
in task performance between data used from plants and
background materials. In most cases, the NMSE values are
very similar, both with and without VIs. This indicates that the
plant’s state dynamics are not captured and could not be used
for PRC. We also compared these results with other studies that
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investigated how hyperspectral cameras can be used to estimate
ecophysiological parameters.

𝐷leaf 𝑇leaf 𝑇air

𝐷leaf

𝑇leaf

𝑇air

1 0.89 0.76

0.89 1 0.92

0.76 0.92 1

0

0.2

0.4

0.6

0.8

1

Table 5.1 Pearson correlation coefficients (𝜌) of the two well-
performing physiological tasks, leaf temperature (𝑇leaf) and vapour-
pressure deficit (𝐷leaf), and air temperature (𝑇air).

The only ecophysiological variables with good performance for
both plant time series are 𝐷leaf and 𝑇leaf. However, the back-
ground is also good at predicting these. This can be explained by
the high correlation between 𝑇air and the variables 𝐷leaf and 𝑇leaf,
depicted in table 5.1. 𝐷leaf is driven by relative humidity and leaf
temperature, which are in turn affected by air temperature, light
intensity and water status (Amitrano et al. 2019). The reflection
spectrum of plants in the near-infrared region varies when the
air temperature changes (Carter et al. 2000). These changes are
probably detected by themodel, leading to the goodperformance
of temperature-related variables. The backgrounds considered
heremight have similar reflective properties. Though their struc-
ture cannot change as in the case of plants, they can radiate
more or less infrared light, enabling the model to extract the
temperature (Beltrán et al. 1997). The spectrum at two different
temperatures is depicted in figure A.2 of appendix A. The spectra
of both materials and the plant have clearly changed in the NIR
region.

The results for 𝑔𝑠 are in line with previous research by Zarco-
Tejada et al. (2013), who used a similar wavelength range from
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400 – 900 nm and were also unable to extract this parameter.
However, others have reported successful extraction of 𝑔𝑠.
Rapaport et al. (2015) were able to assess 𝑔𝑠 in grapevine, using
theWABI-3 VI. This index uses a spectral band at 1485 nm, which
indicates that a wider spectral range is necessary to assess 𝑔𝑠.

The possibility to estimate 𝑃𝑛 from hyperspectral data in maize
has been reported by Yendrek et al. (2017). They were able to
predict the CO2-saturated rate of photosynthesis (𝑉max) from hy-
perspectral imaging and a partial least squares (PLS) regression
model. They indicated important peak wavelengths at 554 nm
and 719nm. Though the VIS and NIR camera have nearby bands
at 552 nm and 724nm, there are fewer bands available compared
to the study by Yendrek et al. (2017), which acquired the spectral
reflection of maize at a resolution of 1 nm.

As mentioned in the introduction, SIF is a promising indicator
for photosynthetic activity. It originates from initial reactions in
Photosystem II and I, which have narrow peaks around 690nm
and 760nm respectively. Resolving these peaks requires high
spectral resolution (≤ 5nm), which is not possible with the tech-
nology used in this study (Bandopadhyay et al. 2020). A snapshot
camera with improved resolution should be able to compute SIF
and thus be able to better assess photosynthetic activity.

Unlike the current study, Marshall et al. (2016) were able to mea-
sure 𝐸 with hyperspectral imagery in cotton, rice and maize.
They used a spectral range from 428 – 2295 nm with a resolu-
tion between 1nm and 10nm, which was wavelength dependent.
Their most important VI was HNDVI (Gao 1996), which uses a
band at 845 nm and 1256 nm.

From these studies, we identified three causes that might explain
the poor results for 𝑔𝑠, 𝑃𝑛, and 𝐸. First, the spectral range was
insufficient. More specifically, higher wavelengths up to at least
1500 nm are needed to assess these properties based on litera-
ture. Second, the spectral resolution needs to increase to prefer-
ably 1 nm, and the band spacing should bemore uniform. Third,
other studies which investigated ecophysiological properties ap-
plied clear treatments (Zhao et al. 2005; Zarco-Tejada et al. 2013;
Behmann et al. 2014; Silva-Perez et al. 2018). These cause more
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pronounced spectral and ecophysiological changes. Therefore,
estimation is more direct and less prone to disturbances that
mask ecophysiological changes.

Both 𝐼PAR and 𝑇air are well assessed for plants and all
backgrounds. The good performance of 𝐼PAR is expected
since the camera directly observes light and can reconstruct
the spectrum used in the measurement of 𝐼PAR. As mentioned
before, spectral changes due to temperature can explain the
good modelling performance of 𝑇air. It was verified that the
camera’s responses are not significantly temperature-dependent
other than increased white noise at elevated temperatures (data
not presented).

The poor NMSE value of ℎ from the data is in stark contrast to
the other environmental variables. A possible reason why these
have a high NMSE value is that there is no infrared radiation
around 2 µm captured by the camera nor emitted by the lights.
Consequently, none of the strong absorption peaks of water was
captured.

5.5 Conclusion

We investigated the use of hyperspectral cameras for PRC with
plants. Based on the results obtained, we can conclude that hy-
perspectral cameras are not suited to capture the response dy-
namics of plants. However, these results are still valuable for
the plant science community. The novelty of this study is that
ecophysiological parameters were investigated without the pres-
ence of strong biotic or abiotic stress factors with high tempo-
ral resolution (3 s) over the duration of one week. Increasingly,
researchers are investigating the dynamic behaviour of plants
as these are crucial in determining plant productivity in con-
tinuously fluctuating environments such as those in agricultural
fields. The analysis indicated that the information content of the
hyperspectral data is low for 𝑃𝑛, 𝑔𝑠, and𝐸. A possible explanation
is limited variability due to the much lower treatment effect and
low-resolution spectral sensing capabilities. The lack of a clear
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stress-inducing treatment causes less variation of the ecophysio-
logical variables observed. Induced variations were possibly not
significant enough to be detectable among other interfering and
noise signals that are present in the image data. Additionally,
the spectral resolution and range were limited. 𝐷leaf and 𝑇leaf
are good performing ecophysiological task (i.e. have low NMSE
scores). Environmental variables also show varying results. As
expected, 𝐼PAR is well assessed, as is 𝑇air. ℎ cannot be extracted
due to the lack of wavelengths above 2 µm. We suspect that the
reflection spectrum changes depending on temperature, which
enables the model to accurately predict 𝑇air. 𝑇leaf and 𝐷leaf are
strongly correlated to 𝑇air might explain why these ecophysiologi-
cal parameters could be assessed. In summary, current snapshot
hyperspectral technologies are not yet well suited to monitor the
dynamic responses of plants. Major improvements upon sen-
sitivity and spectral resolution are probably required to enable
the detection of subtle changes of ecophysiological parameters
in stress-free conditions.
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6
Development of a Sensor-Platform
for Measuring Dynamic Plant
Properties

The camera-based results from chapter 5 were unsuccessful.
Consequently, we shifted our focus to alternative sensor
technologies. As discussed in chapter 3, different sensor
technologies each have their advantages and disadvantages.
Cameras observe plant processes indirectly, so there is a greater
chance that the camera setup or environment distort the
measurement. Moreover, based on results from chapter 5, it is
not clear that the reflection spectra of plants vary sufficiently
fast for PRC on a short timescale. To avoid these problems, we
focused on contact sensors instead of cameras after obtaining
the results from chapter 5. Contact sensors do not scale towards
large setups as cameras can, but the focus was foremost on
demonstrating PRC with plants.

While many commercial sensor platforms are available, none
met ourneeds of a scalable, versatile, accurate, and low-cost data-
logging solution. Consequently, we designed a custom solution:
Gloxinia. This chapter discusses the system design and its capa-
bilities.

Gloxinia was designed primarily for contact sensors in our ex-
perimental design. Yet, we also investigated the needs and re-
quirements for a wider audience. The study of the dynamic re-
sponses of plants to short-term environmental changes is becom-
ing increasingly important in basic plant science, phenotyping,
breeding, crop management, and modelling. These short-term
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variations are crucial in plant adaptation to new environments
and, consequently, in plant fitness and productivity.

6.1 Context and Motivation for the Development
of the Sensor Platform

It was already mentioned in section 3.3 that there is a need to
monitor plants at a higher time resolution. Here, we go into
greater detail and highlight challenges when one wishes to mea-
sure at high temporal resolution with commonly used methods.
First, we discuss the need to measure dynamic plant responses.
Second, there is also a need to better understand a plant’s mi-
croclimate since these climatic conditions drive the plant’s re-
sponses. Third, we highlight why image-analysis techniques are
unlikely to suffice. Fourth, we discuss the need for a sensor
system for the dynamic monitoring of plants and existing com-
mercial solutions. Finally, we summarise the conclusions and
design goals of the sensor system.

Plants that grow in natural or agricultural environments are
exposed to substantial short-term variations in environmental
conditions. For instance, the occurrence of clouds or waving
leaves canmodify the light environment within seconds; relative
humidity and temperature can change within minutes due to
precipitation. Because the productivity of plants often lies in
their ability to swiftly respond to these highly variable conditions,
studying these dynamic responses is crucial. However, research
on stomatal responses and photosynthetic output often focuses
on steady-state behaviour, while these conditions rarely occur in
nature (Lawson et al. 2014). As a result, measurement devices
are not optimised to measure this transient behaviour, while
the need for monitoring the response time of plant behaviour
increases in different research fields of plant science. First of
all, in basic plant science the understanding of the short-term
responses to environmental variation is central (Barillot et al.
2010; Windt et al. 2006; Behrens et al. 1982; Hubeau et al.
2015). Additionally, it is relevant in more applied phenotyping
or breeding research, where the more dynamic behaviour of
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certain genotypes might be key to their success (Lawson et al.
2014; Rascher et al. 2011; Caldeira et al. 2014). Furthermore,
in crop management, where for instance, irrigation scheduling
can be done using continuous measurements of stem diameter
(De Swaef et al. 2015b; De Swaef et al. 2009; Fernández et al.
2010). Finally, as crop and plant models become more dynamic
and mechanistic, the number of parameters such as coefficients
for photosynthesis and hydraulic conductance increases. In
turn, this amplifies the need for dynamic data to calibrate and
validate these parameter-rich models (De Swaef et al. 2019).

Concurrent with the requirement for dynamic plant data, mon-
itoring of a plant’s micro-environment is crucial for interpreta-
tion, considering that this is the driver for the plant’s response.
Environmental data of a field trial is typically captured at a single
measurement location. However, assuming the same environ-
mental conditions for the whole field or greenhouse is not nec-
essarily an accurate representation of reality (Xu 2016; Tardieu
et al. 2017). Some extreme examples are the differences in mi-
croclimate between the top and bottom of a sloped field (Bennie
et al. 2008), shading caused by trees next to the field (Artru et al.
2017), but also differences in temperaturewithin greenhouses, or
even growth chambers (Cabrera-Bosquet et al. 2016; Granier et al.
2006).

In high-throughput phenotyping, plant traits are extracted
through image analysis and sometimes complemented with
scoring from breeders. These techniques allow monitoring of a
large number of plants both in controlled settings such as growth
chambers and greenhouses and in the field (Walter et al. 2015; Li
et al. 2014). Depending on the setup, the camera system can be
mounted on drones (Araus et al. 2014), tractors (Busemeyer et al.
2013), ground-based robotic systems (Shafiekhani et al. 2017;
Andrade-Sanchez et al. 2014) or conveyor belt-based systems
(Granier et al. 2006; Hartmann et al. 2011). These allow the
extraction of detailed data and specific plant traits, but their
temporal resolution is generally low, ranging between several
times per day (e.g., a conveyor belt system) and once per week
(e.g., drone flights). Consequently, they are not well suited for
studying plant responses at a time scale of seconds or minutes.
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Other sensor types, such as porometers, cannot be permanently
mounted on the plant and thus need manual intervention.
Measurement devices for gas exchange (e.g., Li6800, LI-COR
Biosciences, USA) can be attached to individual plants to
record short-term changes of important features like stomatal
conductance, photosynthesis, and transpiration automatically,
but cannot be deployed on a larger number of plants due to
the cost of these devices. Other contact sensors, such as sap
flow sensors or LVDTs, are interesting solutions for short-term
continuous monitoring (De Swaef et al. 2015b; Clearwater et al.
1999; Steppe et al. 2015), although they require considerable time
to install and might need some maintenance once installed.

