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Abstract: Broadcasters are building studio architectures based on commercial off-the-shelf (COTS)
IT hardware because of advantages such as cost reduction, ease of management, and upgradation.
Media function virtualization (MFV) leverages IP networking to transport media streams between
virtual media functions (VMFs), where they are processed. Media service deployment in an MFV
environment entails solving the VMF-FG scheduling problem to ensure that the required broadcast
quality guarantees are fulfilled. In this paper, we formulate the VMF-FG scheduling problem and
propose a greedy-based algorithm to solve it. The evaluation of the algorithm is carried in terms of
the end-to-end delay and VMF queuing delay. Moreover, the importance of VMF-FG decomposition
in upgradation to higher-quality formats is also highlighted.

Keywords: virtualization; broadcasting; MFV; NFV; SMPTE

1. Introduction

The rising demand for new TV broadcast services, e.g., over-the-top (OTT), and high-
quality content forces broadcasters to regularly upgrade studio infrastructure, resulting in
high expenditures [1]. Cutthroat competition further accentuates the challenge of keeping
the business viable. This challenge has forced broadcasters to seek alternative studio
architectures for broadcast media production.

For several decades, serial digital interface (SDI) has been the most preferred solution
for media transport within studios because of its robust and reliable performance [2].
However, upgrading SDI-based infrastructure to support higher quality media, e.g., full
high definition (FHD) and ultra high definition (UHD) videos, requires high-speed SDI
routing matrix, thus rendering the upgradation phase quite expensive and complicated [3].
As an alternative to SDI, packet-switched media transport architectures are gaining the
attention of broadcasters. Internet protocol (IP) is a versatile solution to interconnect
devices on the Internet as well as in private networks. Due to the decades of evolution
in IP, the speed of packet forwarding devices has grown manifold. For instance, network
cards and switches with Gbit/sec Ethernet (10GbE) interfaces are now commonly available.
As a result of this evolution, all-IP studio architectures are being explored to transport
uncompressed media streams across studios [2].

A complementary transition is happening in the media processing domain to move
from bespoke hardware toward commercial off-the-shelf IT hardware (e.g., Intel Xeon
Servers) running software applications to process media streams [4]. COTS hardware being
inexpensive and ubiquitous, the upgrade of media processing infrastructure is much more
economical compared to the specialized hardware boxes.

The progress made on these two fronts—COTS hardware exploitation for (i) media
transport and (ii) media processing—is crucial in accelerating the adoption of media func-
tion virtualization (MFV). Analogous to network function virtualization (NFV), where
network processing is accomplished via software deployed on COTS hardware, MFV
aims to implement media functions (MFs) as software [4,5]. Despite its advantages, MFV
faces a unique set of challenges that are not relevant to NFV. Broadcast production quality
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standards are quite stricter than for networking services; for instance, a packet loss or even
excessive delay in the arrival of a packet at the receiver can ruin the viewer experience.
Deterministic networking (DetNet) can be exploited to provide end-to-end timing guaran-
tees for the transport of media streams [6]. Specifically, DetNet mechanisms such as cycle
specified queuing and forwarding (CSQF) allow scheduling packet transmissions along
the network path that can fulfill the real-time requirements [7].

Media services are represented using a directed graph, referred to as a virtual me-
dia function forwarding graph (VMF-FG). The deployment of a media service entails the
mapping of the given VMF-FG to the underlying infrastructure; this is referred to as the
VMF placement and chaining (VMF-PC) problem. The naive VMF-PC algorithm assumes
best-effort networking for media transport between VMFs, and thus does not provide any
guarantee on metrics such as packet loss, end-to-end delay, or jitter. Overprovisioning band-
width for media streams could result in an improvement in these metrics, yet deterministic
performance cannot be guaranteed. Therefore, the VMF-FG mapping process needs to
incorporate scheduling of VMFs and virtual links to ensure broadcast-quality guarantees.

In this paper, we first formulate the VMF-FG scheduling problem and then propose a
greedy heuristic to solve it. The performance of the heuristic is evaluated by conducting
numerical experiments.

