
Low cost player tracking in field hockey

Henrique Duarte Moura, Leonid Kholkine, Laurens Van Damme, Kevin Mets,
Christiaan Leysen, Tom De Schepper, Peter Hellinckx, Steven Latré

University of Antwerpen - imec, IDLab - Department of Computer Science

Abstract In the paper, we describe the technical details of a multi-
player tracker system using tracking data obtained from a single low-cost
stationary camera on field hockey games. Analyzing the tracking data of
the players only from the transmitted video opens a multitude of appli-
cations that allows the cost of technology to be reduced. This method
does not depend on the cooperation of the players (by using sensors) or
their teams (by sharing data with a third party). The approach taken
in this paper uses a variety of computer vision and tracking techniques.
Making player tracking data more accessible lowers the barrier to entry
for sports research and increases the period during which advanced anal-
ysis methods can be applied. The proposed system runs the full pipeline
at 3 fps on a computer with a simple graphics card.

Keywords: Computer vision, field hockey video analysis, player tracking

1 Introduction

Artificial Intelligence (AI) impacts many aspects of sports. Its application can
provide pre- and post-game reports, online summaries, and performance analysis
personalized to specific targets, such as athletes, coaches, media, and fans. Many
challenges still exist involving data collection (e.g., merging sensor and video
data) and processing (e.g., large volumes of high-quality video data). Track-
ing players is key to analyze game strategies, player and team performance. It
involves two steps: identification of in-field players and tracking them in time.

AI is widely used to track players using video data. Most studies consider football
[1], soccer [2, 3], basketball [4, 5], and ice hockey [6] games. Most of them require
expensive hardware around the pitch, sensors attached to the players or the ball,
and manual annotation. Sensors could simplify tracking. However, there are some
challenges using sensors: (a) not all teams wear them, (a) there is no suitable
sensor to use in the ball, in most cases, (c) its use needs approval from the
sports federation, (d) the sensor may not have an open API for online access,
and besides that (e) the opposing team has little interest in sharing its data.

Multiple-object tracking (MOT) solutions benefit from the high quality of state-
of-art object detection algorithms, popularizing the tracking-by-detection ap-
proach. This type of approach allows very simple, but accurate tracking methods
to be applied, and depends mainly on the use of bounding boxes or detection
masks as input to high-speed trackers. However, tracking players remains chal-

1



lenging due to frequent occlusions, abrupt movements, and environmental con-
ditions (lighting, shadows, etc.). Moreover, players in one team wear the same
uniform, making them more difficult to distinguish. In addition, players’ body
shape variations and poses, motion blur, and the presence of the reserve players
and spectators alongside the pitch make the players hard to be tracked reliably.
Thus, many existing tracking methods fail in this field.

We show in this paper a player detection and tracking method inspired by recent
progress in deep learning (DL). Our method operates on a sequence of frames
from a stationary camera. We develop the full field hockey video analysis pipeline.
The different modules are designed with performance in mind to allow efficient
processing of high-definition video. In this paper, we make three contributions.
First, we present a complete pipeline that can (i) identify which area of the
image corresponds to the field; (ii) detect the people in the image and select
only the players on the pitch; (iii) exclude goalkeepers and referees because they
are not tracked; (iv) identify which players correspond to which team; and finally
(v) track the movement of these players on the pitch. Second, a comparison of
two different approaches for each module described before. Third, a technique
that combines the tracking by similarity with a merging stage. In contrast to
existing approaches that solely focus on one aspect of the pipeline, our proposal
yield insights into which points need improvement in the current state-of-the-art
algorithms.

The paper is organized as follows. Related work is listed in Section 2, while the
architecture is presented in Section 3. The experimental setup and results are
discussed in, respectively, Sections 4 & 5. Finally, Section 6 concludes this work.

2 Related work

Several works on player detection and tracking make use of computer vision
algorithms, tracking heuristics, and DL. Here, we discuss the main approaches.