Monitoring on the timescale of seconds or minutes, necessary
to capture the dynamics of plant traits such as leaf temperature,
stomatal conductance, photosynthesis, and transpiration, along
with their environmental drivers, is not a trivial task (Inoue et
al. 2008; Wallach et al. 2010; Baker 2008; Maes et al. 2012; Jones
1999; Costa et al. 2013). First, interfacing and synchronising
sensory readout is difficult when different sensors are combined
(Neveu et al. 2019). As a result, it is necessary to rely on au-
tonomous data acquisition systems to read out the sensors and
store the data and investigate alternative sensors that do not re-
quire manual intervention. Second, commercial data loggers
such as CR1000 (Campbell Scientific, USA), DL2e (Delta T De-
vices, UK), ZL6 (METER Group, USA) or EM50 (ICT International,
Australia) are expensive, making it difficult to employ them for
hundreds of sensors in large trials. Third, alternative data loggers
such as single-board computers or microcontroller boards are
cheap but have limited analogue readout capabilities due to low
accuracy analogue-to-digital converters (ADCs) (typically in the
10 – 12 bit range) and donot always feature all the necessary hard-
ware to directly interface with various analogue sensors. Bea-
gleBone Black (BeagleBoard.org Foundation, USA) is a single-
board computer with analogue capabilities, and Arduino UNO
(Arduino, Italy) is a very popular microcontroller board.

From the foregoing, we summarise that there is a need to mon-
itor the dynamic behaviour of plant traits. To this end, a larger
number of sensors needs to be employed that is read out at a
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higher rate. This has to occur cost-effectively for various pur-
poses, including basic plant science, breeding, agronomy, and
environmental monitoring. Moreover, autonomous data logging
systems that do not sacrifice accuracy for cost or ease of use are
key to tackling this need. We present an implementation of a data
logging system that is designed to address four key needs: sensor
scalability, accuracy, cost, and versatility with regard to experi-
mental size and sensor interfaces. First, the system should easily
scale to hundreds of sensors without needing a large number of
hardware boards. Second, the system should provide accurate
sensor readings with limited influence on noise sources. Third,
the system should be low-cost. Fourth, the system should be
sufficiently versatile; it should work well in trials that monitor a
handful of plants to hundreds of plants. Additionally, the most
common sensor interfaces should be available to connect various
sensors such as light, relative humidity, temperature, and soil
moisture sensors. Finally, the system should also consist of open-
source hard- and software, enabling others to build upon this
platform and tailor it to their specific application.

6.2 System Architecture

To meet the key requirements introduced earlier, we selected
a distributed sensing architecture. In this type of architecture,
sensing is scattered across different devices, removing the need
for a single measurement device that reads all deployed sensors.
Nearby analogue or digital sensors are connected to the same
measurement device, called a node, while others are connected
to other nodes. As a result, nodes only have to read out sensors
in close proximity, alleviating the need for expensive low-noise
cables. Nodes are interconnected on a linear bus to facilitate
the readout of data. This bus is used to send measurement and
configuration data. Consequently, only a single node on the bus
needs to be connected to a storage device such as a computer or
Raspberry Pi. The overall architecture is depicted in figure 6.1.

In challenging conditions such as those present in the field,
a robust and high-speed bus has to be selected for the
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communication between nodes. controller area network
(CAN) bus meets these requirements. It operates at a maximum
rate of 1Mbps while being very robust. It is commonly used in
vehicles for communication between microcontrollers without
the need for a master controller, thanks to a fixed arbitration
scheme (Robert Bosch GmbH 1991). Nodes can easily be added;
the only requirement is that the first and last nodes use a 120Ω
resistor to terminate the bus. The bus speed can also be lowered
to accommodate longer bus lengths up to 5000m at 10 kbps
(Corrigan 2008).

A universal synchronous receiver-transmitter (UART)-
connection is used to interface between the data storage device
and the node connected to it. This computer also provides an
interface to configure the nodes.

Each sensor node is comprised of a control board (named Di-
cio) and one or more sensor boards. These sensor boards vary
depending upon the application. Communication between the
control and sensor boards is done using the Inter-Integrated Cir-
cuit (inter-integrated circuit (I2C)) protocol. The control node
controls this bus and reads each of the sensor boards at prede-
fined time steps (NXP Semiconductors 2014). Optionally, a phase-
locked signal can be used to achieve cycle synchronisation be-
tween sensor boards on a single control node. By default, The I2C
protocol operates at 400 kHz, but can also be lowered to 100 kHz
for sensors that do not support fast I2C operation.

Two I2C buses are available, one for the readout of the custom
sensor boards through a dedicated interface connector and one
for other sensors. Sensors such as digital relative humidity and
temperature sensors are connected using screw terminals.

The dual bus system accommodates varying needs. First, the
CAN bus interconnects different sensor nodes, thus simplifying
the readout system and data storage interconnect. Only a single
node needs to be connected to the computer. Furthermore, the
CANbus is robust in noisy environments andwell-suited for com-
munication over longer distances (modifiable in the software).
Themaximumdistance is linked to the signalling rate and can be
increased at the expense of lower throughput. The system uses a
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single cable to deliver both signal, power, and synchronisation
signals. A synchronisation signal can be used to synchronise
sampling between different nodes. Second, the I2C protocol was
selected since it is widely used for digital sensors and allows the
sensors to be read directly from an Arduino or Raspberry Pi, thus
facilitating faster prototyping and stand-alone usage of the sen-
sor boards. Furthermore, most microcontrollers provide a hard-
ware I2C-interface, which reduces cost and complexity. Since the
interconnect distance between the sensor boards and the control
board is small, there will be less noise and interference. Conse-
quently, the requirements of this bus are a lot more tolerant.

Two boards that cover a wide range of analogue sensors have
been designed: Planalta and Sylvatica; section 6.3 provides
more details on the available functionality. These sensor boards
cover the most common analogue interfaces found in plant
monitoring. Digital sensors should interface directly with
the Dicio board. Dicio supports common digital interfaces,
including I2C, serial peripheral interface (SPI) and RS-232.

Several Planalta or Sylvatica boards can be connected to the same
Dicio control node to increase the number of sensors that can
be read while keeping the amount of redundant hardware to a
minimum. The two sensor boards, Planalta and Sylvatica, each
serve a different purpose. The board named Planalta is designed
for sensors that require a variable input voltage suchas soil capac-
itance, LVDT, and impedance sensors. The measurement princi-
ple of this board relies on a digital lock-in amplifier (LIA) (see also
section 6.3.2). The other sensor, named Sylvatica, is designed for
sensors that do not require an input signal, like most analogue
temperature and relative humidity sensors, for example.

Both sensor boards have generic analogue interfaces and can
easily be used with a wide range of sensors that require low input
voltages and currents. Sensors should have an operating voltage
between 0 – 12V in the case of Sylvatica and 0 – 3.3V for Planalta.
High-power sensors, such as some types of sap-flow sensors, re-
quire an external power supply. An attenuator is required for
both boards if the readout value can be higher than 3.3V. Only
single-ended signals are supported to keep the hardware low-
cost. The Planalta board features an option to use a mid-rail
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referenced signal.

6.3 Measurement System Design

Some of the identified design criteria are conflicting, such as low
unit cost and accuracy and versatility. Consequently, a trade-
off was made. The main cost in this system is comprised of the
necessary components. As a result, the measurement system
has been designed to minimise the number of analogue com-
ponents, thus lowering the overall cost at the expense of more
digital processing. Since the software development cost is a one-
time investment, most of the signal processing and filtering is
done digitally to reduce thehardware cost per unit. Furthermore,
the software is easily modifiable due to its simple and generic
design. This is ideal for application-specific optimisations. We
selected the dsPIC33EP512MC806 (Microchip Technology Inc.,
USA) as the microcontroller. This is a high-performant 16 bit
device that features special signal processing instructions, direct
memory access, and a CAN-interface.

The component cost is lowest if the internal ADC of the micro-
controller is used. However, this is undesirable since the effective
number of bits is only 11.3 bit. The objective is to design a high-
accuracy system. Consequently, an external ADC is required
with a generic filtering stage in front for maximum flexibility.
The ADC-choice determines the analogue front-end since certain
specifications have to bemet to achieve maximum performance.
Moreover, integrating all sensing functionality on a single board
was deemed too complex and would increase the cost per board,
while some of the hardware would remain unused. Therefore,
two sensor boards are designed; Planalta and Sylvatica.

The Planalta board is optimised for sensors that measure mod-
ulated signals. A lock-in amplifier is well-suited for this pur-
pose. A digital lock-in amplifier modulates a voltage (or current)
based on a reference clock at a specific frequency. This signal
is then deformed by the sensor-response, resulting in a new sig-
nal that has a different phase and amplitude than the original
signal. An ADC whose sample points are synchronised to the
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same reference clock then digitises the analogue signal. The
amplitude and phase can then be determinedwith high precision
based on the reference signal. Digital LIAs have significant ad-
vantages over their analogue counterparts, including better noise
performance, phase stability and orthogonality due to the lack of
temperature and frequency-dependent drift (Dixon et al. 1989).
Sensors that can take advantage of this measurement principle
include LVDT, impedance, and laser-based sensors.

Sylvatica is a board designed for single-end measurements. Syl-
vatica does not feature an analogue sine wave generator, nor
a connection from the input voltage of the sensor to the ADC.
Instead, it supports double the number of sensors compared to
Planalta (eight sensors vs. four sensors) becausemore ADC chan-
nels are available for sensor outputs.

In what follows, the analogue front-end is discussed first, fol-
lowed by the digital signal processing of the sampled signals.

6.3.1 Analogue Front-end Design

The front-end design focuses on simplicity and flexibility by us-
ing a generic design that is optimised digitally for the applica-
tion’s needs. The driver uses well-chosen components to limit
both the nonlinearity and noise of the circuit before digitisa-
tion.

A general overview of the analogue front-end is depicted in
figure 6.2. Dashed components are specific to the Planalta
board. The left part of the Planalta-only circuit generates a sine
wave from a pulse-width modulation (PWM) signal. By varying
the duty cycle at a high frequency, a sine wave is formed after
low-pass filtering. This signal is then buffered before it passes
through the sensor. Buffering ensures that there is no voltage
drop due to variations of the load impedance. The buffer can
provide up to ±5mA of current to the sensor. For high-power
sensors, an external amplifier has to be used. On the Planalta
board, the output voltage signal is also provided as an input to an
ADC channel after low-pass filtering.
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PWM sensor A
D

A
D

signal generation signal acquisition

hardware only on Planalta board
hardware on Planalta and Sylvatica boards

Figure 6.2 Block diagram of the analogue front-end for Sylvatica and
Planalta boards. The Planalta-only driver generates a voltage wave that
is generated through a PWM signal, which is low-pass filtered and then
buffered before being fed into the sensor. The sensor output on both
the Planalta and Sylvatica boards is (optionally) amplified using a PGA
and low-pass filtered before being sampled.

The circuit that connects the sensor output to the ADC has the
same topology on both Planalta and Sylvatica. The output of
the sensor is amplified using the PGA113 (Texas Instruments,
USA) programmable gain amplifier (PGA), providing a gain be-
tween 1 – 200. This PGA can amplify with respect to an offset; on
Sylvatica, this offset is connected to ground potential, while on
Planalta, this offset can be soldered to either ground potential
or 1.65V. The signal is then low-pass filtered using a resistor-
capacitor filter before digitisation. The signal is digitised as early
as possible to limit the amount of noise that can enter the system
and increase flexibility since the digital filtering is easy to mod-
ify.

TheADCused in this design isADS8332 (Texas Instruments, USA),
and provides a good trade-off between speed, accuracy, and cost.
This ADC has a successive approximation register (SAR) archi-
tecture, produces 16 bit output data, and has an integrated mul-
tiplexer that can rapidly switch between channels, enabling up
to 8 analogue signals to be sampled between 0 – 3.3V. The 16 bit
words are well-suited for further processing by the 16 bit micro-
controller. The effective ADC resolution at frequencies below
1kHz is 14.9 bit. Additional details on the analogue front-end
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are provided in appendix B.

6.3.2 Digital Signal Processing

After digitisation, themicrocontroller further processes the sam-
ples to remove unwanted noise and interfering signals such as
those originating from the 50 or 60Hz power grid. The data rate
coming from the ADC depends on the board and software config-
uration. The data rates that are possible in the current design are
listed in table 6.1.