The rest of the paper is structured as follows. The context of the research is presented in
Section 2, followed by related works in Section 3. The problem statement and the proposed
heuristic are described in Section 4. The evaluation setup and results are described in
Section 5. Finally, our conclusions and final remarks are summarized in Section 6.

2. Research Context
2.1. IP and Virtualization

Figure 1 shows an overview of MFV architecture. The bottom layer is the MFV infras-
tructure layer that consists of the hardware and software components required to transport
and process media streams in the broadcast studio. Usually, the hardware, i.e., compute,
storage, and network, is virtualized. The VMF layer consists of software instances of MFs,
referred to as VMFs, running in virtual machines and/or docker containers. VMFs can
be chained together to realize complex media services such as the one shown in Figure 1.
The topmost layer represents the media service layer.

Media services 
Layer

VMF
Layer

Infrastructure 
Layer

Virtualization 
Layer

Control &
Optimization

QoS

VMF 
profiles

VMF-FG
scheduling

VMF-FG

MFVi

Figure 1. Overview of the MFV architecture.

Another important architecture component is the control and optimization (CO) layer.
The roles of the CO layer include the management of other layers and the distribution of
control signals to VMFs. In addition, the layer is responsible for scheduling the media
service’s VMF-FG to the MFVi. The CO layer is responsible for solving the VMF-FG
scheduling problem by taking various input parameters as described in Section 4 into
account. An optimization algorithm then generates a solution that describes the mapping
of VMF-FG along with the VMF and virtual link schedules, as explained next. The mapping
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and the schedule can then be used to configure various MFVi components so that the
required guarantees are met.

2.2. DetNet and CSQF Scheduling

The efforts to incorporate performance guarantees such as zero packet loss and
bounded end-to-end delay and jitter have continued for many years. A set of standards
referred as time-sensitive networking was developed under IEEE 802.1 Ethernet to provide
deterministic performance over local area networks (LANs). To this end, TSN employs
mechanisms such as priority queuing, frame preemption, traffic shaping, etc. However,
these mechanisms are not suited for large-scale IP networks. The IETF deterministic net-
working (DetNet) working group builds upon the TSN mechanism to support deterministic
performance in large networks [6].

Cycle specified queuing and forwarding (CSQF) is a DetNet mechanism that evolved
from a TSN mechanism called cycle queuing and forwarding [7]. CQF, also known as a
peristaltic shaper, proposes to have, in each node, two queues per output port that operate
in a ping-pong manner. At any instance of time, one queue is receiving packets from the
upstream nodes and the other queue is transmitting to the downstream node. The time
interval for which a queue receives (or transmits) packets is fixed and referred to as cycle
time (Tc). It can be proved that using the two-queue model along a path in the next results
in bounded delay and latency. However, CQF is incompatible with large-scale networks, as
it requires the packets transmitted during a cycle time to be received in the same cycle time
and transmitted in the next cycle, thus limiting the length of the physical links. In contrast,
CSQF has no such requirement; this is discussed next.

Contrary to CQF, CSQF specifies the transmission time of packets along the path
between the source and destination. The requirement to receive the packet in the cycle
it was transmitted is no longer required. To achieve this, each CSQF-enabled node is
equipped with multiple queues Nq (generally Nq ≥ 3) per port, as shown in Figure 2.
During a cycle time, one queue receives packets from the upstream nodes, and another
queue transmits the packets it has received in the previous cycle. Here, another queue
allows reception of the packets that were supposed to arrive in the next cycle. The early
arrival could be due to variation in the processing time of the previous node. Moreover,
this queue can be used to delay the arrival of specific packets by Tc. The role of packet
transmission (and reception) is rotated cyclically among all the queues in each Tc. The time
after which the application sender repeats the transmission pattern is referred to as a
hypercycle, usually expressed as a multiple of cycle times.

q
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Figure 2. Mapping of cycle times to queues in the CSQF operation.

