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Abstract: This paper proposes a computer vision-based methodology to generate riding line 

maps from bird’s eye view sprint videos. These maps can be used to objectively evaluate 

dangerous sprint behavior or to perform sprint performance studies. In order to generate the 

maps, our automatic workflow first extracts the road and riders from the video images using 

state-of-the-art object detection models. Next, feature points in the remaining part of the images 

are used to estimate the homography parameters and to stitch the overlapping images into a 

map of the finish zone. The same homography parameters are also used to reproject the riders 

onto the sprint map. Based on their positions on the map and the timing info from the video 

metadata, we get a spatio-temporal description for each riders’ sprint. These descriptions are 

stored in JSON format and can be used for further analysis. As a demonstrator, we present some 

examples of objective evaluations of dangerous sprint behavior. Those evaluations are based on 

outlier and overlap detections of the riding lines.       

Keywords: sprint analysis; sports data science; race cycling performance; computer vision; 

similarity metrics 

1. Introduction 

Most modern-day cycling races end in a 

sprint. If it’s not a bunch sprint, it’s a leading 

group that sprints for the flowers or a classic 

sprint à deux that decides who gets the kisses 

[1]. As such, being able to study and improve 

sprint performance is important for each 

rider. Dilger and Geyer [2] performed a study 

investigating the slipstreaming effect of 

riders during sprints. A rider is slipstreaming 

if he/she is riding reasonably close to another 

rider in front resulting in a reduced drag 

force acting on the rider that is slipstreaming. 

They theoretically and empirically showed 

that slipstreaming is a key performance 

indicator in sprints with sprinters of similar 

capabilities. The combination of optimally 

using drag benefits, perfect timing to start its 

final acceleration and good relative 

positioning within the bunch are the most 

important contributors to sprint success. 

Other contributors are, for instance, the 

rider’s sprinting positioning 

(standing/sitting), the optimal cadence and 

power output [1, 7, 8].  

Furthermore, and in addition to the 

actual sprint, analysis of the sprint leadout 

and preparation in the final kilometers can 

also indicate, among others, optimal 

positioning and team strategy in function of 

the race result. The ultimate  challenge still 
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lies in the understanding of  why, or why not, 

a rider did achieve success, and how this can 

be improved. As detailed sensor information 

is often not publicly disclosed, and cannot 

capture all contributors (e.g., positioning, 

leadout), an analysis of video footage seems 

worthwhile. 

Sprints sometimes are also  marred by 

crashes and dangerous riding behavior, 

impacting the sprint result of some of the 

riders. A study of Lybbert et al. [3] 

investigated the implications of changing the 

position where the red flag rule (RFR) is 

applied from one kilometer to three 

kilometers from the finish line. The RFR can 

be defined as the point from the finish line 

where incidents or mishaps do not influence 

a rider’s cumulative general classification 

time. They found that shifting the red flag 

rule to three kilometers did not significantly 

reduce the amount of crashes in the final 

sprint kilometers and even suggested that it 

might in some circumstances even induce 

greater risk taking by the sprinters as they felt 

protected by the RFR. This study teaches us 

that it is still very relevant to investigate the 

bunch dynamics and possible incidents in the 

last few hundred meters of the race. This is 

usually the point where sprinters reach their 

top speeds. Having tools to objectively study 

these incidents and visualize them in an 

easily consumable way can facilitate the 

work of race jury and improve safety in 

future races (e.g., by making riders more 

aware about the impacts of their riding 

behavior). Furthermore, this technology can 

help the UCI to become more consistent in its 

judging of violations of rule 2.3.036.  This rule 

states that “riders shall be strictly forbidden to 

deviate from the lane they selected when 

launching into the sprint and, in so doing, 

endangering others”. Today, it is still the race 

jury that will - rather subjectively - decide if a 

rider has done something wrong. A tool that 

can assist them by flagging outliers (~ 

abnormal sprint behavior) and showing them 

similar historical sprints with its decisions 

that were taken then, would definitely 

improve the interpretation of the rule. As 

such, the tool can also be considered as a kind 

of second opinion for the race jury.  

The main aim of our work is to 

demonstrate that mapping bird’s eye view 

video images onto a sprint map allows us to 

generate spatio-temporal data of rider 

positions that can then be used in 

performance, storytelling and safety studies. 

Similar computer vision-based mapping 

methodologies  have been studied  in 

literature [4-6], however, we are the first 

applying them on bird’s eye view sprint 

videos. 