Table 6.1 Overview of the different sampling and signal frequencies
employed in the sensor boards Planalta and Sylvatica. 𝑁𝑐 is the maxi-
mum number of active channels, where “R” denotes that the output of
the signal driver is also sampled (top ADC block in figure 6.2). 𝑓𝑐 is the
analogue cut-off frequency of the anti-aliasing low-pass filter in front
of the ADC. 𝑓𝑠 is the sampling frequency of a specific ADC channel.
The frequency depends upon the number of active channels. 𝑓signal is
the (modulated) signal frequency. The filter cascade reduces the input
signal to a 1Hz signal, as indicated by 𝑓out.

board 𝑁𝑐 [-] 𝑓𝑐 [kHz] 𝑓𝑠 [kHz] 𝑓signal [Hz] 𝑓out [Hz]

Dicio - - - - -

Planalta

1 97.0 200 50·103 1
1 + R 39.3 80 20·103 1
2 + 2R 19.5 40 10·103 1
4 + 4R 10.3 20 5 1

Sylvatica 8 4.8 10 ≤ 0.2 1

The maximum sampling frequency of the ADC is 500 ksps.
Though, in practice, the upper sampling speed cannot
exceed 250 ksps due to limitations of the SPI module of the
microcontroller. On the Planalta board, the number of active
channels determines themaximum signal frequency for the LIA.
The total sample rate (sum of sample rates of every channel)
should never exceed 250 ksps.

The sampling frequency is always four times the signal
frequency. This simplifies the mixing operation significantly,
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since the in-phase (I) and quadrature (Q) components of the sine
and cosine are simply 0, 1, 0 and −1, and 1, 0, −1 and 0 respectively
for 0, 𝜋

2 , 𝜋 and 3𝜋
2 rad. These operations involve single-cycle copy

and invert instructions. An overview of the whole digital
processing cascade is depicted in figure 6.3. The whole filter
structure is replicated eight times for the four sensors and four
reference signals. The decimation factor and filter coefficients
of the last stage depends upon the configuration. To obtain an
output frequency of 1Hz, the decimation factor of the last stage
has to vary between 2 and 20.

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg

↓ 10 ⋯ ↓ 𝑁 reg
Q

↓ 10 ⋯ ↓ 𝑁 regI

de
m
uxA

D

4×

Figure 6.3 Schematic representation of the data processing flow on
the microcontroller of the Planalta board. The data coming from
the analogue-to-digital converter ADC contains data from all channels.
These samples are copied to new vectors by a “demultiplexer” (demux)
to make the filtering faster. The incoming data is then band-pass fil-
tered before being mixed to remove unwanted signals that the mixer
can map to the same frequencies. Afterwards, the data passes through
four filter and decimation stages before its final filtering and decima-
tion step. The decimation factor 𝑁 depends upon the incoming data
rate to achieve an output frequency of 1Hz.

For the Sylvatica board, the signal frequencies of interest are
typically much smaller. Biological and environmental sensor
responses vary in the range of a few Hertz and below (Inoue
et al. 2008; Wallach et al. 2010; Baker 2008; Maes et al. 2012;
Jones 1999; Costa et al. 2013; Xu 2016). Consequently, there is no
need to maximise the sampling frequency other than to limit the
amount of noise. Some plant processes such as the absorption of
photons by chlorophyll molecules and chlorophyll fluorescence
after photon incidence occur much faster, within 1 fs and 1ns
respectively (Taiz et al. 2010). However, these events cannot be
observed by simple sensors in a greenhouse or on the field, so
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they are not considered here.

To avoid active filters, we increased the sampling frequency to
10 kHz per channel. However, this shifts complexity from the
analogue to the digital domain. This is desirable since it is easier
to modify and optimise the software for a particular application.
An overview of the digital processing is shown in figure 6.4.

↓ 10 ⋯ ↓ 10 reg↓ 10 ⋯ ↓ 10 reg↓ 10 ⋯ ↓ 10 reg↓ 10 ⋯ ↓ 10 reg↓ 10 ⋯ ↓ 10 reg↓ 10 ⋯ ↓ 10 reg↓ 10 ⋯ ↓ 10 reg↓ 10 ⋯ ↓ 10 reg

de
m
uxA

D

Figure 6.4 Schematic representation of the data processing flow on
the microcontroller of the Sylvatica board. The data coming from
the analogue-to-digital converter ADC contains data from all channels.
These samples are copied to new vectors by a “demultiplexer” (demux)
to make the filtering faster. The filtering consists of a cascade of low-
pass filters, followed by a decimation step of factor 10 to reduce the
sample rate.

6.3.3 Digital Interfacing with Sensor Boards

Asmentioned, I2C is used to read out the sensor data. On this bus,
one device has control and can read and write to other devices.
In this setup, Dicio is the control device that reads the sensor
data from the sensor boards Planalta and Sylvatica. Each device,
except for the controller, has a 7 bit address that must be unique
on the bus.

To ensure that only valid data are read, a ping-pong buffer system
is used at the output. One buffer, buffer A, is written by the
software with new data, while the other, buffer B, can be read by
the user. When buffer A is full, the roles are reversed. Buffer B
is written, and buffer A is read. Each buffer stores one sample
(this can be increased in the software) and thus has to be read
every second. Note that for Sylvatica, a sample consists of a single
16 bit value, but for Planalta, a single sample consists of up to
two or four 16 bit values: two values representing the I- and Q-
components of the sensor signal and optionally the driver I- and
Q-components.

126



6.4 Results

6.4 Results

To validate the system, we constructed a small prototype consist-
ing of one Dicio board, two Sylvatica boards, and one Planalta
board. An experimentwas conducted during ten days in a growth
chamber at ILVO, Melle, Belgium. The setup from chapter 5 was
reused here. The experiment applied a simulated day-night cycle
on two strawberry plants (Fragaria × ananassa, labelled S1 and S2)
and one plum tomato plant (Solanum lycopersicum L., labelled T).
The strawberry plants weremature plants grown in a greenhouse
at ILVO during the previous year. The main difference between
themwas their size; S1 had significantlymore leaves than S2. The
leaves of S2 were also less green than those of S1. Their pot sizes
were the same. The tomato plant was a five-week-old seedling.

Table 6.2 Overview of the sensors connected to each plant. A leaf
thickness sensor was connected at the start of the experiment to the
tomato plant, but there was an issue with the connection. As a result,
this data was not valid and not included in the analysis.

plant sensor type

leaf thickness leaf length soil moisture

strawberry 1 (S1) 2 1 1
strawberry 2 (S2) 2 0 0

tomato 1 (T) 0 1 0

The two sensor boards, Sylvatica and Planalta, were used to per-
form the readout of several contact sensors that were connected
to the plants at a rate of 1Hz. We employed four leaf thick-
ness sensors, two leaf length sensors, one soil moisture sensor,
one relative humidity and temperature sensor, and one light in-
tensity sensor. The environmental sensors were mounted on a
separate board, whichwas glued to a 3D-printed radiation shield.
An overview of the different connections to the sensor boards
and the monitored plants is depicted in table 6.2. More detailed
information about the different sensors is provided in table 6.3.

At the start of the experiment, the plants were watered and left
to stabilise for one day in the growth chamber before monitor-
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Table 6.3 Overview of the different sensors used in the experimental
validation of the system.

sensor description part number and
manufacturer

interface

leaf thickness AH-303 (Agri-
House, USA)

analogue readout

leaf length (LVDT) E100 (Chauvin
Arnoux, France)

LIA readout

relative humidity
and temperature

SHT35 (Sensirion
AG, Switzerland)

digital I2C sensor

light intensity APDS-9301-020
(Broadcom, USA)

digital I2C sensor

ing started. During the monitoring experiment, the plants were
watered twice after visual observation of wilting of S1 just before
noon on 24 December and 30 December. These time points are
indicated by a dashed green line on figure 6.5. A picture of the
experimental setting just after the second watering time point
(30/12/2019 at 10:45) is depicted in figure 6.6. S1 wilted, while the
other plants did not show any visual sign of wilting.

Both the leaf thickness and leaf length sensors have a strong
temperature dependence, which is eliminated using a simple cal-
ibration procedure. During this calibration, the temperature was
gradually increased from 10 °C to 32 °C. For the leaf length sen-
sors, the AgriHouse Calibration Card (AH-300C) was used to cal-
ibrate. The leaf length sensors were calibrated using four refer-
ence distances.

The following calibrationprocedurewas followed to calculate the
soil water content from the capacitance reading: first, the soil
was saturated with water for five days; second, it was left to drip
to remove excess moisture for 1 hour; third, the soil was left to
dry at ambient temperature conditions for 14 days during which
the weight of the pot and sensor readouts were recorded; finally,
these were combined with the dry weight and volume of the port
to calculate the amount of water in the soil per volumetric unit.
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Figure 6.5 Visualisation of the captured data in a growth chamber
experiment with a strawberry plant. The dashed green line indicates
the watering time point. A detailed figure of the grey shaded line (16:30
on 26 December to 3:30 on 27 December) is shown in figure 6.7. The
depicted data includes the air temperature (𝑇air), relative humidity (ℎ),
light intensity expressed in PAR (𝐼PAR), soil water content (SWC), leaf
elongation (LE) and leaf thickness (LT).
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environmen-
tal sensors

leaf thick-
ness sensor

Gloxinia

Raspberry Pi

leaf length sensor

S1

S2
T

(a)(b)

Figure 6.6 (a) Experimental setup. The environmental sensors are not
depicted in this figure, but their cable is. (b) Close-up of the radiation
shield that houses the environmental sensors.

The LVDT sensors, used for leaf elongation measurement, do
not provide absolute values of leaf length. Therefore, the first
measurement was taken to be the reference distance and was set
to zero for both sensors.

A more detailed zoom of a 12 h period indicated by the grey
shaded area from figure 6.5 is depicted in figure 6.7. The
captured data contains less noise than expected from figure 6.5.
Moreover, the oscillatory behaviour of the sensors appeared
due to the functioning of the growth chamber. It causes the
environmental conditions to oscillate around a predefined
setpoint, which in turn are the main drivers for the plant’s
response.
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Figure 6.7 This figure is a detailed zoom of the grey shaded region in
figure 6.5 to visualise the accuracy of the system. A further zoom of
the grey shaded area in this figure (18:30 to 19:00 on 26 December) is
shown in figure 6.8. The depicted data includes the air temperature
(𝑇air), relative humidity (ℎ), light intensity expressed in PAR (𝐼PAR), soil
water content (SWC), leaf elongation (LE) and leaf thickness (LT).
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6.5 Discussion

6.5.1 Evaluation of the Experiment and Future
Improvements

Figure 6.5 depicts the most interesting sensor data throughout
the entire experiment. The visual observations of wilting are
supported by the readings from the leaf thickness sensors. S1
was wilting (see figure 6.6). The leaf thickness, presented in fig-
ure 6.5c (blue), gradually decreased from the previous watering
event on 24 December towards this time point of visual obser-
vation on 30 December at 10:45. Leaf thickness decreased from
around 115 µm to 75 µm in the first drying period with decreas-
ing soil water content down to 200 g L−1. In the second drying
period, soil water content decreased down to 125 g L−1, resulting
in a minimum leaf thickness of 53 µm. After re-watering, the
leaf thickness quickly recovered. S2 was not wilting, which is
supported by a more constant pattern of the leaf thickness to-
wards this time point of observation (figure 6.5c, in green). Once
wilting started, there was also a clear decrease in leaf thickness
for S1 to approximately 75 µm the first time and 53 µm the second
time. The leaf thickness quickly recovered after watering, clearly
highlighting the need formonitoring systemswith high temporal
resolution. Without them, it would not be possible to measure
the recovery time of the leaf thickness of S1. Furthermore, there
was no clear difference before and after the watering time point
for S2, indicating that this plant did not perceive drought stress
in this period. S2 was probably not wilting due to its lower leaf
area compared to S1, while the pot sizes were the same. As a
result, we presume that the water content in the pot of S2 was
still sufficient since the water content in both pots was the same
when the experiment started.

For S1, the leaf elongation did not show drastic variations in
response to the drying conditions, other than a small gradual
growth during the experiment. The leaf elongation of the tomato
plant Tdid not show a decrease in response to limitedwater avail-
ability. However, a marked increase in leaf elongation coincided
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with the two re-watering events, indicating that leaf elongation
slowed down before re-watering.

