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ABSTRACT2

Background: Laser-Doppler Vibrometry (LDV) is a laser-based technique that allows measuring3
the motion of moving targets with high spatial and temporal resolution. To demonstrate its use4
for measurement of carotid-femoral pulse wave velocity, a prototype system was employed in a5
clinical feasibility study. Data were acquired for analysis without prior quality control. Real-time6
application, however, will require real-time assessment of signal quality. Here, we (1) use template7
matching and matrix profile for assessing the quality of these previously acquired signals; (2)8
analyse the nature and achievable quality of acquired signals at the carotid and femoral measuring9
site; (3) explore models for automated classification of signal quality.10

Methods: LDV data were acquired in 100 subjects (50M/50F) and consisted of 4-5 sequences11
of 20-second recordings of skin displacement, differentiated twice to yield acceleration. Each12
recording consisted of data from 12 laser beams, yielding 410 carotid-femoral and 407 carotid-13
carotid recordings. Data quality was visually assessed on a 1-5 scale, and a subset of best quality14
data was used to construct an acceleration template for both measuring sites. The time-varying15
cross-correlation of the acceleration signals with the template was computed. A quality metric16
constructed on several features of this template matching was derived. Next, the matrix-profile17
technique was applied to identify recurring features in the measured time series and derived a18
similar quality metric. The statistical distribution of the metrics, and their correlates with basic19
clinical data were assessed. Lastly, logistic-regression-based classifiers were developed and their20
ability to automatically classify LDV-signal quality was assessed.21

Results: Automated quality metrics correlated well with visual scores. Signal quality was22
negatively correlated with BMI for femoral recordings, but not for carotid recordings. Logistic23
regression models based on both methods yielded an accuracy of minimally 80% for our carotid24
and femoral recording data, reaching 87% for the femoral data.25
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Conclusions: Both template matching and matrix profile were found suitable methods for26
automated grading of LDV signal quality and were able to generate a quality metric that was27
on par with signal quality assessment of the expert. The classifiers, developed with both quality28
metrics, showed their potential for future real-time implementation.29

Keywords: Laser Doppler Vibrometry (LDV), Matrix profile, Template matching, Logistic regression, Signal quality30

1 INTRODUCTION

The aorta and large central arteries fulfil key physiological functions in the circulation, whereby their31
structure is apt to their function. They consist of complex composite soft tissues, concentrically organized in32
lamellar units, where sheets of elastin intertwine with layers of vascular smooth-muscle cells in a matrix of33
collagen and other proteins composing the extra-cellular matrix (Wolinsky and Glagov, 1967). This allows34
the aorta and large arteries to distend when the heart contracts and blood is ejected into the aorta and store35
elastic energy in the arterial wall, which is used during the relaxation phase of the heart to maintain blood36
pressure and drive the perfusion of organs and tissues. This function is also referred to as the “windkessel”37
or buffering function of the large arteries, and ensures that the pulsatile blood flow generated by the heart is38
transformed into a near steady flow when reaching the smaller arteries (Westerhof et al., 2009). It prevents39
excessive maximal (systolic) and too low minimal (diastolic) blood pressure. Arterial stiffening leads to40
a loss of this buffering function with detrimental effects on nearly all organ systems, and especially low41
resistance organs such as the brain, the kidneys and the heart itself (Chirinos et al., 2019). Arterial stiffening42
has received large attention over the past 3 decades, and there is a consensus that assessment of arterial43
stiffness is especially relevant in the assessment of an individual’s risk for cardiovascular disease and death44
(Vlachopoulos et al., 2010; Laurent et al., 2006).45

Because of the distensible nature of arteries, cardiac contraction generates a wave (detectable as a change46
in pressure, flow or arterial diameter). This wave initially propagates from the heart to the periphery, but47
increases in complexity as it interacts on its way with the branching arterial tree and gets shaped because48
of wave reflection and transmission (Chirinos et al., 2019; Mitchell et al., 2004, 2011; O’Rourke and49
Kelly, 1993). The wave speed, or pulse wave velocity (PWV), is directly linked with the distensibility of50
the arteries (the stiffer the artery, the higher PWV) (Bramwell and Hill, 1922), and the current clinical51
standard method to measure arterial stiffness is by measuring the pulse wave velocity (Segers et al., 2020).52
In essence, the method is simple and straightforward: one detects the pulse at two locations a distance dx53
apart, and from the time delay, dt, between the signals, one gets PWV = dx/dt. Despite the simplicity of the54
concept, there are still many hurdles in measuring PWV in practice, mainly related to the non-availability55
of sites to directly measure the pulse along the path of the aorta in a non-invasive way and without the need56
of clinical scanners (Segers et al., 2020). Accessible sites closest to the aorta are the neck (carotid artery)57
and groin (femoral artery) and carotid-femoral PWV is considered the best possible proxy for aortic PWV58
(Laurent et al., 2006).59

Several sensors can be used to detect the pulse in the neck and groin (Segers et al., 2020; Pereira60
et al., 2015), including applanation tonometry, ultrasound (pulsed Doppler recordings) or accelerometers.61
Motivated by the relatively high cost of equipment, the required level of expertise by the operator or62
contact-based nature of the measurement, we and others have explored the use of laser Doppler vibrometry63
to detect the motion of the skin atop the carotid and/or femoral arteries in response to the passage of the64
arterial pulse (De Melis et al., 2008; Scalise and Morbiducci, 2008; Campo and Dirckx, 2011; Kaplan et al.,65
2012; Morbiducci et al., 2007b). To eliminate motion drift and amplify the fast displacements associated66
with the arrival of the foot of the pulse (Morbiducci et al., 2007b), we have been using skin acceleration as67
the basic signal from which to derive time delays between the neck and groin for measuring carotid-femoral68
PWV.69

The feasibility of the method has been shown using industrial-type LDV sensors (De Melis et al., 2008),70
and we have been working on the design and development of a multi-beam handheld device. The core71
of the device is a silicon photonics chip integrated in a micro-optical system which allows for flexible72
and compact multi-array designs (Li et al., 2013, 2020). A first prototype (consisting of 2 connected yet73
separable handheld pieces to measure in the neck and groin with each 6 laser beams) was developed74
within the context of the H2020-funded project CARDIS and included a clinical feasibility study whereby75
carotid-femoral PWV was assessed in 100 patients and compared with a reference method based on76
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applanation tonometry (Marais et al., 2019). Measurements were performed with a minimal visual feedback77
during the measurements and and all the analyses were carried out in off-line modality.78