The remainder of this paper is organized 

as follows. Section 2 introduces our dataset 

and the general architecture of our mapping 

tool. Furthermore, it discusses each of the 

mapping tool’s building blocks in more 

detail: road/rider segmentation, feature 

extraction, mapping and riding line 

generation. Subsequently, Section 3 shows 

some mapping and riding line results and 

demonstrates how they can be used to 

objectively evaluate dangerous sprint 

behavior. Those evaluations are based on 

dynamic time warping based similarity 

detection of the riding lines. Next, Section 4 

lists our major findings, and the practical 

application of our tool is discussed in Section 

5. Finally, Section 6 lists the conclusions and 

points out directions for future work.  

2. Materials and Methods 

2.1 Bird’s eye view sprint video dataset  

In order to generate accurate sprint 

maps with rider positions our method needs 

bird’s eys view videos of finish lines - this is 

the only prerequisite of the proposed 

approach. A challenging World Tour races 

dataset of approximately 100 bird’s eye view 

finishing line videos of the past five years 

was created to test our approach. Since we 

aim for a generic solution that is widely 

applicable and can be used with no/minor 

modifications, it is important that the dataset 

is representative and covers the majority of 
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finish line types. As can be seen in Figure 1, 

our dataset contains sprints with different 

characteristics, e.g., shot in rural/urban 

environments, with different zoom levels, 

varying weather/lighting conditions and 

with/without spectators. An evaluation on 

this dataset will provide us a good estimate 

of how it will perform on the majority of 

recent sprints.  
 

 
Figure 1. Sprint maps (~ stitched bird’s eye view video 

images) with different characteristics/context - selected 

from our dataset of 100 recent sprints. 

 

2.2 Sprint map/data generation pipeline 

Each bird’s eye view finish line sprint 

video will be analyzed using the pipeline 

proposed in Figure 2. First, we extract the 

road and riders from each video image using 

a Detectron2 based model1 that is trained to 

detect these types of objects.  Static elements, 

such as broadcaster logos and timing info, are 

also masked (and not further taken into 

account) using a background subtraction 

method. Once all these objects have been 

removed, the remaining part of the image is 

used to find feature correspondences 

between the image and the sprint map. 

Different  feature point detectors and 

descriptors have been tested/evaluated. Out 

of these tests, the Scale Invariant Feature 

Transform (SIFT) [10] came out as the one 

with the best performance and accuracy. 

Based on the feature point matches, we can 

estimate the geometric transformation 

parameters to stitch the image to the sprint 

 
1
 https://github.com/facebookresearch/detectron2  

map. Using the same transformation 

parameters, rider positions can be 

transformed to sprint map coordinates. 

Those coordinates - in combination with the 

timing info - can be used to study the sprint 

behavior of each rider. This spatio-temporal 

rider data is stored in JSON format and can 

easily be used as input in different types of 

studies/analyses.   

 Important to mention is that in order to 

have an indication of the speed of the riders, 

the pixel per meter ratio of the sprint map 

needs to be known. Based on the finish line 

detection - and more specifically its width ( 

which is fixed in World Tour races as a 4cm 

black line enclosed within two white bands 

of 34cm each, as defined by UCI [10]) - we can 

calculate this ratio. The finish line detection 

will also allow us to link the rider detections 

to the stage results and identify which rider 

corresponds to which detected riding line.       

 

 
Figure 2. General architecture of the proposed sprint 

map/data generation pipeline 

2.3. Road and rider segmentation 

Both the road and rider segmentation 

make use of Detectron2 (developed by 

Facebook AI Research and implemented in 

PyTorch) and have been trained on a dataset 

of annotated images with road surface and 

rider segmentations. The image 

labeling/annotation was done using the VGG 

https://github.com/facebookresearch/detectron2
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image annotator2. In order to train the 

models, the dataset was also split into a 

training and test set. All details of the dataset 

can be found in Table 1.     

 Table 1. Characteristics of our road and rider 

segmentation dataset. 
    

Type #training 

images 

#test 

images 

#training 

labels 

#test 

labels 

Rider 432 95 2139 357 

Road 

surface 

432 95 432 95 

 

Both the road and rider instance 

segmentation are built using the pre-trained 

mask_rcnn_R_50_FPN_3x model [12]. This 

model was chosen because it trains fast and 

has the best speed/accuracy ratio. Learning 

rate was set to 0.0025 for both classes and the 

amount of iterations was set to 10000 and 

15000 for rider and road objects respectively. 

The segmentation precision for both classes is 

above 0.9. Figure 3 and Figure 4 show 

segmentation results for road and rider 

segmentation respectively. 

 
Figure 2  3. Road segmentation result 

For each detected rider, the 

bounding box of the segmented region is 

used to estimate the position of the rider. 

Currently, the center of the bounding box is 

used as the rider position - future work will 

focus on optimizing this, (e.g., by using the 

center of the rider’s helmet as detected rider 

location).  Riders are also tracked across 

consecutive video frames. This is done by the 

 
2
 https://www.robots.ox.ac.uk/~vgg/software/via/  

SORTalgorithm [11] which uses the position 

of a rider in the past frames to estimate the 

new position in the current frame. Based on 

the estimated and detected positions, each 

rider is associated with its  correct identifier.  