By having more than two queues in CSQF, a packet could be delayed by a specific
amount ((Nq − 2)Tc)) by queuing the packet in a specific queue. In other words, at each
node, the received packet should not only be forwarded to the right node, i.e., routing,
but it should also be received in the right queue, i.e., scheduling. This can be achieved
using segment routing (SR). After a packet is received at a node, its SID (SR identification)
is used to first decide the output port. Each output port is associated with a number of
SIDs, each of which corresponds to a queue. After the port selection, the SID is mapped to a
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specific queue for reception and the packet is received in the mapped queue. By appending
the packet to a stack of SID labels, the routing and scheduling at all the nodes of a path
can be determined. It is worth noticing that there is no need to maintain a per-flow state in
the intermediary nodes [7]. This allows scaling to large networks along with supporting a
large number of flows.

As mentioned previously, an upper limit on timing metrics is required to ensure
that broadcast quality is maintained. To this end, media streams between VMFs can be
scheduled using CSQF. This will ensure that each VMF receives its input frames within the
required time window so that the output frame is produced and then received in a timely
manner by the downstream VMFs.

3. Related Works

Broadcast media production is undergoing a massive transformation propelled by
IP and virtualization technologies. The migration to IP-based media transport from SDI
is expected to accelerate in the near future. The interest in IP among broadcasters is
emphasized by the fact that the SMPTE has released a suite of ST 2110 standards [8–10].
These standards describe how different media essences, i.e., video, audio, and ancillary
data, can be transported independently using IP. Many all-IP broadcast studios are now
being built based on these standards.

A live TV broadcast based on IP was produced by the British Broadcast Corporation
(BBC) during the Glasgow 2014 Commonwealth Games [11]. UHD streams captured by
multiple cameras in several competition venues were delivered to the software-defined
production facility. The final program, after HEVC, was also delivered over IP. Likewise,
a new broadcast facility in Wales, UK was built based on IP.

The Canadian public broadcaster CBC/Radio-Canada has constructed an all-IP fa-
cility responsible for over 100 TV, radio, and online program in Montreal, Canada [12].
The switching network is based on leaf-spine topology with 100 Gbps links. The net-
work can support real-time multicast traffic along with redundancy for media streams.
The software-defined network ensures that media streams can be distributed uniformly
over the topology. The flexibility offered by IP is crucial for COTS-based media processing,
as discussed next.

D. Luzuriaga et al. have also demonstrated the PoC for a vision mixer based on
open-source software tools (e.g., OBS studio and KX studio) running on a COTS hardware
platform [13]. They presented a low-cost replacement for a specialized hardware produc-
tion system. The evaluation shows that the vision mixing setup has an acceptable delay
of about 1.4 s, which is reasonable for professional (nonlive) media production scenarios.
Furthermore, live media mixing based on software has been demonstrated by the BBC
partnered with Isotama [14]. To operate the setup in real time and control the final live
output, the software pipeline is interfaced with a browser-based operation tool.

Broadcast media services in an MFV environment can be represented using VMF-FGs.
In our previous work, we proposed a VMF-FG decomposition algorithm [15]. The VMF-FG
decomposition algorithm processes an input VMF-FG to produce an optimized VMF-FG
that consumes fewer resources.

Recently, some work has been done to address the joint routing and scheduling
problem for DetNets [16]. The problem is formulated as an integer linear program (ILP)
and two methods—column generation and dynamic programming—are proposed to
maximize traffic acceptance. An ultrafast and scalable greedy heuristic that is capable
of solving the problem with a small penalty is also proposed. In this paper, the DetNet
requests are simply two endpoints (source and sink). The problem of VMF-FG scheduling
assumes a timing relationship between different virtual links. To the best of our knowledge,
there has not been any research on scheduling VMF-FG to reliably deploy media services.
This work aims to first formulate the VMF-FG scheduling problem and also proposes a
heuristic to solve it.
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4. System Model and Algorithm

In this section, we describe the VMF-FG scheduling problem and propose a greedy-
based heuristic to solve it.