Detection methods: Originally, feature maps associated with classifiers are
used to identify the players, such as the Deformable Part Model [7, 8] and the
histogram of oriented gradients (HOG) features [9]. Gaussian mixture model
(GMM) can separate background and foreground [10]. Those methods work well
for offline processing but depend on pre-selected features to identify the objects.
Newer methods profit from the advances in DL using detection networks to iden-
tify the player or the ball [11–14]. Other solutions identify the pitch using the
dominant color of the background, morphological filtering [15, 16], or more com-
plex color segmentation approaches [17] but suffer from shadows and lighting
variation. One can also apply a deep semantic segmentation network using se-
mantic cues (the field surface, lines, etc.) [18]. However, the hockey pitch has
few semantic cues.

Trackers: Most modern trackers follow the tracking-by-detection paradigm,
where an object detector first finds all objects of interest in each individual frame
before a tracking algorithm deals with the problem of associating the objects in

2



consecutive frames [11, 19–26]. A common approach is to use a Kalman filter
(KF) to forecast random variables (e.g. position or speed) at a specific times-
tamp [8]. Several proposals are based on this filter, such as Simple online and
real-time tracking (SORT) [27], DeepSORT [11], and MF-SORT [24]. The associ-
ation between frames can use appearance and motion features [13], the bounding
boxes’ intersection over union (IoU) in consecutive frames [28], visual aspects of
players [29] and geometric cues [26] can be added in the matching between video
frames. Particle filter [30] and k-shortest paths (KSP) tracking [31, 32] are alter-
natives to KF. To improve the tracking due to occlusions, ensemble methods are
used. For example, simple trackers can be sampled from a set of trackers using
Markov Chain Monte Carlo (MCMC) [33]. However, this method needs manual
feature engineering and is slow to run online. Deep networks were also applied to
solve the tracking problem. Long Short-Term Memory (LSTM)s can concatenate
high-level visual features produced by a convolutional neural network (CNN)s
with region information to track the players [12]. The long-term behavior of the
players can be extracted using deep hierarchical networks [4]. Siamese network
[34] composes a correlation filter used to discriminate between images and their
translations in consecutive frames. Despite the improvements, the DL algorithms
are slower than filters. When two players are close to each other, their identi-
ties can easily be switched. To address this problem, researchers have explored
appearance models [35, 36], motion models [37, 38], or a mix [32].

Other approaches to detection Other tracking methods also still exist that
do not require video input. For example, Yurko et al. [1] used RFID tags, but
it requires a large amount of hardware to be installed on-site, as well as the
cooperation of both teams for the installation of the RFID chips on their players.

Summary: Most of the current approaches focus only on one aspect: detection
or tracking. Our solution provides a complete pipeline that works with images
captured by a camera. These images are processed for the identification of players
and the field and subsequent tracking of in-field players. Our approach, described
in the following sections, uses tracking-by-detection, where we balance the system
performance vs the result’s quality to process high-quality video.

3 Proposed solution

In this section, we describe our modular video processing pipeline, shown in
Figure 1. It identifies and tracks field hockey players using a low-cost camera
as an input. The main components are field detection, player detection, team
labeling, and tracking modules. The camera streams the video, which is captured
by the system frame by frame. An image flows in the pipeline from left to right.
Each frame is forwarded to a worker that detects the players. There are two
processes depending on the execution stage of the system: (1) "Run on startup"
module runs at initialization and are shown at the top of the figure, and (2) after
startup, the system runs modules in "Run on multiple workers". These stages
are explained below. "Run on startup" and "Dedicated worker" run in the same
worker, because they don’t compete for resources.

