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a b s t r a c t 

In this paper, we propose the use of Recurrent Inference Machines (RIMs) to perform T 1 and T 2 mapping. 

The RIM is a neural network framework that learns an iterative inference process based on the signal 

model, similar to conventional statistical methods for quantitative MRI (QMRI), such as the Maximum 

Likelihood Estimator (MLE). This framework combines the advantages of both data-driven and model- 

based methods, and, we hypothesize, is a promising tool for QMRI. Previously, RIMs were used to solve 

linear inverse reconstruction problems. Here, we show that they can also be used to optimize non-linear 

problems and estimate relaxometry maps with high precision and accuracy. The developed RIM frame- 

work is evaluated in terms of accuracy and precision and compared to an MLE method and an implemen- 

tation of the Residual Neural Network (ResNet). The results show that the RIM improves the quality of 

estimates compared to the other techniques in Monte Carlo experiments with simulated data, test-retest 

analysis of a system phantom, and in-vivo scans. Additionally, inference with the RIM is 150 times faster 

than the MLE, and robustness to (slight) variations of scanning parameters is demonstrated. Hence, the 

RIM is a promising and flexible method for QMRI. Coupled with an open-source training data generation 

tool, it presents a compelling alternative to previous methods. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

MR relaxometry is a technique used to measure intrinsic tissue 

roperties, such as T 1 and T 2 relaxation times. Compared to quali- 

ative weighted images, quantitative T 1 and T 2 maps are much less 

ependent on variations of hardware, acquisition settings, and op- 

rator ( Cercignani et al., 2018 ). Additionally, because measured T 1 
nd T 2 maps are more tissue-specific than weighted images, they 

re promising biomarkers for a range of diseases ( Cheng et al., 

012; Conlon et al., 1988; Erkinjuntti et al., 1987; Larsson et al., 

989; Lu, 2019 ). 

Thanks to their low dependence on hardware and scanning pa- 

ameters, quantitative maps are highly reproducible across scan- 

ers and patients ( Weiskopf et al., 2013 ), presenting variabil- 
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ty comparable to test-retest experiments within a single center 

 Deoni et al., 2008 ). The low variability allows for direct com- 

arison of tissue properties between patients and across time 

 Cercignani et al., 2018 ). However, to ensure that quantitative maps 

re reproducible, mapping methods must produce estimates with 

ow variance and bias. 

Conventionally, quantitative maps are estimated by fitting a 

nown signal model to every voxel of a series of weighted images 

ith varying contrast settings. The Maximum Likelihood Estimator 

MLE) is a popular statistical method used to estimate parameters 

f a probability density by maximizing the likelihood that a sig- 

al model explains the observed data and is extensively used in 

uantitative mapping ( Ramos-Llorden et al., 2017; Smit et al., 2013; 

ijbers and Den Dekker, 2004 ). Usually, MLE methods estimate pa- 

ameters independently for each voxel. This may lead to high vari- 

bility for scans with low signal-to-noise ratio (SNR). Spatial regu- 

arization can be added to the MLE (referred to as the Maximum 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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 Posteriori (MAP) estimation) to enforce spatial smoothness, but 

emands high domain expertise. Additionally, for most signal mod- 

ls, MLE/MAP methods require an iterative non-linear optimization, 

hich is relatively slow for clinical applications and might demand 

omplex algorithm development. 

Despite the current success of deep learning methods in the 

edical field, their application to Quantitative MRI (QMRI) is still 

ffected by the lack of large in-vivo training datasets. Specifically 

n MR relaxometry, the use of neural networks is still limited. 

revious works successfully applied deep learning in cardiac MRI 

 Jeelani et al., 2020 ) and knee ( Liu et al., 2019 ), but they re-

uired the scans of many subjects to train the networks and were 

ependent on alternative mapping methods to generate training 

abels. This limitation was addressed in Cai et al. (2018) and 

hao et al. (2020) by using the Bloch equations to generate sim- 

lated data to train convolutional neural networks in T 1 and T 2 
apping. However, estimation precision, a central metric in QMRI, 

as not reported. It is unclear, therefore, how well these methods 

ould perform with noisy in-vivo data. 

In this paper, we propose a new framework for MR relaxome- 

ry based on the Recurrent Inference Machines (RIMs) ( Putzky and 

elling, 2017 ). RIMs employ a recurrent convolutional neural net- 

ork (CNN) architecture and, unlike most CNNs, learn a parameter 

nference method that uses a signal model, rather than a direct 

apping between input signal and estimates. This hybrid frame- 

ork combines the advantages of both data-driven and model- 

ased methods, and, we hypothesize, is a promising tool for QMRI. 

Previously, RIMs were used to solve linear inverse prob- 

ems to reconstruct undersampled MR images ( Lønning et al., 

019 ) and radio astronomy images ( Morningstar et al., 2019 ). 

n both works, synthetic, corrupted training signals (i.e. images) 

ere generated from high-quality image labels using the forward 

odel. 

A significant limitation on the use of deep learning in MR relax- 

metry is the lack of large publicly available datasets. The acquisi- 

ion of in-vivo data is a costly and time consuming process, limit- 

ng the size of training datasets and reducing flexibility in terms of 

he pulse sequence and scanning parameters. Using a model-based 

trategy for data generation (in contrast to costly acquisitions) al- 

ows the creation of arbitrarily large training sets, where obser- 

ational effects (e.g., acquisition noise, undersampling masks) and 

xed model parameters are drawn from random distributions. This 

epresents an essential advantage over other methods that rely en- 

irely on acquired data. Yet, the lack of high-quality training labels 

i.e. ground-truth T 1 and T 2 maps) limits the variability of training 

ignals. Here, we also generate synthetic training labels to achieve 

ufficient variation in the training set. 

We compared the proposed framework with an MLE method 

nd an implementation of the Residual Neural Network ( He et al., 

016 ) as a baseline for conventional deep learning QMRI methods. 

n contrast to MLE methods with user-defined prior distribution 

o enforce tissue smoothness, the RIM learns the relationship be- 

ween neighboring voxels directly from the data, making no as- 

umptions about the prior distribution of values. This might im- 

rove mapping robustness to acquisition noise. 

We evaluated each method in terms of the precision and ac- 

uracy of measurements. First, noise robustness was assessed via 

onte Carlo experiments with a simulated data set with varying 

oise levels. Second, we evaluated the quantitative maps’ quality 

oncerning each method’s ability to retain small structures within 

he brain. Third, the precision and accuracy in real scans were 

valuated via a test-retest experiment using a hardware phantom. 

astly, we used in-vivo scans to evaluate precision in a test-retest 

xperiment with two healthy volunteers. 
t

κ

2 
. QMRI framework 

.1. Signal modeling 

Let κ be the parameter maps to be inferred, such that κ(x ) ∈ R 

Q 

s a vector containing Q tissue parameters of a voxel indexed by 

he spatial coordinate x ∈ N 

D . Then, we assume that the MRI sig- 

al in each voxel of a series of N weighted images S = { S 1 , . . . , S N }
ollows a parametric model f n (κ(x )) : R 

Q �→ R so 

 n (x ) = f n (κ(x )) + εn (x ) , (1) 

here n = { 1 , . . . , N} indexes the image in the set and εn (x ) is the

oise at voxel x . 

For images with SNR larger than three, the acquired signal at 

osition x can be well described by a Gaussian distribution ( Sijbers 

t al., 1998; Gudbjartsson and Patz, 1995 ), with probability den- 

ity function denoted by p(S n (x m 

) | f n (κ(x m 

)) , σ ) , where m ∈
 1 , . . . , M} is the voxel index, M the number of voxels within the 

R field-of-view and σ is the standard deviation of the noise. 

.2. Quantitative mapping 

.2.1. Regularized maximum likelihood estimator 

The Maximum Likelihood Estimator (MLE) is a statistical 

ethod that infers parameters of a model by maximizing the 

ikelihood that the model explains the observed data. Because 

he MLE is asymptotically unbiased and efficient (it reaches the 

ramer-Rao lower bound for a large number of weighted images) 

 Swamy, 1971 ), it was chosen as the reference method for this 

tudy. 