2.4. Sprint map generation 

The sprint maps are generated 

iteratively by i) finding SIFT feature 

correspondences between each new image 

and the already existing sprint map, ii) 

estimating the geometric transformation 

parameters to stitch the image in the sprint 

map using random sample consensus 

(RANSAC), and iii) stitching the images in 

the sprint map. An example is given in Figure 

5. Using the same transformation  

parameters, rider positions are also 

transformed to sprint map coordinates.  

2.5. Rider data generation 

Based on each rider’s projected positions 

on the sprint map, we can visualize the 

rider’s trajectory on the map and generate 

statistics/insights about it.  

Figure 4. Rider segmentation results 

Figure 5. Sprint map generation. 

https://www.robots.ox.ac.uk/~vgg/software/via/
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3. Results 

Our main objective was to generate a 

sprint map on which we can study the spatio-

temporal evolution of riders in a sprint. As an 

example, Figure 6 shows sprint lines for the 

2019 Vuelta stage 4 to El Puig.  

 

  
Figure 6. Sprint map for 2019 Vuelta stage 4 to El Puig 

Subjective evaluation of the sprint maps 

shows that our method definitely has 

potential to study sprint behavior. However, 

a decent objective evaluation is needed to 

correctly measure its correctness/accuracy. 

We are currently exploring several strategies, 

such as analyzing the smoothness of the 

generated riding lines and speed curves, 

comparisons with Strava sprint results and 

matching with satellite images. Figure 7 

shows the idea behind the latter approach 

and also highlights some issues that need 

further research. The skew error and aspect 

ratio differences between the sprint map and 

the satellite image, for example, is most 

probably due to the camera orientation 

which is not perfectly vertical (i.e., slightly 

oblique). Post-processing the sprint map 

using a feature point matching- based 

transformation with the corresponding 

satellite image could be a solution to fix these 

issues.    

    

 
Figure 7. Comparison of sprint map and satellite image 

for 2021 Oxiclean Classic Brugge - De Panne. 

The speed curves, shown in Figure 8, show 

the pixel distance of riders between 

consecutive images for the Giro 2020 stage 3 

that finished in Orbetello. As can be noticed, 

the pixel distance is decreasing when riders 

get closer to the finish. It is possible that there 

was indeed a speed drop in the last meters 

(should be checked in Strava results), but a 

stitching error (e.g., due to a non-vertical 

camera angle as discussed before) can also 

cause such effects. Further research is needed 

to check what is really going on and will be 

part of our future work. The quadratic curve 
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fit error for these speed curves is 2.01-pixel 

distance. This might be further improved by 

more accurate rider segmentation and 

localization. The impact of this error on the 

real speed/location calculations is dependent 

on the actual real-world distance of a pixel 

(and the height from where the images were 

shot).     

 
Figure  8. Speed curves for Giro 2020 stage 3 

that finished in Orbetello. 

4. Discussion 

The proposed methodology is a first step 

towards objective analysis of sprint behavior. 

Preliminary results show that it performs 

best on a continuous stream of bird’s eye 

view video images shot at constant speed, 

fixed angle and with no zooming effects. 

These instructions can, for example, be given 

to the broadcast helicopter/VAR to include it 

into their race coverage/logging protocols. 

Other possible improvements, such as 

optimizing the rider’s 

segmentation/localization and improving 

our evaluation mechanisms, have been 

discussed in the previous section and will 

also be part of future work.    

5. Practical Applications.  

5.1. Objective evaluation of sprint lane deviation 

If a detected riding line shows deviating 

behavior and blocks/impacts another riders’ 

line we can automatically flag it as dangerous 

riding behavior. This can serve as a trigger 

for the race jury to further investigate this 

rider’s sprint. As an example, we 

demonstrate our method on video footage of 

the Giro 2020 stage 3 that finished in 

Orbetello. In this stage, the Italian rider Elia 

Viviani was disqualified from the stage as a 

result of dangerous sprint behavior. The 

sprint map for this stage is shown in Figure 

9.   

 

Figure 9. Giro d’Italia - Stage 3 (Orbetello) - Viviani’s 

dangerous riding behavior impacts the riding lines, as 

can be seen in the abrupt change of them. 

Based on the detected rider positions on 

the sprint map, our algorithm flags riders 

that change direction and in doing so block 

the predicted future position of those that are 

just behind them. The first step of this 

algorithm consists of predicting the missing 

rider positions, as not all riders are always 

present/detected in each frame. We 

interpolate between the known positions of 

the rider taking into account the timestamps 

of those positions. Subsequently, we analyze 
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the riding line angles over time. As can be 

seen in Figure 10, the riding angles in the 

Giro 2020 stage 3 indicate an abrupt change 

for some riders at 50 frames from the finish. 