A next generation version of the device is under development and will provide real-time measurement of79
carotid-femoral PWV. To do so, we need real-time assessment of the quality of incoming data to decide80
whether or not data records are of an acceptable quality for subsequent processing. This is, however, not a81
trivial assessment as there is little reference as to what makes LDV signal recordings appropriate for PWV82
estimation.83

The aim of this study is therefore to identify a strategy to objectively and automatically assess the84
LDV-signal quality and set criteria for future use of this technology in arterial pulse detection. To do that85
we will use the existing CARDIS database of LDV recordings at the carotid and femoral measurement sites86
and subject them to two different strategies: the template matching and the matrix profile will be tested for87
(1) analysing the nature and achievable quality of the recorded signals, and (2) exploring models for an88
automated classification of LDV-signal quality.89

2 MATERIALS AND METHODS

2.1 The CARDIS device90

Technical details on the optics and overall design of the CARDIS device have been described in (Li91
et al., 2020). Briefly, the device consists of two handpieces (handpiece 1 contains the handgrip of the92
device, handpiece 2 is the add-on part of the device: we refer to Figure 1 for an illustration of the device93
and the positioning of the handpieces), each sending out 6 laser beams (wavelength 1550 nm), positioned94
along a line and 5 mm apart. The handpieces can be used separately for measurement of carotid-femoral95
PWV, or attached to measure signals on locations 25 to 50 mm apart, e.g. to locally measure pulse wave96
propagation along the carotid artery. A retro-reflective tape is attached to the skin at the measurement97
location to enhance reflection of the laser light, and the device is equipped with a spacer to ensure an98
appropriate optical focus distance and to stabilize measurements.99

2.2 Study population and available database100

The data used in this study were acquired with a clinical feasibility study in 100 patients, conducted at the101
Hôpital Européen Georges Pompidou (HEGP) in Paris, France, to assess the ability of the CARDIS device102
to measure signals in a configuration with simultaneous carotid-femoral or carotid-carotid recordings.103
Patients were in the age range 19-85 and presented with mild to stage 3 hypertension, controlled or not104
(Marais et al., 2019). For each subject, 4 to 5 datasets, each consisting of 20 second traces on 12 channels105
measured with the two handpieces, were acquired. In detail, the analysed database was made of 410106
datasets (4920 waveforms) from carotid-femoral recordings, and of 407 datasets (4884 waveforms) from107
carotid-carotid recordings. Raw IQ (In-phase and quadrature) LDV-data were acquired at a sampling108
frequency of 100 kHz, and LDV-displacement data were downsampled to 10 kHz upon demodulation.109
A low-pass filter with cut-off frequency of 30 Hz was applied to LDV displacement data, which were110
differentiated twice to yield acceleration. The same low-pass filtering strategy was applied after each111
differentiation operation.112

2.3 Visual scoring of the data113

A graphical interface displaying all the LDV acceleration signals derived from the six channel recordings114
per each handpiece was implemented in MATLAB environment (The MathWorks, Naticks MA, US). The115
acceleration signals were visually scored by an expert operator (Segers P.) on a 5-level grade scale taking116
values Qvis according to table 1.117

Note that the presence of brief artefacts in the 20 second acquired traces was not used as a criterion to118
score the signal quality. As such, signals qualified as excellent may still demonstrate a brief episode of poor119
data. Overall, the femoral data were of a markedly lower Qvis ‘quality’ than traces recorded at the carotid120
artery, which impacted the rating. Therefore, the Qvis quality score 3 (borderline) was given to femoral121
traces that appeared to be of a much lesser quality than Qvis = 3 rated carotid traces. Such a borderline122
score was assigned when 5-10 beats were discernible in the signal. Representative carotid and femoral123
signals receiving the different scores are displayed in Figure 1.124
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2.4 Template Matching125

Template matching technique is an effective approach for the automatic detection of a priori identified126
patterns in signal recordings (Won-Du and Chang-Hwan, 2014; Jiun-Hung et al., 2003) and images (Omachi127
and Omachi, 2007). A good-quality carotid LDV acceleration signal presents two sharp peaks for each128
heartbeat: the first peak corresponds to the systolic rapid upstroke of pressure and demarcates the foot of129
the arterial pulse; the second peak denotes the wave that is generated at the moment of closure of the aortic130
valve (the dicrotic notch). The LDV-femoral recording is devoid of clearly identifiable features related to131
the dicrotic notch because of the distance of the measurement site from the heart, whose final effect is132
filtering the recorded LDV pulses, in the femoral artery. An example of displacement, acceleration and133
ECG signals together are shown in Figure 2.134

2.4.1 Constructing the templates135

High-quality carotid and femoral LDV-acceleration traces were adopted for template construction. Traces136
with visual score value Qvis of 4 and 5 were selected. To avoid subject-specific biasing in template137
construction, only one 20 s recording (from the acquired channel with highest Qvis) per subject was138
selected. Based on these selection criteria, 135 carotid LDV-acceleration traces from 20 different subjects139
and 40 femoral LDV-acceleration traces from 10 different subjects were identified as suitable for template140
construction in the CARDIS dataset. The selected carotid LDV-acceleration traces were from both141
handpieces.142