Assume P (S| f (κ) , σ ) is the joint probability density function 

PDF) of all independent voxels in S from which a negative log- 

ikelihood function L (κ, σ | S ) is defined. Additionally, let �(κ) be 

he log of a prior probability distribution over κ, introduced to en- 

orce map smoothness. Then the ML estimates ˆ κ are found by solv- 

ng 

ˆ = arg min 

κ
L ( κ, σ | S ) + �( κ) , (2) 

n which we assume that σ can be estimated by alternative meth- 

ds and is, therefore, not optimized. 

Note that, although Eq. (2) strictly defines an MAP estimator, 

e choose to use the term regularized MLE to emphasize that 

(κ) is only applied to promote maps that vary slowly in space. In 

his work, regularization is used to encourage spatial smoothness 

f the inversion efficiency map (i.e. B 1 inhomogeneity), while maps 

inked to proton density and tissue relaxation times are not regu- 

arized and their estimation occurs exclusively at the voxel level. 

erein, we refer to this method simply as MLE. 

.2.2. ResNet 

The Residual Neural Network (ResNet) is a type of feed-forward 

etwork that learns to directly map input data to training labels 

sing a concatenation of convolutional layers. It was developed 

y He et al. (2016) as a solution to the degradation problem that 

merges when building deep models ( He and Sun, 2014 ). Skip con- 

ections between layers of the network allow the ResNet to fit to 

he residual of the signal, rather than to the original input, mak- 

ng identity learning simpler, and ensuring that a deeper network 

ill not perform worse than its shallower counterpart in terms of 

raining accuracy ( He et al., 2016 ). For that reason, and because it 

as shown to be a suitable method for QMRI ( Cai et al., 2018 ), we

hose the ResNet as the reference deep learning method for this 

tudy. 

Let �φ : R 

N �→ R 

Q represent a ResNet model for QMRI, parame- 

erized by φ, that maps the acquired signal S to tissue parameters 

, specifically ˆ κ = �φ(S) . The learning task is to find a model � ˆ φ
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Fig. 1. a) The RIM architecture in detail. The general RIM framework is shown on 

the left. Dashed lines indicate information passed through iterations. The RNNCell 

detail is shown on the right of a). Memory states h ∗
j+1 

are passed to the next itera- 

tion step and used within the Gated Recurrent Units (GRU) to control the relevant 

information to be used from previous iterations. b) The ResNet architecture is com- 

posed of a concatenation of G residual blocks. 

4

4

m

q

T

s

g

uch that the difference between ˆ κ and κ is minimal in the train- 

ng set, that is 

ˆ = arg min 

φ

∥∥κ − �φ(S) 
∥∥2 

2 
. (3) 

. The recurrent inference machine: a new framework for 

MRI 

In the context of inference learning ( Chen et al., 2015; Zheng 

t al., 2015 ), the Recurrent Inference Machine (RIM) ( Putzky and 

elling, 2017 ) framework was conceived to mitigate limitations 

inked to the choice of priors and optimization strategy. By mak- 

ng them implicit within the network parameters, the RIM jointly 

earns a prior distribution of parameters and the inference model, 

nburdening us from selecting them among a myriad of choices. 

With this framework, Eq. (2) is solved iteratively, in an anal- 

gous way to a regularized gradient-based optimization method. 

he RIM uses the gradients of the likelihood function to enforce 

he consistency of the data and to plan efficient parameter up- 

ates, speeding up the inference process. Additionally, because this 

ramework is based on a convolutional neural network, it learns 

nd exploits the neighborhood context, providing an advantage 

ver voxel-wise methods. Note that, rather than explicitly evaluat- 

ng �(κ) , the RIM learns it implicitly from the labels in the train-

ng data set. 

At a given optimization step j ∈ { 0 , . . . , J − 1 } , the RIM receives

s input the current estimate of the signal model parameters, ˆ κ j , 

he gradient of the negative log-likelihood L with respect to κ, ∇ κ, 

nd a vector of memory states h j the RIM can use to keep track

f optimization progress and perform more efficient updates. The 

etwork outputs an update to the current estimate and the mem- 

ry state to be used in the next iteration. The update equations for 

his method are given by 

� ˆ κ j , h j+1 

}
= g γ

(
ˆ κ j , ∇ κ, h j 

)
, (4) 

ˆ j+1 = 

ˆ κ j + � ˆ κ j , (5) 

here � ˆ κ j is the output of the network and denotes the incre- 

ental update to the estimated maps at optimization step j and 

 γ represents the neural network portion of the framework, called 

NNCell, parameterized by γ . A diagram of the RIM is shown on 

he left of Fig. 1 a. 

Predictions are compared to a known ground-truth and losses 

re accumulated at each step, with total loss given by 

ˆ = arg min 

γ

1 

J 

J−1 ∑ 

j=0 

∥∥κ − ˆ κ j+1 

∥∥2 

2 
(6) 

here J is the total number of optimization steps and ˆ γ is the op- 

imal inference model given the training data. 

It is important to notice that the RIM uses two distinct loss 

unctions. The likelihood function L (κ| S , σ ) is used to provide the 

radient ∇ κ to the network and is evaluated in the data input do- 

ain (i.e. weighted images). In contrast, Eq. (6) is used to update 

he network parameters γ , and is evaluated in the parametric map 

omain (e.g. T 1 or T 2 relaxation maps). 

A relevant feature of this framework is that the architecture of 

he RNNCell, more specifically, the number of input features in the 

rst convolutional layer, only depends on Q, and not on N. This 

eans that RIMs can process series of weighted images [ S n ] for 

 N > 0 . 
3 
. Methods 

.1. Sequences and parametric models 

The choice of parameters κ and the form of the parametric 

odel f n depend on the pulse sequence used for acquisition. 

For the T 1 mapping task in this work, we used the CINE se- 

uence ( Atkinson and Edelman, 1991 ), based on a (popular) fast 

 1 quantification method ( Look and Locker, 1970 ). It uses a non- 

elective adiabatic inversion pulse, applied after the cardiac trig- 

er with zero delay. The heart beat was simulated at a constant 
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Fig. 2. Results of the Monte Carlo experiment with a T 1 w simulated data set for 

varying SNR levels. a), b) and c) show the Relative Bias for the estimated A, B, and 

T 1 maps compared to simulated ground-truth. Figures d), e) and f) shows the Co- 

efficient of Variation for the same maps. The boxplot represents the distribution of 

the metric over all pixels in the brain mask. The box extends from the lower to 

upper quartile values of this data, with a line at the median. The whiskers extend 

from the box to show the minimum and maximum values for each metric within 

the brain mask. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Table 1 

Distribution of parameters per tissue and tissue property. T 1 and T 2 values 

in milliseconds. Values for A are chosen as a fraction of the concentration 

of protons in the CSF. 

Tissue μT 1 
tissue 

σ T 1 
tissue 

μT 2 
tissue 

σ T 2 
tissue 

μA 
tissue 

σ A 
tissue 

CSF 3500 † 300 2000 † 300 1.0 0.3 

GM 1400 † 300 110 † 30 0.85 

WM 780 † 250 80 † 20 0.65 

Fat 420 † 100 70 † 20 0.9 

Muscle 1200 † 300 50 † 20 0.7 

Muscle skin 1230 † 300 50 † 20 0.7 

Skull 400 ‡ 100 30 ± 10 0.9 

Vessels 1980 ± 300 275 ± 70 1.0 

Marrow 580 ∓ 100 50 † 20 0.8 

† Bojorquez et al., 2017 . ‡ Chen et al. (2016) . ± Stanisz et al. (2005) . ∓
de Bazelaire et al. (2004) . 
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ate of 100 beats per minute using a pulse generator developed in- 

ouse. Note that this sequence was originally intended for cardiac 

maging, and it was designed to maximize the number of inversion 

imes within a single ECG R-R cycle. Although this might benefit 

he fitting process (i.e. more points to fit), the scanner operator 

as limited control over the inversion times used, as well as the 

umber of contrast images acquired. 