Further inspection of those riders’ positions 

and distances to other riders, which is the 

next step, can then highlight if someone is 

doing an unallowed manoeuvre. For the Giro 

2020 stage 3, we found that one rider (= 

Viviani) was blocking another rider - his 

distance to the predicted position of a rider 

behind him was close to zero, after deviating 

from his line (as can be seen in Figure 11).          
 

 
Figure 10. Riding angles of Giro 2020 stage 3. An 

abrupt change can be detected at 50 frames 

(~measuring points) from the finish. 

 

 

 

 

 

Figure 11. Giro d’Italia - Stage 3 (Orbetello) - Viviani’s 

dangerous riding behavior impacts several riders that 

are just behind him. 

5.2. Sprint performance 

The second useful application consists 

of a sprint performance examination. To 

assess this performance, we transform the 

data into numerous variables that we believe 

have an impact on the result of a rider in a 

sprint. First, we assign a race position to the 

riders in all frames and by using the position 

of the finish line, we also determine the final 

result of each rider. Second, we consider the 

velocities and accelerations of the sprinters 

throughout the sprint. Rather than focussing 

on the absolute values, we will consider 

relative values of these variables to allow for 

a comparison of sprints on different terrains.  

Third, we also consider position variables, 

such as the position on the road with respect 

to barriers or position line characteristics. 

 In future work, we will apply 

different Machine Learning techniques to 

explore whether there are patterns in the 

bunch sprints. Here, the main goal is to find 

the similarities between the winners of the 

bunch sprints. In particular, we will 

investigate which of the aforementioned 

variables have the greatest impact on the 

performance. 

5.3. Other sports 

Line choice and analysis is also 

useful in other sports/disciplines. In road 

cycling the sprints are the most suited for the 

line analysis, but in other disciplines such as 

cyclocross or cross-country mountain biking 

other parts from the race can be analyzed as 

well. In those disciplines, the start is often 

also important to get a good positioning 

before the first course feature. The first 

seconds of these races are usually 

characterized by lots of position changes and 

different riding lines spread across the width 

of the road. Also riding lines in technical 

features such as sandpits, descents, barriers 

and technical corners are suited for further 

analysis. Figure 12 shows an example of such 

a video tracking analysis of a pro race of the 

2021 Cyclocross season. As can be observed, 

the green riding line is exiting at the other 

side of the track (compared to the blue and 

orange riding line). With a transformation 

matrix to map video coordinates on real life 

coordinates, an indicative speed for each of 

the riding lines could be provided. The 

example shown in Figure 12 is the result from 

a single camera source analysis, but by 

combining and stitching video frames from 

multiple camera sources positioned across 

the segments more detailed course analyses 
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could also be performed. 

 Similar importance of the start can 

also be found in BMX and Motocross where 

the riders typically start from behind starting 

gates. Often those first tens of meters of the 

track, typically downhill off a ramp or slope, 

are crucial for the remainder of a race. Hence, 

rider line analysis might also be relevant 

here, especially in combination with the 

typical high speeds that are achieved. 

Comparable conditions can also be found  at 

the start of Formula One races.  Those first 

rounds tend to be quite hectic with a lot of 

overtaking maneuvers that quite often result 

in crashes in the early stages of the race. 

Finally, line analysis can be applied in several 

skiing or snowboard disciplines, where 

optimal cornering is very important. 

 
Figure 12: Riding lines analysed of top 3 riders in 

the sand pit zone of a pro cyclocross race. 

6. Conclusions 

In this paper, we performed an 

automatic sprint line detection on bird’s eye 

view video footage shot by helicopters. These 

video frames are analyzed by a series of 

computer vision algorithms. Riders, road and 

broadcaster logos are detected on each frame. 

Riders are tracked across frames using a 

SORT object tracker. To visualize and 

summarize the gathered information, the 

separate frames are stitched together using a 

SIFT feature matcher that defines the 

geometric transformation that needs to be 

applied on a certain frame to geospatially 

stitch the frames into a final finishing 

straight. 

The proposed methodology is very 

useful for further use in applications such as 

video referee assistance, sprint performance 

analysis or historical sprint similarity. In the 

future we aim to further extend the stitched 

sprint lines with rider GPS data and/or 

satellite data of the finishing straight to 

further understand the peloton’s behaviour 

in the last few hundred meters. 

This work was partly funded by the 

DAIQUIRI project, cofunded by imec, a 

research institute founded by the Flemish 

Government. Project partners are Ghent 

University, InTheRace, Arinti, Cronos, 

VideoHouse, NEP Belgium, and VRT, with 

project support from VLAIO under grant 

number HBC.2019.0053. 
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