3



Dedicated workerDedicated workerRun on startupRun on startup

Run on multiple workersRun on multiple workers

Image 
calibration

Frame 
dispatcher

Person 
detection 

(Yolo-based)

Field detection
(Mask RCNN)

Team labelling
(CNN classifier)

Video 
stream

Radial and 
tangential 

factors

Pre-trained 
field model

Homography

Homography 
mapping

Start/end 
frame
fps

Frame 
<seq_id>

Image 
Segmentation

Projection

Reference 
points

Virtual field

mask

matrix

Frame <seq_id>, Teams and 
Positions in the real world

Player tracking
(kalman filter)

Tracks

Pre-trained 
team 
model

Output.json

Previous 
classifica

tions

Team labelling
(majority vote)

Team, position

Player tracking
(merge tracks)

Annotated 
frame

Image 
calibration

Frame

Undistorted 
Frame Bounding 

boxes

TeamA, TeamB, 
Goalkeepers, Referees

Figure 1. Proposed pipeline
During start-up, the first frames are used to generate the homography matrix,
which is used to convert the pixel coordinates (image) in coordinates in the
virtual field, i.e., coordinates measured in meters in a Cartesian system [39,
§ 2.1.2]. As there are few reference points in a field hockey pitch, several frames
are captured to compute a robust position of the reference point, improving the
homography’s quality. After this step, the workers that perform the detection
are activated. A dispatcher selects the worker (e.g., via round-robin) to receive a
frame, which has a unique sequential identification number that allows the results
to be sorted in the tracking step. The image calibration corrects the received
image (e.g., removes distortions), which depends on parameters of the camera,
lens type, and resolution. Next, a module detects people in the (corrected) image,
which, combined with the field detector, identifies the players inside the pitch.
In-field players are also tracked. We will explain below the main modules.

Field detection: We tested two ways to detect the field: (1) using Mask region-
based CNN (R-CNN) network [40, 41], which obtain a polygon that represents
the limits of the pitch; and (2) using instance segmentation based on Mask R-
CNN and Hough transform to detect the pitch lines, the goals, and the penalty
mark. With the lines identified by the segmentation, the system can say which
are the external lines of the pitch that demarcate the limits of the field.

Player detection: We tested two different approaches: (1) based on Yolo v5,
which outputs the bounding box of the detected players; and (2) based on Mask
R-CNN [40] that segments the image on a pixel-to-pixel basis. The former is less
complex, thus it smaller and faster. However, with the finer granularity of the
second solution’s output, it can show better results in occlusion cases (due to
being able to detect a person based on only a part).

Team labeling: The images of all the people in the field are sent to a module
that classifies them into two teams, referees, keepers, and unknown. We also
tested two approaches. The first uses visual cues (characteristics). As the images
of some players are very small, like one can see in Figure 2, we cannot use more

4



Figure 2. Result from the pipeline

sophisticated methods such as identifying faces or reading texts on the player’s
jersey. A CNN is used for feature extraction, i.e., find the important characteris-
tics of the players, and classify the detected people into both teams. The second
method is based on a clustering method and separates players belonging to team
1 from those from team 2 using density-based spatial clustering of applications
with noise (DBSCAN) [42, 43]. The labels outputted by DBSCAN are used to
split the player detection into two teams and non-players (the outliers). We use
DBSCAN for two reasons: (a) few hyperparameters need to be configured and
(b) the inherent ability of the method to deal with outliers (referees and keepers).

Tracking: The pixel coordinates obtained by the player detection module are
converted to the coordinates of the virtual field. We tested two methods to track
the players. The first uses bipartite matching [44, 45], which joins elements from
two sets (subsequent images) while keeping the cost of the edges (similarity
metric) as low as possible. A simple metric is a Euclidean distance between the
coordinates on frames t− 1 and t. The results are improved using the predicted
position on t of detection on t−1. This prediction uses simple motion equations.
The second method uses KF as a corrective predictor filter by estimating the
process’s hidden state that predicts where the player is in the next frame. Ideally,
in both cases, if those predictions are accurate, the distance will be zero. The
changes between consecutive frames are small. For example, using a 4000x3000
pixels image at 30 frame-per-second (fps), one meter corresponds to 72 pixels
in our video, and a person running at 12 m/s moves 29 pixels between two
consecutive frames. Thus, the similarity can be (1) the distance between the
center of the predicted and the detected bounding box or (2) the IoU of these
two boxes, as there will always be some overlap. For any of the two forms, the
assignment problem can be written, respectively, as the minimization of the sum
of the distances or the maximization of the sum of the IoU. Due to occlusions,
player overlapping, and conflicts, the tracking algorithm can break the track

5



(it considers that a new player has been identified, spawning a new track). To
reduce this problem, an additional module has been added to combine old tracks
with newly created tracks, which is based on [32, 46] but adapted to run online.