For this sequence, a common parametric model is given by 

f n (κ(x m 

)) = 

∣∣∣A 

(
1 − Be 

− τn 
T 1 

)∣∣∣, where τn is the n th inversion time 

nd κ(x m 

) = (A, B, T 1 ) 
T is the tissue parameter vector at position

 m 

, in which A is a quantity proportional to the proton density and

eceiver gain, B is linked to the efficiency of the inversion pulse 

nd T 1 is the longitudinal relaxation time. The operator | · | repre- 

ents the element-wise modulus. 

T 2 scans were performed with a T 2 prepared 3D Fast Spin-Echo 

equence ( Mugler, 2014 ). In our experiments, we used f n (κ(x m 

)) =
Ae 

− τn 
T 2 

∣∣∣ as forward model, where τn is the n th T 2 preparation time 

nd κ(x m 

) = (A, T 2 ) 
T , with A proportional to the proton density

nd receiver gain and T 2 the transverse relaxation time. 

.2. Generation of simulated data for training 

In this work, we opted to generate training data via model- 

ased simulation pipeline. Training samples were composed of 

round truth tissue parameters κ and their corresponding set of 

imulated weighted images S. To generate training samples with 

 spatial distribution that resembles the human brain, ten 3D vir- 

ual brain models from the BrainWeb project ( Cocosco et al., 1997 )

ere selected. We randomly extract 2D patches from the brain 

odels during training, with patch centers drawn uniformly from 
4 
he model’s brain mask. To introduce the notion of uniform tissue 

roperties within subjects but distinct between subjects, for each 

atch and tissue separately, the parameters in κ were drawn from 

 normal distribution with values given in Table 1 . To enable recov- 

ry of intra-tissue variation, voxel-wise Gaussian noise was added 

o each parameter in κ, except for B . Because the B value is related

o the efficiency of the inversion pulse in inversion recovery (IR) 

equences, it is not tissue-specific, and as such, cannot be mod- 

led as above. Its value was simulated as 2 − 
, where 
 is in- 

ependently sampled, per patch, from the half-normal distribution 

 Leone et al., 1961 ) with standard deviation σ
 = 0 . 2 . 

Using κ, S was simulated via Eq. (1) , with ε(x ) an independent

ero mean Gaussian noise where, for each patch, standard devi- 

tion σ acquisition was drawn from a log-uniform distribution with 

alues in the range [0 . 0065 , 0 . 255] , corresponding to SNR levels in

he range of 100 to 3, respectively. 

.3. Evaluation datasets 

We performed all scans on a 3T General Electric Discovery 

R750 clinical scanner (General Electric Medical Systems, Wauke- 

ha, Wisconsin) with a 32-channel head coil. 

.3.1. Hardware phantom 

Phantom scans were carried out using the NIST/ISMRM system 

hantom ( Keenan et al., 2017 ) with parameters for the acquisi- 

ion of T 1 weighted ( T 1 w ) and T 2 weighted ( T 2 w ) images presented

n Table 2 (datasets HP T 1 and HP T 2 , respectively). The acquisition 

eld-of-view (FOV) contained the phantom’s T 1 array for T 1 w scans 

nd the T 2 array for T 2 w scans. To evaluate the repeatability of each 

apping method, C = 4 consecutive acquisitions were performed 

ithout moving the phantom and with minimal time interval be- 

ween scans. 

.3.2. In-vivo 

Our Institutional Review Board approved the volunteer study 

nd informed consent was obtained from 2 healthy adults. C = 2 

epeated scans per volunteer were acquired for both T 1 and T 2 
xperiments to evaluate repeatability with in-vivo data. The FOV 

sed was similar for T 1 and T 2 experiments and was oriented in the 

xial direction, with the middle slice positioned at the level of the 

ody of the corpus callosum. These datasets, acquired with a slice 

hickness of 3mm, are referred to as IV T 1 and IV T 2 , respectively. De- 

ails on acquisition settings are given in Table 2 . Finally, to evaluate 

he performance of the estimators under low SNR conditions, we 

epeated the T 1 w acquisition using a slice thickness of 1.5mm (data 

et called IV 
noisy 
T 1 

), in which a single slice, positioned above the cor- 

us callosum, was acquired. Again, C = 2 repeated scans were ac- 

uired for each volunteer to assess each method’s repeatability. 
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Table 2 

Acquisition settings for the evaluation datasets. HP denotes the phantom scans while IV are the in-vivo scans. 

data set HP T 1 IV T 1 IV noisy 
T 1 

HP T 2 IV T 2 

FOV (pixel) 210x210x15 210x210x10 210x210x1 210x210x15 210x210x10 

Slice thickness (mm) 1.5 3.0 1.5 1.5 3.0 

Spacing (mm) 1.5 1.5 - 1.5 1.5 

In-plane voxel size (mm) 0.82 

Repetition Time (ms) 8192 2010, 2020, 2040, 2080, 2160, 2320 

τ (Preparation time) (ms) 4 10, 20, 40, 80, 160, 320 

τ (Inversion Times) (ms) 23 TIs : 172, 204, 237, 

270, 303, 335, 368, 

401, 434, 467, 499, 

532, 565, 598, 630, 

663, 696, 729, 761, 

794, 827, 860, 893 

31 TIs : 139, 166, 193, 

219, 246, 272, 299, 

325, 352, 379, 405, 

432, 458, 485, 511, 

538, 565, 591, 618, 

644, 671, 697, 724, 

751, 777, 804, 838, 

857, 883, 915, 937 

25 TIs : 172, 204, 237, 

270, 303, 335, 368, 

401, 434, 467, 499, 

532, 565, 598, 630, 

663, 696, 729, 761, 

794, 827, 860, 893, 

925, 958 

- 

Flip Angle ( ◦) 10 - 

Acceleration factor 2 

C (nr. of repeated scans) 4 2 2 4 2 

Acq. time/scan (min) 4.3 7.5 1.6 3.2 3.2 
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.4. Implementation details 

The codes for all methods, trained models and the data used in 

he experiments are available online 1 . 

.4.1. MLE 

To promote smoothness of the B map, the prior �(κ) was set 

s the Laplace operator, given by the sum of the second spatial 

erivatives in every dimension. A weighting term λB is introduced 

o control the strength of the regularization. With λB = 0 , the field 

s estimated voxel-wise with high accuracy, at the cost of preci- 

ion. When λB = ∞ , the field is constant, with value equal to some 

eighted average of the true B value over the FOV. The optimal λB 

alue is partly dependent on the noise level of the scans, thus it 

ight vary between datasets. 

Here, we selected λB = 500 based on experiments with data set 

V T 1 
(not shown). We tested multiple λB values (0, 1, 5, 10, 50, 100, 

0 0, 10 0 0) and chose the one that produced T 1 maps with the low-

st number of outliers. This value was used for all T 1 mapping ex- 

eriments. The remaining A, T 1 and T 2 maps were not regularized. 

To prevent the estimator from getting stuck in a local minimum 

ar from the optimal target, we initialize κ via an iterative linear 

earch within a pre-specified range of values per parameter. Fol- 

owing initialization, parameters are estimated with a non-linear 

rust region optimization method. The estimation pipeline was im- 

lemented in MATLAB with in-house custom routines ( Poot and 

lein, 2015 ). 