4.1. System Model

A media service s is represented using a DAG denoted by G = (F ,L), where F is
the set of VMFs and L is the set of virtual links. The bandwidth requirement, in bytes per
hypercycle, on a virtual link is denoted by bw fi , f j

. Here, the hypercycle time is equal to
the frame interval, i.e., |C| × Tc = Tf rame = 1/R f rame. Thus, bandwidth requirement per
hypercycle for ( fi, f j) is equal to the frame size, e.g., an FHD (1920 × 1080 or 2 K) @30fps
video stream with YCbCr color space and 4:2:2 sub-sampling, the bandwidth requirement
per frame is 5184000B (5 MB).

The MFVi network is also denoted with a directed graph GI = (N, E), where N and
E denote the set of physical nodes and links, respectively. The subset of physical nodes
includes server nodes (Nc ⊂ N) with computational resources to host VMFs. The available
bandwidth in cycle c on physical link (nu, nv) is denoted by bwc

nu ,nv .
Deploying a media service in an MFV environment involves mapping of the service’s

VMF-FG onto the MFVi network. In the problem of VMF-FG scheduling, given a VMF-FG
G and MFVi GI , (i) the VMFs should be assigned to the server nodes (α : F → Nc), (ii) the
virtual links should be mapped to the physical paths (γ : L → Pths), and (iii) the virtual
links should also be assigned a packet transmission schedule (ω : L → R|C|). As shown
in Figure 3, the CO block has a view of MFVi network GI ; the scheduler in the CO block
takes VMF-FG G and GI as input and solves the VMF-FG scheduling to generate a solution.
The solution (α, γ, and ω) is then used to configure MFVi, e.g., assign VMFs to servers,
segment routing configuration for CSQF schedule, etc. Table 1 lists the various parameters,
procedures, and variables involved in the ILP model and heuristic.

MFV CO

MFVi  GI

VMF-FG: G f
0

f
2

f
1

f
3

f
0

f
1 f

2 f
3

VMF placement (𝜶)

Virtual Link chaining (𝛾)

Virtual Link scheduling (𝝎)

VMF-FG 
Scheduling solution

Figure 3. An overview of the VMF-FG scheduling problem.

4.2. Problem Complexity

Next, we analyze the complexity of the VMF-FG scheduling problem and show its NP-
completeness. To this end, we formulate an instance of the VMF-FG scheduling problem as
an ILP model. As the simpler instance of the problem is hard to solve, it can be inferred
that the complete VMF-FG scheduling problem would be much harder to solve.
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Table 1. Description of the notations used for different parameters and variables involved in the
system model.

Notation Description

G = (F ,L) VMF-FG representation of a media service, where F
and L are the set of VMF and virtual links, respectively.

GI = (N, E) Directed graph representation of the MFVi network in-
frastructure, where N is the set of nodes and E is the set
of physical links between the nodes.

R f rame Number of frames transmitted per second on a
media stream.

Tc Cycle time.

Nc Set of all server nodes (Nc ⊂ N), i.e., nodes with com-
pute resources.

C The set of all cycles in a hypercycle.

bw
fi , f j ,p
nu ,nv ,c The decision variable of the ILP formulation denotes the

amount of bandwidth (in bytes) allocated to virtual link
( fi, f j) on physical link (nu, nv) of path p during cycle c.

x
fi , f j
p The decision variable of the ILP formulation indicates if

virtual link ( fi, f j) is mapped to a physical path or not.

bwnu ,nv ,c Available bandwidth (in bytes) on physical link
(nu, nv) ∈ E during cycle c ∈ C.

DwstrNbrs (G, f ) The procedure returns a list of all downstream neigh-
bors of f in VMF-FG G.

UpstrNbrs (G, f ) The procedure returns a list of all downstream neigh-
bors of f in VMF-FG G.

Pths (GI , n1, n2, K) The procedure returns K shortest paths between n1 and
n2 in GI .

PthDel (GI , p) The procedure returns the delay along p in GI .