4 Experimental setup

The pipeline runs on a machine with 32 MB of RAM, 4 Intel(R) Xeon(R) Silver
4108 CPU @ 1.80GHz, and one GeForce GTX 1080 Ti. The machine also runs
Ubuntu 20.04 LTS with Python 3.8 and PyTorch 1.5.0. The camera is a Go Pro
Hero7 Black running with 1080p at 30 fps.

Player detection: The first player detector is based on Yolo v.5 [47], with pre-
trained parameters trained with 5000 COCO val2017 images [48]. We trained the
two-class classifier (person or background) on a private dataset (900 annotated
images taken from field hockey videos filmed with a GoPro Hero 8). The second
detector uses Mask R-CNN, trained with 900 annotated frames. The network
parameter was initialized with pre-trained values of 50-layer residual nets.

Field detection: The field detector based on Mask R-CNN was trained using
the same dataset described. To assist the detection mechanism, we superimpose
each frame with a 5-pixel-wide blank border. We calculate the convex hull of
the network’s output. The second method uses image segmentation with fully
convolutional networks for semantic segmentation (FCN) [49] based on the im-
plementation in [50]. We added new backbone models based on layer residual
nets (RESNET)-18, -34, -50, and -101. The best results were obtained using
RESNET-101, which also showed good results in [51]. The network was trained
using 120 images annotated by the authors.

Team labeling: The classifier requires that labeled data about the teams is
available before the match. The classifier is a multi-layer network composed
of two convolution layers (CL) and four fully connected layers (FC), which use
ReLU as activation. The CL are followed by Max Poll layers with kernel = (2, 2)
and stride = 2. The second method does not need previous training. It assembles
clusters based on visual characteristics. The outliers are the goalkeepers and
the referees, who use jerseys of different colors from both teams. Notice that
DBSCAN cannot distinguish the referees from the goalkeepers.

Tracking: We consider only the last-second window for prediction. The KF’s
hidden state corresponds to the position, speed, and acceleration of the bounding
box’s coordinates. Our approach models its transitions as constant acceleration.

5 Experimental results

Figure 2 shows an output generated by the pipeline. We clearly see that (1) the
identified players are marked with bounding boxes in the image, with players
and others who are out of the field being excluded by the tracking, and (2) the
positioning of the players in the image is converted into a virtual field at the top
left of the figure. In the virtual field, the area indicated in green corresponds to
the visual field captured by the camera. Below we discuss each module.

6



Player detection: We tested two flavors: v5s and v5m. The results for v5m are,
in general, better than v5s (F1 score 81.1% vs. 79.3%). This is expected because
v5m has a bigger network, which can capture more nuances. However, we opt to
use v5s due to its faster running time. Thus, from here onward, we only show
results with Yolo v5s. The detection module takes on average 60.590± 0.944ms
to run with the Yolo-based player detection, while the Mask R-CNN module
runs in 2.445±0.009 seconds. Thus the Yolo-based module is 40x faster than the
Mask R-CNN module, which is a much bigger network. In both methods, one
important parameter that controls the number of detected people is the threshold
used to select if detection is a person or not. Choosing the right threshold is hard.
If it is too high, it may cause a lot of people in the image to not be detected.
The current threshold is set to 0.5 for both methods. Most of the cases where
detection problems occur refers to players that were positioned far away from
the camera. We also argue that using two cameras, one behind each goal, solves
the detection problems in our footage, except occlusion.