.4.2. Network training 

To train both neural networks, 7200 2D patches of size 40 × 40 

er brain model were generated during training and arranged in 

ini-batches of 24 samples, for a total of 30 0 0 training iterations. 

raining times were approximately 11h for T 1 RIM models, 9h for 

 1 ResNet models, 7h for T 2 RIM and 6h for the T 2 ResNet model. 

We used the ADAM optimizer with an initial learning rate of 

.001 and set the initial network weights with the Kaiming ini- 

ialization ( He et al., 2015 ). PyTorch 1.3.1 was used to implement 

nd train the models. The networks were trained on a GPU Nvidia 

100, and all experiments (including timing) were performed on 

n Intel Core i5 2.7 GHz CPU. 

.4.3. ResNet architecture 

Our implementation of the ResNet is a modified version of 

e et al. (2016) . Pooling layers were removed to ensure limited 
1 https://gitlab.com/e.ribeirosabidussi/emcqmri _ relaxometry 

Q

κ
i

5 
nfluence between distant regions of the brain, effectively enforc- 

ng the use of local spatial context during inference. Additionally, 

ur ResNet does not contain fully connected layers to adapt the 

etwork for a voxel-wise regression problem. All convolutions are 

ero-padded to maintain the patch size. 

The first convolutional layer has a 1 × 1 filter, and it is 

sed to increase the number of features from N (the number 

f weighted images) to 40. This layer is followed by a batch 

ormalization (BatchNorm) layer and a ReLu activation function. 

he core component of the network, denoted as the residual 

lock (RB), comprises two 3 × 3 convolutional layers, two Batch- 

orm layers, and two ReLu activations, arranged as depicted on 

he right of Fig. 1 b. Within a given RB, the number of fea-

ures in each convolutional layer is the same. The skip con- 

ection is characterized by the element-wise addition between 

he input and the output of the second BatchNorm layer. In 

otal, G = 12 residual blocks are sequentially linked, with the 

umber of feature channels in each block empirically chosen 

s [40 , 40 , 80 , 80 , 160 , 320 , 160 , 80 , 80 , 40 , 6] . The network archi-

ecture is completed by one 1 × 1 convolutional filter, used to re- 

uce the number of features to Q . Details on the general architec- 

ure are presented on the left of Fig. 1 b. 

Note that, due to differences in the inversion times used for 

he acquisition of T 1 weighted datasets ( Table 2 ), we trained three 

esNet models for the T 1 mapping task: (1) Training data set gen- 

rated with N = 23 inversion times ResNet T 1 : 23 ), (2) with N = 25 

nversion times ResNet T 1 : 25 ) and (3) with N = 31 inversion times 

esNet T 1 : 31 ). Finally, a fourth model was trained on the T 2 mapping 

ask, denoted as ResNet T 2 , with N = 6 echo times. 

.4.4. RIM architecture 

The RNNCell (shown in detail on the right of Fig. 1 a) is com-

osed of four convolutional layers and two Gated Recurrent Units 

GRUs). The first 3 × 3 convolutional layer is followed by a hy- 

erbolic tangent ( tanh ) link function, and its output, with 36 fea- 

ure channels, is passed to the first GRU, which produces 36 out- 

ut channels. The output of this unit ( h 

1 
j+1 

), also used as the first

emory state, goes through two 3 × 3 convolutional layers with 36 

utput features, each followed by a tanh activation. The data then 

asses through a second GRU, which generates the second mem- 

ry state h 

2 
j+1 

. The last layer is a 1 × 1 convolutional layer used to

educe the dimensionality of the feature channels, and it outputs 

features, corresponding to the number of tissue parameters in 

. All convolutional layers are zero-padded to retain the original 

mage size. 

https://gitlab.com/e.ribeirosabidussi/emcqmri_relaxometry
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Fig. 3. Evaluation of image blurriness in terms of Relative Bias and CV. a) Ground-truth T 1 map used to generate the weighted images S. The red box indicates the position 

of the simulated artefacts. b) The four simulated structures. c) Representation of the areas of interest. The blue areas are the structures, and red areas are their immediate 

neighborhood. d) Relative Bias over one hundred repetitions within the Structure region. e) Relative Bias over one hundred repetitions within the Neighborhood region. f) CV 

over one hundred repetitions within the Structure region. g) CV over one hundred repetitions within the Neighborhood region. In all plots, the box extends from the lower 

to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. The vertical black lines at the top of the 

bars (plots f) and g)) show the standard deviation over the data. Significant differences between scenarios E1 and E2 are indicated by ∗ and ∗∗, representing p < 0 . 05 and 

p < 0 . 01 , respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The parameter vector ˆ κ was initialized as A = MIP (S) , B = 

 , T 1 = 10 0 0 ms and T 2 = 10 0 ms, where MIP is the Maximum In-

ensity Projection per voxel over all weighted images in the set. 

e used J = 6 optimization steps for all RIM models. 

Similarly to the ResNet, we trained three RIM models on the 

 1 mapping ( RIM T 1 : 23 , RIM T 1 : 25 , and RIM T 1 : 31 ) and one model on 

he T 2 task ( RIM T 2 
). Notice that, while all T 1 datasets could be pro-

essed by a single RIM model, as the number of input features in 

he first convolutional layer does not depend on N, slight variations 

n inversion times might affect estimation error. This aspect will be 

ssessed in Section 5 , as it supplies information on the RIM’s gen- 

ralizability. 

.5. Quantitative evaluation 

The prediction accuracy was evaluated in terms of the Relative 

ias between the reference parameter values κ and the estimated 

arameters ˆ κc ∈ { ̂  κ1 , . . . , ̂  κC } for each repeated experiment c, de- 

ned as 

elative Bias [%] = 

1 

C 

C ∑ 

c=1 

[(
ˆ κc − κ

)
� κ

]
× 100% , (7) 
p

6 
here C is the number of repeated experiments and � denotes the 

lement-wise division. The Coefficient of Variation (CV) was used 

o measure the repeatability of the predictions, and it is given by 

V [%] = 

( 

SD 

c 
(

ˆ κc 
)

�
1 

C 

C ∑ 

c=1 

ˆ κc 

) 

× 100% , (8) 

here SD 

c denotes the standard deviation over C estimates ˆ κ. 

. Experiments 

.1. Simulated data set 

.1.1. Noise robustness 

To assess each method’s robustness to noise and mapping qual- 

ty, we generated the simulated T 1 w data with the process de- 

cribed in Section 4.2 using a 2D slice of a virtual brain model not 

ncluded in the training, matrix size 256 × 256 and inversion times 

f data set IV T 1 . 

For the same ground-truth T 1 , A and B maps, C = 100 

ealisations of acquisition noise were simulated per SNR ∈ 

3 , 5 , 10 , 30 , 60 , 100] . The Relative Bias and CV were computed per

ixel and their distribution over all pixels within a brain mask is 
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Fig. 4. Estimation of T 1 values in the ISMRM/NIST phantom. RIM results shown in 

red, MLE in blue and ResNet in green. a) Distribution of Relative Bias over all pixels 

within a ROI versus nominal T 1 values in the phantom. b) Box plot of the CV in 

the different spheres/ROIs of the phantom, plotted as a function of their nominal T 1 
value. In both figures, the fully-coloured strokes indicate the spheres with T 1 values 

within the range of inversion times. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. T 1 maps estimated from the IV T 1 data set. Scan 1 of volunteer 1 is shown. a- 

c) T 1 maps generated by each mapping method and the detail (blue box) shown in 

figures d-f). The white arrows indicate estimation outliers. g) Agreement between 

the ResNet and MLE and h) RIM and MLE. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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hown. The models RIM T 1 : 31 and ResNet T 1 : 31 were used in this ex- 

eriment. 

.1.2. Blurriness analysis 

We assessed the quality of the quantitative maps in terms of 

lurriness. Here, we defined blurriness as the amount of error in- 

roduced to a pixel, in terms of Relative Bias and CV, due to the 

nfluence of its neighbors and vice-versa. In this experiment, our 

nterest lies on how well each mapping method can preserve the 

rue T 1 value in small structures (e.g. one pixel), specifically hypo- 

nd hyper-intense regions that are at risk of being blurred away by 

he neural networks. 