The selected traces, characterized by the presence of sharp and pronounced peaks at the foot (and dicrotic143
notch for carotid recordings), were then segmented in epochs, each one corresponding to a single heartbeat.144
LDV-acceleration trace segmentation was carried out using ECG synchronous recordings (available for145
each subject in the CARDIS dataset, on which automatic R-peak detection was carried out, see Figure 3).146
Over each LDV trace single epochs were then defined within a time interval within the occurrence of two147
consecutive R peaks in the ECG trace (Figure 3A). By construction of the visual inspection classification,148
some of the identified single epochs might still not be of adequate quality for template construction,149
because of the presence of short-time artifacts/noise (Figure 3B). The lower quality single epochs in a150
LDV-acceleration trace were identified according to the following strategy: (1) for each LDV segmented151
trace a correlation matrix Rij was built up, each element of the matrix being the Pearson-correlation152
coefficient between epochs i and j, used as a measure of their shape similarity; (2) a threshold value of the153
correlation coefficient was defined and single epochs with an average correlation coefficient with all the154
other epochs lower than the threshold was discarded, since they were not sufficiently similar in shape to the155
other epochs in the recorded trace (Figure 3C); (3) for each LDV-acceleration trace an ‘individual template’156
was built up by averaging only the identified highly correlated epochs (Figure 3D); (4) by adopting the same157
approach with the carotid and femoral LDV-acceleration traces, the final carotid and femoral ‘population158
templates’ were obtained (Figure 4).159

Template construction is based upon the definition of a strategy to treat the issue of the different time160
length of single epochs (intra-individual RR variability) (Jensen-Urstad et al., 1997; Zhang, 2007) and of161
the individual templates as well. Hence, the time length of single epochs should be defined on the basis162
of what the template should represent. In the case under study, the carotid LDV-acceleration template163
longer than 350 ms will include by construction the foot of the wave (first peak) and the dicrotic notch164
(second peak). Here we speculate that a carotid LDV template incorporating the second peak may degrade165
in performance, as the distance between the two peaks is (intra-individually as well as inter-individually)166
variable. In figure 5, carotid and femoral LDV-acceleration templates constructed for different (predefined)167
time length are displayed. In detail, time lengths of 300, 400 and 500 ms were considered for the femoral168
LDV-acceleration template, and time lengths of 200, 400 and 600 ms for the carotid LDV-acceleration169
template. The impact of the time length in the LDV template performance when used for the automatic170
assessment of the quality of the CARDIS data was evaluated.171

2.4.2 Template matching and beat selection172

The matching between the templates and the LDV-acceleration traces in the CARDIS dataset was173
performed by applying a local moving-window function calculating the Pearson’s correlation coefficient174
between the LDV template and the 20 s-long acceleration trace at each time step, as displayed in Figure 6.175
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The locations of peaks in the time series resulting from this moving-window cross-correlation operation176
identify the time instants where the sliding template is similar to a segment of the LDV-acceleration trace.177

Setting a threshold for the value of the cross-correlation coefficient then demarcates the correspondence178
level above which segments of the LDV-acceleration trace can be considered similar to the template. Based179
on the set threshold value, single segments corresponding to single heartbeats in the LDV trace can be180
considered of sufficient or not sufficient quality.181

To further improve the identification of high-quality heartbeats in the LDV recorded traces, two further182
selective criteria were added. Firstly, all the LDV-acceleration peaks in the recorded trace with an amplitude183
lower than the 80% of the average peak amplitude were not considered. Then, if two successive peaks184
were detected within a time window shorter than 500 ms, the second peak was discarded and only the185
first one was considered. The latter criterion was adopted to avoid the dicrotic notch detection (second186
peak), especially when the shorter carotid template was used. An explanatory example of peak detection,187
presenting the LDV-acceleration trace, the moving-window cross-correlation function and detected peaks188
is displayed in Figure 7.189

2.4.3 LDV traces classification based on template matching - finding threshold values190

The performance of the template matching algorithm in classifying the quality of the CARDIS dataset was191
evaluated by comparison with visual score classification, according to the following scheme: acceptable192
heartbeat (label 1), corresponding to Qvis values 4 or 5; not acceptable heartbeat (label 0) corresponding to193
Qvis values 1 or 2. Signals with Qvis-values of 3 are discarded in this analysis as these signals are difficult194
to assign an absolute and correct classification (see discussion). The template matching-based classification,195
as also mentioned before, depends upon the threshold value for the moving-window correlation function196
and the number of detected heartbeats in the LDV-acceleration trace, which have to be appropriately set.197

Here, we considered: true positive (TP) an acceptable LDV trace (based on Qvis classified by the template198
matching as acceptable; false negative (FN) an acceptable LDV trace classified by the template matching199
as not acceptable; true negative (TN) an unacceptable LDV trace classified by the template matching as not200
acceptable; false positive (FP) an unacceptable LDV trace classified by the template matching as acceptable.201
On this basis, sensitivity and specificity values of the classifier are defined as:202

Sensitivity =
TP

TP + FN
(1)

and203

Specificity =
TN

TN + FP
(2)

Sensitivity and Specificity were then used to build up the Receiver Operating Characteristic (ROC) curves204
and their area under the curve (AUC) was used to assess the performance of the classifier. Moving-window205
cross-correlation coefficient threshold values and number of detected heartbeats yielding the highest AUC206
were defined on the complete CARDIS dataset, and this for each one of the template lengths in time.207

2.4.4 LDV traces classification based on template matching - defining quality score and testing208
on the CARDIS dataset209

Once the best performing carotid and femoral templates time length and the associated moving-window210
cross-correlation threshold values were identified, a quality score (QTM)was estimated for each 20 s211
LDV-trace recording, based on two main features.212

The first feature (Q1) is the number of the detected acceleration peaks (npeaks), normalized with the213
maximum expected number of peaks or heartbeats in the 20 s LDV-trace recording (maxpeaks). This value214
was empirically set equal to 26 to ensure a maximal feature value of 1 in the investigated database:215
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Q1 =
npeaks

maxpeaks
(3)

The second feature (Q2) is defined as the average time delay between the occurrence of maximum value216
of each LDV-acceleration epoch in the recorded trace and the occurrence of the peak value on the template217
(dpeakn), normalized to the template time length (N ):218

Q2 =

∑npeaks
n=1 (1− dpeakn

N )

maxpeaks
(4)

When the peaks in the template and in each LDV epoch are all perfectly aligned, and when all the peaks219
in the LDV-trace are detected (i.e., Q1 = 1), feature Q2 is equal to 1, indicating good quality of the LDV220
trace recording. The final score based on template matching can be computed as the mean value of the221
partial scores Q1 and Q2:222

QTM =
1

2
(Q1 +Q2) (5)