CpuSch ( f , n, t1, t2) The procedure returns a core, if free, on node n where f
can be scheduled between t1 and t2.

GrdAlloc (bw, ω, n1, n2, t) The procedure returns the CSQF schedule for physi-
cal link (n1, n2) and the possible start and end cycle in
the schedule; the bandwidth requirement is bw and the
maximum end cycle is t .

PthSch (slnk, p) The procedure checks if schedule slnk on link lnk is com-
patible with other links in path p; if yes, it returns the
schedule for the full path.

α The variable denotes the node and core assignment of
VMFs.

γ The variable denotes the physical path assignment of
virtual links.

ω The variable denotes the schedule assignment of virtual
links.

Let us consider a VMF-FG with a total of |L| virtual links where a virtual link is
denoted by ( fi, f j). The following is the ILP formulation for the VMF-FG scheduling
problem instance.
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max ∑
p∈Pths(GI ,n( fi),n( f j),K)

x
fi , f j
p

st : ∑
∀( fi , f j)∈L

p∈Pths(GI ,n( fi),n( f j),K)
,(nu ,nv)∈p

xi,j
p bw

fi , f j ,p
nu ,nv ,c ≤ bwnu ,nv ,c, ∀(nu, nv) ∈ E, c ∈ C.

Here, the objective function is to maximize ∑
p∈Pths(GI ,n( fi),n( f j),K)

x
fi , f j
p ; where x

fi , f j
p

indicates if virtual link ( fi, f j) is mapped to physical path p and bw
fi , f j ,p
nu ,nv ,c is the amount

of bandwidth allocated to virtual link ( fi, f j) on physical link (nu, nv) during cycle c.
The constraint ensures that the total allocation during c on physical link (nu, nv) does not
exceed the available bandwidth, i.e., bwnu ,nv ,c. The objective of the formulation is to map as
many virtual links to physical paths as possible. This formulation can be thus expressed
as a decision problem (yes or no) by setting the threshold for the objective function to |L|.
Therefore, a given VMF-FG is said to be scheduled if the objective value obtained after
solving the ILP is |L|.

In order to prove that the VMF-FG scheduling problem is NP complete, we need to
show that a known NP-complete problem can be reduced to it, similar to [16]. The k-disjoint
paths (kDP) problem decides whether k discrete paths are possible between two nodes ns
and nd of a given graph G. kDP can be reduced in the above instance of VMF-FG scheduling
problem by setting the total cycles in a hypercycle to |C| = 1, the bandwidth requirement
of virtual link bw fi , f j = 1, ∀( fi, f j) ∈ L, and the available bandwidth in each cycle to
be bwnu ,nv ,c = 1, ∀(nu, nv) ∈ E, c ∈ C. Assuming k = |L| and the above assumptions,
the decision problem for VMF-FG scheduling problem returns True if k discrete paths are
possible for L. All the above reduction steps have polynomial complexity and any solution
can be verified in polynomial time, thus the VMF-FG scheduling problem is NP-complete.

Above, we considered an (simpler) instance of the VMF-FG problem. The hardness
of the problem is further accentuated because of multiple choices to place the VMFs and
route the virtual links of the given VMF-FG. Next, we present a scalable greedy heuristic to
solve the problem.

4.3. VMF-FG Scheduling Algorithm

The VMF-FG scheduling algorithm shown in Algorithm 1 can be implemented using
two different graph traversal algorithms, i.e., breadth-first search (BFS) and depth-first
search (DFS). With BFS, scheduling of all VMFs at the same depth from the starting node
is done together, whereas with DFS, scheduling of VMFs along a path (as far as possible)
is performed before backtracking. The two flavors of the VMF-FG scheduling utilize two
different data structures in order to traverse the given VMF-FG, the queue for BFS, and the
stack for DFS. The VMF-FG scheduling variables are initialized and the VMF-FG traversal
starts by initializing Qvm f with the sink node. Next, a while loop is used to traverse the
VMF-FG starting from vm fsnk until Qvm f is empty. A VMF is dequeued (popped) from
Qvm f and stored in f .