To simulate the presence of these small anatomical structures, 

e changed the T 1 value of selected pixels in a ground-truth T 1 
ap ( Fig. 3 a), described as follows: �hypo 

point 
is a hypo-intense pixel 

 T 1 = 400 ms ) within the gray mater of this map (shown in detail

n Fig. 3 b); �hyper 
point 

is a hyper-intense pixel ( T 1 = 1200 ms ) within

he white mater (WM); �vert 
line 

is a hyper-intense vertical line ( T 1 = 

200 ms ) in the WM; and �horz 
line 

is a hyper-intense horizontal line 

 T 1 = 1200 ms ) also in the WM. 

We measured the Relative Bias and CV per pixel in a Monte 

arlo experiment with C = 100 noise realizations (SNR = 10). Each 

etric’s median and standard deviation are reported for two dis- 

oint regions in the estimated T 1 map, referred to as Structure and 

eighborhood ( Fig. 3 c). This scenario, containing simulated struc- 

ures, is called E2 , and was compared to the baseline error in the 

ame regions in the original T 1 map (scenario E1 ). An independent 

 -test was applied to identify significant differences between E1 

nd E2 . The models RIM RIM T 1 : 31 and ResNet ResNet T 1 : 31 were used 

n this experiment. 
7 
.2. Evaluation with hardware phantom 

We manually drew Regions of Interest (ROIs) within every 

phere in the phantom and calculated the Relative Bias and CV per 

ixel within each ROI for T 1 and T 2 tasks. Since nominal parameter 

alues within the spheres, as reported by Keenan et al. (2017) and 

sed as the reference κ, include relaxation times shorter and 

onger than values normally found in brain tissues, we calculated 

he overall accuracy and repeatability as the average Relative Bias 

nd CV over all pixels in spheres with parameter value in between 

he lowest and highest τ used for training ( Table 2 ). 

Because this data set was acquired with 23 inversion times, 

odels RIM T 1 : 23 and ResNet T 1 : 23 were used. 

.3. Evaluation with in-vivo scans 

To evaluate the precision of estimates from in-vivo data, we 

ompared T 1 and T 2 maps from all methods in terms of pixel-wise 

V for all in-vivo scans. We also performed a visual comparison of 

he maps. 

We evaluated the mapping quality in in-vivo scans regarding 

he sharpness of the boundary between gray mater and white 

ater. Twenty lines perpendicular to the tissue interface ( Fig. 7 a) 

ere manually drawn in the measured quantitative maps. For 

ach line, linear interpolation was used to reconstruct the T 1 val- 

es along them and a sigmoid model, given by y (x ) = V/ (1 +
 

−υ( x −x 0 ) ) + b, was fit using the mean squared error (MSE) as ob- 

ective function. The parameter υ denotes the slope of the fitted 
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Fig. 6. T 1 maps estimated from the IV noisy 
T 1 

data set a) T 1 maps estimated from vol- 

unteer 1 for repeated scans 1 and 2. b) Their respective pixel-wise CV map. 
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igmoid and was used as a measure of boundary sharpness. A 

aired t -test was performed to evaluate significant differences be- 

ween mapping methods. 

.4. Model generalizability 

In this experiment, we evaluated how well the RIM can gener- 

lize to datasets with different acquisition settings, specifically, the 

ariation of the inversion times in the three T 1 w datasets. In con- 

rast to the ResNet architecture, which depends on the number of 

eighted images in the series, the RIM can process inputs of any 

ength. 

We used the three RIM T 1 
models ( RIM T 1 : 23 , RIM T 1 : 25 and 

IM T 1 : 31 ) to infer T 1 maps from each T 1 w data set, and computed 

he CV for the repeated experiments in each. The results were 

ompared to the MLE and data set-specific ResNet models. 

. Results 

.1. Simulated data set 

Fig. 2 (a)–(c) show the Relative Bias measured for A, B and T 1 
aps in the experiment with simulated T 1 w data. For most cases 

here SNR > 3 , all methods produced quantitative maps with 

omparable median Relative Bias, but both neural networks dis- 

layed a larger range of values than the MLE. The CV for all SNR 

evels is shown in Fig. 2 (d)-(f) for the same data. The RIM pre-

ented lower CV than the other methods for all SNRs. In compar- 

son, the MLE displayed significantly higher CV compared to RIM 

nd ResNet, accentuated in low SNR. The results of the experi- 

ents with simulated T 2 w data were similar and are shown in fig- 

re A1 of the Supplementary Results. 

Fig. 3 (d)–(g) show the results of the blurriness analysis. Specif- 

cally, Fig. 3 (d) and (f) depict the Relative Bias and CV measured 

er pixel within the Structure area. We observe that both neural 
8 
etworks presented increased Relative Bias compared to scenario 

1 . For the RIM, the highest increase occurred for �hypo 
point 

, with Rel- 

tive Bias going from 0 . 68% to 3 . 43% . This difference represents an

verage error of 11ms over the ground-truth T 1 value of 400 ms, 

r a loss of 0 . 81% in T 1 contrast between the pixel and its neigh-

ors, with average T 1 of 1350 ms . The ResNet showed considerably 

igher bias than RIM when small structures were added, while for 

he MLE, the difference between scenarios E1 and E2 is not sig- 

ificant (with exception for �horz 
line 

). The RIM showed increased CV 

or all structures compared to the baseline, but values were still 

ower than the MLE’s and comparable to the ResNet’s. Figs. 3 (e) 

nd 3 (g) show the Relative Bias and CV for the Neighborhood re- 

ion. We observe higher Relative Bias for RIM and ResNet than the 

LE, with a wider range of values, but we found no significant dif- 

erences between E1 and E2 for any of the cases. 

The average computing time to produce ˆ κ from N = 31 

eighted images (with size 256 × 256 pixels) was measured as 

.8 s for the RIM T 1 :31 , 27 s for ResNet T 1 :31 and 575 s for the MLE. 

.2. Evaluation with hardware phantom 

The T 1 quantification results are shown in Fig. 4 . In Fig. 4 (a)

e present the Relative Bias for the different spheres in the phan- 

om. The average Relative Bias was computed over the spheres in 

he restricted τ domain (full-color lines), in which the RIM T 1 : 23 

odel shows lower error (1.34 % ) compared to the MLE (1.71 % ) and

esNet T 1 : 23 (31.06 % ). The CV as a function of T 1 values is shown in 

ig. 4 (b). The average CV over the restricted τ domain was mea- 

ured as 3.21 % for RIM T 1 : 23 , 7.56 % for MLE and 7.5 % for ResNet T 1 : 23 .

The results for the T 2 mapping task with the hardware phantom 

re shown in figure A2 of the Supplementary Results, where we 

bserved larger Relative Bias for all methods. 

.3. Evaluation with in-vivo scans 

The T 1 maps generated by each method for volunteer 1 in the 

ow noise data set IV T 1 are shown in Fig. 5 (a)–(c). We observe the 

resence of outliers in the MLE and ResNet T 1 : 31 (white arrows in 

ig. 5 (d)–(f)), while the RIM T 1 : 31 produced a clean T 1 map. The 

catter plot in Fig. 5 (h) shows that the RIM estimate is nearly un- 

iased when compared to the MLE’s, while the ResNet presented 

verestimated T 1 values ( Fig. 5 (g)). 

T 1 maps inferred from the noisier data set IV 
noisy 
T 1 

are shown 

n Fig. 6 (a). The RIM T 1 : 25 showed increased noise robustness com- 

ared to the MLE and ResNet T 1 : 25 , clearly outperforming these 

ethods in terms of outliers. The CV maps, computed per pixel, 

re presented in Fig. 6 (b) and shows that the RIM T 1 : 25 model pro- 

uces low-variance quantitative maps, with average CV over all 

ixels equal to 6 . 4% , compared to 17 . 1% from the MLE and 11 . 06%

rom the ResNet T 1 : 25 . 