By construction, the score QTM was set up so that the value is within the range [0, 1] (with QTM = 0223
representing the worst possible signal quality and QTM = 1 indicating that the signal is of excellent quality).224
QTM was calculated for all the traces in the CARDIS database and compared to the corresponding assigned225
visual score Qvis, which is treated as the ground truth.226

2.4.5 A logistic regression model for signal classification based on template matching227

QTM Was a heuristically derived quality metric with equal weighting on the sub-components. Now we use228
logistic regression models to find a better weighting of the contributions of Q1 and Q2, and automatically229
map this to a predicted quality of the signal. Logistic regression models are chosen since they can be230
well applied to binary classification problems, and are typically used in medical research (Domı́nguez-231
Almendros et al., 2011; Nick and Campbell, 2012; Austin and Steyerberg, 2012) when a two-class classifier232
is required. These predictions were then compared to the ground truth labels (given by the visual scores).233

Logistic regression models were trained and tested with the two template-matching derived scores (3)234
and (4) as features, on both carotid and femoral LDV-acceleration traces. For this purpose, again the LDV235
traces visually scored with Qvis equal to 1 or 2 were labeled 0, and LDV traces visually scored with Qvis236
equal to 4 or 5, were labeled 1. Again, signals with Qvis score 3 were not included in the analysis.237

The data available in the CARDIS database was split such that 80% was used for training the logistic238
regression model and the remaining 20% used for testing purposes. The training-testing set partition was239
randomly iterated 1000 times while storing the model accuracy every iteration, so that the overall accuracy240
distribution of the logistic regression model approach could be assessed.241

Of note, all features used to train logistic regression models were normalized via standardization. This242
allowed the logistic regression-model coefficients to be interpreted as the corresponding feature weights,243
granting information about which feature was most influential in labeling an LDV trace.244

The accuracy distributions of logistic regression models trained on template-matching and the later245
discussed matrix-profile derived features were evaluated.246

2.5 Matrix profile247

The matrix profile is a data structure that annotates a time series (Yeh et al., 2018; Zhu et al., 2020). It248
allows for exact, simple and fast (Zhu et al., 2017b) similarity search or discord discovery and is among249
the state-of-the-art techniques in the field of discrete time-series analysis (Zhu et al., 2017a; Madrid et al.,250
2019). The matrix profile has been used in processing biological signals like EEG (Mueen et al., 2009),251
ECG and gait cycles (Zhu et al., 2020). It was applied here to accurately identify recurring waveforms252
in the LDV-acceleration data. Every such waveform is a subsequence of the original sequence or time253
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series. These subsequences, taken togegher, are collectively called a motif. We gauged the quality of an254
LDV-measurement via several features determined by its best motif. The strength of the matrix profile255
lies in the fact that it does not require a template or other input parameters except for the length m of the256
desired motif subsequences. Analogous to the template matching analysis, waveforms were subsampled to257
1 kHz. We set m to 200 ms, similar to the optimal length of the template described in previous sections.258

2.5.1 Signal classification based on the matrix profile259

A quality metric (QMP) was constructed based on three features of the matrix profile-generated motif as260
seen in (6). This metric was constructed so that its possible values lie between 0 and 1.261

QMP = AMP td,MP nMP (6)

The first feature used in calculating (QMP) is the average relative maximum amplitude of a subsequence262
in the motif (AMP) computed as in (7). The maximum amplitude of a subsequence A was compared with263
the maximum amplitude of the reference subsequence Aref. This reference is the first subsequence identified264
by the matrix profile (the minimum of the matrix profile) and subsequently included in the motif. In good265
quality measurements, most maximum amplitudes of subsequences in the motif were similar.266

AMP =
1

nmtf

nmtf∑
n=1

A

Aref
(7)

The second feature, the average relative time-instant of the subsequence peaks in the motif (td,MP), is267
computed as in (8). The time-instant of the subsequence peak was compared with that of the reference.268
This value was then normalized over the length of the subsequence m. Ideally, all subsequences in the269
motif represent the same heartbeat-related waveform with peaks at similar time instants. For poor quality270
signals, these time instants tended to randomly vary over the length of the subsequence.271

td,MP =
1

nmtf

nmtf∑
n=1

(1−
dpeak

m
) (8)

Lastly, the third feature (nMP) was calculated as the expected amount nexp versus the effective amount272
nmtf of subsequences in the motif, shown in (9). nexp was estimated based on a discrete-Fourier-transform273
analysis of the entire signal recording. More specifically, the peak corresponding to the heartbeat during274
the measurement was identified as the most prominent peak in the signal spectrum, in the range 0.5 -275
1.5 Hz. The effective amount of subsequences in the motif nmtf was based on how many heartbeats the276
matrix-profile technique was able to pick up.277

nMP =
nmtf

nexp
(9)

Before a subsequence is included in the motif, three criteria decide the inclusion: (1) If a subsequence278
maximum amplitude was lower than 0.8 times the reference maximum amplitude it was excluded from the279
motif. (2) If the time instant of the peak deviated 30 ms or more from that of the reference, the subsequence280
was also removed from the motif. (3) If two subsequences were closer than 0.8 times the expected time281
delay between two subsequent heartbeats, the one with the lower matrix-profile value (higher similarity282
to the reference) of the two was preserved, the other was removed. The applied thresholds levels were283
determined empirically from excellent and poor quality signals.284

Figure 8 shows an example of a signal being scored by first finding the motif so that as many heartbeats285
as possible are present within it, then calculating the features of that motif. Both the relative amplitude and286
time-instant of subsequence peak features of one subsequence in the motif are indicated on the figure.287

The auto-generated matrix-profile based quality metric was computed for all carotid-carotid and femoral-288
carotid datasets and results were compared to the visual scores.289
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2.5.2 A Logistic regression model based on the matrix profile290

Similar to template matching, we also designed logistic regression models using the previously discussed291
matrix-profile derived features. These models allowed for more freedom in weighting the features to come292
to a better classification result. Models were trained and tested on the three features mentioned above.293
Signals were labeled and available data was split into training and testing sets analogous as in the previously294
discussed template-matching case.295