Besides the effects of drying and re-watering, the leaf thickness
and leaf elongation sensors also demonstrated a pattern of
shrinkage during the day and increased during the night.
Indeed, leaf length and thickness decrease when water loss due
to transpiration is not fully compensated by the water uptake
and increase when transpiration decreases and tissues are
replenished with water. The pattern of swelling and shrinking
was most explicit in the leaf elongation of the tomato leaf T.
Additionally, the leaf thickness in plants S1 and S2 did not
increase throughout the experiment, as these leaves had already
reached their final leaf thickness. The elongation sensors
on plants S1 and T showed a gradual increase in leaf length,
indicating that these leaves were still expanding. The elongation
of the young tomato leaf was much faster than that of the leaf
of the strawberry plant S1 De Swaef et al. 2015b; Fabbri et al.
1986.

From figure 6.8, we can conclude that the leaf thickness is
strongly influenced by the relative humidity, where the drop
in relative humidity corresponds to a similar decrease of the
leaf thickness around 18:35. The time offset is probably due
to the heterogeneity of the air in the growth chamber. A
similar effect is observed between 18:55 and 18:58. When the
relative humidity decreases, water will evaporate more quickly,
resulting in reduced leaf thickness. Since there is a variation
of less than 1 °C, there is a limited effect of the temperature.
These physiological responses are only detectable when a high
temporal resolution is used, illustrating the need for systems
such as Gloxinia. The leaf length variation remains limited.
Compared to leaf thickness, leaf length features less variation on
a short timescale for strawberry plants in this experiment.

As expected, soil water content consistently decreased after wa-
tering. However, slight increases at the start of the day are due to
the temperature dependence of the sensor. A possible explana-
tion is that the soil temperature was not measured, only air tem-
perature. As a result, there is some over-compensation when the
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Figure6.8 Detail figure of the grey shaded area in figure 6.7 to visualise
of the accuracy of the system. Only the leaf thickness and leaf length
of S1 are plotted since there is a significant offset between the LT of
S1 and S2 and LE of S1 and T in figure 6.7. The depicted data includes
the air temperature (𝑇air), relative humidity (ℎ), light intensity expressed
in PAR (𝐼PAR), soil water content (SWC), leaf elongation (LE) and leaf
thickness (LT).
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temperature changes drastically due to the slower temperature
increase of the soil.

6.5.2 Design Validation and Comparison to Existing
Platforms

In the introduction, four key design criteria were identified. A
comparison between our design, a commercial data logger, a
single board computer with analogue capabilities (BeagleBone
Black), and a microcontroller platform (Arduino) is depicted in
Figure 6.9 on a 1 to 5 scale. The higher the scale, the better the
performance for this criterion.

cost scale

versatility

accuracy

1 2 3 4 5

Arduino

BeagleBone

Commercial
Datalogger

Gloxinia

Figure 6.9 Spider chart comparing different data logging approaches.
The higher the number, the better the performance for this specific
metric. For instance, a score of 5 on the cost scale means this has the
best cost performance, i.e. lowest cost.

We evaluate the requirements for two experiments: a smaller
experiment where one plant is monitored closely with 15 ana-
logue sensors and a larger experiment where ten plants aremon-
itored in a greenhouse with 15 analogue sensors connected to
each plant. Additionally, the environment will be characterised
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at each plant in both experiments for temperature, relative hu-
midity, and light intensity. In addition to analogue sensors, a
digital sensor is employed that uses I2C to measure the tempera-
ture, relative humidity, and light intensity. To simplify the com-
parison, we restricted it to sensors that do not require an input
waveform. All sensors are sampled every 10 seconds.

To evaluate the platforms for each of the criteria, we define the
fourmeasures, one for each of the design criteria. First, to assess
the sensor scalability, we compare the average number of boards
per sensor for each of the trials. Second, to assess the accuracy,
we compare the number of bits of the output sample. While this
is not the actual accuracy, this estimate provides a first indication
thereof. Third, the cost is defined as the average cost per sensor
of the entire readout system per platform. Fourth, versatility
is assessed by qualitative comparison of the difference between
the first three design criteria for the two experimental setups
aforementioned.

The official Arduino Uno board can interface with up to six sen-
sors on a single board, with a resolution of 10 bit. A single board
costs 18.81 € (Mouser, USA, 30 January 2020). Different boards are
connectedusing I2Csince a robust protocol is not supportedwith-
out additional hardware. As a result, three boards are needed
for the first experiment and 25 for the second (Arduino - Board
2020).

The BeagleBone Black Rev. C board can also interface with up
to six analogue sensors per board. The resolution is 12 bit per
sensors and costs 62.75 € per board (Mouser, USA, 30 January
2020). Different nodes are connected using the CAN bus. As a
result, three boards are needed for the first experiment and 25
for the second (Kridner et al. 2020).

Commercial data loggers are very popular and widely used by re-
searchers in plant and environmental monitoring trials. The cost
of such commercial systems is approximately 1000 to 1500 €. A
single data logger can typically measure 16 sensors sequentially.
And have a resolution of 12 bit to 13 bit. Thus, one data logger is
needed in the first experiment and ten in the second. However,
in a real setup, researchers will typically use a multiplexer to

136



6.5 Discussion

read out all sensors and keep the overall cost of the setup more
manageable.

The Gloxinia system discussed here requires the Dicio control
board and the Sylvatica sensor board to interface with these sen-
sors; one Sylvatica board can measure up to eight analogue sen-
sors and has a resolution of 16 bit. Different Dicio boards are
connected using the CAN bus. A cost overview is depicted in
table 6.4, where a categorical separation is made. For the first
experiment, one Dicio board is needed, while for the second, ten
boards are required. PerDicio board, two Sylvatica sensor boards
are necessary in both cases.

It is clear that in terms of scalability, the Arduino performs worst
due to the lack of a robust communication interface for larger
distances. Commercial systems usually require expansion units,
though the cable length between expansion units is usually lim-
ited. Often, this is compensated by the use of expensive mea-
surement cableswith lowattenuation. TheBeagleBoneBlack and
Gloxinia both support the CAN bus. Some additional hardware is
required for the BeagleBone Black to interface with other CAN-
enabled devices, though.

The versatility of the platform depends upon the needs of the ap-
plication. Thereforewe compared the available sensor interfaces
and the change in the number of boards needed between both
experiments. The Arduino has the lowest number of interfaces,
followed by the BeagleBone Black. Both lack the ability to inter-
face with LIA-based sensors, for instance. The number of boards
scales similarly for Arduino and BeagleBone Black. The commer-
cial system is the most versatile since it has the widest range of
sensor interfaces, and expansion units can be added. Gloxinia’s
performance is intermediate between the BeagleBone Black and
commercial data logger thanks to its wider range of interfaces.

A summary of these observations is depicted in table 6.5 and fig-
ure 6.9. The Gloxinia platform is not the most effective on all
criteria but provides the best trade-off to achieve a good score on
all criteria.
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Table
6.4

Cost
calculation

assum
ing

ten
boards

are
produced

of
a
particular

type.
The

cost
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is
based
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M
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inventory
and
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ponent

prices
of

17
D
ecem

ber
2019.

Enclosure
is

optionally
available

from
H
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ond

M
anufacturing

for20.21
€.Allpricesare

excluding
VAT.

board
costcategory

(€)
totalcost(€)

capacitorsresistors
connectorsmicrocontroller

user interaction
amplifiersvoltage reference

other
ADC

D
icio

3.16
0.74

10.43
6.68

5.09
4.64

1.9
32.64

Sylvatica
3.41

1.25
3.52

6.68
3.26

15.84
4.81

1.35
9.44

49.56

Planalta
6.47

2.03
2.96

6.68
3.26

16.44
4.81

5.25
9.44

57.34
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Table 6.5 Detailed comparison and summary of the evaluation of dif-
ferent sensor platforms. The cost values are based on the cost per
sensor for the small first experiment. The following scores are given
from lowest to highest for a particularmetric: −, +/−, +, ++, and +++.

criterion platform
Arduino Beagle-

Bone
Black

commer-
cial

Gloxinia

scalability − ++ +/− + + +

accuracy
[bit]

10
(+/−)

12
(+)

12/13
(++)

16
(+ + +)

cost [per
sensor, €]

3.76
(+ + +)

12.55
(+)

66.67 - 100
(−)

8.78
(++)

versatility +/− + + + + ++

6.5.3 Future Improvements and Possibilities

While not tested in the experimental setup, the system should
easily scale to large trials that need to monitor sensors over large
distances thanks to the CAN bus. Theoretically, there is an upper
limit of approximately 400 Dicio boards that are connected to a
single CAN bus, based on the differential input resistance and
drive capability of the MCP2542FD CAN transmitter. However,
we advise that no more than 100 Dicio nodes are connected to
the same bus for error-free operation. Each Dicio node supports
up to four Planalta and five Sylvatica sensor nodes. A second
CAN bus has to be used in case more sensors have to be mea-
sured.

To stimulate usage of this data logging tool, we open-sourcedboth
hardware and software in a GitHub repository. All relevant files
can be downloaded from GitHub1.

1https://github.com/opieters/gloxinia
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6.6 Conclusions

The Gloxinia sensor platform aims to advancemonitoring in fun-
damental and applied plant research frommodelling to irrigation
and crop management. Four key needs were identified: sensor
scalability, accuracy, cost and versatility. The whole platform has
been designed to address these needs with an open-source de-
sign. The platform comprises individual sensor nodes that com-
municate with each other. Each node has a control board Dicio to
which sensor nodes are connected. Sylvatica andPlanalta are two
sensor boards that provide an interface that matches most ana-
logue sensors used in plant research. Digital sensors can also be
connected to the control boards. Most of the application-specific
optimisations are done in software, making it easier for the user
to optimise for a specific application. To validate the accuracy of
the system, we set up an experimental trial in a growth chamber.
Environmental conditions, leaf length, and leaf elongation were
successfully measured at high resolution on one tomato and two
strawberry plants to validate the functionality of the system. The
overall system scales well due to the multiplexed sampling of
up to eight channels on Sylvatica and four on Planalta, accurate
16 bit data acquisition, low unit cost, and distributed architec-
ture. Consequently, the system strikes a good trade-off between
these various requirements, making it well-suited for research,
breeding, and precision crop phenotyping.
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7
Experimental Demonstration of a
Plant as Computing Resource for
Physical Reservoir Computing

Plants are complex organisms subject to a wide variety of envi-
ronmental factors, which in turn influence a plant’s physiology
and phenotype. We propose to interpret this complex input-
driven system as a reservoir in PRC, a computing paradigm orig-
inating from computer science that employs a physical substrate
as a computing element. In this chapter, we present the first ap-
plication of PRC to plants using Fragaria × ananassa (strawberry).
We show that plants outperform a control experiment in environ-
mental and ecophysiological tasks using only eight leaf thickness
sensors. Wealso investigate benchmark tasks such as theNARMA
task and a delay line. Results indicate that plants are not suitable
for general-purpose computation but arewell-suited for ecophys-
iological tasks. This first demonstration of PRC with plants is
an important milestone towards a more holistic view of pheno-
typing and a better understanding of information processing by
plants.

7.1 Introduction

We already discussed in chapter 4 how we can map the PRC
framework to plants. This mapping is inspired by existing im-
plementations such as a soft silicone arm and tensegrity robot
(figure 4.1). Here, we review the most important aspects.
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Plants are high-dimensional nonlinear dynamical systems. De-
spite the absence of a brain-like organ and their inability tomove,
plants are capable of reacting effectively to their dynamic envi-
ronment, just like animals and humans (van Loon 2016). Plants
continuously sense their environment and optimise their phys-
iological responses accordingly (Taiz et al. 2010; Arsova et al.
2020). Moreover, they exhibit the ability to learn and have the
ability to use past events for future planning (memory) integrated
store/recall systems of memory (Thellier et al. 2013) (see also
section 4.1).

We can consider the plant as a computing unit, able to
process multiple signals to provide an integrated response that
maximises fitness to the prevailing environmental conditions, as
discussed by Scheres et al. (2017). In plant reservoir computing,
figure 4.1d, the environmental cues are the input of the (plant)
reservoir. Plant sensors are used to characterise the plant’s
state. These state observations are combined to solve tasks such
as prediction of ecophysiological parameters or detection of
drought stress.

In this chapter, we demonstrate plant reservoir computing.
While former studies have theorised on computing with plants
(Adamatzky et al. 2018; Adamatzky 2019), to the best of our
knowledge, this is the first experimental evidence of PRC with
plants. We show that by observing the plant’s dynamical state
with contact-based sensors, we canmap temporal input patterns
from leaf thickness sensors with a simple linear readout function
to estimate (i) the environmental conditions, (ii) ecophysiological
tasks, and (iii) computational benchmark tasks.