For each (already placed) neighboring VMF fdw ∈ DwstrNbrs(F , f ) downstream to f ,
the scheduling of VMF f and the associated virtual link ( f , fdw) is iteratively attempted
using procedure VlinkSch. The tentative node to place f is selected using the next-fit
algorithm, starting from the same node where fdw is placed, i.e., α[ fdw], then the next node
and so on (α[ fdw] + δn). The neighbors of f are then added to the VMF queue (l. 12–14).
Next, we describe the procedure for virtual link scheduling in detail.

The procedure to schedule virtual links is presented in Algorithm 2. The procedure
VlinkSch takes the bandwidth requirement bw fi , f j

of the virtual link ( fi, f j), the server
nodes for the potential placement of fi and f j: n1 and n2, the current placement (α),
chaining (γ), and link schedule (ω) as input. As illustrated in Figure 4, the input schedule
at VMF f j must end dproc( f j) before f j starts transmitting the processed (output) frame (l. 2).
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Next, procedure PthSchGrd (discussed next) is called to greedily allocate bw fi , f j
among |C|

cycles between tend and tend − Tc + 1. The feasible path p, the associated schedule s, and
the timings of the start and end cycles of s are returned by PthSchGrd. In the case that a
feasible path/schedule does not exist, the procedure is terminated by returning φ (l. 5).
Else, VMF timings are updated and a schedule for fi is generated using procedure CpuSch.
As shown in Figure 4, fi’s output timings are obtained by delaying f j’s input timings (l.
9) by the path delay (PthDel(p)). CpuSch returns an available CPU core on n1 where fi
can be scheduled between time interval (Tout

start[ fi]− dproc( fi), Tout
start[ fi]). Before returning,

the placement, chaining, and scheduling variables are updated (l. 14).

pth

PthDel(pth)

t

Figure 4. Illustration for the relationship between different VMF timing schedules.

Algorithm 1 Simplified pseudocode for the VMF-FG scheduling algorithm; a given VMF-FG G = (F ,L) is to
be scheduled on the MFVi network GI = (N, E)

1 α, γ, ω← φ, φ, φ;
2 for vm fsnk ∈ Fsnk do
3 Qvm f ← {vm fsnk}; /* initializing a queue if using BFS else a stack if using DFS */
4 while |Qvm f | > 0 do
5 f ← Qvm f .dequeue(); /* if DFS do pop() instead of dequeue() */

/* schedule f and vlink ( f , fdw) */
6 for fdw in DwstrNbrs(G, f) do
7 δn← 0;
8 while VlinkSch( f , fdw,bw f , fdw

, α[ fdw] + δn, α[ fdw], α, γ, ω) do
9 δn← δn + 1;

10 end
11 end

/* enqueue the upstream neighbors */
12 for nbr in UpstrNbrs(G, f) do
13 Qvm f .enqueue(nbr)
14 end
15 end
16 end

Procedure PthSchGrd iterates over all the paths between n1 and n2 and returns a
feasible schedule, if it exists. More precisely, for path p, first, a greedy schedule is allocated
for the destination link ((p[−2], p[−1])) and it is checked whether it is compatible with the
other links in p using procedure PthSch. If not, φ is returned; otherwise, PthSch returns
the packet schedule for the whole path p. The current path p, the associated schedule s,
and the start and end timings tstart, tend of s are returned.



Future Internet 2021, 13, 167 9 of 13

Algorithm 2 Procedure for allocating a schedule for a virtual link

/* VMF input output timings */
Global : GI , Tout

start, Tout
end , Tin

start, Tin
end

1 Procedure VlinkSch( fi, f j, bw fi , f j
, n1, n2, α, γ, ω):

2 tend ← Tout
start[ f j]− dproc( f j);

3 p, s, tin
start, tin

end ← PthSchGrd(bw fi , f j
, n1, n2, ω, tend);

4 if p == φ then
5 return False;
6 end
7 else
8 Tin

start[ f j], Tin
end[ f j]← tin

start, tin
end;