Field detection: Using the CNN, we obtained a 98.9% accuracy with a mean
IoU of 72.8% for the entire test set. Analyzing the average IoU values per class,
we see the worst result is the identification of the shooting circle (curved line),
followed by the lines inside the pitch. The shooting circle is actually composed of
a line parallel to the goal line closed by curved edges. The algorithm confuses the
straight part with the rest of the lines in the field. On the other hand, the internal
field lines do not have visual cues capable of distinguishing one from the other.
The distinction between them is purely based on distance. We leave for future
work the incorporation of factors capable of distinguishing these lines in the
segmentation. The CNN-based field detection on average takes 0.217 ± 0.021 s to
run, while the image segmentation runs in 1.384±0.005 s. It is 6x faster than the
segmentation method, as it uses a smaller network and the segmentation involves
more complex operations. It is key that the identified field mask produced by the
detector follows the lines that define the pitch as close to perfection as possible,
to exclude players who wait near the outer lines. Both algorithms tested in this
section showed good adherence to these lines in the plane close to the camera.
However, the more distant lines, particularly the bottom line of the pitch, are
not well recognized because they are quite blurred, making the task difficult
even for the authors who made the filming. The use of two cameras positioned
on opposite sides of the field will again improve the result since the algorithm
only has to deal with the nearest lines.

Team labeling: The main advantage of the CNN-based method is that it has
higher accuracy (98% vs. 69.2%). We ran this method over a video with 2800
frames for 5 different videos, from which we created a dataset with about 10,000
annotated images of people in the pitch. The dataset was divided into train and
test sets in a proportion of 6:4. The second method uses clustering based on
DBSCAN. To configure the hyperparameter ε, DBSCAN searches the suitable
value during the startup. The running time during clustering averages 1.812 ±
0.0230 ms. This method is about 20x faster than using CNN. However, this
method does not work well due to the assumption that there are always two

7



X

750
1000

1250
1500

1750
2000

2250

Y

750
1000

1250
1500

1750
2000

2250

Fr
am

e

100

200

300

400

1

2

3
4

5

67
8 910

11

12

13 14

15
16

17
1819

20
21

22

23

24

25
26

27

282930 313233

34

3536

37

3839
40

4142

43
44

45
46

Figure 3. Only the simple tracking

X

750
1000

1250
1500

1750
2000

2250

Y

750
1000

1250
1500

1750
2000

2250

Fr
am

e

100

200

300

400

2

5

11

13
14

18
21

28

3640

9

27

67
8

1

10
33

16
4 3515

123

Figure 4. Merged tracks

teams in the image and that the number of players is much greater than that
of non-players. If these conditions are not met, the algorithm fails completely.
Another problem is related to the features used by DBSCAN. In our case, we use
color histograms to characterize the players. These histograms can present great
variations due to lighting, making the similarity metric values quite different for
players of the same type, leading to classification errors. This is aggravated if the
teams use uniforms with similar colors. The use of more complex identification
methods with DBSCAN increases the runtime that makes it similar to the use
of identification via CNN, which showed higher accuracy than DBSCAN.

Tracking: We tested two methods to track the players: bipartite matching and
Kalman-based tracker. The first approach takes 383.447 ± 0.170 ms, while
the second takes 3.466± 1.010ms (110x faster). The last stage of the pipeline’s
processing path consists of merging tracks. In Figure 3, we see in the 3D repre-
sentation of each of the tracks (as a curve) generated by the tracking process.
The X and Y axes represent the coordinates in the virtual field (relative to the
width and depth of the pitch), while the Z-axis corresponds to the frame where
the detection was made. Over time, each curve grows upwards on the Z-axis and
the position (x, y) consists of the location of the player for a given z frame. Figure
4 shows the tracks after merging. Thirty-two tracks were altered out of 46. The
method took 11.4ms on average per loop (the standard deviation was 229µs).
The merging mechanism presents problems for joining tracks with a large gap
in the detection (e.g. tracks 15, 33, and 40 correspond to the same player in
Figure 4). However, they were not joined because the interval without detection
was higher than the limit defined in the system. If this threshold is too small,
a short period where the player is not detected or is occluded disconnects the
tracks. However, if it is too large, tracks from different players can be connected.
In our example, the merging modules fail in only one case due to a lack of player
detection. In the other cases, occlusion and collision were the causes that lead
to the disconnected tracks. This problem may be reduced (or even solved) using
temporal correlation via attribute matching as proposed in [2], which can be
tested in future work.