7.2 Materials and Methods

To evaluate the computing properties of plants, we set up a se-
ries of experiments on Fragaria × ananassa (strawberry) wherewe
monitor key environmental variables and gas exchange activity
of the plants. While plants violate the fading memory property
over their entire lifetime, we only consider a short period of
their mature growing stage when performing the experiments.
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Each experiment lasts for eight days in a growth chamber. Inside
the growth chamber, light intensity, air temperature and relative
humidity are modulated, and the plant’s responses are captured
using eight randomly placed leaf-thickness sensors. All three
modulations follow a typical day-night pattern, based on actual
weather data where additional randomness was inserted into the
light intensity and direction by alternating which set of lamps
was turned on without overly affecting the total light intensity.
Although these are three main abiotic drivers that influence a
plant’s ecophysiology (Jones 2013), we consider the light intensity
as the main input. The other two abiotic drivers mainly serve
to preserve a realistic day-night pattern where plants experience
higher temperatures and lower humidity during the day and the
inverse at night.

Plants continuously sense their environment and optimise their
physiological responses accordingly (Taiz et al. 2010; Arsova et
al. 2020). Consequently, these are excellent factors that serve as
input to the plant reservoir. Leaf thickness is an interesting trait
to monitor since it can vary rapidly and is also influenced by the
modulated environmental drivers (Afzal et al. 2017; De Swaef et
al. 2015b). However, these clips are also sensitive to temperature
fluctuations. Therefore, to validate that the plant is the main
sourceof computation,wealso set upa control experimentwhere
the thickness clips are not mounted on a plant. Yet, a plant is
placed into the growth chamber to capture real gas exchange
data. This negative control is necessary because there might be
a complex interaction of the environment and the sensor system
that can also have properties resembling a reservoir.

In total, three experiments were conducted in the growth cham-
ber. Each experiment used the same input modulation traces
(light intensity, air temperature and air humidity), but the ob-
served traces might differ slightly due to random changes and
settling behaviour of the growth chamber. Moreover, three dif-
ferent plants were used to collect physiological data. As a result,
the target signals for eachof the tasks considered are experiment-
specific, although some are very similar.
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7.2.1 Experimental Setup

The general experimental design follows section 4.2 and the ex-
periments were conducted in the same growth chamber as in
chapters 5 and 6. The light configuration differs between the ex-
periments, though. No halogen lights were used to limit heating
inside the growth chamber due to the lights. The arrangement is
also different. Lampsweremounted on the top and three sides of
the frame for illumination. We used 57 LED lamps (PARATHOM
DIM PAR16 50 36D OSRAM GmbH, Munich, Germany). The LED
lights were arranged in groups that could be individually turned
on and off. A detailed overview of the grid is depicted in fig-
ure 7.1, while the entire setup is depicted in figure 7.2. This is
very similar to figure 5.3.

The modulation of the environmental conditions (light intensity,
temperature and relative humidity) was performed using
the Gloxinia sensor platform (see chapter 6). This platform
also performed sensor readout. Each experiment featured
a digital light sensor (APDS9306, Broadcom Inc., San Jose,
California, USA), relative humidity and temperature sensor
(SHT35, Sensirion AG, Switzerland) and leaf thickness clips
(AH-303, AgriHouse, Berthoud, CO, USA). Furthermore, a single
mature leaf was inserted into a transparent leaf chamber of
the LI-6400XT photosynthesis system (LI-COR, Lincoln, NE,
USA) to acquire gas exchange measurements (transpiration
and photosynthesis). The Gloxinia system also controlled the
sampling time steps of the LI-6400XT, using a custom circuit
that was connected to the manual sample button on the infrared
gas analyser (IRGA). Each leaf thickness sensor was sampled
every second, while the gas exchange measurement had a
sample period of 3 s. Faster sampling was not possible due to the
limitations of the device.

To ensure that the conditions in the leaf chamber were as similar
as possible to those of the rest of the plant, we used an external
temperature probe (Vaisala 50Y, Vaisala, Helsinki, Finland) to
recreate the temperature outside the leaf chamber. This also
prevented the chamber from heating up due to the incoming
radiation. Moreover, the gas inlet was also positioned close to the
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LI6400XT

𝑇air and ℎ

plant and leaf
thickness sensors

incoming
airflow

outgoing
airflow

Figure7.2 Entire setup inside the growth chamber. Differentmeasure-
ment instruments are indicated as well as the airflow inside the growth
chamber.

plant for maximum consistency. Figure 7.2 depicts the setup for
a strawberry experiment. An image of each experimental setup
is provided for each experiment in the dataset. Individual sensor
locations are also indicated by a digit in appendix C (figures C.1
to C.3).

To simulate a variable light environment, we varied the light
pattern semi-randomly. It was assumed that each group of lights
contributes equally to the PAR. Based on themaximally observed
PAR in the measurement trace, a certain set of lights is turned
on.

7.2.2 Data Preprocessing

The data was first manually inspected and cleaned to ensure no
transient behaviour was included in the analysis. Sometimes the
data logging also had to restart due to an error condition occur-
ring because of interference of the high-power and low-power
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circuits. A restart event resulted in data loss for approximately
one minute. Data within this time interval was reconstructed
using linear interpolation. The first three hours and last hour
of data were also discarded to remove transient effects due to
the start or end of the experiment. Data was reconstructed to
simplify the computation of several benchmark tasks.

Linear interpolation was also used to match the sampling rate of
the gas exchange system, leaf thickness and environmental mea-
surements. Unless specified otherwise, data was not processed
and/or filtered further.

7.2.3 Train, Validation and Test Data Split andModel Training

The time-series data generated in the three experiments here are
highly correlated. To reduce this correlation, we used a data split
into train and test data with interleaving (figure 7.3). Each day
was assigned to either the train or test data. Eight hours were dis-
carded betweendays. This ensures that night-time conditions are
not overly represented in the dataset and that there is a decreased
correlation between both the train and test datasets. However,
because a day-night environmental pattern was followed in the
growth chamber, the decreased correlation is limited in time.
The correlation for all leaf thickness clips of strawberry 1 is pre-
sented in figure 7.4. Indeed, we first see a decreasing correlation
until five to seven hours in the experiment, when the correlation
increases again. This is due to the day-night pattern of the input
variables.

In accordance with the general ideas of PRC discussed in sec-
tion 2.6, a simple learning rule was selected. We used linear
regression with Tikhonov or L2-regularisation (Tikhonov 1963)
(equation (2.16)). This is a simple model that converges rapidly.
The Scikit-learn framework was used to train the system (Pe-
dregosa et al. 2011). The main equation and loss criterion were
already discussed in section 2.3.

We sweeped the hyperparameter 𝜆 from 1·10−10 to 1·1010 using
logarithmic spacing. For each hyperparameter value, the model
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date09-17 09-18 09-19 09-20 09-21 09-22 09-23

date08-21 08-23 08-24 08-25 08-26 08-27 08-28

date10-01 10-02 10-03 10-04 10-05 10-06 10-07

train data test data discarted data

Figure 7.3 Visualisation of the data split into train/validation and test
data. Top, middle and bottom axes are the control, strawberry 1 and
strawberry 2 experiment respectively.

was optimised, and the best model was selected using a leave-
one-out strategy: we used the data of a single day for validation
and all the other days for training. This assignment was also
permuted such that all days are used for validation. The final
choice for 𝜆 was again optimised using all the training data. The
final performance was computed on the test data.

7.2.4 Regression Tasks

We consider regression problems solely in this chapter since all
the ecophysiological measurements performed are continuous
variables. Three types of regression prediction targets are con-
sidered: (i) environmental targets, which also form the input of
the reservoir; (ii) photosynthetic rate 𝑃𝑛 and transpiration rate 𝐸
as ecophysiological tasks based on the gas exchange data; and (iii)
computational benchmarks. All tasks are listed in table 7.1.

Reconstructing the environmental input of the reservoir is an
interesting task to evaluate how the information at the input is re-
tained by the reservoir. Estimating gas exchange activity (𝑃𝑛 and
𝐸) from leaf thickness is an interesting biologically relevant task
that demonstrates practical applications of PRC with plants.
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Figure 7.4 Cross correlation between all leaf thickness readouts of
strawberry 1.

We selected photosynthetic rate 𝑃𝑛, and transpiration rate 𝐸 as
ecophysiological parameters since these gas exchange measure-
ments are not directly measurable using leaf thickness sensors.
The gas exchange sensor device does measure other parameters
such as stomatal conductance and leaf temperature, but these
are not included since they are highly dependent on temperature,
and so are the (leaf) thickness clips.

Computational benchmarks are computed to evaluate the non-
linear and memory properties of plants on a more theoretical
basis. This is done using two tasks: NARMA and a delay line.
The NARMA task is a benchmark task often used to evaluate PRC
media (Nakajima et al. 2015; Atiya et al. 2000). This task has
a parameter 𝑛 that influences the amount of nonlinearity and
memory, higher values of 𝑛 result in more difficult tasks. We use
a slightly modified version such that the memory dependencies
operate at the minute scale. Consequently, we increased the
memory dependency of the task. This was done because other-
wise the time-dependencies were too extensive, resulting in too
much smoothing and even stability issues for large values of 𝑛:

𝑦(𝑡+1) = 𝛼𝑦(𝑡)+𝛽𝑦(𝑡)
⎛
⎜
⎜
⎝

𝑛−1

∑
𝑖=0

𝑦(𝑡 − 60𝑖)
⎞
⎟
⎟
⎠

+𝛾𝑥(𝑡−60𝑛+1)𝑥(𝑡)+𝛿. (7.1)

The parameters 𝛼, 𝛽, 𝛾 and 𝛿 are chosen as 0.3, 0.05, 1.5 and 0.1
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respectively (Nakajima et al. 2015). We do not consider general-
purpose tasks such as MNIST digit recognition or a 2-bit XOR
task, as is demonstrated in other PRC research (Vandoorne et al.
2014; Du et al. 2017). In the context of reservoir computing with
plants, we do not consider these tasks as relevant since plants are
unlikely to outperform conventional computing devices for such
tasks. Instead, we focus on plant-specific tasks that are more rel-
evant with respect to future applications in plant ecophysiology
and phenotyping.

Since models are not transferable between experiments, we esti-
mate the variability due to sensor placement by selecting seven
out of eight sensors. Since individual plants might also have
considerably different dynamics, we repeated the experiments
for two strawberry plants.

All regression tasks from table 7.1 use the measurement data as
the target value for ̂𝑦, including the benchmark tasks. Though,
the NARMA tasks use amodified version of the light intensity sig-
nal 𝐼PAR. 𝐼PAR is re-scaled to have a zero mean and amplitude of
0.2. This is done to match the input signal used in other research
(Nakajima et al. 2015) and ensure that the output does not diverge
since the general form of equation (7.1) is not stable for arbitrary
input.

Overall, the dataflow is as depicted in figure 4.4 and very similar
to that of figure 5.6. The input of the PRC system are the envi-
ronmental factors, while the input of the linearmachine learning
pipeline are the reservoir observations: leaf thickness data. This
data is fit to the three targets types: environmental, ecophysio-
logical and benchmark targets, listed in table 7.1.

7.2.5 Leaf Thickness Sensor Calibration

The leaf thickness sensors used here are sensitive to temperature
fluctuations, though they are not equipped with a temperature
sensor. In chapter 6, clips were calibrated using the air temper-
ature value, but here each clip was retrofitted with a thermistor
(NXFT15WF104FA2B100, Murata Manufacturing Co., Ltd., Kioto,
Japan) that was used for calibration. A linear calibration was
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performed based on a calibration experiment. During this exper-
iment, the temperature was increased from 10 °C to 30 °C. While
it is not necessary for PRC to calibrate the leaf thickness sensors
to absolute thickness values, weperformeda calibration to obtain
fully calibrated sensor values. The clipswere calibrated using the
calibration card from AgriHouse (AH-300C).

7.2.6 Plant Material

Plants used in chapter 5 and this chapter were grown in the same
location. All three experiments used a Fragaria × ananassa (straw-
berry) plant. Theplantswere grown in close proximity in a green-
house at ILVO (Caritasstraat 39, 9090 Melle, Belgium), thus en-
suring that they experienced a very similar growing history. The
plants received regular watering to avoid soil water deficit, based
on their needs and were grown inside the greenhouse for over
one year. All plants are cuttings from the same base plant and
were kept free from pests and diseases.