9 Tout
start[ fi], Tend

in [ fi]← tin
start− PthDel(GI , p), tin

end− PthDel(GI , p);
/* get a core on n1 for fi scheduling */

10 core← CpuSch( fi, n1, Tout
start[ fi]− dproc( fi), Tout

start[ fi]);
11 if core == φ then
12 return False
13 end
14 α[ fi], γ[( fi, f j)], ω[( fi, f j)]← (n1, core), p, s;
15 return True;
16 end
17 end

We are interested in scalability of the above heuristic with the problem size; thus, we
analyze the run time complexity in terms of VMF-FG and MFVi network size, i.e, |F |, |L|,
|N|, and |E|.

The run time of Algorithm 3 is dominated by procedure Pths that returns a maximum
of K paths between n1 and n2, and thus has complexity O(|K||N|(|E|+ |N|log(|N|))); thus,
procedure VlinkSch in Algorithm 2 also has O(|K||N|(|E| + |N|log(|N|))) complexity.
The given VMF-FG procedure is traversed using BFS (Algorithm 1) that has a complexity
of (|F |+ |L|) and ∀( f , fdw) ∈ L procedure VlinkSch is called. This results in an overall
run time complexity of the heuristic to be O(|F |+ |L||K||N|(|E|+ |N|log(|N|))).

Algorithm 3 Procedure for chaining and scheduling on a path

Global : GI , |C|
1 Procedure PthSchGrd(bw, n1, n2, ω, tend):
2 t̄end ← tend%|C|;
3 for p in Pths(GI , n1, n2, K) do
4 for ∆t in [0, |C|] do
5 t̄new

end ← (t̄end − ∆t)%|C|;
6 slnk, tstart, tend ← GrdAlloc(bw, ω, p[−2], p[−1], t̄new

end );
7 if slnk 6= φ then
8 s← PthSch(slnk, p);
9 if s 6= φ then

10 return p, s, tstart, tend;
11 end
12 end
13 end
14 end
15 return φ, φ, φ, φ;
16 end
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5. Evaluation

In this section, we perform a few numerical experiments to evaluate the performance
of our VMF-FG scheduling algorithm. First, we describe the setup used for evaluation.
Next, the performance of our algorithm is evaluated in terms of the VMF-FG’s delay. We
also present the impact of media quality formats on resource utilization.

5.1. Evaluation Setup

Studio architectures have stringent performance requirements such as lossless and
high-speed (multi-Tbps) switching, support for point-to-multipoint communication, etc.
In addition to fulfilling these requirements, data-center topologies, such as fat-tree, are also
easier to upgrade for high-quality media formats [2]. Therefore, the MFVi considered for
evaluation is arranged in the fat-tree topology. The topology consisting of κ pods, where
each pod has (κ/2)2 server nodes, κ/2 access layer switches, and κ/2 aggregate layer
switches and the core layer contains (κ/2)2 switches. The total number of server nodes
in the topology are κ3/4. We assume κ = 8, i.e., there are a total of 128 servers, with each
server node containing 20 cores. All the devices (switches and server nodes) in the MFVi
physical network are equipped with 10 GbE interfaces.

As mentioned earlier, media services are represented via VMF-FGs. The focus of
this paper is on VMF-FG scheduling; we therefore pay attention to the resource allocation
aspects, not to the specific VMF-FG functionality. To this end, the VMF-FG considered for
the evaluation is shown in Figure 5. It consists of 11 VMFs (and 6 endpoints) and 16 virtual
links. The VMF-FG is considered in three media formats: (i) HD @ 30 fps, (ii) HD @ 60 fps,
and (iii) FHD @ 30 fps. The subsamping and sample encoding of the VMF-FG are assumed
to be 4:2:2 and 10 bits, respectively. These media formats are typically employed in today’s
media production environments [3].

The other parameters and their corresponding values (range) for media service re-
quests, MFVi, and VMFs are listed in Table 2.
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Figure 5. Illustration of the VMF-FG used for the evaluation.