System’s Accuracy: We analyze each frame in a 01:30 minute video, compar-
ing it with human-provided ground truth. The results obtained with Yolo are
better than with Mask R-CNN, where the accuracy is 93.8% and 70.9%, respec-

8



tively. Both methods show two problems: (1) detect fewer players; or (2) detect
more players than the total amount in the pitch. Those occur because: (a) the
detection algorithm cannot recognize the player; (b) occlusion; and (c) dupli-
cation, i.e., detection generates two bounding boxes for the same player. Yolo
shows more over-detection cases, and because Mask R-CNN uses segmentation
to generate the detection mask, it produces fewer duplication errors since the
mask generation unites the parts into a consistent whole. In Yolo, it is neces-
sary to regulate the overlapping of bounding boxes manually. The main error
found in our studies is the algorithm provides two bounding boxes for different
parts of the player’s body or, when two players collide, the algorithm produces
multiple detection. Some collisions can be solved by the tracking module. Of-
fline methods provide better results than online methods because offline can use
future tracking points [11, 27]. Online can be improved by enhancing tracking,
using multiple cameras with different fields of view, or using a small delay in the
transmission. However, the problem posed by occlusion is still an open topic.

6 Conclusion
Our solution uses the tracking-by-detection paradigm: the object detector first
finds all objects of interest in a frame, and the tracking algorithm associates these
objects in consecutive frames. We created a full pipeline that was tested on field
hockey videos. Two approaches were tested for each of the main modules, and
their performance is compared and discussed in Section 5. The player detection
module directly influences the pipeline output’s quality. The better the detection,
the easier the tracking module work, as fewer players are missing or occluded.
However, some problems cannot be solved by the detection module alone, e.g., if
a player is hidden by another player, the detection module is incapable of solving
this problem. Thus, it is necessary that the system has memory and is capable
of predicting the existence of this hidden player, which is a hard online task.
Missing detection causes a large number of ID switches and fragmentation, which
significantly degrades the tracking quality, especially during occlusion, collision,
and crossings. Future work will consider better methods for movement patterns
forecasting and also consider the detection and tracking of the ball, which is
much harder than in tennis (little obstruction/high contrast) and soccer (larger
ball). Also in our footage the players don’t wear their number on the jerseys.
This can be used to improve the player identification. Also, the extracted features
from players (used in team labeling) can be to improve the identification.

Acknowledgment
This work was funded by the DAIQUIRI project, cofunded by imec, a research
institute founded by the Flemish Government. Project partners are Ghent Uni-
versity, InTheRace, Arinti, Cronos, VideoHouse, NEP Belgium, and VRT, with
project support from VLAIO under grant number HBC.2019.0053.

9



Bibliography

[1] R. Yurko, F. Matano, L. F. Richardson, N. Granered, T. Pospisil,
K. Pelechrinis, and S. L. Ventura, “Going deep: models for continuous-time
within-play valuation of game outcomes in american football with tracking
data,” Journal of Quantitative Analysis in Sports, vol. 1, no. ahead-of-print,
2020.

[2] H. Sabirin, H. Sankoh, and S. Naito, “Automatic soccer player tracking in
single camera with robust occlusion handling using attribute matching,”
IEICE TRANSACTIONS on Information and Systems, vol. 98, no. 8, pp.
1580–1588, 2015.

[3] D. Linke, D. Link, and M. Lames, “Football-specific validity of TRACAB’s
optical video tracking systems,” PloS one, vol. 15, no. 3, p. e0230179, 2020.

[4] S. Zheng, Y. Yue, and P. Lucey, “Generating long-term trajectories using
deep hierarchical networks,” arXiv preprint arXiv:1706.07138, 2017.