7.3 Results

7.3.1 Evaluation of the Reservoir Performance for
Biologically Relevant Tasks

Initially, we focus on the biologically relevant tasks. These are the
tasks from categories (i) environmental and (ii) ecophysiological
(table 7.1). Figure 7.5 visualises the performance using boxplots.
Plants outperform the control experiment for 𝐼PAR, 𝑃𝑛 and 𝐸,
while the control is better at computing 𝑇air and ℎ. This result is
not unexpected since thickness clips are sensitive to temperature
fluctuationsdue toheatingof the analogue electronics andexpan-
sion of the plastic used in the clips. A calibration was performed,
but due to nonlinear effects, the model is still able to reconstruct
𝑇air and ℎ better in the control experiment.

We also observe that sometimes there can be considerable vari-
ation between plants: for instance, strawberry 2 is slightly better
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at estimating 𝑃𝑛 than strawberry 1, while the inverse is true for 𝐸,
yet performance for 𝐼PAR is similar. These differences are prob-
ably due to the measurement technique applied for capturing 𝑃𝑛
and 𝐸, which are monitored for one specific leaf. Consequently,
there can be a considerable difference between the selected leaf
and other leaves, while 𝐼PAR is an integrated measurement, per-
formed on the same location in both experiments and indepen-
dent of the plant.

𝐼PAR 𝑇air ℎ 𝑃𝑛 𝐸
0

0.2

0.4

0.6

0.8

1

1.2

baseline

N
M
SE

7-clip reservoir size

strawberry 1
strawberry 2

control

Figure 7.5 Overview of prediction performance for two different
strawberry plants and control using boxplots. The boxplots visualise
the effect of different samplings: in each of the samplings, seven out of
eight clips are used as reservoir readouts. This allows us to estimate the
variability of the random sensor placement. The thickness clips in the
control experiment are not mounted on a plant or other material.

The absolute value of the Pearson correlation coefficients be-
tween environmental, ecophysiological and leaf thickness mea-
surements are depicted in figure 7.6. The correlation matrix
shows thatmost leaf thickness values𝑥𝑖 of the control experiment
are much less correlated to the environmental conditions than
the first strawberry experiment, except for 𝑥7. We also observe
that there is considerable correlation between the environmental
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factors too, especially between 𝑇air and ℎ for both experiments
(0.84 and 0.83). While this is undesirable, this is the result of
applying a realistic day-night pattern. Indeed, during the day,
light intensity and temperature slowly increase in the morning
and decrease as nightfall approaches, while the inverse typically
happens for relative humidity.
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Figure 7.6 Correlationmatrix of the targets (𝐼PAR, 𝑇air, ℎ, 𝑃𝑛 and 𝐸) and
(leaf) thickness readouts (𝑥𝑖) for control (bottom triangle) and straw-
berry 1 experiments (top triangle). The correlation between air tem-
perature and thickness values is less for control than for strawberry 1.
There is also considerable correlation between the environmental in-
puts to the reservoir. This correlation is the result of following realistic
environmental conditions in place of randomising them.

To provide more insight into the NMSE scores depicted in fig-
ure 7.5, we also visualise time-series of themost interesting tasks
in figure 7.7. All readouts are used to generate the plots, so no
variability data is available. Figure 7.8 zooms in on the grey
shaded region of figure 7.7. This regionwas not used for training.
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In the control experiment, the strawberry plant used to obtain
the gas exchange data were less active than the other strawberry
plants. NMSEvalues of the test data are also depicted in the upper
left corner of each subfigure. From figure 7.7, we observe that
the strawberry reservoirs are more effective (i.e., lower NMSE
values), resolving the highs and lows better. In figure 7.8 we
observe that strawberry-based reservoirs are better at capturing
the dynamic behaviour of each specific ecophysiological task.
For example, in the case of 𝐼PAR, we see that detailed variation
is not captured by the control experiment but is captured by the
strawberry experiments. Similar observations canbemade for𝑃𝑛
and 𝐸. We point out that NMSE also has its limitations; some of
the scores for strawberry 2 are close to the baseline of 1.0, similar
to the control experiment. Yet, we see that the variation in the
target signal is better captured by the plant.

The narrow peaks observed for 𝐸 in figure 7.8 are an artefact
of the measurement device due to slight variations between the
measurement channel and reference channel as a result of vari-
able relative humidity. More details are provided in section 7.2.

7.3.2 Evaluation of the Reservoir Properties

It is vital to study the characteristics of the reservoir to stimulate
the development of better plant-based reservoirs and to improve
data extraction efficiency. To this end, we evaluate the perfor-
mance on three benchmark tasks: a delay line, polynomial fit
and the NARMA task. Moreover, the reservoir size is also a key
parameter to investigate.

The effect of the number of readouts of the reservoir (i.e. the
number of thickness clips) on the environmental and ecophysi-
ological tasks is depicted in figure 7.9. As expected, performance
increases if we increase the number of observations. Further-
more, the variability decreases because a larger set of sensors
is able to capture the dynamics present in the reservoir. How-
ever, the performance gain due to increasing readout size also de-
creases as it increases. This is expected since the larger readout
size provides a fuller representation of the reservoir dynamics.
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Figure 7.9 Effect of the number of readouts on the task performance
for environmental andbiological tasks. Error bars indicate the standard
deviation.
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We investigate nonlinear andmemory performance separately in
figures 7.10 and 7.11. As the delay increases on the 𝐼PAR signal in
figure 7.10, we initially observe that theNMSE value remains con-
stant for all three experiments. This is due to the high correlation
in leaf thickness among nearby time points. We also note that
performance is slightly improved at delays of 500 s and 200 s for
strawberry 1 and 2, respectively. As the delay on 𝐼PAR increases
further, performance decreases. Plants perform better than the
control, but there is also variation between plants. Peculiar is a
drop of the control to 0.4 at 10 000. This is an artefact and the
result of the temperature dependence of the clips.

The performance for nonlinear transformations of 𝐼PAR is de-
picted in figure 7.11. The performance quickly degrades as the
amount of nonlinearity increases. Strawberry 2 is slightly less
performant than strawberry 1. Both reach the baseline for a
polynomial degree of 6, when results are similar to those from
the control experiment.
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Figure 7.10 Effect of delay on 𝐼PAR.

NARMA is a complex nonlinear task that can have long-lasting
dependencies on the past (equation (7.1)). As a result, it is an ex-
cellently combined task to evaluate the reservoirs. NARMA tasks
with 𝑛 = 2 to 𝑛 = 50 are depicted in figure 7.12. The NARMA task
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Figure 7.11 Nonlinear (polynomial) transformation of 𝐼PAR.

is based on the light intensity 𝐼PAR. Plants are better at solving
this task than the control experiment. However, both are not very
performant on the task, since NMSE values are always near or
above 0.5. This is also not surprising since plants are not well
suited for general-purpose computation. Yet, it is interesting that
small values of 𝑛 perform similarly, which is due to the relatively
slow variation of leaf thickness (see also figure 7.10).

7.4 Discussion

In this chapter, we demonstrate PRC with strawberry plants. We
show experimentally that plants outperform a control setup for
non-trivial tasks such as light intensity 𝐼PAR, transpiration rate 𝐸
and photosynthesis rate 𝑃𝑛. Moreover, we also investigate per-
formance on common benchmark tasks such as NARMA-10 and
a delay line. In this discussion, we first match our results with
literature and chapter 5. We also highlight current limitations
and future improvements to plant PRC.
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Figure 7.12 Comparison of the NARMA benchmark task using light
intensity data 𝐼PAR for 𝑛 = {2, 5, 10, 20, 50, 100}. Errorbars indicate the
standard deviation.

7.4.1 Performance Comparison with Literature

Literature reports that a significant negative correlation exists
between leaf thickness and transpiration rate 𝐸 (Giuliani et al.
2013), explaining why predicting the latter is the best perform-
ing task for both strawberry plants. Though studies on multiple
species investigated the correlation between photosynthetic rate
𝑃𝑛 and leaf thickness, none have reported significant results (Giu-
liani et al. 2013; Nikolopoulos et al. 2002).

We only performed environmental and ecophysiological experi-
ments in chapter 5, so we limit our comparison to those. More-
over, the number of ecophysiological parameters studied in this
chapter is also more limited since we wanted to exclude param-
eters that were overly dependent on temperature. We compare
the overall results from figure 7.5 to figure 5.8. The advantage of
using subsampling, as demonstrated in figure 5.11 is small and
does not gain more insight into the results. When comparing the
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leaf thickness results to chapter 5, we observe that NMSE values
for 𝐼PAR are better in the case of the hyperspectral camera than
the leaf clips. However, this is no surprise since a camera directly
observes light. Moreover, the overall results are better in case
of the thickness clips since for in the hyperspectral experiment
NMSE values ranged between 0.02 – 0.04 for plants and 0.02 – 0.03
for background materials. The thickness clips experiments has
NMSE values of 0.25 and 0.28 for plants and 0.75 for the control
experiment. While these values are a lot higher than for the
hyperspectral data, they are significantly better than the control
experiment, which is not the case in the hyperspectral experi-
ments. 𝑃𝑛 NMSE values from the leaf thickness experiment are
similar to those from the hyperspectral experiment: 0.27 – 0.31
compared to 0.21 – 0.30 for plant1 in the leaf thickness and hyper-
spectral experiments respectively. Yet, plant2 has significantly
worseperformancewith anNMSEof 0.56. Moreover, background
materials have similar performance for 𝑃𝑛 with values ranging
between 0.34 – 0.62. This is not the case in figure 7.5. Both plants
have similar performance, and the control is very close to the
baseline prediction (0.93). For 𝐸, performance in figure 7.5 is
clearly better than in figure 5.8. This is not surprising since leaf
thickness has been shown to be a good proxy for water status in
the plant (Meidner 1990). Again, we observe that the difference
between plants and background materials in figure 5.8 is low:
0.41 – 0.60, and 0.31 – 0.66 for plants and background materials
respectively. Yet, for the leaf thickness experiment, plant scores
are 0.12 and 0.26, while the control score is much higher at 0.84.
In summary, leaf thickness is a muchmore interesting plant trait
to observe than reflectance variation using a hyperspectral cam-
era for PRC.

For the benchmark tasks, it is essential to compare with other
PRC substrates. However, comparing NMSE values from
figure 7.5 with other substrates is not straightforward. On the
one hand, there are many substrates specifically designed for
reservoir computing, such as silicon photonics and memristor
chips. These substrates perform better on benchmark tasks.
For instance, for the NARMA-10 task, photonic reservoirs have
NMSE values of 0.035 (Appeltant et al. 2011) and for the Santa-Fe
time-series prediction task, NMSE values of 0.06 are reported
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in literature for photonic reservoirs (Nakajima et al. 2021b).
However, a plant is optimised for fitness, not as a medium for
computing (Anderson 2016; Prakash et al. 2020). Moreover, many
studies mainly focus on simulations since creating a physical
reservoir is often time-consuming and expensive, especially
if integrated circuits need to be designed. On the other hand,
other studies work with biological media, but they exclusively
focus on classification tasks (Dockendorf et al. 2009; Ju et al.
2015; Jones et al. 2007; Dranias et al. 2013), a problem distinct
from regression. We opted to study regression tasks since
these are more relevant from a plant ecophysiological point of
view. Additionally, biological signals are also inherently noisy
(Bezrukov et al. 1995). This noise is difficult to filter given that
the reservoir studied here has only up to eight state observations.
Despite these limitations, these results are a pivotal first step
towards reservoir computing with plants.

Often, the effect of the reservoir size is studied in literature (Van-
doorne et al. 2014; Du et al. 2017), but this is more difficult for
plants. Isolating a part of a plant and maintaining its growth
as though it was still part of a larger entity is not possible. An
integrated perspective is thus necessary. As a result, we study the
number of observation points (or readouts) of the reservoir. The
number of readouts also greatly affects performance (i.e. lower
NMSE values for larger numbers of observations), as indicated in
figure 7.9. This illustrates that an increased number of observa-
tions can improve the prediction accuracy of transpiration rate 𝐸
and photosynthetic rate 𝑃𝑛 beyondwhat is possible using a single
sensor. In literature, this effect has also been reported, as well
as the saturation effect for as the number of readouts increases
(Pinna et al. 2020; Vlachas et al. 2020). Increasing the number of
readouts has an effect on the fraction of observed dynamics. Full
observability is not possible for plant-based reservoirs, even if the
leaf thickness variation of each leaf is characterised. While short-
term leaf thickness variations are a good proxy for plant water
status dynamics, there are many more unknown factors such as
hormones, metabolism, nutrient take-up and carbon dynamics.
These are also part of the reservoir but not directly quantifiable
using leaf thickness measurements, although correlations will
exist with leaf thickness because nearly all plant processes are
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impacted by the plant’s water status (Barillot et al. 2020; McBur-
ney 1992).