2.6 Relation between signal quality and physiological variables296

Lastly, we investigated the existence of possible associations of quality of the LDV-acceleration traces297
with age, body mass index (BMI) and systolic blood pressure. The statistical analysis was performed298
using QMP as quality score variable. In detail, the existence of a linear correlation was tested using the299
Pearson-correlation coefficient on both CC and CF datasets, with data analysed per handpiece. For all300
analyses, significance was assumed for p < 0.05.301

3 RESULTS

3.1 Visual scoring302

3.1.1 Carotid-carotid measurements303

By visual inspection, about 12% of all LDV-acceleration traces were qualified as bad and close to 30%304
as poor (Figure 9, panel B). Which implies that about the 42% of the recorded LDV traces was evaluated305
to not be of sufficient quality for further analysis. About 22% of all recordings was scored from good306
to excellent, and are deemed suitable for further analysis. About 37% of the traces was visually scored307
borderline, i.e. these traces might be of sufficient quality for further analysis with advanced processing.308
The number of LVD traces scored with Qvis 4 or 5, and recorded using handpiece 2 was higher than the309
number using handpiece 1. For handpiece 1, channel 1 scored almost systematically very low; the best310
channels were channels 3 and 4. For the second handpiece, the best channels were channels 2 and 3.311

3.1.2 Carotid-femoral measurements312

The bottom row of Figure 9 illustrates that, concerning femoral LDV-acceleration traces (handpiece313
1), 20% of all recordings was qualified as bad, and another 32% as poor, meaning that over 50% of all314
recordings is not usable for analysis. About 15% of the measured signals get a score good to excellent,315
deemed immediately suitable for analysis. Best channels are channels 3 and 4 with 21.9% (beam 3) and316
19.5% (beam 4) of the recordings good to excellent. For handpiece 2 (carotid recordings), about 20%317
gets a score good to excellent. This is less than what was obtained for handpiece 2 for the carotid-carotid318
recordings, where close to 25% of all recordings were rated good to excellent. On the other hand, less319
signals received grade 1 and 2. Best channels are channels 4 (24.9%) and 5 (24.1% of the recordings320
scoring good to excellent).321

3.2 Template matching322

3.2.1 Carotid-carotid (CC) measurements323

From the analysis carried out on the complete CC dataset, it emerged that using the carotid template of324
200 ms length guarantees the best performance in terms of specificity, setting the cross-correlation threshold325
to 0.74 and the minimum number of detected heartbeats per trace to 15 (AUC = 0.89, sensitivity 74%,326
specificity 89%; template of 400 ms length: AUC = 0.89, sensitivity 81%, specificity of 83%; template of327
600 ms length: AUC = 0.92, sensitivity 87%, specificity 86%). For each template length, the corresponding328
confusion matrix is presented in Table 2. The adoption of specificity for the evaluation of the performance329
of the template matching strategy was dictated by the need of maximizing the removal of LDV traces with330
inadequate quality. More in detail, it emerged that in general the template matching performed excellently331
in correctly classifying visual scores 1 and 5, while accuracy decreased for visual scores 2 and 4 (Table 2).332
Interestingly, using the shorter template length of 200 ms led to score 42% of the LDV acceleration traces333
visually scored 3 (borderline) as acceptable data.334
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The level of agreement obtained between QTM and Qvis on the CC recordings dataset, with template335
matching adopting a 200 ms template length, is presented in Figure 10. This suggests that the median of336
the QTM values, computed on traces that have a Qvis = 3, could be adopted as a threshold value for the337
automatic quality checking of an LDV trace (i,e. in the case under study, traces with a QTM > 0.5 could be338
considered of adequate quality; note that, manually setting these thresholds is not required for the logistic339
regression models since this is implicitly learnt in the training).340

The accuracy distributions of logistic regression models trained on quality scores derived from template-341
matching are displayed in figure 11( 11A- 11B). On average, the accuracy on traces acquired using342
handpiece 2 is higher than handpiece1 (85±1.6% and 80±1.70%, respectively; the results are summarized343
in Table 4).344

3.2.2 Carotid-femoral (CF) measurements345

From the analysis carried out on the complete CF dataset, it emerged that using the carotid template of346
500 ms length guarantees the best performance in terms of specificity, setting the cross-correlation threshold347
to 0.56 and the minimum number of detected heartbeats per trace to 10 (AUC = 0.89, sensitivity 77%,348
specificity 92%; template of 400 ms length: AUC = 0.88, sensitivity 76%, specificity of 91%; template of349
300 ms length: AUC = 0.87, sensitivity 72%, specificity 92%).The confusion matrices are shown in Table 3350
for each template.351

As for the carotid traces, the performance of the template matching algorithm was based on the specificity352
values, in order to remove the bad quality signals. More in detail, the template matching strategy shows353
excellent performance for the classification of visual scores 1 and 5 (accuracy of 96% and 93% respectively),354
while the accuracy decreases for class 2 and class 4 (91% and 72% respectively). In the femoral case, the355
method classified a majority of LDV traces with a visual score of 3 (borderline) as inadequate. Indeed,356
considering the template of 500 ms, the template matching method classified 65% of score 3 as inadequate357
signals and the other 35% (borderline)as adequate.358

The level of agreement obtained between QTM and Qvis on the CF recordings dataset, using the 500 ms359
template length, is shown in Figure 10C. The results indicate that from the median QTM values scored Qvis360
= 3, a threshold value could be adopted for the automatic quality checking of the LDV trace (i,e. in the361
case under study, traces with a QTM > 0.23 could be considered of adequate quality; again, this threshold362
is not required when working with the logistic regression models.)363

The accuracy distributions of logistic regression models trained on quality scores derived from template-364
matching are displayed in figure 11( 11E and 11F). On average, the accuracy on traces acquired using365
handpiece 1 is higher than handpiece 2 (87±1.3% and 81±1.9%, respectively; the results are summarized366
in Table 4).367

3.3 Matrix profile368

On good quality data, i.e., those visually scored at 4 or 5, the matrix profile technique was able to include369
nearly all heartbeats in the motif. On poor quality data the matrix profile was unable to identify most370
heartbeats because of noise or artifacts in the measurement. On some measurements that contain pure noise,371
the matrix profile picked up random noisy waveforms that were less prevalent and differed much compared372
to the desired foot-of-the-wave waveform.373