[5] B. Macdonald, “Recreating the Game: Using Player Tracking Data to Ana-
lyze Dynamics in Basketball and Football,” Harvard Data Science Review,
vol. 2, no. 4, 2020.

[6] V. Vovk, S. Skuratovskyi, P. Vyplavin, and I. Gorovyi, “Light-Weight
Tracker for Sports Applications,” in 2019 Signal Processing Symposium (SP-
Sympo). IEEE, 2019, pp. 251–255.

[7] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” in 2008 IEEE conference on
computer vision and pattern recognition. IEEE, 2008, pp. 1–8.

[8] W.-L. Lu, J.-A. Ting, J. J. Little, and K. P. Murphy, “Learning to track
and identify players from broadcast sports videos,” IEEE transactions on
pattern analysis and machine intelligence, vol. 35, no. 7, pp. 1704–1716,
2013.

[9] E. Cheshire, C. Halasz, and J. K. Perin, “Player tracking and analysis of
basketball plays,” in European Conference of Computer Vision, 2013.

[10] G. Csanalosi, G. Dobreff, A. Pasic, M. Molnar, and L. Toka, “Low-cost
optical tracking of soccer players,” in International Workshop on Machine
Learning and Data Mining for Sports Analytics. Springer, 2020, pp. 28–39.

[11] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking
with a deep association metric,” in 2017 IEEE international conference on
image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[12] G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai, and Z. He, “Spa-
tially supervised recurrent convolutional neural networks for visual object
tracking,” in 2017 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2017, pp. 1–4.

[13] G. Khan, Z. Tariq, and M. U. G. Khan, “Multi-person tracking based on
faster R-CNN and deep appearance features,” in Visual Object Tracking
with Deep Neural Networks. IntechOpen, 2019.



[14] J. Komorowski, G. Kurzejamski, and G. Sarwas, “Footandball: Integrated
player and ball detector,” arXiv preprint arXiv:1912.05445, 2019.

[15] X. Tong, J. Liu, T. Wang, and Y. Zhang, “Automatic player labeling, track-
ing and field registration and trajectory mapping in broadcast soccer video,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2,
no. 2, pp. 1–32, 2011.

[16] L. Gu, X. Ding, and X.-S. Hua, “Online play segmentation for broadcasted
american football tv programs,” in Pacific-Rim Conference on Multimedia.
Springer, 2004, pp. 57–64.

[17] M.-H. Hung, C.-H. Hsieh, C.-M. Kuo, and J.-S. Pan, “Generalized playfield
segmentation of sport videos using color features,” Pattern Recognition Let-
ters, vol. 32, no. 7, pp. 987–1000, 2011.

[18] N. Homayounfar, S. Fidler, and R. Urtasun, “Sports field localization via
deep structured models,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017, pp. 5212–5220.

[19] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler, “Learning by tracking:
Siamese CNN for robust target association,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, 2016,
pp. 33–40.

[20] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network flow
for multi-object tracking,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017, pp. 6951–6960.

[21] S. Sharma, J. A. Ansari, J. K. Murthy, and K. M. Krishna, “Beyond pixels:
Leveraging geometry and shape cues for online multi-object tracking,” in
2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 3508–3515.

[22] K. Fang, Y. Xiang, X. Li, and S. Savarese, “Recurrent autoregressive net-
works for online multi-object tracking,” in 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE, 2018, pp. 466–475.

[23] Y. Xu, X. Zhou, S. Chen, and F. Li, “Deep learning for multiple object
tracking: a survey,” IET Computer Vision, vol. 13, no. 4, pp. 355–368, 2019.

[24] H. Fu, L. Wu, M. Jian, Y. Yang, and X. Wang, “MF-SORT: simple online
and Realtime tracking with motion features,” in International Conference
on Image and Graphics. Springer, 2019, pp. 157–168.

[25] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and
F. Herrera, “Deep learning in video multi-object tracking: A survey,” Neu-
rocomputing, vol. 381, pp. 61–88, 2020.