The unexpected drop of NMSE in the curve for the control ex-
periment in figure 7.10 is the result of the correlation between
the light intensity 𝐼PAR and air temperature 𝑇air. This correlation
arises due to two effects. First, as depicted in figure 7.6, there
is a limited correlation between air temperature 𝑇air and most
thickness clips of the control experiment (except for 𝑥3). Though
combined, a set of clips is still good at predicting the air tem-
perature (see figure 7.9) for the control experiment. Second, the
correlation between air temperature 𝑇air and light intensity 𝐼PAR
is maximal at a delay of 4600 s. Consequently, the train error is
lowest for a delay of 5000 s and the test error is lowest for 10 000 s
for the control experiment. The mismatch between train and
validation error is probably due to the model overfitting on the
data at a delay of 5000 s. At an increased mismatch at a delay of
10 000 s, the model might generalise better. Therefore, the test
error isminimal. Naturally, this also occurs for the plant observa-
tion, yet we do not observe this effect because these observations
have many more influencing factors due to being mounted on a
plant.

While PRC with plants is far from being ready for use in the
field, we can observe some of the potential already in these re-
sults. In figure 7.10, we observed a slight dip around 200 – 500 s.
There might be a lag between a change in light intensity and
the resulting difference in leaf thickness (Meidner 1990). This
dip may imply a time lag of 200 – 500 s between acclimation of
the leaf thickness and the changing light intensity. This lag can
signify a suboptimal response of the leaf to the fast-changing
light intensity. Quantifying, studying and improving this rela-
tionship is especially relevant for plants in the field since they
are subject to fast-changing light intensities. Though optimising
this dynamic behaviour of plants is often ignored and could even
be more important than static performance (Kaiser et al. 2018;
Kromdijk et al. 2016). PRC can provide the means to characterise
this mismatch.
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7.4.2 Limitations and Future Improvements

The results presented in figures 7.5 and 7.9 to 7.12 are encour-
aging. Better sensor technology and calibration can likely re-
duce unwanted effects due to the sensor-environment interaction
and improve signal extraction. Alternative sensor systems such
as biopotential (Escalante-Pérez et al. 2011), sap flow (Vandege-
huchte et al. 2012) or leaf length (Barillot et al. 2020) might be
better suited for certain tasks than leaf thickness.

While the experiments presented here are mainly theoretical,
they may result in practical applications in future work. Treat-
ing a plant as a computing entity can help to generalise plant
behaviour and provide essential context to physiological studies.
Each trait exhibited by a plant can be viewed as the result of the
complex interaction between environmental queues and plant
behaviour. Essentially, a plant can be viewed as a computational
unit that analyses the incoming environmental signals and opti-
mises its physiology accordingly.

We identify three main issues with PRC for plants: (i) the effect
of uncontrolled and uncharacterised inputs, (ii) non-stationarity
of plants and (iii) plants do not experience their environment in
discrete time. First, plants are sensitive to many signals, includ-
ing the three environmental variables modulated here, but also
chemicals (both airborne and in the soil), mechanical stimula-
tion, electricity, and sound (Karban 2015). None of these fac-
tors is easily controlled and/or kept constant. As a result, these
additional input sources possibly distort the applied input sig-
nals (Soriano et al. 2013). One could argue that the reservoir
should be able to cope with these additional variations, but there
are also limits to the observable processes using thickness clips.
Second, plants are non-stationary entities. They keep on devel-
oping (Hilty et al. 2021) and over time, they violate the fading-
memory requirement. As a result, online unsupervised learning
algorithms are required to create a readout mechanism that is
able to cope with changes in the reservoir. One way this can be
tackled is using reward-modulated Hebbian learning (Gerstner
et al. 2002; Burms et al. 2015). Third, plants continuously sense
environmental changes and act accordingly. Hence, they do not
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respond in discrete time. In this chapter we did not investigate
the implications this has on the reservoir performance and the
observed dynamics.

After all, plants are complex integrated systems containing
many coupled processes that occur at different timescales. For
instance, photons are absorbed by chlorophyll molecules within
1 fs, whereas chlorophyll fluorescence is emitted in 1 ns after
photon incidence (Taiz et al. 2010). More integrated processes
such as stomatal opening and closure respond in the order of 20 s
after a change in illuminance. Hydraulic functioning (e.g., water
transport) changes in the range of seconds to minutes, whereas
organ growth rates vary in the order of minutes to hours (Jones
2013; Hilty et al. 2021). Consequently, a plant-based reservoir
also operates at these timescales though not all of them are
observable using leaf thickness sensors.

Our experiments are a first step towards plant-based PRC. Addi-
tional experiments and analysis are needed to reassure that the
plant can indeed be used for PRC.While a plant is a highly nonlin-
ear dynamic system (see also section 4.1), we did not perform an
analysis of the timescales at which the sensors observe the plant-
reservoir. Moreover, the environmental and ecophysiological
tasks do not evaluate thememory capacity. Amore detailed anal-
ysis that builds, for instance, on figure 7.10 could help to better
understand the (fading) memory properties of plants. Moreover,
the underlying plant processes should also be investigated to ex-
plore the origins of the plant computing properties. This body of
work highlights the next steps necessary for plant-based PRC.

7.5 Conclusions

In this work, we presented – to the best of our knowledge – the
first application of PRC-inspired computing with plants, more
specifically strawberry (Fragaria × ananassa). We investigated
several types of tasks, including environmental, ecophysiological
and benchmark tasks. The results indicate that plants are not
well suited for general-purpose computation but are potentially
highly interesting for plant-specific tasks and applications in
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phenotyping. Plants are best at solving ecophysiological and
environmental tasks, more specifically transpiration rate 𝐸,
photosynthesis rate 𝑃𝑛 and light intensity 𝐼PAR.
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8
Discussion and Future Perspectives

In this chapter, we reviewhowwe achieved PRCwith plants, sum-
marise the main achievements that led to this result and provide
future perspectives on possible advancement studies at the end
of this chapter.

8.1 Overview of the Main Results

Since the conceptualisation of reservoir computing around the
turn of the century and its transfer to physical systems, PRC has
grown in scope and popularity as an alternative to conventional
computing (Nakajima et al. 2021a). Some of these new tech-
nologies promise to drastically reduce power consumption or
improve performance for machine learning tasks (Du et al. 2017;
Freiberger 2020). Another subdomain of reservoir computing is
focussing more on embodiment and outsourcing control to the
body. This technique promises to reduce the complexity of the
microcontroller and improve robustness in compliant robotics
(Degrave et al. 2013; Nakajima 2020; Caluwaerts et al. 2014).

In this work, we aim to introduce reservoir computing to an un-
explored field: plant ecophysiology. While plants do not meet all
the criteria for reservoir computing in a strict sense (section 4.1),
it can form the basis of a paradigm shift in plant ecophysiology.
Instead of focussing on specific traits and their effect on physiol-
ogy, a more holistic approach can yield interesting new insights
into plant behaviour.

In a first study (chapter 5) where we investigated if plants can
be considered living reservoirs, we used a hyperspectral camera
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to monitor the plant’s state. This study was unsuccessful; data
from background materials and plants were equally good at pre-
dicting the physiological tasks. We suspect that the root causes
were insufficient accuracy of the camera and limited spectral
changes. Improved sensor technology might solve some of the
issues, but specific sensory equipment appears more interesting
for several reasons. Firstly, hyperspectral cameras are expensive
sensors compared to conventional RGB cameras. Secondly, they
produce vast amounts of data if onewants to study dynamic plant
behaviour. Storage and processing of this data can be a chal-
lenge. Thirdly, hyperspectral data is complex. There are many
bands available, and the spectral resolution might not be uni-
form. Moreover, extracting the relevant features from the data
is an ongoing research topic. In summary, we advise avoiding
hyperspectral cameras to study the dynamics or subtle variations
of plants. However, based on many examples from literature,
they can be very effective at capturing strong dynamics due to
drought and diseases (Mahlein 2015; Lowe et al. 2017).

Changing the sensory system to a contact-based system was an
appropriate solution because contact sensors offer a more direct
measurement and generatemuch less data, which in turn simpli-
fies the analysis. However, most commercially available readout
systems for phenotyping did not meet our requirements in terms
of accuracy, flexibility and cost. Consequently, we designed a
custom solution: Gloxinia. The design of this sensor platform is
discussed in chapter 6. We successfully demonstrated its opera-
tion in that chapter and in chapter 7.

Using this custom sensory system, we demonstrate PRC-inspired
computing with plants in chapter 7. We show how leaf thick-
nessmeasurements of strawberry plants were used to assess eco-
physiological, environmental and benchmark regression targets.
Our results indicate that plants are unsuited for general-purpose
computing, yet instead are highly relevant for plant-related tasks.
Photosynthetic rate and transpiration rate are the two main bio-
logical tasks investigated.

Chapters 5 and 6 illustrate the steps taken leading up to the re-
sults in chapter 7, demonstrating PRC with plants. Although the
results in chapter 5 were inconclusive, they are highly relevant
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for the phenotyping community. Using our findings, we illustrate
some of the limitations of current hyperspectral technologies.
Moreover, we also illustrate that despite some tasks being per-
formant, the plant was not the root cause of said performance.
This highlights that it is always important to study the effect of
the environment and sensory system. As a result, the PRC study
fromchapter 7 also included a control experiment to ensure com-
putation arose due to plant dynamics and not the dynamics of
the environment. PRCwith plants is currently in the start-up and
exploration phase. We suspect increased interest from the plant
science community and generalisation tomore plant species can
transform PRC with plants to a wide field of research.

8.2 Gradual Improvements To the Experimental
Setup

The twomain studies presented in chapters 5 and 7 are portrayed
without any of the obstacles and problems we experienced. In
this section, we provide advice for future researchers working on
PRC with plants.

Plants are living organisms and have clear preferences in terms
of environmental conditions (Ozores-Hampton et al. 2012;
Boote et al. 2012; de Koning 1994; Sionit et al. 1987) (see also
section 4.1). The variability they experience from germination
also determines (partially) their ability to cope with variability
in a more developed stage (Jones 2013). We experienced major
problems when transferring plants from the greenhouse to the
growth chamber. Conditions inside the greenhouse are much
more uniform, especially in terms of temperature and relative
humidity. Since these two factors are modulated in the growth
chamber for both studies (chapters 5 and 7), this presented a
major challenge to prevent the plants from experiencing stress.
This stress was not due to extreme environmental conditions
but due to slow acclimation. This was especially true for tomato
plants. As a result, we switched growing plants from the
greenhouse to another (large) growth chamber. In this growth
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chamber, plants were subject to similar differences as those
during the experiments.

For strawberry and bean, this solved the problem of a stress
build-up from the start to the end of the PRC experiments. How-
ever, tomato plants still experienced significant stress towards
the end of each experiment. This is characterised by deformed
and smaller leaves, as illustrated in figure 8.1.

(a) (b)

Figure 8.1 A tomato plant at the start (a) and end of the experiment (b).

Initially, we worked with short experiments when working with
the hyperspectral camera. The idea was to first emulate PRC re-
search on computing with a soft silicone arm (figure 4.1b) (Naka-
jima et al. 2015). Here, the input consists of various sinusoidal
signals. This generates a semi-random signal that excites the
reservoir. However, when attempting to do something similar
with the environmental drivers (air temperature, relative humid-
ity and light intensity), plants were often stressed at the end of
the experiments and/or responses were divergent. Their internal
circadian rhythm persisted because of internal signals (Taiz et
al. 2010). It is thus important to either have a warm-up phase
prior to the experiment where plants are acclimatised to such
conditions or to change the experimental setup such that the
circadian rhythm is preserved. We opted for the second option
because it is more relevant from a biological perspective and for
future applications.
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8.3 Future Work and Applications

From the results presented in chapters 5 to 7, we can identify
five future research lines: (a) studying the spectral changes of
plants in greater detail; (b) further development of the Gloxinia
platform towards more types of sensor technologies supported
andmore robust operation; (c) refining results of PRCwithplants;
(d) investigating a closed-loop setup; and (e) working towards
applications.