Fig. 7 (c) shows the result of the image quality analysis for in- 

ivo scans. The figure depicts the distribution of the sigmoid slope 

for each method across all 20 lines. The whiskers indicate the 

inimum and maximum υ values, the boxes show the lower and 

pper quartiles and the solid horizontal line their median. The 

aired t -test shows no significant differences between methods. 

The results of the T 2 in-vivo experiments are shown in Fig. 8 . 

ig. 8 (a)–(c) show the T 2 maps estimated by the MLE, ResNet and 

IM, respectively. Differences between the ResNet and MLE are 

hown in Fig. 8 (d) and between RIM and MLE in Fig. 8 (e). The

esNet overestimated the T 2 values for most of the brain regions, 

ith average difference of 32.2ms across all pixels in a brain mask 

including CSF), while the average T 2 difference between the RIM 

nd MLE was 2.36ms. Figures h-m) show the same maps for a 

ider range of T values. In figures n) and o), the range of the 
2 
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Fig. 7. Evaluation of the integrity of the GM/WM boundaries. a) Detail on the 

twenty lines were manually drawn perpendicular to the GM/WM interface indicated 

by the red lines. b) An example of the sigmoid fitting for one of the lines. c) The 

box plot depicts distribution of the absolute sigmoid slope ( υ) for all 20 lines for 

each mapping method. We found no significant differences between the methods. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 9. Results of the model generalisability experiment. The 3 RIM models 

( RIM T 1 :23 , RIM T 1 :25 and RIM T 1 :31 ) for T 1 mapping were used to estimate data from 

all datasets and compared to the results from MLE and ResNet. a) data set HP T 1 
(23 TIs), b) data set IV noisy 

T 1 
: Volunt. 1 (25 TIs) c) data set IV noisy 

T 1 
: Volunt. 2 (25 TIs) 

d) data set IV T 1 : Volunt. 1 (31 TIs) e) IV T 1 : Volunt. 2 (31 TIs). The median CV over 

all pixels containing tissues of interest (phantom spheres or brain tissue) is shown. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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catter plots f) and g) was extended to show T 2 CSF values. Nei- 

her neural network was able to correctly estimate T 2 values above 

50 ms. 

.4. Model generalizability 

Fig. 9 illustrates the CV of the different models evaluated on 

ll T 1 w datasets. The graph shows that the RIM produces estimates 

ith lower variance than the MLE and ResNet, regardless of the 

umber of inversion times used to create the training set. Note 

hat, in every case, the RIM trained for the specific data performs 

lightly better than the other RIM models. However, we found no 

ignificant differences in repeatability between these models. 
ig. 8. T 2 mapping. Figures a-c) T 2 maps from data set IV T 2 for the MLE, ResNet and R

howcase differences in high T 2 values. Difference maps are shown in figures d) ResNet

) and m), with a larger range of values to display CSF differences. Figures f) and g) show

 500 ms, respectively. The same plots are presented in figures n) and o) with extended r

9 
. Discussion 

This work presented a novel approach for MR relaxometry using 

ecurrent Inference Machines. Previous works showed that RIMs 

roduce state-of-the-art predictions solving linear reconstruction 

roblems. Here, we expanded the framework and demonstrated 

hat it could be successfully applied to non-linear inference prob- 

ems, outperforming a state-of-the-art Maximum Likelihood Esti- 

ator and a ResNet model in T 1 and T 2 mapping tasks. 

In simulated experiments, we observed that the RIM reduces 

he variance of estimates without compromising accuracy, suggest- 

ng higher robustness to acquisition noise than the MLE, and at- 

esting to the advantages of using the neighborhood context in the 

nference process. In addition, for low SNR, the RIM had lower vari- 

nce than the ResNet, suggesting that the neighborhood context 

lone is not the sole responsible for the increased quality, and that 

he data consistency term (likelihood function) in the RIM frame- 

ork helps to produce more reliable estimates. This showcases a 

ajor advantage of the RIM framework over current conventional 

nd deep learning methods for QMRI. 
IM, respectively. The same maps are shown in figures h-j) in a different scale to 

 T 2 - MLE T 2 , and e) RIM T 2 - MLE T 2 . The same difference maps are shown in figures 

 the agreement between ResNet T 2 and MLE T 2 , and RIM T 2 and MLE T 2 for T 2 values 

ange of T 2 values. 
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An important consideration when using learning-based meth- 

ds is the time used for training. The RIM required 7 to 11 h of

raining, depending on the data set, until the training loss con- 

erged. Although it seem long, this process is performed only once, 

nd the time to learn the models is offset by the inference speed 

f the neural networks. Running on a CPU, the MLE took approx- 

mately 110 h to process the entire simulated data set (700 sam- 

les), while the RIM took approx. 45 min. 

The phantom experiments performed to assess the Relative Bias 

nd CV in real, controlled scans showed that the RIM has the low- 

st Relative Bias among the evaluated methods. The ResNet pre- 

ented significantly higher error, which indicates that it does not 

eneralize well to unseen structures, and the use of simulated 

raining data with this model should be carefully considered. Be- 

ause the RIM can generalize well, using simulated data for train- 

ng represents a significant advantage over models trained with 

eal-data when considering data set flexibility, since any combina- 

ion of parameter values can be simulated and the training data 

et can be arbitrarily large. 

In the in-vivo T 1 mapping experiments, the RIM produces quan- 

itative maps similar to those from the MLE, with higher robust- 

ess to noise. Although the ResNet estimates parametric maps con- 

istent with reported T 1 relaxation time of brain tissues, these val- 

es are often overestimated compared to the MLE. Experiments 

ith the noisy T 1 data set show that the RIM compensates the ac- 

uisition noise without blurring brain structures and tissue edges. 

his indicates a strong and effective learned prior. The MLE pre- 

ented a high number of outliers, which drastically reduces preci- 

ion. 

Note, however, that we used the same λB for all MLE experi- 

ents. As the optimal regularization strength is dependent on the 

oise level, the chosen λB might not be optimal for all datasets, 

nd the MLE precision might improve for different values. Addi- 

ionally, as our goal was to demonstrate the advantages of the 

IM’s learned prior over a voxel-wise estimator, we chose not to 

mpose a prior on the remaining quantitative parameters. We be- 

ieve, however, that regularization of the T 1 and T 2 maps could im- 

rove the MLE precision, at the expense of additional bias. 

Additionally, the CINE sequence was originally designed for car- 

iac imaging, and only allows limited control over the inversion 

imes and number of images acquired. The use of this sequence 

or brain imaging should be cautiously considered, since, by de- 

ign, the longest inversion times are on the order of one cardiac 

ycle ( ∼ 1 s), and might not cover the entire range of T 1 values in

rain tissues. 

The T 2 experiments demonstrated an important consideration 

f training the networks with simulated data. For T 2 < 500 ms, 

he RIM presented a strong agreement with the MLE, while the 

esNet produced, in average, overestimated values. T 2 values above 

his range, however, were mapped to a narrow distribution around 

0 0 0ms, which corresponds to the mean T 2 value of CSF in the

raining set. We believe this behavior is due to the distribution 

f values used for training, which contained a gap between CSF 

nd blood vessels ( T 2 = 275ms). Therefore, we advise caution 

hen generating training datasets, since the parameter distribution 

hould match the data to which the RIM will be applied (e.g. in- 

ivo scans). 

The anatomical integrity of quantitative maps is an essential 

actor when evaluating the quality of a mapping method. The RIM 

nd the ResNet use the pixel neighborhood’s information to infer 

he parameter value at that pixel, which creates valid concern re- 

arding the amount of blur introduced by the convolutional ker- 

els. We demonstrated in simulation experiments that, although 

he RIM does introduce a limited amount of blur to the quantita- 

ive maps, small structures are still confidently retained, and the 

rror introduced by the pixel neighborhood does not represent a 
10 
ignificant change in the relaxation time of those structures. Addi- 

ionally, in in-vivo experiments, both deep learning methods pro- 

uce relaxation maps with similar structural characteristics to the 

aps inferred by the MLE. More concretely, the T 1 relaxation times 

n the interface between gray and white mater follow a similar 

ransition pattern to the MLE, further suggesting that the RIM does 

ot introduce sufficient blur to alter brain structures, even in in- 

ivo scans. 