3.3.1 Quality metric results374

The signals measured at the carotid measuring site were given a matrix profile-derived quality score that is375
compared with their visual scores in figure 10B. A positive, linear relation between the two scoring methods376
is observed for the carotid-carotid database.The same information is shown for the femoral measuring site377
in figure 10D. The difference between poor and good quality signals is apparent. Signals with visual score378
1,2 or 3 have significantly lower QMP than those with visual score 4 or 5.379

3.3.2 Logistic regression models performance380

Figure 11C,D,H show the accuracy distributions of the repeated logistic regression model-training381
experiment for signals measured in the neck with the different handpieces. All accuracy averages are382
above 80% with 82% (±1.64%) and 88% (±1.53%) for carotid-carotid recordings with handpiece 1 and 2,383
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respectively. For carotid-femoral recordings, carotid data recorded with handpiece 2 yielded an accuracy of384
85%± 1.71%. The distributions were assumed to be normally-distributed after a Shapiro-Wilk test and385
thus the Gauss-curves are drawn onto the subfigures of figure 11.386

The same data for the femoral data (measured with handpiece 1 during carotid-femoral recordings), is387
shown in figure 11G. An average accuracy of 86% with a standard deviation of 1.43% is observed. All388
accuracy statistics of the different measurement situations are summarized in table 4.389

3.4 Signal quality vs. physiological variables390

The results from the correlation analysis between QMP and age, BMI and systolic blood pressure391
are shown in figure 12 for the femoral data (carotid-femoral recording, handpiece 1; CF hp1) and the392
carotid-carotid recordings with handpiece 2 (CC hp2) showing the strongest trends. Significant negative393
correlations were found between age and QMP for CF hp1 (r=-0.253, P<0.05) and CC hp2 (r=-0.365,394
P<0.001). The correlation with BMI (figure 12B) was significant only for the femoral recording (r=-0.304,395
P<0.01) while the correlation with systolic blood pressure was significant only for CC hp2 (r=-0.206,396
P<0.05)(figure 12C). In a multivariate regression model including both age and systolic blood pressure,397
the correlation between carotid signal quality and systolic blood pressure was no longer significant (due to398
the correlation between age and systolic blood pressure). In contrast, in a multivariate model of femoral399
signal quality, both age and BMI remained significantly correlated with signal quality. The same relations400
are found when repeating the analysis with Qvis or QMP (data not shown).401

4 DISCUSSION

The potential of Laser-Doppler Vibrometry (LDV) for non-contact measurement of physiological402
(cardiovascular) signals has been reported since about 2000 in explorative studies (Pinotti et al., 1998;403
Kaplan et al., 2012; Morbiducci et al., 2007a; Rohrbaugh et al., 2013) making use of bulky industry-time404
devices, and the technique has been suggested for measurement of carotid-femoral PWV by (De Melis405
et al., 2008). An important technological breakthrough to enable LDV-based measurements in a clinical406
setting is the use of silicon photonics to miniaturize and integrate the optical components onto chips (Li407
et al., 2013) that are easily built in into hand-held devices as the CARDIS prototype used in this study. That408
prototype was used in a clinical feasibility study where measurements were performed on the carotid and409
femoral artery and we previously reported on the agreement of LDV-based carotid-femoral PWV with a410
reference method (Marais et al., 2019). In that paper, data was processed off-line and algorithms for foot411
detection relied on the ECG and gating was applied on carotid and femoral tracings to ensure identification412
of the correct characteristic points on the waveforms. Further developments aim for ECG-independent413
measurements and will require a more stringent quality assessment in real-time application to ensure that414
data is captured from which transit times can be derived. Unlike the CARDIS device, future versions of the415
device will provide real-time feedback on signal quality and valid measurements will only be accepted after416
a minimal number of data samples have been retrieved from signals passing predefined quality criteria. In417
this paper, we explored two possible strategies for such quality assessment, template matching and matrix418
profile, and benchmarked them using visual scoring as reference.419

The visual grading was done by what we considered an expert observer, but is inherently subjective.420
The graphical user interface that was developed showed all data within one single window for reasons of421
efficiency, but inevitably leads to a weighed appreciation where data from different channels do get, to422
some extent, a degree of relative scoring. This mainly applies to the scores good (4)-excellent (5) where423
recordings of certain channels could have likely received different rankings if they had been individually424
assessed without the knowledge of the signal on the other channels. This remark may also pertain to the425
grade borderline. As future use of the device will target acquiring the best possible signals in a given subject,426
we particularly focused on signals graded 4 or 5. Figure 9 provides a visual overview of observed quality427
across the complete database. Each handpiece of the device is equipped with 6 channels in line, spanning428
2.5 cm with the aim to have minimally one channel that detects a strong signal. It is clear that channel 1429
on handpiece 1 systematically yields very low scores, which was attributed to a hardware problem with430
inadequate alignment of the optical components during device assembly. For carotid measurements, the431
middle channels 3 and 4 yielded the the highest quality signals (as expected), but this shifted to channels 2432
and 3 for handpiece 2. Also, the overall signal quality was slightly higher for handpiece 2. We speculate that433
the use of the spacer underneath handpiece 1 may contribute to the difference in signal quality between both434
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handpieces. These data can be compared to the data from handpiece 2 during carotid-femoral measurement,435
where handpiece 2 is now equipped with a spacer (see Figure 9 for the measuring configurations). The436
mean signal quality is now in the same range as it was for handpiece 1 on the local carotid measurements.437
An extra factor, however, is the fact that carotid-femoral measurements are technically more demanding,438
requiring the simultaneous acquisition of signals at 2 distinct locations. The same conclusions can be drawn439
on the basis of the automatically calculated sores QTM and QMP.440

In essence, one very good to excellent channel recording on each of the handpieces should guarantee a441
reliable transit time estimation from one handpiece to the other. This was achieved in 27% of the local442
carotid datasets and in 13% of the carotid-femoral datasets mainly due to the suboptimal femoral recording443
that is more challenging due to fact that the operators has to manipulate two sensors on two distinct444
locations as well as the deeper positioning of the femoral artery leading to weaker signals. That does not445
imply that the remaining datasets cannot be processed (especially when the ECG is available; see (Marais446
et al., 2019)) or that LDV would not be suitable as measuring technique; we just speculate that these results447
can be drastically improved with real-time feedback on the signal quality upon measurement.448