[26] M. H. Nasseri, H. Moradi, R. Hosseini, and M. Babaee, “Simple on-
line and real-time tracking with occlusion handling,” arXiv preprint
arXiv:2103.04147, 2021.

[27] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and real-
time tracking,” in 2016 IEEE international conference on image processing
(ICIP). IEEE, 2016, pp. 3464–3468.

[28] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed tracking-by-detection
without using image information,” in 2017 14th IEEE International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS). IEEE,
2017, pp. 1–6.

11



[29] M. Manafifard, H. Ebadi, and H. A. Moghaddam, “A survey on player track-
ing in soccer videos,” Computer Vision and Image Understanding, vol. 159,
pp. 19–46, 2017.

[30] S. Murray, “Real-time multiple object tracking-a study on the importance
of speed,” arXiv preprint arXiv:1709.03572, 2017.

[31] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking
using k-shortest paths optimization,” IEEE transactions on pattern analysis
and machine intelligence, vol. 33, no. 9, pp. 1806–1819, 2011.

[32] Q. Liang, W. Wu, Y. Yang, R. Zhang, Y. Peng, and M. Xu, “Multi-Player
Tracking for Multi-View Sports Videos with Improved K-Shortest Path Al-
gorithm,” Applied Sciences, vol. 10, no. 3, p. 864, 2020.

[33] J. Kwon and K. M. Lee, “Tracking by sampling trackers,” in 2011 Interna-
tional Conference on Computer Vision. IEEE, 2011, pp. 1195–1202.

[34] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. Torr, “End-
to-end representation learning for correlation filter based tracking,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 2805–2813.

[35] H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua, “Tracking multiple people
under global appearance constraints,” in 2011 International conference on
computer vision. IEEE, 2011, pp. 137–144.

[36] T. Kang, Y. Mo, D. Pae, C. Ahn, and M. Lim, “Robust visual track-
ing framework in the presence of blurring by arbitrating appearance-and
feature-based detection,” Measurement, vol. 95, pp. 50–69, 2017.

[37] J. Liu, P. Carr, R. T. Collins, and Y. Liu, “Tracking sports players with
context-conditioned motion models,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 1830–1837.

[38] Z. Li, S. Gao, and K. Nai, “Robust object tracking based on adaptive tem-
plates matching via the fusion of multiple features,” Journal of Visual Com-
munication and Image Representation, vol. 44, pp. 1–20, 2017.

[39] R. Szeliski, Computer vision: algorithms and applications. Springer Science
& Business Media, 2010.

[40] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proceed-
ings of the IEEE international conference on computer vision, 2017, pp.
2961–2969.

[41] W. Abdulla, “Mask R-CNN for object detection and instance segmentation
on Keras and TensorFlow,” https://github.com/matterport/Mask_RCNN,
2017.

[42] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN
revisited, revisited: why and how you should (still) use DBSCAN,” ACM
Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 2017.

[43] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.” inKdd, vol. 96,
no. 34, 1996, pp. 226–231.

[44] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

12

https://github.com/matterport/Mask_RCNN


[45] J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the society for industrial and applied mathematics, vol. 5, no. 1,
pp. 32–38, 1957.

[46] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,” in
European Conference on Computer Vision. Springer, 2020, pp. 474–490.

[47] Ultralytics, “YOLOv5 in PyTorch,” https://github.com/ultralytics/yolov5/
tree/v4.0, January 2021.

[48] T.-Y. Lin, G. Patterson, M. R. Ronchi, Y. Cui, M. Maire, S. Belongie,
L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, L. Zitnick,
and P. Dollár, “Coco common object in context - 2017 dataset.” [Online].
Available: https://cocodataset.org/

[49] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 3431–3440.

[50] M. P. Shah, “Semantic segmentation architectures implemented in pytorch.”
https://github.com/meetshah1995/pytorch-semseg, 2017.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

13

https://github.com/ultralytics/yolov5/tree/v4.0
https://github.com/ultralytics/yolov5/tree/v4.0
https://cocodataset.org/