. Conclusion 

We proposed a new method for T 1 and T 2 mapping based on 

he Recurrent Inference Machines framework. We demonstrated 

hat our method has higher precision than, and similar accuracy 

evels as an Maximum Likelihood Estimator and higher precision 

nd higher accuracy than an implementation of the ResNet. The 

xperimental results show that the proposed RIM can generalize 

ell to unseen data, even when acquisition settings vary slightly. 

his allows the use of simulated data for training, representing a 

ubstantial improvement over previously proposed QMRI methods 

hat depend on alternative mapping methods to generate ground- 

ruth labels. Lastly, the RIM dramatically reduces the time required 

o infer quantitative maps by 150-fold compared to our implemen- 

ation of the MLE, showing that our proposed method can be used 

n large studies with modest computing costs. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

E.R. Sabidussi: Conceptualization, Methodology, Software, For- 

al analysis, Investigation, Data curation, Writing – original draft, 

isualization. S. Klein: Conceptualization, Methodology, Validation, 

riting – review & editing, Supervision. M.W.A. Caan: Concep- 

ualization, Methodology, Validation, Writing – review & editing. 

. Bazrafkan: Validation, Writing – review & editing. A.J. den 

ekker: Validation, Writing – review & editing. J. Sijbers: Valida- 

ion, Writing – review & editing, Funding acquisition. W.J. Niessen: 

riting – review & editing, Project administration. D.H.J. Poot: 

onceptualization, Methodology, Validation, Investigation, Writing 

review & editing, Supervision. 

cknowledgements 

This work is part of the project B-QMINDED which has received 

unding from the European Union’s Horizon 2020 research and 

nnovation programme under the Marie Sklodowska-Curie grant 

greement No 764513. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.media.2021.102220 . 

eferences 

tkinson, D.J., Edelman, R.R., 1991. Cineangiography of the heart in a single breath 

hold with a segmented turboFLASH sequence. Radiology 178 (2), 357–360. 
doi: 10.1148/radiology.178.2.1987592 . 

e Bazelaire, C.M.J., Duhamel, G.D., Rofsky, N.M., Alsop, D.C., 2004. MR imaging re- 

laxation times of abdominal and pelvic tissues measured in vivo at 3T: prelim- 
inary results. Radiology 230 (3), 652–659. doi: 10.1148/radiol.2303021331 . 

ojorquez, J.Z., Bricq, S., Acquitter, C., Brunotte, F., Walker, P.M., Lalande, A., 2017. 
What are normal relaxation times of tissues at 3T? J. Magn. Reson. Imaging 35, 

69–80. doi: 10.1016/j.mri.2016.08.021 . 

https://doi.org/10.1016/j.media.2021.102220
https://doi.org/10.1148/radiology.178.2.1987592
https://doi.org/10.1148/radiol.2303021331
https://doi.org/10.1016/j.mri.2016.08.021


E.R. Sabidussi, S. Klein, M.W.A. Caan et al. Medical Image Analysis 74 (2021) 102220 

C  

C  

C  

C  

C

C  

C

D

E

G

H  

H  

H  

J  

K  

 

L

 

L

L

L

L

L

M

M

P

P

R

S

S

 

S  

S

 

S

S

W

Z  
ai, C., Wang, C., Zeng, Y., Cai, S., Liang, D., Wu, Y., Chen, Z., Ding, X., Zhong, J., 2018.
Single-shot T2 mapping using overlapping-echo detachment planar imaging and 

a deep convolutional neural network. Magn. Reson. Med. 80 (5), 2202–2214. 
doi: 10.1002/mrm.27205 . 

ercignani, M. , Dowell, N.G. , Tofts, P. , 2018. Quantitative MRI of the Brain: Principles
of Physical Measurement. CRC Press, Taylor and Francis Group . 

hen, J., Chang, E.Y., Carl, M., Ma, Y., Shao, H., Chen, B., Wu, Z., Du, J., 2016. Mea-
surement of bound and pore water T1 relaxation times in cortical bone using 

three-dimensional ultrashort echo time cones sequences. Magn. Reson. Med. 77 

(6), 2136–2145. doi: 10.1002/mrm.26292 . 
hen, Y. , Yu, W. , Pock, T. , 2015. On learning optimized reaction diffusion pro-

cesses for effective image restoration. CoRR . abs/1503.05768, eprint1503.05768, 
http://arxiv.org/abs/1503.05768 

heng, H.-L.M., Stikov, N., Ghugre, N.R., Wright, G.A., 2012. Practical medical applica- 
tions of quantitative MR relaxometry. J. Magn. Reson. Imaging 36 (4), 805–824. 

doi: 10.1002/jmri.23718 . 

ocosco, C.A. , Kollokian, V. , Kwan, R.K.-S. , Pike, G.B. , Evans, A.C. , 1997. BrainWeb:
online interface to a 3D MRI simulated brain database. NeuroImage 5, 425 . 

onlon, P., Trimble, M., Rogers, D., Callicott, C., 1988. Magnetic resonance imag- 
ing in epilepsy: a controlled study. Epilepsy Res. 2 (1), 37–43. doi: 10.1016/ 

0920-1211(88)90 0 08-3 . 
eoni, S.C., Williams, S.C., Jezzard, P., Suckling, J., Murphy, D.G.M., Jones, D.K., 

2008. Standardized structural magnetic resonance imaging in multicentre stud- 

ies using quantitative T1 and T2 imaging at 1.5T. NeuroImage 40 (2), 662–671. 
doi: 10.1016/j.neuroimage.2007.11.052 . 

rkinjuntti, T., Ketonen, L., Sulkava, R., Sipponen, J., Vuorialho, M., Iivanainen, M., 
1987. Do white matter changes on MRI and CT differentiate vascular dementia 

from Alzheimers disease? J. Neurol. Neurosurg. Psychiatry 50 (1), 37–42. doi: 10. 
1136/jnnp.50.1.37 . 

udbjartsson, H., Patz, S., 1995. The rician distribution of noisy MRI data. Magn. 

Reson. Med. 34 (6), 910–914. doi: 10.1002/mrm.1910340618 . 
e, K. , Sun, J. , 2014. Convolutional neural networks at constrained time cost. CoRR .

abs/1412.1710. eprint: 1412.1710, http://arxiv.org/abs/1412.1710 
e, K. , Zhang, X. , Ren, S. , Sun, J. , 2015. Delving deep into rectifiers: surpass-

ing human-level performance on imagenet classification. CoRR . abs/1502.01852. 
eprint: 1502.01852., http://arxiv.org/abs/1502.01852 

e, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 
doi: 10.1109/cvpr.2016.90 . 

eelani, H., Yang, Y., Zhou, R., Kramer, C.M., Salerno, M., Weller, D.S., 2020. A my-
ocardial T1-mapping framework with recurrent and U-Net convolutional neural 

networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging 
(ISBI). IEEE, pp. 1941–1944. doi: 10.1109/isbi45749.2020.9098459 . 

eenan, K. E., Stupic, K. F., Boss, M. A., Russek, S. E., Chenevert, T. L., Prasad, P. V.,

Reddick, W. E., Zheng, J., Hu, P., Jackson, E. F., et al., 2017. Comparison of T1
measurement using ISMRM/NIST system phantom. 

arsson, H.B.W., Frederiksen, J., Petersen, J., Nordenbo, A., Zeeberg, I., Henriksen, O., 
Olesen, J., 1989. Assessment of demyelination, edema, and gliosis by in vivo de- 

termination of T1 and T2 in the brain of patients with acute attack of multiple
sclerosis. Magn. Reson. Med. 11 (3), 337–348. doi: 10.1002/mrm.1910110308 . 

eone, F.C., Nelson, L.S., Nottingham, R.B., 1961. The folded normal distribution. 
Technometrics 3 (4), 543–550. doi: 10.1080/00401706.1961.10489974 . 
11 
iu, F., Feng, L., Kijowski, R., 2019. MANTIS: model-augmented neural network with 
incoherent k -space sampling for efficient MR parameter mapping. Magn. Reson. 