The main objective of this paper was to explore different methods for an automated signal quality449
assessment, where we first explored template matching. The template should minimally contain the foot450
fingerprint of the wave, apparent on both the carotid and femoral measuring locations. That pattern turned451
out to be fairly robust across the tested population. Even though the amplitude of acceleration signals was452
lower at the femoral measuring site, the pattern of the foot is quite similar on both measuring locations. A453
practical choice that has to be made is on the length of the template. For carotid signals, it may be relevant454
to extend the template such that it also encompasses the dicrotic notch. We preferred the shorter template455
of 200 ms (which does not extend beyond the dicrotic notch) as the time delay between the wave’s foot and456
the dicrotic notch is not constant but varies in between subjects and also within one subject from cycle to457
cycle due to physiological variations in blood pressure and heart rate. The shorter template was found to458
result in a somewhat higher specificity in correctly classifying poor signals, but overall, the performance of459
the carotid templates with different lengths was not very different, as can be observed from the confusion460
matrix (Table 2). On the other hand, for the femoral artery, we preferred the longest template of 500 ms461
which should detect epochs characterized by one prominent peak, the foot of the wave, followed by a long462
tail of low amplitude signals.463

We then determined optimal thresholds levels for the magnitude of the cross-correlation and the number464
of detected beats using ROC analysis, whereby we maximized the classification performance of a binary465
classifier on the basis of QTM. In this exploratory study, that analysis was done on the complete database466
and further optimizations should be done on the used features and repeating the analysis with a separate467
training and testing data set. Using the resulting thresholds, the agreement between QTM and Qvis was468
overall satisfactory. The logistic regression model analyses learned that a template matching approach is a469
valuable option to automatically classify signal quality as acceptable or not acceptable with an accuracy of470
over 80%.471

As a second method, we considered the matrix profile as a technique to identify recurring patterns in the472
LDV-measurements in an automatic manner (Zimmerman et al., 2019), with very few control parameters.473
The potential advantage of a matrix profile approach over template matching is that no prior knowledge is474
required on the shape of the signal feature that one is looking for. Also, using the matrix profile allows475
the generation of a ‘user-dependent’ template in situ. Signal quality was quantifiable using features of476
the motifs found by the matrix profile and combined into the quality metric QTM, which showed a good477
agreement with the ground truth of visual scores as can be observed from Figure 10.478

As for the template matching approach, the average accuracy of a logistic regression model trained and479
tested on features derived from motifs provided by the matrix profile technique is in all cases higher than480
80%. Overall, only relatively small differences are observed between the two techniques. Both techniques481
perform similarly well which suggests that both, or a combination of the two, can be used for classifying482
new, future data into ‘bad, unusable’ or ‘good, usable’. This allows us to state that a logistic regression483
model suffices, along with the signal features and techniques that are considered, to accurately assess484
incoming data in future real-time applications.485

In our logistic model training, we purposely discarded datasets visually labelled ’borderline’ (score 3) as486
these data were simply hard to classify visually in an unequivocal way. That difficulty is relatively well487
reflected in the values of the quantitative metrics for these signals (figure 10) and the performance of the488
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classifiers as quantified by the confusion matrix (table 2 and 3). Especially for the carotid artery, automated489
classification leads to a close to fifty-fifty percent labeling of data as acceptable or not acceptable. For the490
femoral recordings, there is a larger tendency to classify signals with visual score 3 as not acceptable. This491
is in line with our own perception that femoral data may have received higher scores than carotid data of a492
similar quality, and underlines the need for objective tools to score signal quality.493

Interestingly, the quality score, exemplified by QMP, correlates negatively with age and especially494
with BMI when signals are measured in the groin on the femoral artery. This observation supports the495
operator impression that measuring good quality LDV-signals on more obese subjects is consistently more496
challenging. The deeper the positioning of the artery and the more surrounding tissue, the stronger the497
signal attenuation. Such relation with BMI was absent for neck recordings. Also, skin inelasticity or498
thickness is expected to play a role on the transmission of intra-arterial vibrations and likely contributed to499
the observed negative correlation between and signal quality at the carotid and femoral locations in the500
study populations. The negative correlations between signal quality and age for carotid-carotid recordings501
with handpiece 2 were less strong, and were not found for the other carotid recordings (carotid-carotid502
handpiece 1 or carotid-femoral handpiece 2 recordings). A possible explanation may be the use of the503
spacer for these latter measurements, which may mechanically interfere with the transmission of the504
vibrations from within the artery to the skin and exert an effect on the recordings. Overall, this effect is505
considered minor, but it may nonetheless be a factor contributing to observed differences in the recordings.506

The CARDIS prototype has a laser wavelength of 1550 nanometer which is insufficiently reflected507
by the skin. We therefore attached retroreflective patches to the skin at the measurement locations to508
enhance reflection. The next-generation prototype aims for measurements without the retroreflective patch509
to facilitate practical use. A wavelength of 1300 nanometer, for which there is a relative peak in skin510
reflectance (Rockwell and Goldman, 1974), will be used but the impact of skin pigmentation or sweating511
on data quality will have to be investigated.512

In this study, signal quality was assessed off-line on 20 second recordings. Future developments will focus513
on real-time assessment of data quality as data is being captured and where the considered techniques will514
be used for epoch detection and subsequent quality quantification. Although a template-matching approach515
has the benefit that prior knowledge can be used to assess incoming data from the start, we assume that516
both techniques provide similarly useful features and that both are suitable for real-time implementation. It517
may be an option to hybridize the two techniques to come to a stronger, even more robust algorithm when518
implementing them into the device.519