5.2. End-to-End Delay

End-to-end delay is an important metric for broadcast media services, especially for
live production scenarios. Here, we report the end-to-end (E2E) delay in a VMF-FG, i.e., the
maximum delay among all possible paths between the VMF-FG’s sources and sinks for
both the BFS and DFS traversal of the proposed heuristic. In Figure 6a, we compare the
average E2E delay for different cycle time (Tc) values. It can be observed that the E2E
delay increases with Tc. This results from the fact that the delay along the physical paths
corresponding to the virtual links increases with Tc as the queuing delay in switching
nodes increases.
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Table 2. Default values/range of various parameters involved in the evaluation.

Parameter Value or Range Units

Topology Fat-tree (κ = 8) -
Formats HD@30fps, HD@60fps, FHD@30fps -
CPU cores/node 20 -
Link bandwidth 10 Gbps
Cycle time (Tc) {100, 200, 300, 400} µs
VMF processing delay 5 ms
Node (switch) process-
ing delay (dnu ,nv )

40 µs

Links delay (dn) 80 µs

It is interesting to note that the E2E delay as well the VMF queuing delay for DFS
is more than with BFS. As scheduling occurs on a path-by-path basis, the scheduling on
one path is impacted by the previously scheduled path, thus increasing the E2E delay on
the longest path. On the other hand, for BFS, all paths have relatively similar delays, thus
reducing the E2E delay along the longest path.

We also report the E2E delay variation with M. The decomposition of a VMF-FG
leads to VMF decomposition, which results in the reduction of VMF processing delay. This
results in the decreasing E2E VM-FG delay with M.

The are various components of E2E delay. The contribution due to video frame
queuing is an important metric because it highlights the efficiency of VMF-FG scheduling.
Here, we define the average VMF queuing delay as the mean of VMF queuing delay in
all VMFs of the VMF-FG. The smaller the value of the average VMF queuing delay is,
the better is the VMF-FG scheduling. The average queuing delay slightly decreases with Tc
as shown in Figure 6b. However, VMF-FG decomposition results in increasing the average
VMF queuing delay due to higher consolidation of VMFs per node.
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Figure 6. (a) The average E2E delay and (b) the average queuing delay versus cycle time (Tc).
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5.3. Impact of Formats

Here, we report the impact of media formats on the performance of the scheduling
heuristic with BFS traversal. The format of media streams affects resource utilization
efficiency. Figure 7 compares the average number of cores used per node for three different
video formats. With no VMF-FG decomposition (M = 1), the average core utilization
decreases with higher quality of media formats. The network bandwidth increasingly
becomes a bottleneck with an increase in media quality; thus, fewer VMFs are placed at a
node even if free cores are available. The average core utilization for DFS is not reported as
it remains same as BFS.

It can also be observed that VMF-FG decomposition improves the average core uti-
lization per node. By decomposing VMF-FG, bandwidth requirement per virtual link
decreases, thus increasing VMF consolidation per node.
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Figure 7. Impact of media formats on resource utilization for different M.

6. Conclusions

The transition from specialized hardware to COTS IT infrastructure is taking place in
broadcast studios, i.e., IP networking for media transport and general-purpose compute
for media processing. MFV proposes to utilize COTS compute hardware to run media
processing as VMFs that can be chained together in the form of VMF-FGs. To ensure that
broadcast-quality guarantees in an MFV environment are met, it is important to not only
map VMFs and virtual links to the underlying MFVi but also to schedule them in a timely
manner. To this end, we first formulate an instance of the VMF-FG scheduling problem
as an ILP and prove its NP-completeness. We have then proposed a greedy-algorithm,
based on BFS and DFS graph traversal, to find its solution. The evaluation of the algorithm
shows an increase in the end-to-end delay with increasing cycle time. We also highlighted
the improvement in the end-to-end delay with VMF-FG decomposition, particularly for
high-quality formats.

For future work, we plan to investigate the implementation of a media service in an
MFV environment with VMF-FG scheduling.
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