Med. 82 (1), 174–188. doi: 10.1002/mrm.27707 . 
ønning, K., Putzky, P., Sonke, J.-J., Reneman, L., Caan, M.M.A., Welling, M., 2019. 

Recurrent inference machines for reconstructing heterogeneous MRI data. Med. 
Image Anal. 53, 64–78. doi: 10.1016/j.media.2019.01.005 . 

ook, D.C., Locker, D.R., 1970. Time saving in measurement of NMR and EPR relax- 
ation times. Rev. Sci. Instrum. 41 (2), 250–251. doi: 10.1063/1.16 844 82 . 

u, H., 2019. Physiological MRI of the brain: emerging techniques and clinical appli- 

cations. NeuroImage 187, 1–2. doi: 10.1016/j.neuroimage.2018.08.047 . 
orningstar, W.R., Levasseur, L.P., Hezaveh, Y.D., Blandford, R., Marshall, P., 

Putzky, P., Rueter, T.D., Wechsler, R., Welling, M., 2019. Data-driven reconstruc- 
tion of gravitationally lensed galaxies using recurrent inference machines. As- 

trophys. J. 883 (1), 14. doi: 10.3847/1538-4357/ab35d7 . 
ugler, J.P., 2014. Optimized three-dimensional fast-spin-echo MRI. J. Magn. Reson. 

Imaging 39 (4), 745–767. doi: 10.1002/jmri.24542 . 

oot, D.H.J., Klein, S., 2015. Detecting statistically significant differences in quanti- 
tative MRI experiments, applied to diffusion tensor imaging. IEEE Trans. Med. 

Imaging 34 (5), 1164–1176. doi: 10.1109/tmi.2014.2380830 . 
utzky, P., Welling, W., 2017. Recurrent inference machines for solving inverse prob- 

lems. 1706.04008 . 
amos-Llorden, G., Den Dekker, A.J., Van Steenkiste, G., Jeurissen, B., Vanhevel, F., 

Van Audekerke, J., Verhoye, M., Sijbers, J., 2017. A unified maximum likeli- 

hood framework for simultaneous motion and T 1 estimation in quantitative mr 
T1 mapping. IEEE Trans. Med. Imaging 36 (2), 433–446. doi: 10.1109/tmi.2016. 

2611653 . 
hao, J., Ghodrati, V., Nguyen, K.-L., Hu, P., 2020. Fast and accurate calculation of 

myocardial T1 and T2 values using deep learning Bloch equation simulations 
(DeepBLESS). Magn. Reson. Med. 84 (5), 2831–2845. doi: 10.1002/mrm.28321 . 

ijbers, J., Den Dekker, A., 2004. Maximum likelihood estimation of signal amplitude 

and noise variance from MR data. Magn. Reson. Med. 51 (3), 586–594. doi: 10.
1002/mrm.10728 . 

ijbers, J. , Den Dekker, A.J. , Verhoye, M. , Raman, E.R. , Van Dyck, D. , 1998. Optimal
estimation of T2 maps from magnitude MR images. In: Hanson, K.M. (Ed.), Med- 

ical Imaging 1998: Image Processing. International Society for Optics and Pho- 
tonics, SPIE, pp. 384–390 . https://doi.org/10.1117/12.310915 

mit, H., Guridi, R.P., Guenoun, J., Poot, D.H.J., Doeswijk, G.N., Milanesi, M., 

Bernsen, M.R., Krestin, G.P., Klein, S., Kotek, G., 2013. T1 mapping in the rat my-
ocardium at 7T using a modified CINE inversion recovery sequence. J. Magn. 

Reson. Imaging 39 (4), 901–910. doi: 10.1002/jmri.24251 . 
tanisz, G.J., Odrobina, E.E., Pun, J., Escaravage, M., Graham, S.J., Bronskill, M.J., 

Henkelman, R.M., 2005. T1, T2 relaxation and magnetization transfer in tissue 
at 3T. Magn. Reson. Med. 54 (3), 507–512. doi: 10.1002/mrm.20605 . 

wamy, P.A.V.B., 1971. Statistical Inference in Random Coefficient Regression Models. 

Springer doi: 10.1007/978- 3- 642- 80653- 7 . 
eiskopf, N., Suckling, J., Williams, G., Correia, M.M., Inkster, B., Tait, R., Ooi, C., 

Bullmore, E.T., Lutti, A., 2013. Quantitative multi-parameter mapping of R1, PD ∗ , 
MT, and R2 ∗ at 3T: a multi-center validation. Front. Neurosci. 7. doi: 10.3389/ 

fnins.2013.0 0 095 . 
heng, S. , Jayasumana, S. , Romera-Paredes, B. , Vineet, V. , Su, Z. , Du, D. , Huang, C. ,

Torr, P.H.S. , 2015. Conditional random fields as recurrent neural networks. CoRR . 
abs/1502.03240. eprint: 1502.03240., http://arxiv.org/abs/1502.03240 

https://doi.org/10.1002/mrm.27205
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0005
https://doi.org/10.1002/mrm.26292
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0007
https://doi.org/10.1002/jmri.23718
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0009
https://doi.org/10.1016/0920-1211(88)90008-3
https://doi.org/10.1016/j.neuroimage.2007.11.052
https://doi.org/10.1136/jnnp.50.1.37
https://doi.org/10.1002/mrm.1910340618
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0015
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/isbi45749.2020.9098459
https://doi.org/10.1002/mrm.1910110308
https://doi.org/10.1080/00401706.1961.10489974
https://doi.org/10.1002/mrm.27707
https://doi.org/10.1016/j.media.2019.01.005
https://doi.org/10.1063/1.1684482
https://doi.org/10.1016/j.neuroimage.2018.08.047
https://doi.org/10.3847/1538-4357/ab35d7
https://doi.org/10.1002/jmri.24542
https://doi.org/10.1109/tmi.2014.2380830
http://arxiv.org/abs/1706.04008
https://doi.org/10.1109/tmi.2016.2611653
https://doi.org/10.1002/mrm.28321
https://doi.org/10.1002/mrm.10728
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0032
https://doi.org/10.1002/jmri.24251
https://doi.org/10.1002/mrm.20605
https://doi.org/10.1007/978-3-642-80653-7
https://doi.org/10.3389/fnins.2013.00095
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00265-6/sbref0037

	Recurrent inference machines as inverse problem solvers for MR relaxometry
	1 Introduction
	2 QMRI framework
	2.1 Signal modeling
	2.2 Quantitative mapping
	2.2.1 Regularized maximum likelihood estimator
	2.2.2 ResNet


	3 The recurrent inference machine: a new framework for QMRI
	4 Methods
	4.1 Sequences and parametric models
	4.2 Generation of simulated data for training
	4.3 Evaluation datasets
	4.3.1 Hardware phantom
	4.3.2 In-vivo

	4.4 Implementation details
	4.4.1 MLE
	4.4.2 Network training
	4.4.3 ResNet architecture
	4.4.4 RIM architecture

	4.5 Quantitative evaluation

	5 Experiments
	5.1 Simulated data set
	5.1.1 Noise robustness
	5.1.2 Blurriness analysis

	5.2 Evaluation with hardware phantom
	5.3 Evaluation with in-vivo scans
	5.4 Model generalizability

	6 Results
	6.1 Simulated data set
	6.2 Evaluation with hardware phantom
	6.3 Evaluation with in-vivo scans
	6.4 Model generalizability

	7 Discussion
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Supplementary material
	References