5 CONCLUSION

In conclusion, template matching and matrix profiling are methods suitable for the automated assessment520
of the signal quality of acceleration data measured from the skin in the neck and groin using laser Doppler521
velocimetry. Both methods allow to identify epochs in a data stream, and provide quantifiable features that522
can be combined into a quality score, or be used as input for logistic regression models for an automated523
classification of signals as acceptable or not acceptable. Models based on both methods yielded an accuracy524
of minimally 80% in our CARDIS database of carotid and femoral recordings, reaching as high as 87% for525
the femoral data.526
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TABLES

Quality
score Qvis

Quality Description

Score 1 Bad Acquisition with no evidence of repeatable features that may be
linked to the detection of a pulse

Score 2 Poor Very noisy acquisition not suitable for analysis, but with
identifiable pulses within the noisy trace

Score 3 Bordeline
Acquisition affected by noise but presenting clear repeatable
patterns. Advanced signal processing algorithms could remove
the noise and allow to detect the foot of the pulse wave with
reasonable affordability

Score 4 Good
Acquisition with sharp and pronounced peaks at the foot (and
dicrotic notch), with relatively low noise levels between successive
pulse peaks

Score 5 Excellent
Acquisition with very sharp and pronounced peaks at the foot (and
dicrotic notch), with low noise levels in between the peaks. Signals
of textbook quality

Table 1. The 5-levels grade scale taking values Qvis

TABLES

Template of 200ms Template of 400ms Template of 600ms
Carotid recordings TM score 0 TM score 1 TM score 0 TM score 1 TM score 0 TM score 1

score 1 97% 3% 97% 3% 97% 3%
score 2 86% 14% 86% 14% 82% 18%
score 3 58% 42% 55% 45% 44% 56%
score 4 29% 71% 30% 70% 15% 85%
score 5 8% 92% 19% 81% 6% 94%

Table 2. Confusion matrices of signal classification done by the hand-engineered classification model
constructed with template matching. Signals classified in this table were measured at the carotid and the
templates used were the carotid population templates.

Template of 300ms Template of 400ms Template of 500ms
Femoral recordings TM score 0 TM score 1 TM score 0 TM score 1 TM score 0 TM score 1

score 1 96% 4% 96% 4% 96% 4%
score 2 91% 9% 89% 11% 91% 9%
score 3 68% 32% 64% 36% 65% 35%
score 4 33% 67% 28% 72% 27% 73%
score 5 8% 92% 6% 94% 7% 93%

Table 3. Confusion matrices of signal classification done by the hand-engineered classification model
constructed with template matching. Signals classified in this table were measured at the femoral and the
templates used were the femoral population templates.
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Template Matching Matrix Profile
Accuracy Average Std Average Std

Carotid-carotid hp1 80% 1.75% 82% 1.64%
Carotid-carotid hp2 85% 1.63% 88% 1.53%
Femoral-carotid hp1 87% 1.31% 86% 1.43%
Femoral-carotid hp2 81% 1.96% 85% 1.71%

Table 4. Table containing the average performance of the logistic regression models trained on features
derived by both template matching and matrix profile methods. Results are shown per handpiece of the
measuring device. Average classification accuracy as well as its standard deviation are given.

FIGURE CAPTIONS

Figure 1. CARDIS device in configuration to measure carotid-femoral (A) and local carotid PWV (B).
(C) and (D) display representative tracings on the carotid (C) and femoral (D) measuring site receiving a
visual grading score of 1 to 5. Especially in the excellent tracings, the foot-of-the-wave waveforms are
clearly visible, with the same for the dicrotic notch waveforms in the local carotid case.
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Figure 2. An example of Cardis data. (A) shows the ECG signals, (B) shows the displacement signal and
(C) the corresponding acceleration signal.
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Figure 3. Workflow detailing the construction of the template. Illustration of selection of good quality
epochs using the correlation coefficient. (A) ECG signal with detected R peaks, which are used to segment
the acceleration signal into heartbeat epochs (B). After the correlation matrix analysis, only the good
epochs are maintained (D). In (C) the final individual template, calculated as the average of the good
epochs, is displayed.
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Figure 4. Bottom (C & D): individual carotid (CC) and femoral (CF) templates; Top (A & B): population-
average carotid and femoral templates.
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Figure 5. Left column (A, C & E): three different length of the femoral template; Right column (B, D &
F): three different lengths of the carotid template.
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Figure 6. The template matching algorithm is shown. The chosen template (displayed in the middle row of
the figure) is iteratively correlated with the acceleration signal to get the cross correlation function. In that
function, the appropriate peaks are then identified.
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Figure 7. First row: acceleration signal. Second row: normalised cross-correlation function and its
maximum values of the acceleration signal with the femoral template of 500 ms. Last row: acceleration
signal with the detected peaks using the template matching method.

Figure 8. Example of one signal being scored by the features that are derived from the Matrix-Profile-
identified motif. The amplitude feature of one subsequence is shown in the upper figure, the reference is
indicated with a red square. The time-instant of subsequence peak feature is shown in the lower figure
where all subsequences shown in the upper figure are time-aligned. Signal score is shown in the upper left
corner of the upper figure. The visual score of this signal is 4.
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Figure 9. Top row: visual scoring of signals measured with handpiece 1 and 2 during local carotid
measurements (A) with overall grades shown in (B) and box plots and mean values per channel in (C).
Bottom row: visual scoring of signals measured during carotid-femoral PWV measurements (D) with
overall grades shown in (E) and box plots and mean values per channel in (F).
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Figure 10. Quality score comparison between visual score and the template-matching-derived and matrix-
profile-derived. Subfigures (A) and (C) display the score based on the template matching and (B) and (D)
quality score based on the matrix profile.

This is a provisional file, not the final typeset article 24



Seoni, Beeckman et al. Quality Assessment of LDV signals

Figure 11. Accuracy distributions for 1000 random train-test set partitions and subsequent logistic
regression models trained. The accuracy distribution is shown cumulatively through bar-charts with the
equivalent Gauss-curve plotted on top of it. Subfigures (A), (B), (C) and (D) show this for CC HP1, CC
HP2, CF HP1 and CF HP2 cases respectively.

Figure 12. Correlation analyses of the matrix profile-based quality score with age, BMI and systolic blood
pressure, shown in subfigures (A), (B) and (C) respectively. Only data in the CC HP2 and CF HP1 cases is
shown. Trendlines of the data are also drawn.
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