Dynamic Plant Spectrum The research presented in chapter 5
features someof the limitations of hyperspectral cameras. Never-
theless, they are popular sensing devices in plant phenotyping. If
this research wishes to transition towards capturing more subtle
variation in plants, more research is needed to understand the
timescales and variation one can expect in such setups. To that
end, we envision a small-scale study where various plants are
extensively monitored using high-resolution point or line sen-
sors. Results from such experiments can be used to gain insight
into the possible variation observablewith state-of-the-art sensor
technologies. Based on these results, large-scale experiments
can be optimised to gain more insight into a plant’s phenotype
and performance in agricultural systems.

Expansion of Gloxinia For research purposes, the Gloxinia plat-
form is sufficiently capable. However, its robustness should be
improved such that it can run unsupervised for extended peri-
ods of time. Currently, this is not possible because there are
insufficient recoverymechanisms built-in when a sensor readout
temporarily fails. Moreover, using the system requires extensive
knowledge; if we want it to be employed by a wider audience in
the plant science community, it should bemore user-friendly. To
this end, a largenew iteration of the interconnectivity is required,
for instance one could rely on USB-C type connectors to connect
sensors to the measurement device. Moreover, an enclosure is
also needed. If designed well, end-users should just have to plug-
in the sensors and register them using a software tool. These im-
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provements should make it possible for non-experienced users
to use Gloxinia without learning the details of the system.

RefinementofPRCwithPlants The results presented in chapter 7
are promising but can still be expanded further. Better sensor
technology and calibration can likely reduce unwanted effects
due to the sensor-environment interaction and improve signal
extraction. Alternative sensor systems such as volatile organic
compounds (Moru et al. 2020), biopotential (Escalante-Pérez et al.
2011), sap flow (Vandegehuchte et al. 2012) or leaf length (Barillot
et al. 2020)might be better suited for certain tasks than leaf thick-
ness. These refinements can be used to gain a better understand-
ing of the types of tasks and sensors that match. Furthermore,
we need to evaluate the generality of the framework among plant
species. Therefore, the PRC framework should be applied tomul-
tiple plant species for specific regression or classification tasks to
extend the results of chapter 7 to more species. Moreover, those
results should also be expanded to detect stress. For instance,
one could investigate the quantification of plant drought and heat
stress in response to reduced water availability. To assess this
stress, a quantifiable stress trait needs to be defined. For exam-
ple, one could assess the biomass accumulation based on a digital
twin and compare this with experimental data.

The experiments presented in chapter 7 are limited in scope
for the quantification of the nonlinear and memory properties
of plants due to the lack of additional theoretical analysis and
benchmark experiments. We assumed matching timescales due
to the choice of leaf thickness observation and weather-data
based input pattern generation. However, additional test are
needed that validate this match when we increase or decrease
the timescale of the input. For instance, the light intensity
variations can be increased and as the frequency of change
increases there should be less information captured by the
leaf thickness observation. Moreover, the plant-relevant tasks
have limited time-dependence. Tasks with more extensive time
dependencies should be evaluated. Moreover, the underlying
processes that generate the memory and nonlinear properties of
the plant reservoir should be be investigated too.
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So far, we have focussed exclusively on the part of the plant that
is above the soil. Yet, the reservoir also consists of plant roots.
These roots are a large and vital part of the plant. While there is
increased interest in studying the development and functioning
of root systems, many aspects remain unknown due to the inac-
cessibility of roots. Mounting contact sensors requires digging
up part of the roots. Consequently, one might unintentionally
alter them and disturb their surroundings. Recent techniques
such as electrical impedance spectroscopy, spectral induced po-
larisation andelectrical resistivity tomography enable frequency-
dependent characterisation of roots without the need to disturb
them. Such techniques quantify the redistribution of water in the
soil, which can be used as a proxy for root activity (Ehosioke et al.
2020; Maurel et al. 2020).

In research setups, leaf thickness clips are good enough, but
mounting leaf thickness clips in plants is labour intensive, and
they cannot remain on the plant for months because they alter
the leaf physiology. Consequently, for real applications, there is
a need to transition away from contact-based technology towards
contact-less technologies. To this end, image sensors are most
attractive. However, care must be taken in selecting appropriate
features and optimising the experimental design. Our work in
chapter 5 showed that subtle spectral variations are challenging.
An easily identifiable alternative could be plant movement. The
leaves of beans, lettuce and Arabidopsis plants feature extensive
movement (Greenham et al. 2015; Nagano et al. 2019; Inoue et
al. 2005). Monitoring leaf movement can be fully automated for
large plant populations, thus enabling PRC to scale beyond plant
research.

Closing the Loop The PRC framework includes the integration
of output feedback loops. Within the framework, one is thus not
limited to detection but can also realise control on the input. For
example, Eder et al. (2018) have shown that by exploiting the dy-
namics exhibited by a soft robot body, control can be reduced to
simple linear regression. However, within the context of plants,
we lack a supervisory training signal. This entails that we cannot
rely on a classical supervised learning system: it is not possible to
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identify a correct growth path,multiple paths exist and exploring
themall is not possible. Consequently, we need to rely on a global
reward signal such as biomass increment, photosynthesis rate
and stomatal conductance. Such a reword signal can be used
to optimise the system without knowing the optimal values for
each monitored variable. In neurobiology, reward-modulated
Hebbian learning can alter the synapseweights driven by the cor-
relation between a global reward signal, presynaptic activity, and
the difference of the postsynaptic potential from its recent mean
(Loewenstein et al. 2006). Legenstein et al. (2010) and Burms
et al. (2015) showed that a physical reservoir system can learn
motor control tasks using an online reward-modulated Hebbian
learning rule. Despite the lack of a supervised learning step, the
system can learn motor control tasks with an instantaneous re-
ward signal. Such a system can also be leveraged for plant-based
control loops. As such, the plant dynamics can be exploited for
controlling the environmental factors in greenhouses and indoor
plant factories or even irrigation in the field. Figure 8.2 visualises
a conventional control loop in (a) and a PRC-based controller in
(b). PRC shifts the conventional informationprocessing for stress
detection or growth control from an external computer to the
plant.

Applications In ecophysiological experiments, one typically
measures only one or two plant variables to determine the
plant’s physiological state (Tardieu et al. 2017). Whenever the
parameters move outside predefined bounds, a limited number
of environmental drivers (e.g., watering and temperature) are
modulated to influence this state. This process completely
ignores the complex dynamic interplay between the plant and
the environment due to the inability to relate small changes
in plant variables to environmental changes. Indeed, a plant’s
responses are the result of current and previous environmental
conditions. Since there is no one-to-one relationship, it is
unclear what the cause of small changes is. However, with
the PRC framework, we can interpret experiments in which
multiple environmental factors continuously vary due to the
characterisation of the plant’s state using multiple sensors at
high time resolution. The sensor-agnostic framework facilitates
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physical system
(e.g., greenhouse, vertical farm…)

actuator
(climate control,

irrigation…)

sensors
(temperature,

humidity, visual
inspection…)

information processing
(nonlinear, memory)

(a)

controller

physical system
(e.g., greenhouse, vertical farm…)

information processing
(nonlinear, memory)

actuator
(climate control,

irrigation…)

sensors
(leaf thickness,

plant
properties…)

controller

(b)

Figure 8.2 Closed loop control using an external controller (i.e. a con-
ventional setup) and a PRC controller. Instead of relying on an external
controller that has to interpret the signal and select the optimal actua-
tion, the sensors directly drive the actuation using the physicalmedium
as a controller. The advantages of this setup are easier control andmore
timely response to deviation due to stress in the plants.

181



Chapter 8

a general approach to control problems. No single measurement
will be linked to a single ecophysiological variable. Instead,
PRC uses the aggregate of the various measurements to obtain
a fuller picture of the plant’s physiological state. Consequently,
PRC with plants provides an entirely new way of looking at plant
responses at a much more integrated scale.

This integrated view offers the possibility to quantify and analyse
plant responses from a completely new point of view. Plants and
by extension ecological systems are all (non-stationary) nonlin-
ear dynamic systems. These systems receive internal and envi-
ronmental inputs and optimise their responses accordingly. This
is highly analogous tohowPRCworks for stationary systems. PRC
provides ameans to quantify informationprocessing by plants. If
the right tasks are defined, this can yield the phenotyping com-
munity the ability to quantitatively study plant performance in
a general way. As a result, we suspect that it might lead to the
discovery of previously unknown relationships and traits due to
this more holistic point of view.

8.4 Epilogue

In this dissertation, we created a bridge between PRC and plant
ecophysiology. We investigated the usage of hyperspectral cam-
eras and (leaf) thickness sensors to monitor the plant’s state. By
means of different regression tasks, we observed that plants are
not fit for general-purpose computation but instead are prime
candidates for plant-related computation such as characterisa-
tion of ecophysiological parameters. Moreover, we envision fu-
ture applications in the field of plant ecophysiology, breeding and
precision agriculture. Our aim is to inspire more researchers
in the plant science community to investigate the computational
properties of plants and leverage the advantages that the PRC
framework brings to the field.
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856
(6.9)

867
(8.4)

846
(7.9)

834
(10.6)

953
(21.5)
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(19.7)

945
(16.9)

929
(16.1)

920
(15.0)

960
(15.5)

750
(6.3)

765
(6.6)

738
(4.7)

724
(5.2)

699
(4.1)

803
(7.5)

815
(7.5)

790
(9.4)

777
(6.8)

684
(4.4)

897
(13.2)

907
(13.3)

887
(13.0)

876
(12.0)

678
(3.1)

Table A.1 Hyperspectral pixel, represented as physical 2D-grid of peak
bands in nm andwidth half-peak-full-width specified between brackets
in nm of the near-infrared sensor (H1).

For reference, tables are included that depict exact numbers in-
stead of bar charts. Table A.3 corresponds to figure 5.8, while
table A.4 matches figure 5.11
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538
(12.9)

552
(13.0)

524
(9.2)

512
(6.5)

620
(5.1)

480
(6.6)

611
(12.2)

602
(12.1)

580
(10.7)

591
(11.4)

567
(11.0)

554
(11.7)

489
(10.6)

500
(8.2)

477
(7.9)

470
(2.9)

Table A.2 Hyperspectral pixel, represented as physical 2D-grid of peak
bands in nm andwidth half-peak-full-width specified between brackets
in nm of the visual sensor (H2).
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Figure A.1 Spectrum of the halogen lights and LED lights used in
the experiments. The spectral were measured using Jaz Spectrometer
(Ocean Optics, Dunedin, FL, USA) from a distance of 20 cm directly
below the light source.
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Figure A.2 Reflection spectra of the three materials in the first exper-
iments at similar PAR conditions ( 200 µmolm−2 s−1) at two different
temperatures, 𝑇air = 14 °C and 𝑇air = 32 °C, illustrating the variable
spectral response. The peaking of some peaks is the result of strong
secondary peaks of the sensor’s response and the emission spectra of
the lights, depicted in figure A.1.
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Analogue Front-end Specifications
of Gloxinia

The PGAmeets the noise specification for the first design criteria
of the selected ADC for the first three gain settings (1, 2 and 5).
However, the PGA does just not meet the distortion requirement
for a unity gain configuration. The PGA has a total harmonic dis-
tortion (THD) of −104 dB, and the ADC −100 dB at 1 kHz. Though,
this should not be a limiting factor, since the signal frequencies
of interest are typically much lower for Sylvatica. The digital
filter onPlanalta has a very narrowbandwidth, so this should also
be sufficient. A simulation was not performed since there is no
simulation model available for this PGA.

For sensors that use a constant supply voltage, there are three
possible supply voltages: 3.3V, 5V and 12V. All these supplies
are located on Dicio, so all boards that are connected to the same
Dicio control board have the same supply voltages available.
Each sensor board features one additional power supply of 4V
to power the buffer, PGA and ADC. This is the only supply that
is not available to the user from one of the connection ports.
Furthermore, this supply voltage is generated independently on
each sensor board. The 3.3V supply can deliver up to 1A.

The 12V switching power supply enables Sylvatica to interface
with common environmental sensors such as HMP50-L and
CS616 from Campbell Scientific, USA. The on-board supply can
deliver up to 35mA.

A stable 5V reference is not always available, for example when
the Dicio main power supply is derived from universal serial bus
(USB) or when the supply is located at a large distance from the
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node. For these situations, a power supply (RP604Z501B, Ricoh,
Japan) can be soldered onDicio to stabilise the 5V supply rail and
deliver up to 300mA.
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Figure C.1 Image depicting the setup at the end of the strawberry 1
experiment.
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Figure C.2 Image depicting the setup at the end of the strawberry 2
experiment.
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Figure C.3 Image depicting the setup at the end of the control experi-
ment.
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